source: trunk/gcc/libjava/java/lang/Float.java

Last change on this file was 1392, checked in by bird, 21 years ago

This commit was generated by cvs2svn to compensate for changes in r1391,
which included commits to RCS files with non-trunk default branches.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 16.8 KB
Line 
1/* Float.java -- object wrapper for float
2 Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4This file is part of GNU Classpath.
5
6GNU Classpath is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU Classpath is distributed in the hope that it will be useful, but
12WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Classpath; see the file COPYING. If not, write to the
18Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
1902111-1307 USA.
20
21Linking this library statically or dynamically with other modules is
22making a combined work based on this library. Thus, the terms and
23conditions of the GNU General Public License cover the whole
24combination.
25
26As a special exception, the copyright holders of this library give you
27permission to link this library with independent modules to produce an
28executable, regardless of the license terms of these independent
29modules, and to copy and distribute the resulting executable under
30terms of your choice, provided that you also meet, for each linked
31independent module, the terms and conditions of the license of that
32module. An independent module is a module which is not derived from
33or based on this library. If you modify this library, you may extend
34this exception to your version of the library, but you are not
35obligated to do so. If you do not wish to do so, delete this
36exception statement from your version. */
37
38
39package java.lang;
40
41import gnu.classpath.Configuration;
42
43/**
44 * Instances of class <code>Float</code> represent primitive
45 * <code>float</code> values.
46 *
47 * Additionally, this class provides various helper functions and variables
48 * related to floats.
49 *
50 * @author Paul Fisher
51 * @author Andrew Haley <aph@cygnus.com>
52 * @author Eric Blake <ebb9@email.byu.edu>
53 * @since 1.0
54 * @status updated to 1.4
55 */
56public final class Float extends Number implements Comparable
57{
58 /**
59 * Compatible with JDK 1.0+.
60 */
61 private static final long serialVersionUID = -2671257302660747028L;
62
63 /**
64 * The maximum positive value a <code>double</code> may represent
65 * is 3.4028235e+38f.
66 */
67 public static final float MAX_VALUE = 3.4028235e+38f;
68
69 /**
70 * The minimum positive value a <code>float</code> may represent
71 * is 1.4e-45.
72 */
73 public static final float MIN_VALUE = 1.4e-45f;
74
75 /**
76 * The value of a float representation -1.0/0.0, negative infinity.
77 */
78 public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
79
80 /**
81 * The value of a float representation 1.0/0.0, positive infinity.
82 */
83 public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
84
85 /**
86 * All IEEE 754 values of NaN have the same value in Java.
87 */
88 public static final float NaN = 0.0f / 0.0f;
89
90 /**
91 * The primitive type <code>float</code> is represented by this
92 * <code>Class</code> object.
93 * @since 1.1
94 */
95 public static final Class TYPE = VMClassLoader.getPrimitiveClass('F');
96
97 /**
98 * The immutable value of this Float.
99 *
100 * @serial the wrapped float
101 */
102 private final float value;
103
104 /**
105 * Load native routines necessary for this class.
106 */
107 static
108 {
109 if (Configuration.INIT_LOAD_LIBRARY)
110 {
111 System.loadLibrary("javalang");
112 }
113 }
114
115 /**
116 * Create a <code>Float</code> from the primitive <code>float</code>
117 * specified.
118 *
119 * @param value the <code>float</code> argument
120 */
121 public Float(float value)
122 {
123 this.value = value;
124 }
125
126 /**
127 * Create a <code>Float</code> from the primitive <code>double</code>
128 * specified.
129 *
130 * @param value the <code>double</code> argument
131 */
132 public Float(double value)
133 {
134 this.value = (float) value;
135 }
136
137 /**
138 * Create a <code>Float</code> from the specified <code>String</code>.
139 * This method calls <code>Float.parseFloat()</code>.
140 *
141 * @param s the <code>String</code> to convert
142 * @throws NumberFormatException if <code>s</code> cannot be parsed as a
143 * <code>float</code>
144 * @throws NullPointerException if <code>s</code> is null
145 * @see #parseFloat(String)
146 */
147 public Float(String s)
148 {
149 value = parseFloat(s);
150 }
151
152 /**
153 * Convert the <code>float</code> to a <code>String</code>.
154 * Floating-point string representation is fairly complex: here is a
155 * rundown of the possible values. "<code>[-]</code>" indicates that a
156 * negative sign will be printed if the value (or exponent) is negative.
157 * "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
158 * "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
159 *
160 * <table border=1>
161 * <tr><th>Value of Float</th><th>String Representation</th></tr>
162 * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
163 * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
164 * <td><code>[-]number.number</code></td></tr>
165 * <tr><td>Other numeric value</td>
166 * <td><code>[-]&lt;digit&gt;.&lt;number&gt;
167 * E[-]&lt;number&gt;</code></td></tr>
168 * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
169 * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
170 * </table>
171 *
172 * Yes, negative zero <em>is</em> a possible value. Note that there is
173 * <em>always</em> a <code>.</code> and at least one digit printed after
174 * it: even if the number is 3, it will be printed as <code>3.0</code>.
175 * After the ".", all digits will be printed except trailing zeros. The
176 * result is rounded to the shortest decimal number which will parse back
177 * to the same float.
178 *
179 * <p>To create other output formats, use {@link java.text.NumberFormat}.
180 *
181 * @XXX specify where we are not in accord with the spec.
182 *
183 * @param f the <code>float</code> to convert
184 * @return the <code>String</code> representing the <code>float</code>
185 */
186 public static String toString(float f)
187 {
188 return Double.toString(f, true);
189 }
190
191 /**
192 * Creates a new <code>Float</code> object using the <code>String</code>.
193 *
194 * @param s the <code>String</code> to convert
195 * @return the new <code>Float</code>
196 * @throws NumberFormatException if <code>s</code> cannot be parsed as a
197 * <code>float</code>
198 * @throws NullPointerException if <code>s</code> is null
199 * @see #parseFloat(String)
200 */
201 public static Float valueOf(String s)
202 {
203 return new Float(parseFloat(s));
204 }
205
206 /**
207 * Parse the specified <code>String</code> as a <code>float</code>. The
208 * extended BNF grammar is as follows:<br>
209 * <pre>
210 * <em>DecodableString</em>:
211 * ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
212 * | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
213 * | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
214 * [ <code>f</code> | <code>F</code> | <code>d</code>
215 * | <code>D</code>] )
216 * <em>FloatingPoint</em>:
217 * ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
218 * [ <em>Exponent</em> ] )
219 * | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
220 * <em>Exponent</em>:
221 * ( ( <code>e</code> | <code>E</code> )
222 * [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
223 * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
224 * </pre>
225 *
226 * <p>NaN and infinity are special cases, to allow parsing of the output
227 * of toString. Otherwise, the result is determined by calculating
228 * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
229 * to the nearest float. Remember that many numbers cannot be precisely
230 * represented in floating point. In case of overflow, infinity is used,
231 * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
232 * this does not accept Unicode digits outside the ASCII range.
233 *
234 * <p>If an unexpected character is found in the <code>String</code>, a
235 * <code>NumberFormatException</code> will be thrown. Leading and trailing
236 * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
237 * internal to the actual number are not allowed.
238 *
239 * <p>To parse numbers according to another format, consider using
240 * {@link java.text.NumberFormat}.
241 *
242 * @XXX specify where/how we are not in accord with the spec.
243 *
244 * @param str the <code>String</code> to convert
245 * @return the <code>float</code> value of <code>s</code>
246 * @throws NumberFormatException if <code>s</code> cannot be parsed as a
247 * <code>float</code>
248 * @throws NullPointerException if <code>s</code> is null
249 * @see #MIN_VALUE
250 * @see #MAX_VALUE
251 * @see #POSITIVE_INFINITY
252 * @see #NEGATIVE_INFINITY
253 * @since 1.2
254 */
255 public static float parseFloat(String s)
256 {
257 // XXX Rounding parseDouble() causes some errors greater than 1 ulp from
258 // the infinitely precise decimal.
259 return (float) Double.parseDouble(s);
260 }
261
262 /**
263 * Return <code>true</code> if the <code>float</code> has the same
264 * value as <code>NaN</code>, otherwise return <code>false</code>.
265 *
266 * @param v the <code>float</code> to compare
267 * @return whether the argument is <code>NaN</code>
268 */
269 public static boolean isNaN(float v)
270 {
271 // This works since NaN != NaN is the only reflexive inequality
272 // comparison which returns true.
273 return v != v;
274 }
275
276 /**
277 * Return <code>true</code> if the <code>float</code> has a value
278 * equal to either <code>NEGATIVE_INFINITY</code> or
279 * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
280 *
281 * @param v the <code>float</code> to compare
282 * @return whether the argument is (-/+) infinity
283 */
284 public static boolean isInfinite(float v)
285 {
286 return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
287 }
288
289 /**
290 * Return <code>true</code> if the value of this <code>Float</code>
291 * is the same as <code>NaN</code>, otherwise return <code>false</code>.
292 *
293 * @return whether this <code>Float</code> is <code>NaN</code>
294 */
295 public boolean isNaN()
296 {
297 return isNaN(value);
298 }
299
300 /**
301 * Return <code>true</code> if the value of this <code>Float</code>
302 * is the same as <code>NEGATIVE_INFINITY</code> or
303 * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
304 *
305 * @return whether this <code>Float</code> is (-/+) infinity
306 */
307 public boolean isInfinite()
308 {
309 return isInfinite(value);
310 }
311
312 /**
313 * Convert the <code>float</code> value of this <code>Float</code>
314 * to a <code>String</code>. This method calls
315 * <code>Float.toString(float)</code> to do its dirty work.
316 *
317 * @return the <code>String</code> representation
318 * @see #toString(float)
319 */
320 public String toString()
321 {
322 return toString(value);
323 }
324
325 /**
326 * Return the value of this <code>Float</code> as a <code>byte</code>.
327 *
328 * @return the byte value
329 * @since 1.1
330 */
331 public byte byteValue()
332 {
333 return (byte) value;
334 }
335
336 /**
337 * Return the value of this <code>Float</code> as a <code>short</code>.
338 *
339 * @return the short value
340 * @since 1.1
341 */
342 public short shortValue()
343 {
344 return (short) value;
345 }
346
347 /**
348 * Return the value of this <code>Integer</code> as an <code>int</code>.
349 *
350 * @return the int value
351 */
352 public int intValue()
353 {
354 return (int) value;
355 }
356
357 /**
358 * Return the value of this <code>Integer</code> as a <code>long</code>.
359 *
360 * @return the long value
361 */
362 public long longValue()
363 {
364 return (long) value;
365 }
366
367 /**
368 * Return the value of this <code>Float</code>.
369 *
370 * @return the float value
371 */
372 public float floatValue()
373 {
374 return value;
375 }
376
377 /**
378 * Return the value of this <code>Float</code> as a <code>double</code>
379 *
380 * @return the double value
381 */
382 public double doubleValue()
383 {
384 return value;
385 }
386
387 /**
388 * Return a hashcode representing this Object. <code>Float</code>'s hash
389 * code is calculated by calling <code>floatToIntBits(floatValue())</code>.
390 *
391 * @return this Object's hash code
392 * @see #floatToIntBits(float)
393 */
394 public int hashCode()
395 {
396 return floatToIntBits(value);
397 }
398
399 /**
400 * Returns <code>true</code> if <code>obj</code> is an instance of
401 * <code>Float</code> and represents the same float value. Unlike comparing
402 * two floats with <code>==</code>, this treats two instances of
403 * <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
404 * <code>-0.0</code> as unequal.
405 *
406 * <p>Note that <code>f1.equals(f2)<code> is identical to
407 * <code>floatToIntBits(f1.floatValue()) ==
408 * floatToIntBits(f2.floatValue())<code>.
409 *
410 * @param obj the object to compare
411 * @return whether the objects are semantically equal
412 */
413 public boolean equals(Object obj)
414 {
415 if (! (obj instanceof Float))
416 return false;
417
418 float f = ((Float) obj).value;
419
420 // Avoid call to native method. However, some implementations, like gcj,
421 // are better off using floatToIntBits(value) == floatToIntBits(f).
422 // Check common case first, then check NaN and 0.
423 if (value == f)
424 return (value != 0) || (1 / value == 1 / f);
425 return isNaN(value) && isNaN(f);
426 }
427
428 /**
429 * Convert the float to the IEEE 754 floating-point "single format" bit
430 * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
431 * (masked by 0x7f800000) represent the exponent, and bits 22-0
432 * (masked by 0x007fffff) are the mantissa. This function collapses all
433 * versions of NaN to 0x7fc00000. The result of this function can be used
434 * as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
435 * original <code>float</code> value.
436 *
437 * @param value the <code>float</code> to convert
438 * @return the bits of the <code>float</code>
439 * @see #intBitsToFloat(int)
440 */
441 public static native int floatToIntBits(float value);
442
443 /**
444 * Convert the float to the IEEE 754 floating-point "single format" bit
445 * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
446 * (masked by 0x7f800000) represent the exponent, and bits 22-0
447 * (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
448 * rather than collapsing to a canonical value. The result of this function
449 * can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
450 * obtain the original <code>float</code> value.
451 *
452 * @param value the <code>float</code> to convert
453 * @return the bits of the <code>float</code>
454 * @see #intBitsToFloat(int)
455 */
456 public static native int floatToRawIntBits(float value);
457
458 /**
459 * Convert the argument in IEEE 754 floating-point "single format" bit
460 * layout to the corresponding float. Bit 31 (the most significant) is the
461 * sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
462 * bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
463 * NaN alone, so that you can recover the bit pattern with
464 * <code>Float.floatToRawIntBits(float)</code>.
465 *
466 * @param bits the bits to convert
467 * @return the <code>float</code> represented by the bits
468 * @see #floatToIntBits(float)
469 * @see #floatToRawIntBits(float)
470 */
471 public static native float intBitsToFloat(int bits);
472
473 /**
474 * Compare two Floats numerically by comparing their <code>float</code>
475 * values. The result is positive if the first is greater, negative if the
476 * second is greater, and 0 if the two are equal. However, this special
477 * cases NaN and signed zero as follows: NaN is considered greater than
478 * all other floats, including <code>POSITIVE_INFINITY</code>, and positive
479 * zero is considered greater than negative zero.
480 *
481 * @param f the Float to compare
482 * @return the comparison
483 * @since 1.2
484 */
485 public int compareTo(Float f)
486 {
487 return compare(value, f.value);
488 }
489
490 /**
491 * Behaves like <code>compareTo(Float)</code> unless the Object
492 * is not an <code>Float</code>.
493 *
494 * @param o the object to compare
495 * @return the comparison
496 * @throws ClassCastException if the argument is not a <code>Float</code>
497 * @see #compareTo(Float)
498 * @see Comparable
499 * @since 1.2
500 */
501 public int compareTo(Object o)
502 {
503 return compare(value, ((Float) o).value);
504 }
505
506 /**
507 * Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
508 * other words this compares two floats, special casing NaN and zero,
509 * without the overhead of objects.
510 *
511 * @param x the first float to compare
512 * @param y the second float to compare
513 * @return the comparison
514 * @since 1.4
515 */
516 public static int compare(float x, float y)
517 {
518 if (isNaN(x))
519 return isNaN(y) ? 0 : 1;
520 if (isNaN(y))
521 return -1;
522 // recall that 0.0 == -0.0, so we convert to infinities and try again
523 if (x == 0 && y == 0)
524 return (int) (1 / x - 1 / y);
525 if (x == y)
526 return 0;
527
528 return x > y ? 1 : -1;
529 }
530}
Note: See TracBrowser for help on using the repository browser.