source: trunk/gcc/libjava/java/lang/Double.java

Last change on this file was 1392, checked in by bird, 21 years ago

This commit was generated by cvs2svn to compensate for changes in r1391,
which included commits to RCS files with non-trunk default branches.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 17.2 KB
Line 
1/* Double.java -- object wrapper for double
2 Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3
4This file is part of GNU Classpath.
5
6GNU Classpath is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU Classpath is distributed in the hope that it will be useful, but
12WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU Classpath; see the file COPYING. If not, write to the
18Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
1902111-1307 USA.
20
21Linking this library statically or dynamically with other modules is
22making a combined work based on this library. Thus, the terms and
23conditions of the GNU General Public License cover the whole
24combination.
25
26As a special exception, the copyright holders of this library give you
27permission to link this library with independent modules to produce an
28executable, regardless of the license terms of these independent
29modules, and to copy and distribute the resulting executable under
30terms of your choice, provided that you also meet, for each linked
31independent module, the terms and conditions of the license of that
32module. An independent module is a module which is not derived from
33or based on this library. If you modify this library, you may extend
34this exception to your version of the library, but you are not
35obligated to do so. If you do not wish to do so, delete this
36exception statement from your version. */
37
38
39package java.lang;
40
41import gnu.classpath.Configuration;
42
43/**
44 * Instances of class <code>Double</code> represent primitive
45 * <code>double</code> values.
46 *
47 * Additionally, this class provides various helper functions and variables
48 * related to doubles.
49 *
50 * @author Paul Fisher
51 * @author Andrew Haley <aph@cygnus.com>
52 * @author Eric Blake <ebb9@email.byu.edu>
53 * @since 1.0
54 * @status updated to 1.4
55 */
56public final class Double extends Number implements Comparable
57{
58 /**
59 * Compatible with JDK 1.0+.
60 */
61 private static final long serialVersionUID = -9172774392245257468L;
62
63 /**
64 * The maximum positive value a <code>double</code> may represent
65 * is 1.7976931348623157e+308.
66 */
67 public static final double MAX_VALUE = 1.7976931348623157e+308;
68
69 /**
70 * The minimum positive value a <code>double</code> may represent
71 * is 5e-324.
72 */
73 public static final double MIN_VALUE = 5e-324;
74
75 /**
76 * The value of a double representation -1.0/0.0, negative
77 * infinity.
78 */
79 public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
80
81 /**
82 * The value of a double representing 1.0/0.0, positive infinity.
83 */
84 public static final double POSITIVE_INFINITY = 1.0 / 0.0;
85
86 /**
87 * All IEEE 754 values of NaN have the same value in Java.
88 */
89 public static final double NaN = 0.0 / 0.0;
90
91 /**
92 * The primitive type <code>double</code> is represented by this
93 * <code>Class</code> object.
94 * @since 1.1
95 */
96 public static final Class TYPE = VMClassLoader.getPrimitiveClass('D');
97
98 /**
99 * The immutable value of this Double.
100 *
101 * @serial the wrapped double
102 */
103 private final double value;
104
105 /**
106 * Load native routines necessary for this class.
107 */
108 static
109 {
110 if (Configuration.INIT_LOAD_LIBRARY)
111 {
112 System.loadLibrary("javalang");
113 initIDs();
114 }
115 }
116
117 /**
118 * Create a <code>Double</code> from the primitive <code>double</code>
119 * specified.
120 *
121 * @param value the <code>double</code> argument
122 */
123 public Double(double value)
124 {
125 this.value = value;
126 }
127
128 /**
129 * Create a <code>Double</code> from the specified <code>String</code>.
130 * This method calls <code>Double.parseDouble()</code>.
131 *
132 * @param s the <code>String</code> to convert
133 * @throws NumberFormatException if <code>s</code> cannot be parsed as a
134 * <code>double</code>
135 * @throws NullPointerException if <code>s</code> is null
136 * @see #parseDouble(String)
137 */
138 public Double(String s)
139 {
140 value = parseDouble(s);
141 }
142
143 /**
144 * Convert the <code>double</code> to a <code>String</code>.
145 * Floating-point string representation is fairly complex: here is a
146 * rundown of the possible values. "<code>[-]</code>" indicates that a
147 * negative sign will be printed if the value (or exponent) is negative.
148 * "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
149 * "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
150 *
151 * <table border=1>
152 * <tr><th>Value of Double</th><th>String Representation</th></tr>
153 * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
154 * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
155 * <td><code>[-]number.number</code></td></tr>
156 * <tr><td>Other numeric value</td>
157 * <td><code>[-]&lt;digit&gt;.&lt;number&gt;
158 * E[-]&lt;number&gt;</code></td></tr>
159 * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
160 * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
161 * </table>
162 *
163 * Yes, negative zero <em>is</em> a possible value. Note that there is
164 * <em>always</em> a <code>.</code> and at least one digit printed after
165 * it: even if the number is 3, it will be printed as <code>3.0</code>.
166 * After the ".", all digits will be printed except trailing zeros. The
167 * result is rounded to the shortest decimal number which will parse back
168 * to the same double.
169 *
170 * <p>To create other output formats, use {@link java.text.NumberFormat}.
171 *
172 * @XXX specify where we are not in accord with the spec.
173 *
174 * @param d the <code>double</code> to convert
175 * @return the <code>String</code> representing the <code>double</code>
176 */
177 public static String toString(double d)
178 {
179 return toString(d, false);
180 }
181
182 /**
183 * Create a new <code>Double</code> object using the <code>String</code>.
184 *
185 * @param s the <code>String</code> to convert
186 * @return the new <code>Double</code>
187 * @throws NumberFormatException if <code>s</code> cannot be parsed as a
188 * <code>double</code>
189 * @throws NullPointerException if <code>s</code> is null.
190 * @see #parseDouble(String)
191 */
192 public static Double valueOf(String s)
193 {
194 return new Double(parseDouble(s));
195 }
196
197 /**
198 * Parse the specified <code>String</code> as a <code>double</code>. The
199 * extended BNF grammar is as follows:<br>
200 * <pre>
201 * <em>DecodableString</em>:
202 * ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
203 * | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
204 * | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
205 * [ <code>f</code> | <code>F</code> | <code>d</code>
206 * | <code>D</code>] )
207 * <em>FloatingPoint</em>:
208 * ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
209 * [ <em>Exponent</em> ] )
210 * | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
211 * <em>Exponent</em>:
212 * ( ( <code>e</code> | <code>E</code> )
213 * [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
214 * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
215 * </pre>
216 *
217 * <p>NaN and infinity are special cases, to allow parsing of the output
218 * of toString. Otherwise, the result is determined by calculating
219 * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
220 * to the nearest double. Remember that many numbers cannot be precisely
221 * represented in floating point. In case of overflow, infinity is used,
222 * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
223 * this does not accept Unicode digits outside the ASCII range.
224 *
225 * <p>If an unexpected character is found in the <code>String</code>, a
226 * <code>NumberFormatException</code> will be thrown. Leading and trailing
227 * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
228 * internal to the actual number are not allowed.
229 *
230 * <p>To parse numbers according to another format, consider using
231 * {@link java.text.NumberFormat}.
232 *
233 * @XXX specify where/how we are not in accord with the spec.
234 *
235 * @param str the <code>String</code> to convert
236 * @return the <code>double</code> value of <code>s</code>
237 * @throws NumberFormatException if <code>s</code> cannot be parsed as a
238 * <code>double</code>
239 * @throws NullPointerException if <code>s</code> is null
240 * @see #MIN_VALUE
241 * @see #MAX_VALUE
242 * @see #POSITIVE_INFINITY
243 * @see #NEGATIVE_INFINITY
244 * @since 1.2
245 */
246 public static native double parseDouble(String s);
247
248 /**
249 * Return <code>true</code> if the <code>double</code> has the same
250 * value as <code>NaN</code>, otherwise return <code>false</code>.
251 *
252 * @param v the <code>double</code> to compare
253 * @return whether the argument is <code>NaN</code>.
254 */
255 public static boolean isNaN(double v)
256 {
257 // This works since NaN != NaN is the only reflexive inequality
258 // comparison which returns true.
259 return v != v;
260 }
261
262 /**
263 * Return <code>true</code> if the <code>double</code> has a value
264 * equal to either <code>NEGATIVE_INFINITY</code> or
265 * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
266 *
267 * @param v the <code>double</code> to compare
268 * @return whether the argument is (-/+) infinity.
269 */
270 public static boolean isInfinite(double v)
271 {
272 return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
273 }
274
275 /**
276 * Return <code>true</code> if the value of this <code>Double</code>
277 * is the same as <code>NaN</code>, otherwise return <code>false</code>.
278 *
279 * @return whether this <code>Double</code> is <code>NaN</code>
280 */
281 public boolean isNaN()
282 {
283 return isNaN(value);
284 }
285
286 /**
287 * Return <code>true</code> if the value of this <code>Double</code>
288 * is the same as <code>NEGATIVE_INFINITY</code> or
289 * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
290 *
291 * @return whether this <code>Double</code> is (-/+) infinity
292 */
293 public boolean isInfinite()
294 {
295 return isInfinite(value);
296 }
297
298 /**
299 * Convert the <code>double</code> value of this <code>Double</code>
300 * to a <code>String</code>. This method calls
301 * <code>Double.toString(double)</code> to do its dirty work.
302 *
303 * @return the <code>String</code> representation
304 * @see #toString(double)
305 */
306 public String toString()
307 {
308 return toString(value);
309 }
310
311 /**
312 * Return the value of this <code>Double</code> as a <code>byte</code>.
313 *
314 * @return the byte value
315 * @since 1.1
316 */
317 public byte byteValue()
318 {
319 return (byte) value;
320 }
321
322 /**
323 * Return the value of this <code>Double</code> as a <code>short</code>.
324 *
325 * @return the short value
326 * @since 1.1
327 */
328 public short shortValue()
329 {
330 return (short) value;
331 }
332
333 /**
334 * Return the value of this <code>Double</code> as an <code>int</code>.
335 *
336 * @return the int value
337 */
338 public int intValue()
339 {
340 return (int) value;
341 }
342
343 /**
344 * Return the value of this <code>Double</code> as a <code>long</code>.
345 *
346 * @return the long value
347 */
348 public long longValue()
349 {
350 return (long) value;
351 }
352
353 /**
354 * Return the value of this <code>Double</code> as a <code>float</code>.
355 *
356 * @return the float value
357 */
358 public float floatValue()
359 {
360 return (float) value;
361 }
362
363 /**
364 * Return the value of this <code>Double</code>.
365 *
366 * @return the double value
367 */
368 public double doubleValue()
369 {
370 return value;
371 }
372
373 /**
374 * Return a hashcode representing this Object. <code>Double</code>'s hash
375 * code is calculated by:<br>
376 * <code>long v = Double.doubleToLongBits(doubleValue());<br>
377 * int hash = (int)(v^(v&gt;&gt;32))</code>.
378 *
379 * @return this Object's hash code
380 * @see #doubleToLongBits(double)
381 */
382 public int hashCode()
383 {
384 long v = doubleToLongBits(value);
385 return (int) (v ^ (v >>> 32));
386 }
387
388 /**
389 * Returns <code>true</code> if <code>obj</code> is an instance of
390 * <code>Double</code> and represents the same double value. Unlike comparing
391 * two doubles with <code>==</code>, this treats two instances of
392 * <code>Double.NaN</code> as equal, but treats <code>0.0</code> and
393 * <code>-0.0</code> as unequal.
394 *
395 * <p>Note that <code>d1.equals(d2)<code> is identical to
396 * <code>doubleToLongBits(d1.doubleValue()) ==
397 * doubleToLongBits(d2.doubleValue())<code>.
398 *
399 * @param obj the object to compare
400 * @return whether the objects are semantically equal
401 */
402 public boolean equals(Object obj)
403 {
404 if (! (obj instanceof Double))
405 return false;
406
407 double d = ((Double) obj).value;
408
409 // Avoid call to native method. However, some implementations, like gcj,
410 // are better off using floatToIntBits(value) == floatToIntBits(f).
411 // Check common case first, then check NaN and 0.
412 if (value == d)
413 return (value != 0) || (1 / value == 1 / d);
414 return isNaN(value) && isNaN(d);
415 }
416
417 /**
418 * Convert the double to the IEEE 754 floating-point "double format" bit
419 * layout. Bit 63 (the most significant) is the sign bit, bits 62-52
420 * (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
421 * (masked by 0x000fffffffffffffL) are the mantissa. This function
422 * collapses all versions of NaN to 0x7ff8000000000000L. The result of this
423 * function can be used as the argument to
424 * <code>Double.longBitsToDouble(long)</code> to obtain the original
425 * <code>double</code> value.
426 *
427 * @param value the <code>double</code> to convert
428 * @return the bits of the <code>double</code>
429 * @see #longBitsToDouble(long)
430 */
431 public static native long doubleToLongBits(double value);
432
433 /**
434 * Convert the double to the IEEE 754 floating-point "double format" bit
435 * layout. Bit 63 (the most significant) is the sign bit, bits 62-52
436 * (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
437 * (masked by 0x000fffffffffffffL) are the mantissa. This function
438 * leaves NaN alone, rather than collapsing to a canonical value. The
439 * result of this function can be used as the argument to
440 * <code>Double.longBitsToDouble(long)</code> to obtain the original
441 * <code>double</code> value.
442 *
443 * @param value the <code>double</code> to convert
444 * @return the bits of the <code>double</code>
445 * @see #longBitsToDouble(long)
446 */
447 public static native long doubleToRawLongBits(double value);
448
449 /**
450 * Convert the argument in IEEE 754 floating-point "double format" bit
451 * layout to the corresponding float. Bit 63 (the most significant) is the
452 * sign bit, bits 62-52 (masked by 0x7ff0000000000000L) represent the
453 * exponent, and bits 51-0 (masked by 0x000fffffffffffffL) are the mantissa.
454 * This function leaves NaN alone, so that you can recover the bit pattern
455 * with <code>Double.doubleToRawLongBits(double)</code>.
456 *
457 * @param bits the bits to convert
458 * @return the <code>double</code> represented by the bits
459 * @see #doubleToLongBits(double)
460 * @see #doubleToRawLongBits(double)
461 */
462 public static native double longBitsToDouble(long bits);
463
464 /**
465 * Compare two Doubles numerically by comparing their <code>double</code>
466 * values. The result is positive if the first is greater, negative if the
467 * second is greater, and 0 if the two are equal. However, this special
468 * cases NaN and signed zero as follows: NaN is considered greater than
469 * all other doubles, including <code>POSITIVE_INFINITY</code>, and positive
470 * zero is considered greater than negative zero.
471 *
472 * @param d the Double to compare
473 * @return the comparison
474 * @since 1.2
475 */
476 public int compareTo(Double d)
477 {
478 return compare(value, d.value);
479 }
480
481 /**
482 * Behaves like <code>compareTo(Double)</code> unless the Object
483 * is not an <code>Double</code>.
484 *
485 * @param o the object to compare
486 * @return the comparison
487 * @throws ClassCastException if the argument is not a <code>Double</code>
488 * @see #compareTo(Double)
489 * @see Comparable
490 * @since 1.2
491 */
492 public int compareTo(Object o)
493 {
494 return compare(value, ((Double) o).value);
495 }
496
497 /**
498 * Behaves like <code>new Double(x).compareTo(new Double(y))</code>; in
499 * other words this compares two doubles, special casing NaN and zero,
500 * without the overhead of objects.
501 *
502 * @param x the first double to compare
503 * @param y the second double to compare
504 * @return the comparison
505 * @since 1.4
506 */
507 public static int compare(double x, double y)
508 {
509 if (isNaN(x))
510 return isNaN(y) ? 0 : 1;
511 if (isNaN(y))
512 return -1;
513 // recall that 0.0 == -0.0, so we convert to infinites and try again
514 if (x == 0 && y == 0)
515 return (int) (1 / x - 1 / y);
516 if (x == y)
517 return 0;
518
519 return x > y ? 1 : -1;
520 }
521
522 /**
523 * Helper method to convert to string.
524 *
525 * @param d the double to convert
526 * @param isFloat true if the conversion is requested by Float (results in
527 * fewer digits)
528 */
529 // Package visible for use by Float.
530 static native String toString(double d, boolean isFloat);
531
532 /**
533 * Initialize JNI cache. This method is called only by the
534 * static initializer when using JNI.
535 */
536 private static native void initIDs();
537}
Note: See TracBrowser for help on using the repository browser.