1 | /* Polygon.java -- class representing a polygon
|
---|
2 | Copyright (C) 1999, 2002 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of GNU Classpath.
|
---|
5 |
|
---|
6 | GNU Classpath is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2, or (at your option)
|
---|
9 | any later version.
|
---|
10 |
|
---|
11 | GNU Classpath is distributed in the hope that it will be useful, but
|
---|
12 | WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with GNU Classpath; see the file COPYING. If not, write to the
|
---|
18 | Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
---|
19 | 02111-1307 USA.
|
---|
20 |
|
---|
21 | Linking this library statically or dynamically with other modules is
|
---|
22 | making a combined work based on this library. Thus, the terms and
|
---|
23 | conditions of the GNU General Public License cover the whole
|
---|
24 | combination.
|
---|
25 |
|
---|
26 | As a special exception, the copyright holders of this library give you
|
---|
27 | permission to link this library with independent modules to produce an
|
---|
28 | executable, regardless of the license terms of these independent
|
---|
29 | modules, and to copy and distribute the resulting executable under
|
---|
30 | terms of your choice, provided that you also meet, for each linked
|
---|
31 | independent module, the terms and conditions of the license of that
|
---|
32 | module. An independent module is a module which is not derived from
|
---|
33 | or based on this library. If you modify this library, you may extend
|
---|
34 | this exception to your version of the library, but you are not
|
---|
35 | obligated to do so. If you do not wish to do so, delete this
|
---|
36 | exception statement from your version. */
|
---|
37 |
|
---|
38 |
|
---|
39 | package java.awt;
|
---|
40 |
|
---|
41 | import java.awt.geom.AffineTransform;
|
---|
42 | import java.awt.geom.PathIterator;
|
---|
43 | import java.awt.geom.Point2D;
|
---|
44 | import java.awt.geom.Rectangle2D;
|
---|
45 | import java.io.Serializable;
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * This class represents a polygon, a closed, two-dimensional region in a
|
---|
49 | * coordinate space. The region is bounded by an arbitrary number of line
|
---|
50 | * segments, between (x,y) coordinate vertices. The polygon has even-odd
|
---|
51 | * winding, meaning that a point is inside the shape if it crosses the
|
---|
52 | * boundary an odd number of times on the way to infinity.
|
---|
53 | *
|
---|
54 | * <p>There are some public fields; if you mess with them in an inconsistent
|
---|
55 | * manner, it is your own fault when you get NullPointerException,
|
---|
56 | * ArrayIndexOutOfBoundsException, or invalid results. Also, this class is
|
---|
57 | * not threadsafe.
|
---|
58 | *
|
---|
59 | * @author Aaron M. Renn <arenn@urbanophile.com>
|
---|
60 | * @author Eric Blake <ebb9@email.byu.edu>
|
---|
61 | * @since 1.0
|
---|
62 | * @status updated to 1.4
|
---|
63 | */
|
---|
64 | public class Polygon implements Shape, Serializable
|
---|
65 | {
|
---|
66 | /**
|
---|
67 | * Compatible with JDK 1.0+.
|
---|
68 | */
|
---|
69 | private static final long serialVersionUID = -6460061437900069969L;
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * This total number of endpoints.
|
---|
73 | *
|
---|
74 | * @serial the number of endpoints, possibly less than the array sizes
|
---|
75 | */
|
---|
76 | public int npoints;
|
---|
77 |
|
---|
78 | /**
|
---|
79 | * The array of X coordinates of endpoints. This should not be null.
|
---|
80 | *
|
---|
81 | * @see #addPoint(int, int)
|
---|
82 | * @serial the x coordinates
|
---|
83 | */
|
---|
84 | public int[] xpoints;
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * The array of Y coordinates of endpoints. This should not be null.
|
---|
88 | *
|
---|
89 | * @see #addPoint(int, int)
|
---|
90 | * @serial the y coordinates
|
---|
91 | */
|
---|
92 | public int[] ypoints;
|
---|
93 |
|
---|
94 | /**
|
---|
95 | * The bounding box of this polygon. This is lazily created and cached, so
|
---|
96 | * it must be invalidated after changing points.
|
---|
97 | *
|
---|
98 | * @see #getBounds()
|
---|
99 | * @serial the bounding box, or null
|
---|
100 | */
|
---|
101 | protected Rectangle bounds;
|
---|
102 |
|
---|
103 | /**
|
---|
104 | * Cached flattened version - condense points and parallel lines, so the
|
---|
105 | * result has area if there are >= 3 condensed vertices. flat[0] is the
|
---|
106 | * number of condensed points, and (flat[odd], flat[odd+1]) form the
|
---|
107 | * condensed points.
|
---|
108 | *
|
---|
109 | * @see #condense()
|
---|
110 | * @see #contains(double, double)
|
---|
111 | * @see #contains(double, double, double, double)
|
---|
112 | */
|
---|
113 | private transient int[] condensed;
|
---|
114 |
|
---|
115 | /**
|
---|
116 | * Initializes an empty polygon.
|
---|
117 | */
|
---|
118 | public Polygon()
|
---|
119 | {
|
---|
120 | // Leave room for growth.
|
---|
121 | xpoints = new int[4];
|
---|
122 | ypoints = new int[4];
|
---|
123 | }
|
---|
124 |
|
---|
125 | /**
|
---|
126 | * Create a new polygon with the specified endpoints. The arrays are copied,
|
---|
127 | * so that future modifications to the parameters do not affect the polygon.
|
---|
128 | *
|
---|
129 | * @param xpoints the array of X coordinates for this polygon
|
---|
130 | * @param ypoints the array of Y coordinates for this polygon
|
---|
131 | * @param npoints the total number of endpoints in this polygon
|
---|
132 | * @throws NegativeArraySizeException if npoints is negative
|
---|
133 | * @throws IndexOutOfBoundsException if npoints exceeds either array
|
---|
134 | * @throws NullPointerException if xpoints or ypoints is null
|
---|
135 | */
|
---|
136 | public Polygon(int[] xpoints, int[] ypoints, int npoints)
|
---|
137 | {
|
---|
138 | this.xpoints = new int[npoints];
|
---|
139 | this.ypoints = new int[npoints];
|
---|
140 | System.arraycopy(xpoints, 0, this.xpoints, 0, npoints);
|
---|
141 | System.arraycopy(ypoints, 0, this.ypoints, 0, npoints);
|
---|
142 | this.npoints = npoints;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /**
|
---|
146 | * Reset the polygon to be empty. The arrays are left alone, to avoid object
|
---|
147 | * allocation, but the number of points is set to 0, and all cached data
|
---|
148 | * is discarded. If you are discarding a huge number of points, it may be
|
---|
149 | * more efficient to just create a new Polygon.
|
---|
150 | *
|
---|
151 | * @see #invalidate()
|
---|
152 | * @since 1.4
|
---|
153 | */
|
---|
154 | public void reset()
|
---|
155 | {
|
---|
156 | npoints = 0;
|
---|
157 | invalidate();
|
---|
158 | }
|
---|
159 |
|
---|
160 | /**
|
---|
161 | * Invalidate or flush all cached data. After direct manipulation of the
|
---|
162 | * public member fields, this is necessary to avoid inconsistent results
|
---|
163 | * in methods like <code>contains</code>.
|
---|
164 | *
|
---|
165 | * @see #getBounds()
|
---|
166 | * @since 1.4
|
---|
167 | */
|
---|
168 | public void invalidate()
|
---|
169 | {
|
---|
170 | bounds = null;
|
---|
171 | condensed = null;
|
---|
172 | }
|
---|
173 |
|
---|
174 | /**
|
---|
175 | * Translates the polygon by adding the specified values to all X and Y
|
---|
176 | * coordinates. This updates the bounding box, if it has been calculated.
|
---|
177 | *
|
---|
178 | * @param dx the amount to add to all X coordinates
|
---|
179 | * @param dy the amount to add to all Y coordinates
|
---|
180 | * @since 1.1
|
---|
181 | */
|
---|
182 | public void translate(int dx, int dy)
|
---|
183 | {
|
---|
184 | int i = npoints;
|
---|
185 | while (--i >= 0)
|
---|
186 | {
|
---|
187 | xpoints[i] += dx;
|
---|
188 | xpoints[i] += dy;
|
---|
189 | }
|
---|
190 | if (bounds != null)
|
---|
191 | {
|
---|
192 | bounds.x += dx;
|
---|
193 | bounds.y += dy;
|
---|
194 | }
|
---|
195 | condensed = null;
|
---|
196 | }
|
---|
197 |
|
---|
198 | /**
|
---|
199 | * Adds the specified endpoint to the polygon. This updates the bounding
|
---|
200 | * box, if it has been created.
|
---|
201 | *
|
---|
202 | * @param x the X coordinate of the point to add
|
---|
203 | * @param y the Y coordiante of the point to add
|
---|
204 | */
|
---|
205 | public void addPoint(int x, int y)
|
---|
206 | {
|
---|
207 | if (npoints + 1 > xpoints.length)
|
---|
208 | {
|
---|
209 | int[] newx = new int[npoints + 1];
|
---|
210 | System.arraycopy(xpoints, 0, newx, 0, npoints);
|
---|
211 | xpoints = newx;
|
---|
212 | }
|
---|
213 | if (npoints + 1 > ypoints.length)
|
---|
214 | {
|
---|
215 | int[] newy = new int[npoints + 1];
|
---|
216 | System.arraycopy(ypoints, 0, newy, 0, npoints);
|
---|
217 | ypoints = newy;
|
---|
218 | }
|
---|
219 | xpoints[npoints] = x;
|
---|
220 | ypoints[npoints] = y;
|
---|
221 | npoints++;
|
---|
222 | if (bounds != null)
|
---|
223 | {
|
---|
224 | if (npoints == 1)
|
---|
225 | {
|
---|
226 | bounds.x = x;
|
---|
227 | bounds.y = y;
|
---|
228 | }
|
---|
229 | else
|
---|
230 | {
|
---|
231 | if (x < bounds.x)
|
---|
232 | {
|
---|
233 | bounds.width += bounds.x - x;
|
---|
234 | bounds.x = x;
|
---|
235 | }
|
---|
236 | else if (x > bounds.x + bounds.width)
|
---|
237 | bounds.width = x - bounds.x;
|
---|
238 | if (y < bounds.y)
|
---|
239 | {
|
---|
240 | bounds.height += bounds.y - y;
|
---|
241 | bounds.y = y;
|
---|
242 | }
|
---|
243 | else if (y > bounds.y + bounds.height)
|
---|
244 | bounds.height = y - bounds.y;
|
---|
245 | }
|
---|
246 | }
|
---|
247 | condensed = null;
|
---|
248 | }
|
---|
249 |
|
---|
250 | /**
|
---|
251 | * Returns the bounding box of this polygon. This is the smallest
|
---|
252 | * rectangle with sides parallel to the X axis that will contain this
|
---|
253 | * polygon.
|
---|
254 | *
|
---|
255 | * @return the bounding box for this polygon
|
---|
256 | * @see #getBounds2D()
|
---|
257 | * @since 1.1
|
---|
258 | */
|
---|
259 | public Rectangle getBounds()
|
---|
260 | {
|
---|
261 | if (bounds == null)
|
---|
262 | {
|
---|
263 | if (npoints == 0)
|
---|
264 | return bounds = new Rectangle();
|
---|
265 | int i = npoints - 1;
|
---|
266 | int minx = xpoints[i];
|
---|
267 | int maxx = minx;
|
---|
268 | int miny = ypoints[i];
|
---|
269 | int maxy = miny;
|
---|
270 | while (--i >= 0)
|
---|
271 | {
|
---|
272 | int x = xpoints[i];
|
---|
273 | int y = ypoints[i];
|
---|
274 | if (x < minx)
|
---|
275 | minx = x;
|
---|
276 | else if (x > maxx)
|
---|
277 | maxx = x;
|
---|
278 | if (y < miny)
|
---|
279 | miny = y;
|
---|
280 | else if (y > maxy)
|
---|
281 | maxy = y;
|
---|
282 | }
|
---|
283 | bounds = new Rectangle(minx, maxy, maxx - minx, maxy - miny);
|
---|
284 | }
|
---|
285 | return bounds;
|
---|
286 | }
|
---|
287 |
|
---|
288 | /**
|
---|
289 | * Returns the bounding box of this polygon. This is the smallest
|
---|
290 | * rectangle with sides parallel to the X axis that will contain this
|
---|
291 | * polygon.
|
---|
292 | *
|
---|
293 | * @return the bounding box for this polygon
|
---|
294 | * @see #getBounds2D()
|
---|
295 | * @deprecated use {@link #getBounds()} instead
|
---|
296 | */
|
---|
297 | public Rectangle getBoundingBox()
|
---|
298 | {
|
---|
299 | return getBounds();
|
---|
300 | }
|
---|
301 |
|
---|
302 | /**
|
---|
303 | * Tests whether or not the specified point is inside this polygon.
|
---|
304 | *
|
---|
305 | * @param p the point to test
|
---|
306 | * @return true if the point is inside this polygon
|
---|
307 | * @throws NullPointerException if p is null
|
---|
308 | * @see #contains(double, double)
|
---|
309 | */
|
---|
310 | public boolean contains(Point p)
|
---|
311 | {
|
---|
312 | return contains(p.getX(), p.getY());
|
---|
313 | }
|
---|
314 |
|
---|
315 | /**
|
---|
316 | * Tests whether or not the specified point is inside this polygon.
|
---|
317 | *
|
---|
318 | * @param x the X coordinate of the point to test
|
---|
319 | * @param y the Y coordinate of the point to test
|
---|
320 | * @return true if the point is inside this polygon
|
---|
321 | * @see #contains(double, double)
|
---|
322 | * @since 1.1
|
---|
323 | */
|
---|
324 | public boolean contains(int x, int y)
|
---|
325 | {
|
---|
326 | return contains((double) x, (double) y);
|
---|
327 | }
|
---|
328 |
|
---|
329 | /**
|
---|
330 | * Tests whether or not the specified point is inside this polygon.
|
---|
331 | *
|
---|
332 | * @param x the X coordinate of the point to test
|
---|
333 | * @param y the Y coordinate of the point to test
|
---|
334 | * @return true if the point is inside this polygon
|
---|
335 | * @see #contains(double, double)
|
---|
336 | * @deprecated use {@link #contains(int, int)} instead
|
---|
337 | */
|
---|
338 | public boolean inside(int x, int y)
|
---|
339 | {
|
---|
340 | return contains((double) x, (double) y);
|
---|
341 | }
|
---|
342 |
|
---|
343 | /**
|
---|
344 | * Returns a high-precision bounding box of this polygon. This is the
|
---|
345 | * smallest rectangle with sides parallel to the X axis that will contain
|
---|
346 | * this polygon.
|
---|
347 | *
|
---|
348 | * @return the bounding box for this polygon
|
---|
349 | * @see #getBounds()
|
---|
350 | * @since 1.2
|
---|
351 | */
|
---|
352 | public Rectangle2D getBounds2D()
|
---|
353 | {
|
---|
354 | // For polygons, the integer version is exact!
|
---|
355 | return getBounds();
|
---|
356 | }
|
---|
357 |
|
---|
358 | /**
|
---|
359 | * Tests whether or not the specified point is inside this polygon.
|
---|
360 | *
|
---|
361 | * @param x the X coordinate of the point to test
|
---|
362 | * @param y the Y coordinate of the point to test
|
---|
363 | * @return true if the point is inside this polygon
|
---|
364 | * @since 1.2
|
---|
365 | */
|
---|
366 | public boolean contains(double x, double y)
|
---|
367 | {
|
---|
368 | // First, the obvious bounds checks.
|
---|
369 | if (! condense() || ! getBounds().contains(x, y))
|
---|
370 | return false;
|
---|
371 | // A point is contained if a ray to (-inf, y) crosses an odd number
|
---|
372 | // of segments. This must obey the semantics of Shape when the point is
|
---|
373 | // exactly on a segment or vertex: a point is inside only if the adjacent
|
---|
374 | // point in the increasing x or y direction is also inside. Note that we
|
---|
375 | // are guaranteed that the condensed polygon has area, and no consecutive
|
---|
376 | // segments with identical slope.
|
---|
377 | boolean inside = false;
|
---|
378 | int limit = condensed[0];
|
---|
379 | int curx = condensed[(limit << 1) - 1];
|
---|
380 | int cury = condensed[limit << 1];
|
---|
381 | for (int i = 1; i <= limit; i++)
|
---|
382 | {
|
---|
383 | int priorx = curx;
|
---|
384 | int priory = cury;
|
---|
385 | curx = condensed[(i << 1) - 1];
|
---|
386 | cury = condensed[i << 1];
|
---|
387 | if ((priorx > x && curx > x) // Left of segment, or NaN.
|
---|
388 | || (priory > y && cury > y) // Below segment, or NaN.
|
---|
389 | || (priory < y && cury < y)) // Above segment.
|
---|
390 | continue;
|
---|
391 | if (priory == cury) // Horizontal segment, y == cury == priory
|
---|
392 | {
|
---|
393 | if (priorx < x && curx < x) // Right of segment.
|
---|
394 | {
|
---|
395 | inside = ! inside;
|
---|
396 | continue;
|
---|
397 | }
|
---|
398 | // Did we approach this segment from above or below?
|
---|
399 | // This mess is necessary to obey rules of Shape.
|
---|
400 | priory = condensed[((limit + i - 2) % limit) << 1];
|
---|
401 | boolean above = priory > cury;
|
---|
402 | if ((curx == x && (curx > priorx || above))
|
---|
403 | || (priorx == x && (curx < priorx || ! above))
|
---|
404 | || (curx > priorx && ! above) || above)
|
---|
405 | inside = ! inside;
|
---|
406 | continue;
|
---|
407 | }
|
---|
408 | if (priorx == x && priory == y) // On prior vertex.
|
---|
409 | continue;
|
---|
410 | if (priorx == curx // Vertical segment.
|
---|
411 | || (priorx < x && curx < x)) // Right of segment.
|
---|
412 | {
|
---|
413 | inside = ! inside;
|
---|
414 | continue;
|
---|
415 | }
|
---|
416 | // The point is inside the segment's bounding box, compare slopes.
|
---|
417 | double leftx = curx > priorx ? priorx : curx;
|
---|
418 | double lefty = curx > priorx ? priory : cury;
|
---|
419 | double slopeseg = (double) (cury - priory) / (curx - priorx);
|
---|
420 | double slopepoint = (double) (y - lefty) / (x - leftx);
|
---|
421 | if ((slopeseg > 0 && slopeseg > slopepoint)
|
---|
422 | || slopeseg < slopepoint)
|
---|
423 | inside = ! inside;
|
---|
424 | }
|
---|
425 | return inside;
|
---|
426 | }
|
---|
427 |
|
---|
428 | /**
|
---|
429 | * Tests whether or not the specified point is inside this polygon.
|
---|
430 | *
|
---|
431 | * @param p the point to test
|
---|
432 | * @return true if the point is inside this polygon
|
---|
433 | * @throws NullPointerException if p is null
|
---|
434 | * @see #contains(double, double)
|
---|
435 | * @since 1.2
|
---|
436 | */
|
---|
437 | public boolean contains(Point2D p)
|
---|
438 | {
|
---|
439 | return contains(p.getX(), p.getY());
|
---|
440 | }
|
---|
441 |
|
---|
442 | /**
|
---|
443 | * Test if a high-precision rectangle intersects the shape. This is true
|
---|
444 | * if any point in the rectangle is in the shape. This implementation is
|
---|
445 | * precise.
|
---|
446 | *
|
---|
447 | * @param x the x coordinate of the rectangle
|
---|
448 | * @param y the y coordinate of the rectangle
|
---|
449 | * @param w the width of the rectangle, treated as point if negative
|
---|
450 | * @param h the height of the rectangle, treated as point if negative
|
---|
451 | * @return true if the rectangle intersects this shape
|
---|
452 | * @since 1.2
|
---|
453 | */
|
---|
454 | public boolean intersects(double x, double y, double w, double h)
|
---|
455 | {
|
---|
456 | // First, the obvious bounds checks.
|
---|
457 | if (w <= 0 || h <= 0 || npoints == 0 ||
|
---|
458 | ! getBounds().intersects(x, y, w, h))
|
---|
459 | return false; // Disjoint bounds.
|
---|
460 | if ((x <= bounds.x && x + w >= bounds.x + bounds.width
|
---|
461 | && y <= bounds.y && y + h >= bounds.y + bounds.height)
|
---|
462 | || contains(x, y))
|
---|
463 | return true; // Rectangle contains the polygon, or one point matches.
|
---|
464 | // If any vertex is in the rectangle, the two might intersect.
|
---|
465 | int curx = 0;
|
---|
466 | int cury = 0;
|
---|
467 | for (int i = 0; i < npoints; i++)
|
---|
468 | {
|
---|
469 | curx = xpoints[i];
|
---|
470 | cury = ypoints[i];
|
---|
471 | if (curx >= x && curx < x + w && cury >= y && cury < y + h
|
---|
472 | && contains(curx, cury)) // Boundary check necessary.
|
---|
473 | return true;
|
---|
474 | }
|
---|
475 | // Finally, if at least one of the four bounding lines intersect any
|
---|
476 | // segment of the polygon, return true. Be careful of the semantics of
|
---|
477 | // Shape; coinciding lines do not necessarily return true.
|
---|
478 | for (int i = 0; i < npoints; i++)
|
---|
479 | {
|
---|
480 | int priorx = curx;
|
---|
481 | int priory = cury;
|
---|
482 | curx = xpoints[i];
|
---|
483 | cury = ypoints[i];
|
---|
484 | if (priorx == curx) // Vertical segment.
|
---|
485 | {
|
---|
486 | if (curx < x || curx >= x + w) // Outside rectangle.
|
---|
487 | continue;
|
---|
488 | if ((cury >= y + h && priory <= y)
|
---|
489 | || (cury <= y && priory >= y + h))
|
---|
490 | return true; // Bisects rectangle.
|
---|
491 | continue;
|
---|
492 | }
|
---|
493 | if (priory == cury) // Horizontal segment.
|
---|
494 | {
|
---|
495 | if (cury < y || cury >= y + h) // Outside rectangle.
|
---|
496 | continue;
|
---|
497 | if ((curx >= x + w && priorx <= x)
|
---|
498 | || (curx <= x && priorx >= x + w))
|
---|
499 | return true; // Bisects rectangle.
|
---|
500 | continue;
|
---|
501 | }
|
---|
502 | // Slanted segment.
|
---|
503 | double slope = (double) (cury - priory) / (curx - priorx);
|
---|
504 | double intersect = slope * (x - curx) + cury;
|
---|
505 | if (intersect > y && intersect < y + h) // Intersects left edge.
|
---|
506 | return true;
|
---|
507 | intersect = slope * (x + w - curx) + cury;
|
---|
508 | if (intersect > y && intersect < y + h) // Intersects right edge.
|
---|
509 | return true;
|
---|
510 | intersect = (y - cury) / slope + curx;
|
---|
511 | if (intersect > x && intersect < x + w) // Intersects bottom edge.
|
---|
512 | return true;
|
---|
513 | intersect = (y + h - cury) / slope + cury;
|
---|
514 | if (intersect > x && intersect < x + w) // Intersects top edge.
|
---|
515 | return true;
|
---|
516 | }
|
---|
517 | return false;
|
---|
518 | }
|
---|
519 |
|
---|
520 | /**
|
---|
521 | * Test if a high-precision rectangle intersects the shape. This is true
|
---|
522 | * if any point in the rectangle is in the shape. This implementation is
|
---|
523 | * precise.
|
---|
524 | *
|
---|
525 | * @param r the rectangle
|
---|
526 | * @return true if the rectangle intersects this shape
|
---|
527 | * @throws NullPointerException if r is null
|
---|
528 | * @see #intersects(double, double, double, double)
|
---|
529 | * @since 1.2
|
---|
530 | */
|
---|
531 | public boolean intersects(Rectangle2D r)
|
---|
532 | {
|
---|
533 | return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
---|
534 | }
|
---|
535 |
|
---|
536 | /**
|
---|
537 | * Test if a high-precision rectangle lies completely in the shape. This is
|
---|
538 | * true if all points in the rectangle are in the shape. This implementation
|
---|
539 | * is precise.
|
---|
540 | *
|
---|
541 | * @param x the x coordinate of the rectangle
|
---|
542 | * @param y the y coordinate of the rectangle
|
---|
543 | * @param w the width of the rectangle, treated as point if negative
|
---|
544 | * @param h the height of the rectangle, treated as point if negative
|
---|
545 | * @return true if the rectangle is contained in this shape
|
---|
546 | * @since 1.2
|
---|
547 | */
|
---|
548 | public boolean contains(double x, double y, double w, double h)
|
---|
549 | {
|
---|
550 | // First, the obvious bounds checks.
|
---|
551 | if (w <= 0 || h <= 0 || ! contains(x, y)
|
---|
552 | || ! bounds.contains(x, y, w, h))
|
---|
553 | return false;
|
---|
554 | // Now, if any of the four bounding lines intersects a polygon segment,
|
---|
555 | // return false. The previous check had the side effect of setting
|
---|
556 | // the condensed array, which we use. Be careful of the semantics of
|
---|
557 | // Shape; coinciding lines do not necessarily return false.
|
---|
558 | int limit = condensed[0];
|
---|
559 | int curx = condensed[(limit << 1) - 1];
|
---|
560 | int cury = condensed[limit << 1];
|
---|
561 | for (int i = 1; i <= limit; i++)
|
---|
562 | {
|
---|
563 | int priorx = curx;
|
---|
564 | int priory = cury;
|
---|
565 | curx = condensed[(i << 1) - 1];
|
---|
566 | cury = condensed[i << 1];
|
---|
567 | if (curx > x && curx < x + w && cury > y && cury < y + h)
|
---|
568 | return false; // Vertex is in rectangle.
|
---|
569 | if (priorx == curx) // Vertical segment.
|
---|
570 | {
|
---|
571 | if (curx < x || curx > x + w) // Outside rectangle.
|
---|
572 | continue;
|
---|
573 | if ((cury >= y + h && priory <= y)
|
---|
574 | || (cury <= y && priory >= y + h))
|
---|
575 | return false; // Bisects rectangle.
|
---|
576 | continue;
|
---|
577 | }
|
---|
578 | if (priory == cury) // Horizontal segment.
|
---|
579 | {
|
---|
580 | if (cury < y || cury > y + h) // Outside rectangle.
|
---|
581 | continue;
|
---|
582 | if ((curx >= x + w && priorx <= x)
|
---|
583 | || (curx <= x && priorx >= x + w))
|
---|
584 | return false; // Bisects rectangle.
|
---|
585 | continue;
|
---|
586 | }
|
---|
587 | // Slanted segment.
|
---|
588 | double slope = (double) (cury - priory) / (curx - priorx);
|
---|
589 | double intersect = slope * (x - curx) + cury;
|
---|
590 | if (intersect > y && intersect < y + h) // Intersects left edge.
|
---|
591 | return false;
|
---|
592 | intersect = slope * (x + w - curx) + cury;
|
---|
593 | if (intersect > y && intersect < y + h) // Intersects right edge.
|
---|
594 | return false;
|
---|
595 | intersect = (y - cury) / slope + curx;
|
---|
596 | if (intersect > x && intersect < x + w) // Intersects bottom edge.
|
---|
597 | return false;
|
---|
598 | intersect = (y + h - cury) / slope + cury;
|
---|
599 | if (intersect > x && intersect < x + w) // Intersects top edge.
|
---|
600 | return false;
|
---|
601 | }
|
---|
602 | return true;
|
---|
603 | }
|
---|
604 |
|
---|
605 | /**
|
---|
606 | * Test if a high-precision rectangle lies completely in the shape. This is
|
---|
607 | * true if all points in the rectangle are in the shape. This implementation
|
---|
608 | * is precise.
|
---|
609 | *
|
---|
610 | * @param r the rectangle
|
---|
611 | * @return true if the rectangle is contained in this shape
|
---|
612 | * @throws NullPointerException if r is null
|
---|
613 | * @see #contains(double, double, double, double)
|
---|
614 | * @since 1.2
|
---|
615 | */
|
---|
616 | public boolean contains(Rectangle2D r)
|
---|
617 | {
|
---|
618 | return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
---|
619 | }
|
---|
620 |
|
---|
621 | /**
|
---|
622 | * Return an iterator along the shape boundary. If the optional transform
|
---|
623 | * is provided, the iterator is transformed accordingly. Each call returns
|
---|
624 | * a new object, independent from others in use. This class is not
|
---|
625 | * threadsafe to begin with, so the path iterator is not either.
|
---|
626 | *
|
---|
627 | * @param transform an optional transform to apply to the iterator
|
---|
628 | * @return a new iterator over the boundary
|
---|
629 | * @since 1.2
|
---|
630 | */
|
---|
631 | public PathIterator getPathIterator(final AffineTransform transform)
|
---|
632 | {
|
---|
633 | return new PathIterator()
|
---|
634 | {
|
---|
635 | /** The current vertex of iteration. */
|
---|
636 | private int vertex;
|
---|
637 |
|
---|
638 | public int getWindingRule()
|
---|
639 | {
|
---|
640 | return WIND_EVEN_ODD;
|
---|
641 | }
|
---|
642 |
|
---|
643 | public boolean isDone()
|
---|
644 | {
|
---|
645 | return vertex > npoints;
|
---|
646 | }
|
---|
647 |
|
---|
648 | public void next()
|
---|
649 | {
|
---|
650 | vertex++;
|
---|
651 | }
|
---|
652 |
|
---|
653 | public int currentSegment(float[] coords)
|
---|
654 | {
|
---|
655 | if (vertex >= npoints)
|
---|
656 | return SEG_CLOSE;
|
---|
657 | coords[0] = xpoints[vertex];
|
---|
658 | coords[1] = ypoints[vertex];
|
---|
659 | if (transform != null)
|
---|
660 | transform.transform(coords, 0, coords, 0, 1);
|
---|
661 | return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
|
---|
662 | }
|
---|
663 |
|
---|
664 | public int currentSegment(double[] coords)
|
---|
665 | {
|
---|
666 | if (vertex >= npoints)
|
---|
667 | return SEG_CLOSE;
|
---|
668 | coords[0] = xpoints[vertex];
|
---|
669 | coords[1] = ypoints[vertex];
|
---|
670 | if (transform != null)
|
---|
671 | transform.transform(coords, 0, coords, 0, 1);
|
---|
672 | return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
|
---|
673 | }
|
---|
674 | };
|
---|
675 | }
|
---|
676 |
|
---|
677 | /**
|
---|
678 | * Return an iterator along the flattened version of the shape boundary.
|
---|
679 | * Since polygons are already flat, the flatness parameter is ignored, and
|
---|
680 | * the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE
|
---|
681 | * points. If the optional transform is provided, the iterator is
|
---|
682 | * transformed accordingly. Each call returns a new object, independent
|
---|
683 | * from others in use. This class is not threadsafe to begin with, so the
|
---|
684 | * path iterator is not either.
|
---|
685 | *
|
---|
686 | * @param transform an optional transform to apply to the iterator
|
---|
687 | * @param double the maximum distance for deviation from the real boundary
|
---|
688 | * @return a new iterator over the boundary
|
---|
689 | * @since 1.2
|
---|
690 | */
|
---|
691 | public PathIterator getPathIterator(AffineTransform transform,
|
---|
692 | double flatness)
|
---|
693 | {
|
---|
694 | return getPathIterator(transform);
|
---|
695 | }
|
---|
696 |
|
---|
697 | /**
|
---|
698 | * Helper for contains, which caches a condensed version of the polygon.
|
---|
699 | * This condenses all colinear points, so that consecutive segments in
|
---|
700 | * the condensed version always have different slope.
|
---|
701 | *
|
---|
702 | * @return true if the condensed polygon has area
|
---|
703 | * @see #condensed
|
---|
704 | * @see #contains(double, double)
|
---|
705 | */
|
---|
706 | private boolean condense()
|
---|
707 | {
|
---|
708 | if (npoints <= 2)
|
---|
709 | return false;
|
---|
710 | if (condensed != null)
|
---|
711 | return condensed[0] > 2;
|
---|
712 | condensed = new int[npoints * 2 + 1];
|
---|
713 | int curx = xpoints[npoints - 1];
|
---|
714 | int cury = ypoints[npoints - 1];
|
---|
715 | double curslope = Double.NaN;
|
---|
716 | int count = 0;
|
---|
717 | outer:
|
---|
718 | for (int i = 0; i < npoints; i++)
|
---|
719 | {
|
---|
720 | int priorx = curx;
|
---|
721 | int priory = cury;
|
---|
722 | double priorslope = curslope;
|
---|
723 | curx = xpoints[i];
|
---|
724 | cury = ypoints[i];
|
---|
725 | while (curx == priorx && cury == priory)
|
---|
726 | {
|
---|
727 | if (++i == npoints)
|
---|
728 | break outer;
|
---|
729 | curx = xpoints[i];
|
---|
730 | cury = ypoints[i];
|
---|
731 | }
|
---|
732 | curslope = (curx == priorx ? Double.POSITIVE_INFINITY
|
---|
733 | : (double) (cury - priory) / (curx - priorx));
|
---|
734 | if (priorslope == curslope)
|
---|
735 | {
|
---|
736 | if (count > 1 && condensed[(count << 1) - 3] == curx
|
---|
737 | && condensed[(count << 1) - 2] == cury)
|
---|
738 | {
|
---|
739 | count--;
|
---|
740 | continue;
|
---|
741 | }
|
---|
742 | }
|
---|
743 | else
|
---|
744 | count++;
|
---|
745 | condensed[(count << 1) - 1] = curx;
|
---|
746 | condensed[count << 1] = cury;
|
---|
747 | }
|
---|
748 | condensed[0] = count;
|
---|
749 | return count > 2;
|
---|
750 | }
|
---|
751 | } // class Polygon
|
---|