| 1 | // i386-signal.h - Catch runtime signals and turn them into exceptions
|
|---|
| 2 | // on an i386 based Linux system.
|
|---|
| 3 |
|
|---|
| 4 | /* Copyright (C) 1998, 1999, 2001, 2002 Free Software Foundation
|
|---|
| 5 |
|
|---|
| 6 | This file is part of libgcj.
|
|---|
| 7 |
|
|---|
| 8 | This software is copyrighted work licensed under the terms of the
|
|---|
| 9 | Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
|---|
| 10 | details. */
|
|---|
| 11 |
|
|---|
| 12 |
|
|---|
| 13 | #ifndef JAVA_SIGNAL_H
|
|---|
| 14 | #define JAVA_SIGNAL_H 1
|
|---|
| 15 |
|
|---|
| 16 | #include <signal.h>
|
|---|
| 17 | #include <sys/syscall.h>
|
|---|
| 18 |
|
|---|
| 19 | #define HANDLE_SEGV 1
|
|---|
| 20 | #define HANDLE_FPE 1
|
|---|
| 21 |
|
|---|
| 22 | #define SIGNAL_HANDLER(_name) \
|
|---|
| 23 | static void _name (int _dummy)
|
|---|
| 24 |
|
|---|
| 25 | #define MAKE_THROW_FRAME(_exception) \
|
|---|
| 26 | do \
|
|---|
| 27 | { \
|
|---|
| 28 | void **_p = (void **)&_dummy; \
|
|---|
| 29 | struct sigcontext_struct *_regs = (struct sigcontext_struct *)++_p; \
|
|---|
| 30 | \
|
|---|
| 31 | /* Advance the program counter so that it is after the start of the \
|
|---|
| 32 | instruction: the x86 exception handler expects \
|
|---|
| 33 | the PC to point to the instruction after a call. */ \
|
|---|
| 34 | _regs->eip += 2; \
|
|---|
| 35 | \
|
|---|
| 36 | } \
|
|---|
| 37 | while (0)
|
|---|
| 38 |
|
|---|
| 39 | #define HANDLE_DIVIDE_OVERFLOW \
|
|---|
| 40 | do \
|
|---|
| 41 | { \
|
|---|
| 42 | void **_p = (void **)&_dummy; \
|
|---|
| 43 | struct sigcontext_struct *_regs = (struct sigcontext_struct *)++_p; \
|
|---|
| 44 | \
|
|---|
| 45 | register unsigned char *_eip = (unsigned char *)_regs->eip; \
|
|---|
| 46 | \
|
|---|
| 47 | /* According to the JVM spec, "if the dividend is the negative \
|
|---|
| 48 | * integer of the smallest magnitude and the divisor is -1, then \
|
|---|
| 49 | * overflow occurs and the result is equal to the dividend. Despite \
|
|---|
| 50 | * the overflow, no exception occurs". \
|
|---|
| 51 | \
|
|---|
| 52 | * We handle this by inspecting the instruction which generated the \
|
|---|
| 53 | * signal and advancing eip to point to the following instruction. \
|
|---|
| 54 | * As the instructions are variable length it is necessary to do a \
|
|---|
| 55 | * little calculation to figure out where the following instruction \
|
|---|
| 56 | * actually is. \
|
|---|
| 57 | \
|
|---|
| 58 | */ \
|
|---|
| 59 | \
|
|---|
| 60 | if (_eip[0] == 0xf7) \
|
|---|
| 61 | { \
|
|---|
| 62 | unsigned char _modrm = _eip[1]; \
|
|---|
| 63 | \
|
|---|
| 64 | if (_regs->eax == 0x80000000 \
|
|---|
| 65 | && ((_modrm >> 3) & 7) == 7) /* Signed divide */ \
|
|---|
| 66 | { \
|
|---|
| 67 | _regs->edx = 0; /* the remainder is zero */ \
|
|---|
| 68 | switch (_modrm >> 6) \
|
|---|
| 69 | { \
|
|---|
| 70 | case 0: \
|
|---|
| 71 | if ((_modrm & 7) == 5) \
|
|---|
| 72 | _eip += 4; \
|
|---|
| 73 | break; \
|
|---|
| 74 | case 1: \
|
|---|
| 75 | _eip += 1; \
|
|---|
| 76 | break; \
|
|---|
| 77 | case 2: \
|
|---|
| 78 | _eip += 4; \
|
|---|
| 79 | break; \
|
|---|
| 80 | case 3: \
|
|---|
| 81 | break; \
|
|---|
| 82 | } \
|
|---|
| 83 | _eip += 2; \
|
|---|
| 84 | _regs->eip = (unsigned long)_eip; \
|
|---|
| 85 | return; \
|
|---|
| 86 | } \
|
|---|
| 87 | else \
|
|---|
| 88 | { \
|
|---|
| 89 | /* Advance the program counter so that it is after the start \
|
|---|
| 90 | of the instruction: this is because the x86 exception \
|
|---|
| 91 | handler expects the PC to point to the instruction after a \
|
|---|
| 92 | call. */ \
|
|---|
| 93 | _regs->eip += 2; \
|
|---|
| 94 | } \
|
|---|
| 95 | } \
|
|---|
| 96 | } \
|
|---|
| 97 | while (0)
|
|---|
| 98 |
|
|---|
| 99 | /* We use old_kernel_sigaction here because we're calling the kernel
|
|---|
| 100 | directly rather than via glibc. The sigaction structure that the
|
|---|
| 101 | syscall uses is a different shape from the one in userland and not
|
|---|
| 102 | visible to us in a header file so we define it here. */
|
|---|
| 103 |
|
|---|
| 104 | struct old_i386_kernel_sigaction {
|
|---|
| 105 | void (*k_sa_handler) (int);
|
|---|
| 106 | unsigned long k_sa_mask;
|
|---|
| 107 | unsigned long k_sa_flags;
|
|---|
| 108 | void (*sa_restorer) (void);
|
|---|
| 109 | };
|
|---|
| 110 |
|
|---|
| 111 | #define RESTORE(name, syscall) RESTORE2 (name, syscall)
|
|---|
| 112 | # define RESTORE2(name, syscall) \
|
|---|
| 113 | asm \
|
|---|
| 114 | ( \
|
|---|
| 115 | ".text\n" \
|
|---|
| 116 | ".byte 0 # Yes, this really is necessary\n" \
|
|---|
| 117 | " .align 8\n" \
|
|---|
| 118 | "__" #name ":\n" \
|
|---|
| 119 | " popl %eax\n" \
|
|---|
| 120 | " movl $" #syscall ", %eax\n" \
|
|---|
| 121 | " int $0x80" \
|
|---|
| 122 | );
|
|---|
| 123 |
|
|---|
| 124 | RESTORE (restore, __NR_sigreturn)
|
|---|
| 125 | static void restore (void) asm ("__restore");
|
|---|
| 126 |
|
|---|
| 127 | #define INIT_SEGV \
|
|---|
| 128 | do \
|
|---|
| 129 | { \
|
|---|
| 130 | nullp = new java::lang::NullPointerException (); \
|
|---|
| 131 | struct old_i386_kernel_sigaction kact; \
|
|---|
| 132 | kact.k_sa_handler = catch_segv; \
|
|---|
| 133 | kact.k_sa_mask = 0; \
|
|---|
| 134 | kact.k_sa_flags = 0x4000000; \
|
|---|
| 135 | kact.sa_restorer = restore; \
|
|---|
| 136 | syscall (SYS_sigaction, SIGSEGV, &kact, NULL); \
|
|---|
| 137 | } \
|
|---|
| 138 | while (0)
|
|---|
| 139 |
|
|---|
| 140 | #define INIT_FPE \
|
|---|
| 141 | do \
|
|---|
| 142 | { \
|
|---|
| 143 | arithexception = new java::lang::ArithmeticException \
|
|---|
| 144 | (JvNewStringLatin1 ("/ by zero")); \
|
|---|
| 145 | struct old_i386_kernel_sigaction kact; \
|
|---|
| 146 | kact.k_sa_handler = catch_fpe; \
|
|---|
| 147 | kact.k_sa_mask = 0; \
|
|---|
| 148 | kact.k_sa_flags = 0x4000000; \
|
|---|
| 149 | kact.sa_restorer = restore; \
|
|---|
| 150 | syscall (SYS_sigaction, SIGFPE, &kact, NULL); \
|
|---|
| 151 | } \
|
|---|
| 152 | while (0)
|
|---|
| 153 |
|
|---|
| 154 | /* You might wonder why we use syscall(SYS_sigaction) in INIT_FPE
|
|---|
| 155 | * instead of the standard sigaction(). This is necessary because of
|
|---|
| 156 | * the shenanigans above where we increment the PC saved in the
|
|---|
| 157 | * context and then return. This trick will only work when we are
|
|---|
| 158 | * called _directly_ by the kernel, because linuxthreads wraps signal
|
|---|
| 159 | * handlers and its wrappers do not copy the sigcontext struct back
|
|---|
| 160 | * when returning from a signal handler. If we return from our divide
|
|---|
| 161 | * handler to a linuxthreads wrapper, we will lose the PC adjustment
|
|---|
| 162 | * we made and return to the faulting instruction again. Using
|
|---|
| 163 | * syscall(SYS_sigaction) causes our handler to be called directly
|
|---|
| 164 | * by the kernel, bypassing any wrappers.
|
|---|
| 165 |
|
|---|
| 166 | * Also, there is at the present time no unwind info in the
|
|---|
| 167 | * linuxthreads library's signal handlers and so we can't unwind
|
|---|
| 168 | * through them anyway. */
|
|---|
| 169 |
|
|---|
| 170 | #endif /* JAVA_SIGNAL_H */
|
|---|
| 171 |
|
|---|