1 | /***************************************************************************
|
---|
2 |
|
---|
3 | Interface between g++ and Boehm GC
|
---|
4 |
|
---|
5 | Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
|
---|
6 |
|
---|
7 | THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
|
---|
8 | OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
|
---|
9 |
|
---|
10 | Permission is hereby granted to copy this code for any purpose,
|
---|
11 | provided the above notices are retained on all copies.
|
---|
12 |
|
---|
13 | Last modified on Sun Jul 16 23:21:14 PDT 1995 by ellis
|
---|
14 |
|
---|
15 | This module provides runtime support for implementing the
|
---|
16 | Ellis/Detlefs GC proposal, "Safe, Efficient Garbage Collection for
|
---|
17 | C++", within g++, using its -fgc-keyword extension. It defines
|
---|
18 | versions of __builtin_new, __builtin_new_gc, __builtin_vec_new,
|
---|
19 | __builtin_vec_new_gc, __builtin_delete, and __builtin_vec_delete that
|
---|
20 | invoke the Bohem GC. It also implements the WeakPointer.h interface.
|
---|
21 |
|
---|
22 | This module assumes the following configuration options of the Boehm GC:
|
---|
23 |
|
---|
24 | -DALL_INTERIOR_POINTERS
|
---|
25 | -DDONT_ADD_BYTE_AT_END
|
---|
26 |
|
---|
27 | This module adds its own required padding to the end of objects to
|
---|
28 | support C/C++ "one-past-the-object" pointer semantics.
|
---|
29 |
|
---|
30 | ****************************************************************************/
|
---|
31 |
|
---|
32 | #include <stddef.h>
|
---|
33 | #include "gc.h"
|
---|
34 |
|
---|
35 | #if defined(__STDC__)
|
---|
36 | # define PROTO( args ) args
|
---|
37 | #else
|
---|
38 | # define PROTO( args ) ()
|
---|
39 | # endif
|
---|
40 |
|
---|
41 | #define BITSPERBYTE 8
|
---|
42 | /* What's the portable way to do this? */
|
---|
43 |
|
---|
44 |
|
---|
45 | typedef void (*vfp) PROTO(( void ));
|
---|
46 | extern vfp __new_handler;
|
---|
47 | extern void __default_new_handler PROTO(( void ));
|
---|
48 |
|
---|
49 |
|
---|
50 | /* A destructor_proc is the compiler generated procedure representing a
|
---|
51 | C++ destructor. The "flag" argument is a hidden argument following some
|
---|
52 | compiler convention. */
|
---|
53 |
|
---|
54 | typedef (*destructor_proc) PROTO(( void* this, int flag ));
|
---|
55 |
|
---|
56 |
|
---|
57 | /***************************************************************************
|
---|
58 |
|
---|
59 | A BI_header is the header the compiler adds to the front of
|
---|
60 | new-allocated arrays of objects with destructors. The header is
|
---|
61 | padded out to a double, because that's what the compiler does to
|
---|
62 | ensure proper alignment of array elements on some architectures.
|
---|
63 |
|
---|
64 | int NUM_ARRAY_ELEMENTS (void* o)
|
---|
65 | returns the number of array elements for array object o.
|
---|
66 |
|
---|
67 | char* FIRST_ELEMENT_P (void* o)
|
---|
68 | returns the address of the first element of array object o.
|
---|
69 |
|
---|
70 | ***************************************************************************/
|
---|
71 |
|
---|
72 | typedef struct BI_header {
|
---|
73 | int nelts;
|
---|
74 | char padding [sizeof( double ) - sizeof( int )];
|
---|
75 | /* Better way to do this? */
|
---|
76 | } BI_header;
|
---|
77 |
|
---|
78 | #define NUM_ARRAY_ELEMENTS( o ) \
|
---|
79 | (((BI_header*) o)->nelts)
|
---|
80 |
|
---|
81 | #define FIRST_ELEMENT_P( o ) \
|
---|
82 | ((char*) o + sizeof( BI_header ))
|
---|
83 |
|
---|
84 |
|
---|
85 | /***************************************************************************
|
---|
86 |
|
---|
87 | The __builtin_new routines add a descriptor word to the end of each
|
---|
88 | object. The descriptor serves two purposes.
|
---|
89 |
|
---|
90 | First, the descriptor acts as padding, implementing C/C++ pointer
|
---|
91 | semantics. C and C++ allow a valid array pointer to be incremented
|
---|
92 | one past the end of an object. The extra padding ensures that the
|
---|
93 | collector will recognize that such a pointer points to the object and
|
---|
94 | not the next object in memory.
|
---|
95 |
|
---|
96 | Second, the descriptor stores three extra pieces of information,
|
---|
97 | whether an object has a registered finalizer (destructor), whether it
|
---|
98 | may have any weak pointers referencing it, and for collectible arrays,
|
---|
99 | the element size of the array. The element size is required for the
|
---|
100 | array's finalizer to iterate through the elements of the array. (An
|
---|
101 | alternative design would have the compiler generate a finalizer
|
---|
102 | procedure for each different array type. But given the overhead of
|
---|
103 | finalization, there isn't any efficiency to be gained by that.)
|
---|
104 |
|
---|
105 | The descriptor must be added to non-collectible as well as collectible
|
---|
106 | objects, since the Ellis/Detlefs proposal allows "pointer to gc T" to
|
---|
107 | be assigned to a "pointer to T", which could then be deleted. Thus,
|
---|
108 | __builtin_delete must determine at runtime whether an object is
|
---|
109 | collectible, whether it has weak pointers referencing it, and whether
|
---|
110 | it may have a finalizer that needs unregistering. Though
|
---|
111 | GC_REGISTER_FINALIZER doesn't care if you ask it to unregister a
|
---|
112 | finalizer for an object that doesn't have one, it is a non-trivial
|
---|
113 | procedure that does a hash look-up, etc. The descriptor trades a
|
---|
114 | little extra space for a significant increase in time on the fast path
|
---|
115 | through delete. (A similar argument applies to
|
---|
116 | GC_UNREGISTER_DISAPPEARING_LINK).
|
---|
117 |
|
---|
118 | For non-array types, the space for the descriptor could be shrunk to a
|
---|
119 | single byte for storing the "has finalizer" flag. But this would save
|
---|
120 | space only on arrays of char (whose size is not a multiple of the word
|
---|
121 | size) and structs whose largest member is less than a word in size
|
---|
122 | (very infrequent). And it would require that programmers actually
|
---|
123 | remember to call "delete[]" instead of "delete" (which they should,
|
---|
124 | but there are probably lots of buggy programs out there). For the
|
---|
125 | moment, the space savings seems not worthwhile, especially considering
|
---|
126 | that the Boehm GC is already quite space competitive with other
|
---|
127 | malloc's.
|
---|
128 |
|
---|
129 |
|
---|
130 | Given a pointer o to the base of an object:
|
---|
131 |
|
---|
132 | Descriptor* DESCRIPTOR (void* o)
|
---|
133 | returns a pointer to the descriptor for o.
|
---|
134 |
|
---|
135 | The implementation of descriptors relies on the fact that the GC
|
---|
136 | implementation allocates objects in units of the machine's natural
|
---|
137 | word size (e.g. 32 bits on a SPARC, 64 bits on an Alpha).
|
---|
138 |
|
---|
139 | **************************************************************************/
|
---|
140 |
|
---|
141 | typedef struct Descriptor {
|
---|
142 | unsigned has_weak_pointers: 1;
|
---|
143 | unsigned has_finalizer: 1;
|
---|
144 | unsigned element_size: BITSPERBYTE * sizeof( unsigned ) - 2;
|
---|
145 | } Descriptor;
|
---|
146 |
|
---|
147 | #define DESCRIPTOR( o ) \
|
---|
148 | ((Descriptor*) ((char*)(o) + GC_size( o ) - sizeof( Descriptor )))
|
---|
149 |
|
---|
150 |
|
---|
151 | /**************************************************************************
|
---|
152 |
|
---|
153 | Implementations of global operator new() and operator delete()
|
---|
154 |
|
---|
155 | ***************************************************************************/
|
---|
156 |
|
---|
157 |
|
---|
158 | void* __builtin_new( size )
|
---|
159 | size_t size;
|
---|
160 | /*
|
---|
161 | For non-gc non-array types, the compiler generates calls to
|
---|
162 | __builtin_new, which allocates non-collected storage via
|
---|
163 | GC_MALLOC_UNCOLLECTABLE. This ensures that the non-collected
|
---|
164 | storage will be part of the collector's root set, required by the
|
---|
165 | Ellis/Detlefs semantics. */
|
---|
166 | {
|
---|
167 | vfp handler = __new_handler ? __new_handler : __default_new_handler;
|
---|
168 |
|
---|
169 | while (1) {
|
---|
170 | void* o = GC_MALLOC_UNCOLLECTABLE( size + sizeof( Descriptor ) );
|
---|
171 | if (o != 0) return o;
|
---|
172 | (*handler) ();}}
|
---|
173 |
|
---|
174 |
|
---|
175 | void* __builtin_vec_new( size )
|
---|
176 | size_t size;
|
---|
177 | /*
|
---|
178 | For non-gc array types, the compiler generates calls to
|
---|
179 | __builtin_vec_new. */
|
---|
180 | {
|
---|
181 | return __builtin_new( size );}
|
---|
182 |
|
---|
183 |
|
---|
184 | void* __builtin_new_gc( size )
|
---|
185 | size_t size;
|
---|
186 | /*
|
---|
187 | For gc non-array types, the compiler generates calls to
|
---|
188 | __builtin_new_gc, which allocates collected storage via
|
---|
189 | GC_MALLOC. */
|
---|
190 | {
|
---|
191 | vfp handler = __new_handler ? __new_handler : __default_new_handler;
|
---|
192 |
|
---|
193 | while (1) {
|
---|
194 | void* o = GC_MALLOC( size + sizeof( Descriptor ) );
|
---|
195 | if (o != 0) return o;
|
---|
196 | (*handler) ();}}
|
---|
197 |
|
---|
198 |
|
---|
199 | void* __builtin_new_gc_a( size )
|
---|
200 | size_t size;
|
---|
201 | /*
|
---|
202 | For non-pointer-containing gc non-array types, the compiler
|
---|
203 | generates calls to __builtin_new_gc_a, which allocates collected
|
---|
204 | storage via GC_MALLOC_ATOMIC. */
|
---|
205 | {
|
---|
206 | vfp handler = __new_handler ? __new_handler : __default_new_handler;
|
---|
207 |
|
---|
208 | while (1) {
|
---|
209 | void* o = GC_MALLOC_ATOMIC( size + sizeof( Descriptor ) );
|
---|
210 | if (o != 0) return o;
|
---|
211 | (*handler) ();}}
|
---|
212 |
|
---|
213 |
|
---|
214 | void* __builtin_vec_new_gc( size )
|
---|
215 | size_t size;
|
---|
216 | /*
|
---|
217 | For gc array types, the compiler generates calls to
|
---|
218 | __builtin_vec_new_gc. */
|
---|
219 | {
|
---|
220 | return __builtin_new_gc( size );}
|
---|
221 |
|
---|
222 |
|
---|
223 | void* __builtin_vec_new_gc_a( size )
|
---|
224 | size_t size;
|
---|
225 | /*
|
---|
226 | For non-pointer-containing gc array types, the compiler generates
|
---|
227 | calls to __builtin_vec_new_gc_a. */
|
---|
228 | {
|
---|
229 | return __builtin_new_gc_a( size );}
|
---|
230 |
|
---|
231 |
|
---|
232 | static void call_destructor( o, data )
|
---|
233 | void* o;
|
---|
234 | void* data;
|
---|
235 | /*
|
---|
236 | call_destructor is the GC finalizer proc registered for non-array
|
---|
237 | gc objects with destructors. Its client data is the destructor
|
---|
238 | proc, which it calls with the magic integer 2, a special flag
|
---|
239 | obeying the compiler convention for destructors. */
|
---|
240 | {
|
---|
241 | ((destructor_proc) data)( o, 2 );}
|
---|
242 |
|
---|
243 |
|
---|
244 | void* __builtin_new_gc_dtor( o, d )
|
---|
245 | void* o;
|
---|
246 | destructor_proc d;
|
---|
247 | /*
|
---|
248 | The compiler generates a call to __builtin_new_gc_dtor to register
|
---|
249 | the destructor "d" of a non-array gc object "o" as a GC finalizer.
|
---|
250 | The destructor is registered via
|
---|
251 | GC_REGISTER_FINALIZER_IGNORE_SELF, which causes the collector to
|
---|
252 | ignore pointers from the object to itself when determining when
|
---|
253 | the object can be finalized. This is necessary due to the self
|
---|
254 | pointers used in the internal representation of multiply-inherited
|
---|
255 | objects. */
|
---|
256 | {
|
---|
257 | Descriptor* desc = DESCRIPTOR( o );
|
---|
258 |
|
---|
259 | GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_destructor, d, 0, 0 );
|
---|
260 | desc->has_finalizer = 1;}
|
---|
261 |
|
---|
262 |
|
---|
263 | static void call_array_destructor( o, data )
|
---|
264 | void* o;
|
---|
265 | void* data;
|
---|
266 | /*
|
---|
267 | call_array_destructor is the GC finalizer proc registered for gc
|
---|
268 | array objects whose elements have destructors. Its client data is
|
---|
269 | the destructor proc. It iterates through the elements of the
|
---|
270 | array in reverse order, calling the destructor on each. */
|
---|
271 | {
|
---|
272 | int num = NUM_ARRAY_ELEMENTS( o );
|
---|
273 | Descriptor* desc = DESCRIPTOR( o );
|
---|
274 | size_t size = desc->element_size;
|
---|
275 | char* first_p = FIRST_ELEMENT_P( o );
|
---|
276 | char* p = first_p + (num - 1) * size;
|
---|
277 |
|
---|
278 | if (num > 0) {
|
---|
279 | while (1) {
|
---|
280 | ((destructor_proc) data)( p, 2 );
|
---|
281 | if (p == first_p) break;
|
---|
282 | p -= size;}}}
|
---|
283 |
|
---|
284 |
|
---|
285 | void* __builtin_vec_new_gc_dtor( first_elem, d, element_size )
|
---|
286 | void* first_elem;
|
---|
287 | destructor_proc d;
|
---|
288 | size_t element_size;
|
---|
289 | /*
|
---|
290 | The compiler generates a call to __builtin_vec_new_gc_dtor to
|
---|
291 | register the destructor "d" of a gc array object as a GC
|
---|
292 | finalizer. "first_elem" points to the first element of the array,
|
---|
293 | *not* the beginning of the object (this makes the generated call
|
---|
294 | to this function smaller). The elements of the array are of size
|
---|
295 | "element_size". The destructor is registered as in
|
---|
296 | _builtin_new_gc_dtor. */
|
---|
297 | {
|
---|
298 | void* o = (char*) first_elem - sizeof( BI_header );
|
---|
299 | Descriptor* desc = DESCRIPTOR( o );
|
---|
300 |
|
---|
301 | GC_REGISTER_FINALIZER_IGNORE_SELF( o, call_array_destructor, d, 0, 0 );
|
---|
302 | desc->element_size = element_size;
|
---|
303 | desc->has_finalizer = 1;}
|
---|
304 |
|
---|
305 |
|
---|
306 | void __builtin_delete( o )
|
---|
307 | void* o;
|
---|
308 | /*
|
---|
309 | The compiler generates calls to __builtin_delete for operator
|
---|
310 | delete(). The GC currently requires that any registered
|
---|
311 | finalizers be unregistered before explicitly freeing an object.
|
---|
312 | If the object has any weak pointers referencing it, we can't
|
---|
313 | actually free it now. */
|
---|
314 | {
|
---|
315 | if (o != 0) {
|
---|
316 | Descriptor* desc = DESCRIPTOR( o );
|
---|
317 | if (desc->has_finalizer) GC_REGISTER_FINALIZER( o, 0, 0, 0, 0 );
|
---|
318 | if (! desc->has_weak_pointers) GC_FREE( o );}}
|
---|
319 |
|
---|
320 |
|
---|
321 | void __builtin_vec_delete( o )
|
---|
322 | void* o;
|
---|
323 | /*
|
---|
324 | The compiler generates calls to __builitn_vec_delete for operator
|
---|
325 | delete[](). */
|
---|
326 | {
|
---|
327 | __builtin_delete( o );}
|
---|
328 |
|
---|
329 |
|
---|
330 | /**************************************************************************
|
---|
331 |
|
---|
332 | Implementations of the template class WeakPointer from WeakPointer.h
|
---|
333 |
|
---|
334 | ***************************************************************************/
|
---|
335 |
|
---|
336 | typedef struct WeakPointer {
|
---|
337 | void* pointer;
|
---|
338 | } WeakPointer;
|
---|
339 |
|
---|
340 |
|
---|
341 | void* _WeakPointer_New( t )
|
---|
342 | void* t;
|
---|
343 | {
|
---|
344 | if (t == 0) {
|
---|
345 | return 0;}
|
---|
346 | else {
|
---|
347 | void* base = GC_base( t );
|
---|
348 | WeakPointer* wp =
|
---|
349 | (WeakPointer*) GC_MALLOC_ATOMIC( sizeof( WeakPointer ) );
|
---|
350 | Descriptor* desc = DESCRIPTOR( base );
|
---|
351 |
|
---|
352 | wp->pointer = t;
|
---|
353 | desc->has_weak_pointers = 1;
|
---|
354 | GC_general_register_disappearing_link( &wp->pointer, base );
|
---|
355 | return wp;}}
|
---|
356 |
|
---|
357 |
|
---|
358 | static void* PointerWithLock( wp )
|
---|
359 | WeakPointer* wp;
|
---|
360 | {
|
---|
361 | if (wp == 0 || wp->pointer == 0) {
|
---|
362 | return 0;}
|
---|
363 | else {
|
---|
364 | return (void*) wp->pointer;}}
|
---|
365 |
|
---|
366 |
|
---|
367 | void* _WeakPointer_Pointer( wp )
|
---|
368 | WeakPointer* wp;
|
---|
369 | {
|
---|
370 | return (void*) GC_call_with_alloc_lock( PointerWithLock, wp );}
|
---|
371 |
|
---|
372 |
|
---|
373 | typedef struct EqualClosure {
|
---|
374 | WeakPointer* wp1;
|
---|
375 | WeakPointer* wp2;
|
---|
376 | } EqualClosure;
|
---|
377 |
|
---|
378 |
|
---|
379 | static void* EqualWithLock( ec )
|
---|
380 | EqualClosure* ec;
|
---|
381 | {
|
---|
382 | if (ec->wp1 == 0 || ec->wp2 == 0) {
|
---|
383 | return (void*) (ec->wp1 == ec->wp2);}
|
---|
384 | else {
|
---|
385 | return (void*) (ec->wp1->pointer == ec->wp2->pointer);}}
|
---|
386 |
|
---|
387 |
|
---|
388 | int _WeakPointer_Equal( wp1, wp2 )
|
---|
389 | WeakPointer* wp1;
|
---|
390 | WeakPointer* wp2;
|
---|
391 | {
|
---|
392 | EqualClosure ec;
|
---|
393 |
|
---|
394 | ec.wp1 = wp1;
|
---|
395 | ec.wp2 = wp2;
|
---|
396 | return (int) GC_call_with_alloc_lock( EqualWithLock, &ec );}
|
---|
397 |
|
---|
398 |
|
---|
399 | int _WeakPointer_Hash( wp )
|
---|
400 | WeakPointer* wp;
|
---|
401 | {
|
---|
402 | return (int) _WeakPointer_Pointer( wp );}
|
---|
403 |
|
---|
404 |
|
---|
405 | /**************************************************************************
|
---|
406 |
|
---|
407 | Implementations of the template class CleanUp from WeakPointer.h
|
---|
408 |
|
---|
409 | ***************************************************************************/
|
---|
410 |
|
---|
411 | typedef struct Closure {
|
---|
412 | void (*c) PROTO(( void* d, void* t ));
|
---|
413 | ptrdiff_t t_offset;
|
---|
414 | void* d;
|
---|
415 | } Closure;
|
---|
416 |
|
---|
417 |
|
---|
418 | static void _CleanUp_CallClosure( obj, data )
|
---|
419 | void* obj;
|
---|
420 | void* data;
|
---|
421 | {
|
---|
422 | Closure* closure = (Closure*) data;
|
---|
423 | closure->c( closure->d, (char*) obj + closure->t_offset );}
|
---|
424 |
|
---|
425 |
|
---|
426 | void _CleanUp_Set( t, c, d )
|
---|
427 | void* t;
|
---|
428 | void (*c) PROTO(( void* d, void* t ));
|
---|
429 | void* d;
|
---|
430 | {
|
---|
431 | void* base = GC_base( t );
|
---|
432 | Descriptor* desc = DESCRIPTOR( t );
|
---|
433 |
|
---|
434 | if (c == 0) {
|
---|
435 | GC_REGISTER_FINALIZER_IGNORE_SELF( base, 0, 0, 0, 0 );
|
---|
436 | desc->has_finalizer = 0;}
|
---|
437 | else {
|
---|
438 | Closure* closure = (Closure*) GC_MALLOC( sizeof( Closure ) );
|
---|
439 | closure->c = c;
|
---|
440 | closure->t_offset = (char*) t - (char*) base;
|
---|
441 | closure->d = d;
|
---|
442 | GC_REGISTER_FINALIZER_IGNORE_SELF( base, _CleanUp_CallClosure,
|
---|
443 | closure, 0, 0 );
|
---|
444 | desc->has_finalizer = 1;}}
|
---|
445 |
|
---|
446 |
|
---|
447 | void _CleanUp_Call( t )
|
---|
448 | void* t;
|
---|
449 | {
|
---|
450 | /* ? Aren't we supposed to deactivate weak pointers to t too?
|
---|
451 | Why? */
|
---|
452 | void* base = GC_base( t );
|
---|
453 | void* d;
|
---|
454 | GC_finalization_proc f;
|
---|
455 |
|
---|
456 | GC_REGISTER_FINALIZER( base, 0, 0, &f, &d );
|
---|
457 | f( base, d );}
|
---|
458 |
|
---|
459 |
|
---|
460 | typedef struct QueueElem {
|
---|
461 | void* o;
|
---|
462 | GC_finalization_proc f;
|
---|
463 | void* d;
|
---|
464 | struct QueueElem* next;
|
---|
465 | } QueueElem;
|
---|
466 |
|
---|
467 |
|
---|
468 | void* _CleanUp_Queue_NewHead()
|
---|
469 | {
|
---|
470 | return GC_MALLOC( sizeof( QueueElem ) );}
|
---|
471 |
|
---|
472 |
|
---|
473 | static void _CleanUp_Queue_Enqueue( obj, data )
|
---|
474 | void* obj;
|
---|
475 | void* data;
|
---|
476 | {
|
---|
477 | QueueElem* q = (QueueElem*) data;
|
---|
478 | QueueElem* head = q->next;
|
---|
479 |
|
---|
480 | q->o = obj;
|
---|
481 | q->next = head->next;
|
---|
482 | head->next = q;}
|
---|
483 |
|
---|
484 |
|
---|
485 | void _CleanUp_Queue_Set( h, t )
|
---|
486 | void* h;
|
---|
487 | void* t;
|
---|
488 | {
|
---|
489 | QueueElem* head = (QueueElem*) h;
|
---|
490 | void* base = GC_base( t );
|
---|
491 | void* d;
|
---|
492 | GC_finalization_proc f;
|
---|
493 | QueueElem* q = (QueueElem*) GC_MALLOC( sizeof( QueueElem ) );
|
---|
494 |
|
---|
495 | GC_REGISTER_FINALIZER( base, _CleanUp_Queue_Enqueue, q, &f, &d );
|
---|
496 | q->f = f;
|
---|
497 | q->d = d;
|
---|
498 | q->next = head;}
|
---|
499 |
|
---|
500 |
|
---|
501 | int _CleanUp_Queue_Call( h )
|
---|
502 | void* h;
|
---|
503 | {
|
---|
504 | QueueElem* head = (QueueElem*) h;
|
---|
505 | QueueElem* q = head->next;
|
---|
506 |
|
---|
507 | if (q == 0) {
|
---|
508 | return 0;}
|
---|
509 | else {
|
---|
510 | head->next = q->next;
|
---|
511 | q->next = 0;
|
---|
512 | if (q->f != 0) q->f( q->o, q->d );
|
---|
513 | return 1;}}
|
---|
514 |
|
---|
515 |
|
---|
516 |
|
---|