| 1 | /* adler32.c -- compute the Adler-32 checksum of a data stream | 
|---|
| 2 | * Copyright (C) 1995-2004 Mark Adler | 
|---|
| 3 | * For conditions of distribution and use, see copyright notice in zlib.h | 
|---|
| 4 | */ | 
|---|
| 5 |  | 
|---|
| 6 | /* @(#) $Id$ */ | 
|---|
| 7 |  | 
|---|
| 8 | #define ZLIB_INTERNAL | 
|---|
| 9 | #include "zlib.h" | 
|---|
| 10 |  | 
|---|
| 11 | #define BASE 65521UL    /* largest prime smaller than 65536 */ | 
|---|
| 12 | #define NMAX 5552 | 
|---|
| 13 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | 
|---|
| 14 |  | 
|---|
| 15 | #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;} | 
|---|
| 16 | #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1); | 
|---|
| 17 | #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2); | 
|---|
| 18 | #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4); | 
|---|
| 19 | #define DO16(buf)   DO8(buf,0); DO8(buf,8); | 
|---|
| 20 |  | 
|---|
| 21 | /* use NO_DIVIDE if your processor does not do division in hardware */ | 
|---|
| 22 | #ifdef NO_DIVIDE | 
|---|
| 23 | #  define MOD(a) \ | 
|---|
| 24 | do { \ | 
|---|
| 25 | if (a >= (BASE << 16)) a -= (BASE << 16); \ | 
|---|
| 26 | if (a >= (BASE << 15)) a -= (BASE << 15); \ | 
|---|
| 27 | if (a >= (BASE << 14)) a -= (BASE << 14); \ | 
|---|
| 28 | if (a >= (BASE << 13)) a -= (BASE << 13); \ | 
|---|
| 29 | if (a >= (BASE << 12)) a -= (BASE << 12); \ | 
|---|
| 30 | if (a >= (BASE << 11)) a -= (BASE << 11); \ | 
|---|
| 31 | if (a >= (BASE << 10)) a -= (BASE << 10); \ | 
|---|
| 32 | if (a >= (BASE << 9)) a -= (BASE << 9); \ | 
|---|
| 33 | if (a >= (BASE << 8)) a -= (BASE << 8); \ | 
|---|
| 34 | if (a >= (BASE << 7)) a -= (BASE << 7); \ | 
|---|
| 35 | if (a >= (BASE << 6)) a -= (BASE << 6); \ | 
|---|
| 36 | if (a >= (BASE << 5)) a -= (BASE << 5); \ | 
|---|
| 37 | if (a >= (BASE << 4)) a -= (BASE << 4); \ | 
|---|
| 38 | if (a >= (BASE << 3)) a -= (BASE << 3); \ | 
|---|
| 39 | if (a >= (BASE << 2)) a -= (BASE << 2); \ | 
|---|
| 40 | if (a >= (BASE << 1)) a -= (BASE << 1); \ | 
|---|
| 41 | if (a >= BASE) a -= BASE; \ | 
|---|
| 42 | } while (0) | 
|---|
| 43 | #  define MOD4(a) \ | 
|---|
| 44 | do { \ | 
|---|
| 45 | if (a >= (BASE << 4)) a -= (BASE << 4); \ | 
|---|
| 46 | if (a >= (BASE << 3)) a -= (BASE << 3); \ | 
|---|
| 47 | if (a >= (BASE << 2)) a -= (BASE << 2); \ | 
|---|
| 48 | if (a >= (BASE << 1)) a -= (BASE << 1); \ | 
|---|
| 49 | if (a >= BASE) a -= BASE; \ | 
|---|
| 50 | } while (0) | 
|---|
| 51 | #else | 
|---|
| 52 | #  define MOD(a) a %= BASE | 
|---|
| 53 | #  define MOD4(a) a %= BASE | 
|---|
| 54 | #endif | 
|---|
| 55 |  | 
|---|
| 56 | /* ========================================================================= */ | 
|---|
| 57 | uLong ZEXPORT adler32(adler, buf, len) | 
|---|
| 58 | uLong adler; | 
|---|
| 59 | const Bytef *buf; | 
|---|
| 60 | uInt len; | 
|---|
| 61 | { | 
|---|
| 62 | unsigned long sum2; | 
|---|
| 63 | unsigned n; | 
|---|
| 64 |  | 
|---|
| 65 | /* split Adler-32 into component sums */ | 
|---|
| 66 | sum2 = (adler >> 16) & 0xffff; | 
|---|
| 67 | adler &= 0xffff; | 
|---|
| 68 |  | 
|---|
| 69 | /* in case user likes doing a byte at a time, keep it fast */ | 
|---|
| 70 | if (len == 1) { | 
|---|
| 71 | adler += buf[0]; | 
|---|
| 72 | if (adler >= BASE) | 
|---|
| 73 | adler -= BASE; | 
|---|
| 74 | sum2 += adler; | 
|---|
| 75 | if (sum2 >= BASE) | 
|---|
| 76 | sum2 -= BASE; | 
|---|
| 77 | return adler | (sum2 << 16); | 
|---|
| 78 | } | 
|---|
| 79 |  | 
|---|
| 80 | /* initial Adler-32 value (deferred check for len == 1 speed) */ | 
|---|
| 81 | if (buf == Z_NULL) | 
|---|
| 82 | return 1L; | 
|---|
| 83 |  | 
|---|
| 84 | /* in case short lengths are provided, keep it somewhat fast */ | 
|---|
| 85 | if (len < 16) { | 
|---|
| 86 | while (len--) { | 
|---|
| 87 | adler += *buf++; | 
|---|
| 88 | sum2 += adler; | 
|---|
| 89 | } | 
|---|
| 90 | if (adler >= BASE) | 
|---|
| 91 | adler -= BASE; | 
|---|
| 92 | MOD4(sum2);             /* only added so many BASE's */ | 
|---|
| 93 | return adler | (sum2 << 16); | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 | /* do length NMAX blocks -- requires just one modulo operation */ | 
|---|
| 97 | while (len >= NMAX) { | 
|---|
| 98 | len -= NMAX; | 
|---|
| 99 | n = NMAX / 16;          /* NMAX is divisible by 16 */ | 
|---|
| 100 | do { | 
|---|
| 101 | DO16(buf);          /* 16 sums unrolled */ | 
|---|
| 102 | buf += 16; | 
|---|
| 103 | } while (--n); | 
|---|
| 104 | MOD(adler); | 
|---|
| 105 | MOD(sum2); | 
|---|
| 106 | } | 
|---|
| 107 |  | 
|---|
| 108 | /* do remaining bytes (less than NMAX, still just one modulo) */ | 
|---|
| 109 | if (len) {                  /* avoid modulos if none remaining */ | 
|---|
| 110 | while (len >= 16) { | 
|---|
| 111 | len -= 16; | 
|---|
| 112 | DO16(buf); | 
|---|
| 113 | buf += 16; | 
|---|
| 114 | } | 
|---|
| 115 | while (len--) { | 
|---|
| 116 | adler += *buf++; | 
|---|
| 117 | sum2 += adler; | 
|---|
| 118 | } | 
|---|
| 119 | MOD(adler); | 
|---|
| 120 | MOD(sum2); | 
|---|
| 121 | } | 
|---|
| 122 |  | 
|---|
| 123 | /* return recombined sums */ | 
|---|
| 124 | return adler | (sum2 << 16); | 
|---|
| 125 | } | 
|---|
| 126 |  | 
|---|
| 127 | /* ========================================================================= */ | 
|---|
| 128 | uLong ZEXPORT adler32_combine(adler1, adler2, len2) | 
|---|
| 129 | uLong adler1; | 
|---|
| 130 | uLong adler2; | 
|---|
| 131 | z_off_t len2; | 
|---|
| 132 | { | 
|---|
| 133 | unsigned long sum1; | 
|---|
| 134 | unsigned long sum2; | 
|---|
| 135 | unsigned rem; | 
|---|
| 136 |  | 
|---|
| 137 | /* the derivation of this formula is left as an exercise for the reader */ | 
|---|
| 138 | rem = (unsigned)(len2 % BASE); | 
|---|
| 139 | sum1 = adler1 & 0xffff; | 
|---|
| 140 | sum2 = rem * sum1; | 
|---|
| 141 | MOD(sum2); | 
|---|
| 142 | sum1 += (adler2 & 0xffff) + BASE - 1; | 
|---|
| 143 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | 
|---|
| 144 | if (sum1 > BASE) sum1 -= BASE; | 
|---|
| 145 | if (sum1 > BASE) sum1 -= BASE; | 
|---|
| 146 | if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); | 
|---|
| 147 | if (sum2 > BASE) sum2 -= BASE; | 
|---|
| 148 | return sum1 | (sum2 << 16); | 
|---|
| 149 | } | 
|---|