1 | /* Hash tables.
|
---|
2 | Copyright (C) 2000, 2001 Free Software Foundation, Inc.
|
---|
3 |
|
---|
4 | This file is part of GNU Wget.
|
---|
5 |
|
---|
6 | GNU Wget is free software; you can redistribute it and/or modify
|
---|
7 | it under the terms of the GNU General Public License as published by
|
---|
8 | the Free Software Foundation; either version 2 of the License, or (at
|
---|
9 | your option) any later version.
|
---|
10 |
|
---|
11 | GNU Wget is distributed in the hope that it will be useful,
|
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
14 | GNU General Public License for more details.
|
---|
15 |
|
---|
16 | You should have received a copy of the GNU General Public License
|
---|
17 | along with Wget; if not, write to the Free Software
|
---|
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
19 |
|
---|
20 | In addition, as a special exception, the Free Software Foundation
|
---|
21 | gives permission to link the code of its release of Wget with the
|
---|
22 | OpenSSL project's "OpenSSL" library (or with modified versions of it
|
---|
23 | that use the same license as the "OpenSSL" library), and distribute
|
---|
24 | the linked executables. You must obey the GNU General Public License
|
---|
25 | in all respects for all of the code used other than "OpenSSL". If you
|
---|
26 | modify this file, you may extend this exception to your version of the
|
---|
27 | file, but you are not obligated to do so. If you do not wish to do
|
---|
28 | so, delete this exception statement from your version. */
|
---|
29 |
|
---|
30 | /* With -DSTANDALONE, this file can be compiled outside Wget source
|
---|
31 | tree. To test, also use -DTEST. */
|
---|
32 |
|
---|
33 | #ifdef HAVE_CONFIG_H
|
---|
34 | # include <config.h>
|
---|
35 | # ifdef HAVE_STRING_H
|
---|
36 | # include <string.h>
|
---|
37 | # else
|
---|
38 | # include <strings.h>
|
---|
39 | # endif
|
---|
40 | # ifdef HAVE_LIMITS_H
|
---|
41 | # include <limits.h>
|
---|
42 | # endif
|
---|
43 | #else
|
---|
44 | /* If running without Autoconf, go ahead and assume presence of
|
---|
45 | standard C89 headers. */
|
---|
46 | # include <string.h>
|
---|
47 | # include <limits.h>
|
---|
48 | #endif
|
---|
49 |
|
---|
50 | #include <stdio.h>
|
---|
51 | #include <stdlib.h>
|
---|
52 | #include <assert.h>
|
---|
53 |
|
---|
54 | #ifndef STANDALONE
|
---|
55 | /* Get Wget's utility headers. */
|
---|
56 | # include "wget.h"
|
---|
57 | # include "utils.h"
|
---|
58 | #else
|
---|
59 | /* Make do without them. */
|
---|
60 | # define xnew(x) xmalloc (sizeof (x))
|
---|
61 | # define xnew_array(type, x) xmalloc (sizeof (type) * (x))
|
---|
62 | # define xmalloc malloc /* or something that exits
|
---|
63 | if not enough memory */
|
---|
64 | # define xfree free
|
---|
65 | # define countof(x) (sizeof (x) / sizeof ((x)[0]))
|
---|
66 | # define TOLOWER(x) ('A' <= (x) && (x) <= 'Z' ? (x) - 32 : (x))
|
---|
67 | # define PARAMS(x) x
|
---|
68 | #endif
|
---|
69 |
|
---|
70 | #include "hash.h"
|
---|
71 |
|
---|
72 | /* INTERFACE:
|
---|
73 |
|
---|
74 | Hash tables are a technique used to implement mapping between
|
---|
75 | objects with near-constant-time access and storage. The table
|
---|
76 | associates keys to values, and a value can be very quickly
|
---|
77 | retrieved by providing the key. Fast lookup tables are typically
|
---|
78 | implemented as hash tables.
|
---|
79 |
|
---|
80 | The entry points are
|
---|
81 | hash_table_new -- creates the table.
|
---|
82 | hash_table_destroy -- destroys the table.
|
---|
83 | hash_table_put -- establishes or updates key->value mapping.
|
---|
84 | hash_table_get -- retrieves value of key.
|
---|
85 | hash_table_get_pair -- get key/value pair for key.
|
---|
86 | hash_table_contains -- test whether the table contains key.
|
---|
87 | hash_table_remove -- remove the key->value mapping for key.
|
---|
88 | hash_table_map -- iterate through table mappings.
|
---|
89 | hash_table_clear -- clear hash table contents.
|
---|
90 | hash_table_count -- return the number of entries in the table.
|
---|
91 |
|
---|
92 | The hash table grows internally as new entries are added and is not
|
---|
93 | limited in size, except by available memory. The table doubles
|
---|
94 | with each resize, which ensures that the amortized time per
|
---|
95 | operation remains constant.
|
---|
96 |
|
---|
97 | By default, tables created by hash_table_new consider the keys to
|
---|
98 | be equal if their pointer values are the same. You can use
|
---|
99 | make_string_hash_table to create tables whose keys are considered
|
---|
100 | equal if their string contents are the same. In the general case,
|
---|
101 | the criterion of equality used to compare keys is specified at
|
---|
102 | table creation time with two callback functions, "hash" and "test".
|
---|
103 | The hash function transforms the key into an arbitrary number that
|
---|
104 | must be the same for two equal keys. The test function accepts two
|
---|
105 | keys and returns non-zero if they are to be considered equal.
|
---|
106 |
|
---|
107 | Note that neither keys nor values are copied when inserted into the
|
---|
108 | hash table, so they must exist for the lifetime of the table. This
|
---|
109 | means that e.g. the use of static strings is OK, but objects with a
|
---|
110 | shorter life-time need to be copied (with strdup() or the like in
|
---|
111 | the case of strings) before being inserted. */
|
---|
112 |
|
---|
113 | /* IMPLEMENTATION:
|
---|
114 |
|
---|
115 | The hash table is implemented as an open-addressed table with
|
---|
116 | linear probing collision resolution.
|
---|
117 |
|
---|
118 | The above means that all the hash entries (pairs of pointers, key
|
---|
119 | and value) are stored in a contiguous array. The position of each
|
---|
120 | mapping is determined by the hash value of its key and the size of
|
---|
121 | the table: location := hash(key) % size. If two different keys end
|
---|
122 | up on the same position (collide), the one that came second is
|
---|
123 | placed at the next empty position following the occupied place.
|
---|
124 | This collision resolution technique is called "linear probing".
|
---|
125 |
|
---|
126 | There are more advanced collision resolution methods (quadratic
|
---|
127 | probing, double hashing), but we don't use them because they incur
|
---|
128 | more non-sequential access to the array, which results in worse CPU
|
---|
129 | cache behavior. Linear probing works well as long as the
|
---|
130 | count/size ratio (fullness) is kept below 75%. We make sure to
|
---|
131 | grow and rehash the table whenever this threshold is exceeded.
|
---|
132 |
|
---|
133 | Collisions make deletion tricky because clearing a position
|
---|
134 | followed by a colliding entry would make the position seem empty
|
---|
135 | and the colliding entry not found. One solution is to leave a
|
---|
136 | "tombstone" instead of clearing the entry, and another is to
|
---|
137 | carefully rehash the entries immediately following the deleted one.
|
---|
138 | We use the latter method because it results in less bookkeeping and
|
---|
139 | faster retrieval at the (slight) expense of deletion. */
|
---|
140 |
|
---|
141 | /* Maximum allowed fullness: when hash table's fullness exceeds this
|
---|
142 | value, the table is resized. */
|
---|
143 | #define HASH_MAX_FULLNESS 0.75
|
---|
144 |
|
---|
145 | /* The hash table size is multiplied by this factor (and then rounded
|
---|
146 | to the next prime) with each resize. This guarantees infrequent
|
---|
147 | resizes. */
|
---|
148 | #define HASH_RESIZE_FACTOR 2
|
---|
149 |
|
---|
150 | struct mapping {
|
---|
151 | void *key;
|
---|
152 | void *value;
|
---|
153 | };
|
---|
154 |
|
---|
155 | typedef unsigned long (*hashfun_t) PARAMS ((const void *));
|
---|
156 | typedef int (*testfun_t) PARAMS ((const void *, const void *));
|
---|
157 |
|
---|
158 | struct hash_table {
|
---|
159 | hashfun_t hash_function;
|
---|
160 | testfun_t test_function;
|
---|
161 |
|
---|
162 | struct mapping *mappings; /* pointer to the table entries. */
|
---|
163 | int size; /* size of the array. */
|
---|
164 |
|
---|
165 | int count; /* number of non-empty entries. */
|
---|
166 | int resize_threshold; /* after size exceeds this number of
|
---|
167 | entries, resize the table. */
|
---|
168 | int prime_offset; /* the offset of the current prime in
|
---|
169 | the prime table. */
|
---|
170 | };
|
---|
171 |
|
---|
172 | /* We use the all-bits-set constant (INVALID_PTR) marker to mean that
|
---|
173 | a mapping is empty. It is unaligned and therefore illegal as a
|
---|
174 | pointer. INVALID_PTR_BYTE (0xff) is the one-byte value used to
|
---|
175 | initialize the mappings array as empty.
|
---|
176 |
|
---|
177 | The all-bits-set value is a better choice than NULL because it
|
---|
178 | allows the use of NULL/0 keys. Since the keys are either integers
|
---|
179 | or pointers, the only key that cannot be used is the integer value
|
---|
180 | -1. This is acceptable because it still allows the use of
|
---|
181 | nonnegative integer keys. */
|
---|
182 |
|
---|
183 | #define INVALID_PTR ((void *) ~(unsigned long)0)
|
---|
184 | #ifndef UCHAR_MAX
|
---|
185 | # define UCHAR_MAX 0xff
|
---|
186 | #endif
|
---|
187 | #define INVALID_PTR_BYTE UCHAR_MAX
|
---|
188 |
|
---|
189 | #define NON_EMPTY(mp) ((mp)->key != INVALID_PTR)
|
---|
190 | #define MARK_AS_EMPTY(mp) ((mp)->key = INVALID_PTR)
|
---|
191 |
|
---|
192 | /* "Next" mapping is the mapping after MP, but wrapping back to
|
---|
193 | MAPPINGS when MP would reach MAPPINGS+SIZE. */
|
---|
194 | #define NEXT_MAPPING(mp, mappings, size) (mp != mappings + (size - 1) \
|
---|
195 | ? mp + 1 : mappings)
|
---|
196 |
|
---|
197 | /* Loop over non-empty mappings starting at MP. */
|
---|
198 | #define LOOP_NON_EMPTY(mp, mappings, size) \
|
---|
199 | for (; NON_EMPTY (mp); mp = NEXT_MAPPING (mp, mappings, size))
|
---|
200 |
|
---|
201 | /* Return the position of KEY in hash table SIZE large, hash function
|
---|
202 | being HASHFUN. */
|
---|
203 | #define HASH_POSITION(key, hashfun, size) ((hashfun) (key) % size)
|
---|
204 |
|
---|
205 | /* Find a prime near, but greather than or equal to SIZE. The primes
|
---|
206 | are looked up from a table with a selection of primes convenient
|
---|
207 | for this purpose.
|
---|
208 |
|
---|
209 | PRIME_OFFSET is a minor optimization: it specifies start position
|
---|
210 | for the search for the large enough prime. The final offset is
|
---|
211 | stored in the same variable. That way the list of primes does not
|
---|
212 | have to be scanned from the beginning each time around. */
|
---|
213 |
|
---|
214 | static int
|
---|
215 | prime_size (int size, int *prime_offset)
|
---|
216 | {
|
---|
217 | static const int primes[] = {
|
---|
218 | 13, 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
|
---|
219 | 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
|
---|
220 | 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
|
---|
221 | 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
|
---|
222 | 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
|
---|
223 | 10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
|
---|
224 | 50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
|
---|
225 | 243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
|
---|
226 | 1174703521, 1527114613, 1837299131, 2147483647
|
---|
227 | };
|
---|
228 | int i;
|
---|
229 |
|
---|
230 | for (i = *prime_offset; i < countof (primes); i++)
|
---|
231 | if (primes[i] >= size)
|
---|
232 | {
|
---|
233 | /* Set the offset to the next prime. That is safe because,
|
---|
234 | next time we are called, it will be with a larger SIZE,
|
---|
235 | which means we could never return the same prime anyway.
|
---|
236 | (If that is not the case, the caller can simply reset
|
---|
237 | *prime_offset.) */
|
---|
238 | *prime_offset = i + 1;
|
---|
239 | return primes[i];
|
---|
240 | }
|
---|
241 |
|
---|
242 | abort ();
|
---|
243 | }
|
---|
244 |
|
---|
245 | static int cmp_pointer PARAMS ((const void *, const void *));
|
---|
246 |
|
---|
247 | /* Create a hash table with hash function HASH_FUNCTION and test
|
---|
248 | function TEST_FUNCTION. The table is empty (its count is 0), but
|
---|
249 | pre-allocated to store at least ITEMS items.
|
---|
250 |
|
---|
251 | ITEMS is the number of items that the table can accept without
|
---|
252 | needing to resize. It is useful when creating a table that is to
|
---|
253 | be immediately filled with a known number of items. In that case,
|
---|
254 | the regrows are a waste of time, and specifying ITEMS correctly
|
---|
255 | will avoid them altogether.
|
---|
256 |
|
---|
257 | Note that hash tables grow dynamically regardless of ITEMS. The
|
---|
258 | only use of ITEMS is to preallocate the table and avoid unnecessary
|
---|
259 | dynamic regrows. Don't bother making ITEMS prime because it's not
|
---|
260 | used as size unchanged. To start with a small table that grows as
|
---|
261 | needed, simply specify zero ITEMS.
|
---|
262 |
|
---|
263 | If hash and test callbacks are not specified, identity mapping is
|
---|
264 | assumed, i.e. pointer values are used for key comparison. (Common
|
---|
265 | Lisp calls such tables EQ hash tables, and Java calls them
|
---|
266 | IdentityHashMaps.) If your keys require different comparison,
|
---|
267 | specify hash and test functions. For easy use of C strings as hash
|
---|
268 | keys, you can use the convenience functions make_string_hash_table
|
---|
269 | and make_nocase_string_hash_table. */
|
---|
270 |
|
---|
271 | struct hash_table *
|
---|
272 | hash_table_new (int items,
|
---|
273 | unsigned long (*hash_function) (const void *),
|
---|
274 | int (*test_function) (const void *, const void *))
|
---|
275 | {
|
---|
276 | int size;
|
---|
277 | struct hash_table *ht = xnew (struct hash_table);
|
---|
278 |
|
---|
279 | ht->hash_function = hash_function ? hash_function : hash_pointer;
|
---|
280 | ht->test_function = test_function ? test_function : cmp_pointer;
|
---|
281 |
|
---|
282 | /* If the size of struct hash_table ever becomes a concern, this
|
---|
283 | field can go. (Wget doesn't create many hashes.) */
|
---|
284 | ht->prime_offset = 0;
|
---|
285 |
|
---|
286 | /* Calculate the size that ensures that the table will store at
|
---|
287 | least ITEMS keys without the need to resize. */
|
---|
288 | size = 1 + items / HASH_MAX_FULLNESS;
|
---|
289 | size = prime_size (size, &ht->prime_offset);
|
---|
290 | ht->size = size;
|
---|
291 | ht->resize_threshold = size * HASH_MAX_FULLNESS;
|
---|
292 | /*assert (ht->resize_threshold >= items);*/
|
---|
293 |
|
---|
294 | ht->mappings = xnew_array (struct mapping, ht->size);
|
---|
295 |
|
---|
296 | /* Mark mappings as empty. We use 0xff rather than 0 to mark empty
|
---|
297 | keys because it allows us to use NULL/0 as keys. */
|
---|
298 | memset (ht->mappings, INVALID_PTR_BYTE, size * sizeof (struct mapping));
|
---|
299 |
|
---|
300 | ht->count = 0;
|
---|
301 |
|
---|
302 | return ht;
|
---|
303 | }
|
---|
304 |
|
---|
305 | /* Free the data associated with hash table HT. */
|
---|
306 |
|
---|
307 | void
|
---|
308 | hash_table_destroy (struct hash_table *ht)
|
---|
309 | {
|
---|
310 | xfree (ht->mappings);
|
---|
311 | xfree (ht);
|
---|
312 | }
|
---|
313 |
|
---|
314 | /* The heart of most functions in this file -- find the mapping whose
|
---|
315 | KEY is equal to key, using linear probing. Returns the mapping
|
---|
316 | that matches KEY, or the first empty mapping if none matches. */
|
---|
317 |
|
---|
318 | static inline struct mapping *
|
---|
319 | find_mapping (const struct hash_table *ht, const void *key)
|
---|
320 | {
|
---|
321 | struct mapping *mappings = ht->mappings;
|
---|
322 | int size = ht->size;
|
---|
323 | struct mapping *mp = mappings + HASH_POSITION (key, ht->hash_function, size);
|
---|
324 | testfun_t equals = ht->test_function;
|
---|
325 |
|
---|
326 | LOOP_NON_EMPTY (mp, mappings, size)
|
---|
327 | if (equals (key, mp->key))
|
---|
328 | break;
|
---|
329 | return mp;
|
---|
330 | }
|
---|
331 |
|
---|
332 | /* Get the value that corresponds to the key KEY in the hash table HT.
|
---|
333 | If no value is found, return NULL. Note that NULL is a legal value
|
---|
334 | for value; if you are storing NULLs in your hash table, you can use
|
---|
335 | hash_table_contains to be sure that a (possibly NULL) value exists
|
---|
336 | in the table. Or, you can use hash_table_get_pair instead of this
|
---|
337 | function. */
|
---|
338 |
|
---|
339 | void *
|
---|
340 | hash_table_get (const struct hash_table *ht, const void *key)
|
---|
341 | {
|
---|
342 | struct mapping *mp = find_mapping (ht, key);
|
---|
343 | if (NON_EMPTY (mp))
|
---|
344 | return mp->value;
|
---|
345 | else
|
---|
346 | return NULL;
|
---|
347 | }
|
---|
348 |
|
---|
349 | /* Like hash_table_get, but writes out the pointers to both key and
|
---|
350 | value. Returns non-zero on success. */
|
---|
351 |
|
---|
352 | int
|
---|
353 | hash_table_get_pair (const struct hash_table *ht, const void *lookup_key,
|
---|
354 | void *orig_key, void *value)
|
---|
355 | {
|
---|
356 | struct mapping *mp = find_mapping (ht, lookup_key);
|
---|
357 | if (NON_EMPTY (mp))
|
---|
358 | {
|
---|
359 | if (orig_key)
|
---|
360 | *(void **)orig_key = mp->key;
|
---|
361 | if (value)
|
---|
362 | *(void **)value = mp->value;
|
---|
363 | return 1;
|
---|
364 | }
|
---|
365 | else
|
---|
366 | return 0;
|
---|
367 | }
|
---|
368 |
|
---|
369 | /* Return 1 if HT contains KEY, 0 otherwise. */
|
---|
370 |
|
---|
371 | int
|
---|
372 | hash_table_contains (const struct hash_table *ht, const void *key)
|
---|
373 | {
|
---|
374 | struct mapping *mp = find_mapping (ht, key);
|
---|
375 | return NON_EMPTY (mp);
|
---|
376 | }
|
---|
377 |
|
---|
378 | /* Grow hash table HT as necessary, and rehash all the key-value
|
---|
379 | mappings. */
|
---|
380 |
|
---|
381 | static void
|
---|
382 | grow_hash_table (struct hash_table *ht)
|
---|
383 | {
|
---|
384 | hashfun_t hasher = ht->hash_function;
|
---|
385 | struct mapping *old_mappings = ht->mappings;
|
---|
386 | struct mapping *old_end = ht->mappings + ht->size;
|
---|
387 | struct mapping *mp, *mappings;
|
---|
388 | int newsize;
|
---|
389 |
|
---|
390 | newsize = prime_size (ht->size * HASH_RESIZE_FACTOR, &ht->prime_offset);
|
---|
391 | #if 0
|
---|
392 | printf ("growing from %d to %d; fullness %.2f%% to %.2f%%\n",
|
---|
393 | ht->size, newsize,
|
---|
394 | 100.0 * ht->count / ht->size,
|
---|
395 | 100.0 * ht->count / newsize);
|
---|
396 | #endif
|
---|
397 |
|
---|
398 | ht->size = newsize;
|
---|
399 | ht->resize_threshold = newsize * HASH_MAX_FULLNESS;
|
---|
400 |
|
---|
401 | mappings = xnew_array (struct mapping, newsize);
|
---|
402 | memset (mappings, INVALID_PTR_BYTE, newsize * sizeof (struct mapping));
|
---|
403 | ht->mappings = mappings;
|
---|
404 |
|
---|
405 | for (mp = old_mappings; mp < old_end; mp++)
|
---|
406 | if (NON_EMPTY (mp))
|
---|
407 | {
|
---|
408 | struct mapping *new_mp;
|
---|
409 | /* We don't need to test for uniqueness of keys because they
|
---|
410 | come from the hash table and are therefore known to be
|
---|
411 | unique. */
|
---|
412 | new_mp = mappings + HASH_POSITION (mp->key, hasher, newsize);
|
---|
413 | LOOP_NON_EMPTY (new_mp, mappings, newsize)
|
---|
414 | ;
|
---|
415 | *new_mp = *mp;
|
---|
416 | }
|
---|
417 |
|
---|
418 | xfree (old_mappings);
|
---|
419 | }
|
---|
420 |
|
---|
421 | /* Put VALUE in the hash table HT under the key KEY. This regrows the
|
---|
422 | table if necessary. */
|
---|
423 |
|
---|
424 | void
|
---|
425 | hash_table_put (struct hash_table *ht, const void *key, void *value)
|
---|
426 | {
|
---|
427 | struct mapping *mp = find_mapping (ht, key);
|
---|
428 | if (NON_EMPTY (mp))
|
---|
429 | {
|
---|
430 | /* update existing item */
|
---|
431 | mp->key = (void *)key; /* const? */
|
---|
432 | mp->value = value;
|
---|
433 | return;
|
---|
434 | }
|
---|
435 |
|
---|
436 | /* If adding the item would make the table exceed max. fullness,
|
---|
437 | grow the table first. */
|
---|
438 | if (ht->count >= ht->resize_threshold)
|
---|
439 | {
|
---|
440 | grow_hash_table (ht);
|
---|
441 | mp = find_mapping (ht, key);
|
---|
442 | }
|
---|
443 |
|
---|
444 | /* add new item */
|
---|
445 | ++ht->count;
|
---|
446 | mp->key = (void *)key; /* const? */
|
---|
447 | mp->value = value;
|
---|
448 | }
|
---|
449 |
|
---|
450 | /* Remove a mapping that matches KEY from HT. Return 0 if there was
|
---|
451 | no such entry; return 1 if an entry was removed. */
|
---|
452 |
|
---|
453 | int
|
---|
454 | hash_table_remove (struct hash_table *ht, const void *key)
|
---|
455 | {
|
---|
456 | struct mapping *mp = find_mapping (ht, key);
|
---|
457 | if (!NON_EMPTY (mp))
|
---|
458 | return 0;
|
---|
459 | else
|
---|
460 | {
|
---|
461 | int size = ht->size;
|
---|
462 | struct mapping *mappings = ht->mappings;
|
---|
463 | hashfun_t hasher = ht->hash_function;
|
---|
464 |
|
---|
465 | MARK_AS_EMPTY (mp);
|
---|
466 | --ht->count;
|
---|
467 |
|
---|
468 | /* Rehash all the entries following MP. The alternative
|
---|
469 | approach is to mark the entry as deleted, i.e. create a
|
---|
470 | "tombstone". That speeds up removal, but leaves a lot of
|
---|
471 | garbage and slows down hash_table_get and hash_table_put. */
|
---|
472 |
|
---|
473 | mp = NEXT_MAPPING (mp, mappings, size);
|
---|
474 | LOOP_NON_EMPTY (mp, mappings, size)
|
---|
475 | {
|
---|
476 | const void *key2 = mp->key;
|
---|
477 | struct mapping *mp_new;
|
---|
478 |
|
---|
479 | /* Find the new location for the key. */
|
---|
480 | mp_new = mappings + HASH_POSITION (key2, hasher, size);
|
---|
481 | LOOP_NON_EMPTY (mp_new, mappings, size)
|
---|
482 | if (key2 == mp_new->key)
|
---|
483 | /* The mapping MP (key2) is already where we want it (in
|
---|
484 | MP_NEW's "chain" of keys.) */
|
---|
485 | goto next_rehash;
|
---|
486 |
|
---|
487 | *mp_new = *mp;
|
---|
488 | MARK_AS_EMPTY (mp);
|
---|
489 |
|
---|
490 | next_rehash:
|
---|
491 | ;
|
---|
492 | }
|
---|
493 | return 1;
|
---|
494 | }
|
---|
495 | }
|
---|
496 |
|
---|
497 | /* Clear HT of all entries. After calling this function, the count
|
---|
498 | and the fullness of the hash table will be zero. The size will
|
---|
499 | remain unchanged. */
|
---|
500 |
|
---|
501 | void
|
---|
502 | hash_table_clear (struct hash_table *ht)
|
---|
503 | {
|
---|
504 | memset (ht->mappings, INVALID_PTR_BYTE, ht->size * sizeof (struct mapping));
|
---|
505 | ht->count = 0;
|
---|
506 | }
|
---|
507 |
|
---|
508 | /* Map MAPFUN over all the mappings in hash table HT. MAPFUN is
|
---|
509 | called with three arguments: the key, the value, and MAPARG.
|
---|
510 |
|
---|
511 | It is undefined what happens if you add or remove entries in the
|
---|
512 | hash table while hash_table_map is running. The exception is the
|
---|
513 | entry you're currently mapping over; you may remove or change that
|
---|
514 | entry. */
|
---|
515 |
|
---|
516 | void
|
---|
517 | hash_table_map (struct hash_table *ht,
|
---|
518 | int (*mapfun) (void *, void *, void *),
|
---|
519 | void *maparg)
|
---|
520 | {
|
---|
521 | struct mapping *mp = ht->mappings;
|
---|
522 | struct mapping *end = ht->mappings + ht->size;
|
---|
523 |
|
---|
524 | for (; mp < end; mp++)
|
---|
525 | if (NON_EMPTY (mp))
|
---|
526 | {
|
---|
527 | void *key;
|
---|
528 | repeat:
|
---|
529 | key = mp->key;
|
---|
530 | if (mapfun (key, mp->value, maparg))
|
---|
531 | return;
|
---|
532 | /* hash_table_remove might have moved the adjacent
|
---|
533 | mappings. */
|
---|
534 | if (mp->key != key && NON_EMPTY (mp))
|
---|
535 | goto repeat;
|
---|
536 | }
|
---|
537 | }
|
---|
538 |
|
---|
539 | /* Return the number of elements in the hash table. This is not the
|
---|
540 | same as the physical size of the hash table, which is always
|
---|
541 | greater than the number of elements. */
|
---|
542 |
|
---|
543 | int
|
---|
544 | hash_table_count (const struct hash_table *ht)
|
---|
545 | {
|
---|
546 | return ht->count;
|
---|
547 | }
|
---|
548 | |
---|
549 |
|
---|
550 | /* Functions from this point onward are meant for convenience and
|
---|
551 | don't strictly belong to this file. However, this is as good a
|
---|
552 | place for them as any. */
|
---|
553 |
|
---|
554 | /* Guidelines for creating custom hash and test functions:
|
---|
555 |
|
---|
556 | - The test function returns non-zero for keys that are considered
|
---|
557 | "equal", zero otherwise.
|
---|
558 |
|
---|
559 | - The hash function returns a number that represents the
|
---|
560 | "distinctness" of the object. In more precise terms, it means
|
---|
561 | that for any two objects that test "equal" under the test
|
---|
562 | function, the hash function MUST produce the same result.
|
---|
563 |
|
---|
564 | This does not mean that all different objects must produce
|
---|
565 | different values (that would be "perfect" hashing), only that
|
---|
566 | non-distinct objects must produce the same values! For instance,
|
---|
567 | a hash function that returns 0 for any given object is a
|
---|
568 | perfectly valid (albeit extremely bad) hash function. A hash
|
---|
569 | function that hashes a string by adding up all its characters is
|
---|
570 | another example of a valid (but quite bad) hash function.
|
---|
571 |
|
---|
572 | It is not hard to make hash and test functions agree about
|
---|
573 | equality. For example, if the test function compares strings
|
---|
574 | case-insensitively, the hash function can lower-case the
|
---|
575 | characters when calculating the hash value. That ensures that
|
---|
576 | two strings differing only in case will hash the same.
|
---|
577 |
|
---|
578 | - If you care about performance, choose a hash function with as
|
---|
579 | good "spreading" as possible. A good hash function will use all
|
---|
580 | the bits of the input when calculating the hash, and will react
|
---|
581 | to even small changes in input with a completely different
|
---|
582 | output. Finally, don't make the hash function itself overly
|
---|
583 | slow, because you'll be incurring a non-negligible overhead to
|
---|
584 | all hash table operations. */
|
---|
585 |
|
---|
586 | /*
|
---|
587 | * Support for hash tables whose keys are strings.
|
---|
588 | *
|
---|
589 | */
|
---|
590 |
|
---|
591 | /* 31 bit hash function. Taken from Gnome's glib, modified to use
|
---|
592 | standard C types.
|
---|
593 |
|
---|
594 | We used to use the popular hash function from the Dragon Book, but
|
---|
595 | this one seems to perform much better. */
|
---|
596 |
|
---|
597 | static unsigned long
|
---|
598 | hash_string (const void *key)
|
---|
599 | {
|
---|
600 | const char *p = key;
|
---|
601 | unsigned int h = *p;
|
---|
602 |
|
---|
603 | if (h)
|
---|
604 | for (p += 1; *p != '\0'; p++)
|
---|
605 | h = (h << 5) - h + *p;
|
---|
606 |
|
---|
607 | return h;
|
---|
608 | }
|
---|
609 |
|
---|
610 | /* Frontend for strcmp usable for hash tables. */
|
---|
611 |
|
---|
612 | static int
|
---|
613 | cmp_string (const void *s1, const void *s2)
|
---|
614 | {
|
---|
615 | return !strcmp ((const char *)s1, (const char *)s2);
|
---|
616 | }
|
---|
617 |
|
---|
618 | /* Return a hash table of preallocated to store at least ITEMS items
|
---|
619 | suitable to use strings as keys. */
|
---|
620 |
|
---|
621 | struct hash_table *
|
---|
622 | make_string_hash_table (int items)
|
---|
623 | {
|
---|
624 | return hash_table_new (items, hash_string, cmp_string);
|
---|
625 | }
|
---|
626 |
|
---|
627 | /*
|
---|
628 | * Support for hash tables whose keys are strings, but which are
|
---|
629 | * compared case-insensitively.
|
---|
630 | *
|
---|
631 | */
|
---|
632 |
|
---|
633 | /* Like hash_string, but produce the same hash regardless of the case. */
|
---|
634 |
|
---|
635 | static unsigned long
|
---|
636 | hash_string_nocase (const void *key)
|
---|
637 | {
|
---|
638 | const char *p = key;
|
---|
639 | unsigned int h = TOLOWER (*p);
|
---|
640 |
|
---|
641 | if (h)
|
---|
642 | for (p += 1; *p != '\0'; p++)
|
---|
643 | h = (h << 5) - h + TOLOWER (*p);
|
---|
644 |
|
---|
645 | return h;
|
---|
646 | }
|
---|
647 |
|
---|
648 | /* Like string_cmp, but doing case-insensitive compareison. */
|
---|
649 |
|
---|
650 | static int
|
---|
651 | string_cmp_nocase (const void *s1, const void *s2)
|
---|
652 | {
|
---|
653 | return !strcasecmp ((const char *)s1, (const char *)s2);
|
---|
654 | }
|
---|
655 |
|
---|
656 | /* Like make_string_hash_table, but uses string_hash_nocase and
|
---|
657 | string_cmp_nocase. */
|
---|
658 |
|
---|
659 | struct hash_table *
|
---|
660 | make_nocase_string_hash_table (int items)
|
---|
661 | {
|
---|
662 | return hash_table_new (items, hash_string_nocase, string_cmp_nocase);
|
---|
663 | }
|
---|
664 |
|
---|
665 | /* Hashing of numeric values, such as pointers and integers.
|
---|
666 |
|
---|
667 | This implementation is the Robert Jenkins' 32 bit Mix Function,
|
---|
668 | with a simple adaptation for 64-bit values. It offers excellent
|
---|
669 | spreading of values and doesn't need to know the hash table size to
|
---|
670 | work (unlike the very popular Knuth's multiplication hash). */
|
---|
671 |
|
---|
672 | unsigned long
|
---|
673 | hash_pointer (const void *ptr)
|
---|
674 | {
|
---|
675 | unsigned long key = (unsigned long)ptr;
|
---|
676 | key += (key << 12);
|
---|
677 | key ^= (key >> 22);
|
---|
678 | key += (key << 4);
|
---|
679 | key ^= (key >> 9);
|
---|
680 | key += (key << 10);
|
---|
681 | key ^= (key >> 2);
|
---|
682 | key += (key << 7);
|
---|
683 | key ^= (key >> 12);
|
---|
684 | #if SIZEOF_LONG > 4
|
---|
685 | key += (key << 44);
|
---|
686 | key ^= (key >> 54);
|
---|
687 | key += (key << 36);
|
---|
688 | key ^= (key >> 41);
|
---|
689 | key += (key << 42);
|
---|
690 | key ^= (key >> 34);
|
---|
691 | key += (key << 39);
|
---|
692 | key ^= (key >> 44);
|
---|
693 | #endif
|
---|
694 | return key;
|
---|
695 | }
|
---|
696 |
|
---|
697 | static int
|
---|
698 | cmp_pointer (const void *ptr1, const void *ptr2)
|
---|
699 | {
|
---|
700 | return ptr1 == ptr2;
|
---|
701 | }
|
---|
702 | |
---|
703 |
|
---|
704 | #ifdef TEST
|
---|
705 |
|
---|
706 | #include <stdio.h>
|
---|
707 | #include <string.h>
|
---|
708 |
|
---|
709 | int
|
---|
710 | print_hash_table_mapper (void *key, void *value, void *count)
|
---|
711 | {
|
---|
712 | ++*(int *)count;
|
---|
713 | printf ("%s: %s\n", (const char *)key, (char *)value);
|
---|
714 | return 0;
|
---|
715 | }
|
---|
716 |
|
---|
717 | void
|
---|
718 | print_hash (struct hash_table *sht)
|
---|
719 | {
|
---|
720 | int debug_count = 0;
|
---|
721 | hash_table_map (sht, print_hash_table_mapper, &debug_count);
|
---|
722 | assert (debug_count == sht->count);
|
---|
723 | }
|
---|
724 |
|
---|
725 | int
|
---|
726 | main (void)
|
---|
727 | {
|
---|
728 | struct hash_table *ht = make_string_hash_table (0);
|
---|
729 | char line[80];
|
---|
730 | while ((fgets (line, sizeof (line), stdin)))
|
---|
731 | {
|
---|
732 | int len = strlen (line);
|
---|
733 | if (len <= 1)
|
---|
734 | continue;
|
---|
735 | line[--len] = '\0';
|
---|
736 | if (!hash_table_contains (ht, line))
|
---|
737 | hash_table_put (ht, strdup (line), "here I am!");
|
---|
738 | #if 1
|
---|
739 | if (len % 5 == 0)
|
---|
740 | {
|
---|
741 | char *line_copy;
|
---|
742 | if (hash_table_get_pair (ht, line, &line_copy, NULL))
|
---|
743 | {
|
---|
744 | hash_table_remove (ht, line);
|
---|
745 | xfree (line_copy);
|
---|
746 | }
|
---|
747 | }
|
---|
748 | #endif
|
---|
749 | }
|
---|
750 | #if 0
|
---|
751 | print_hash (ht);
|
---|
752 | #endif
|
---|
753 | #if 1
|
---|
754 | printf ("%d %d\n", ht->count, ht->size);
|
---|
755 | #endif
|
---|
756 | return 0;
|
---|
757 | }
|
---|
758 | #endif /* TEST */
|
---|