1 | """Bisection algorithms."""
|
---|
2 |
|
---|
3 | def insort_right(a, x, lo=0, hi=None):
|
---|
4 | """Insert item x in list a, and keep it sorted assuming a is sorted.
|
---|
5 |
|
---|
6 | If x is already in a, insert it to the right of the rightmost x.
|
---|
7 |
|
---|
8 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
9 | slice of a to be searched.
|
---|
10 | """
|
---|
11 |
|
---|
12 | if hi is None:
|
---|
13 | hi = len(a)
|
---|
14 | while lo < hi:
|
---|
15 | mid = (lo+hi)//2
|
---|
16 | if x < a[mid]: hi = mid
|
---|
17 | else: lo = mid+1
|
---|
18 | a.insert(lo, x)
|
---|
19 |
|
---|
20 | insort = insort_right # backward compatibility
|
---|
21 |
|
---|
22 | def bisect_right(a, x, lo=0, hi=None):
|
---|
23 | """Return the index where to insert item x in list a, assuming a is sorted.
|
---|
24 |
|
---|
25 | The return value i is such that all e in a[:i] have e <= x, and all e in
|
---|
26 | a[i:] have e > x. So if x already appears in the list, i points just
|
---|
27 | beyond the rightmost x already there.
|
---|
28 |
|
---|
29 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
30 | slice of a to be searched.
|
---|
31 | """
|
---|
32 |
|
---|
33 | if hi is None:
|
---|
34 | hi = len(a)
|
---|
35 | while lo < hi:
|
---|
36 | mid = (lo+hi)//2
|
---|
37 | if x < a[mid]: hi = mid
|
---|
38 | else: lo = mid+1
|
---|
39 | return lo
|
---|
40 |
|
---|
41 | bisect = bisect_right # backward compatibility
|
---|
42 |
|
---|
43 | def insort_left(a, x, lo=0, hi=None):
|
---|
44 | """Insert item x in list a, and keep it sorted assuming a is sorted.
|
---|
45 |
|
---|
46 | If x is already in a, insert it to the left of the leftmost x.
|
---|
47 |
|
---|
48 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
49 | slice of a to be searched.
|
---|
50 | """
|
---|
51 |
|
---|
52 | if hi is None:
|
---|
53 | hi = len(a)
|
---|
54 | while lo < hi:
|
---|
55 | mid = (lo+hi)//2
|
---|
56 | if a[mid] < x: lo = mid+1
|
---|
57 | else: hi = mid
|
---|
58 | a.insert(lo, x)
|
---|
59 |
|
---|
60 |
|
---|
61 | def bisect_left(a, x, lo=0, hi=None):
|
---|
62 | """Return the index where to insert item x in list a, assuming a is sorted.
|
---|
63 |
|
---|
64 | The return value i is such that all e in a[:i] have e < x, and all e in
|
---|
65 | a[i:] have e >= x. So if x already appears in the list, i points just
|
---|
66 | before the leftmost x already there.
|
---|
67 |
|
---|
68 | Optional args lo (default 0) and hi (default len(a)) bound the
|
---|
69 | slice of a to be searched.
|
---|
70 | """
|
---|
71 |
|
---|
72 | if hi is None:
|
---|
73 | hi = len(a)
|
---|
74 | while lo < hi:
|
---|
75 | mid = (lo+hi)//2
|
---|
76 | if a[mid] < x: lo = mid+1
|
---|
77 | else: hi = mid
|
---|
78 | return lo
|
---|
79 |
|
---|
80 | # Overwrite above definitions with a fast C implementation
|
---|
81 | try:
|
---|
82 | from _bisect import bisect_right, bisect_left, insort_left, insort_right, insort, bisect
|
---|
83 | except ImportError:
|
---|
84 | pass
|
---|