1 | \documentclass{howto}
|
---|
2 | \usepackage{distutils}
|
---|
3 | % $Id: whatsnew23.tex 50964 2006-07-30 03:03:43Z fred.drake $
|
---|
4 |
|
---|
5 | \title{What's New in Python 2.3}
|
---|
6 | \release{1.01}
|
---|
7 | \author{A.M.\ Kuchling}
|
---|
8 | \authoraddress{
|
---|
9 | \strong{Python Software Foundation}\\
|
---|
10 | Email: \email{amk@amk.ca}
|
---|
11 | }
|
---|
12 |
|
---|
13 | \begin{document}
|
---|
14 | \maketitle
|
---|
15 | \tableofcontents
|
---|
16 |
|
---|
17 | This article explains the new features in Python 2.3. Python 2.3 was
|
---|
18 | released on July 29, 2003.
|
---|
19 |
|
---|
20 | The main themes for Python 2.3 are polishing some of the features
|
---|
21 | added in 2.2, adding various small but useful enhancements to the core
|
---|
22 | language, and expanding the standard library. The new object model
|
---|
23 | introduced in the previous version has benefited from 18 months of
|
---|
24 | bugfixes and from optimization efforts that have improved the
|
---|
25 | performance of new-style classes. A few new built-in functions have
|
---|
26 | been added such as \function{sum()} and \function{enumerate()}. The
|
---|
27 | \keyword{in} operator can now be used for substring searches (e.g.
|
---|
28 | \code{"ab" in "abc"} returns \constant{True}).
|
---|
29 |
|
---|
30 | Some of the many new library features include Boolean, set, heap, and
|
---|
31 | date/time data types, the ability to import modules from ZIP-format
|
---|
32 | archives, metadata support for the long-awaited Python catalog, an
|
---|
33 | updated version of IDLE, and modules for logging messages, wrapping
|
---|
34 | text, parsing CSV files, processing command-line options, using BerkeleyDB
|
---|
35 | databases... the list of new and enhanced modules is lengthy.
|
---|
36 |
|
---|
37 | This article doesn't attempt to provide a complete specification of
|
---|
38 | the new features, but instead provides a convenient overview. For
|
---|
39 | full details, you should refer to the documentation for Python 2.3,
|
---|
40 | such as the \citetitle[../lib/lib.html]{Python Library Reference} and
|
---|
41 | the \citetitle[../ref/ref.html]{Python Reference Manual}. If you want
|
---|
42 | to understand the complete implementation and design rationale,
|
---|
43 | refer to the PEP for a particular new feature.
|
---|
44 |
|
---|
45 |
|
---|
46 | %======================================================================
|
---|
47 | \section{PEP 218: A Standard Set Datatype}
|
---|
48 |
|
---|
49 | The new \module{sets} module contains an implementation of a set
|
---|
50 | datatype. The \class{Set} class is for mutable sets, sets that can
|
---|
51 | have members added and removed. The \class{ImmutableSet} class is for
|
---|
52 | sets that can't be modified, and instances of \class{ImmutableSet} can
|
---|
53 | therefore be used as dictionary keys. Sets are built on top of
|
---|
54 | dictionaries, so the elements within a set must be hashable.
|
---|
55 |
|
---|
56 | Here's a simple example:
|
---|
57 |
|
---|
58 | \begin{verbatim}
|
---|
59 | >>> import sets
|
---|
60 | >>> S = sets.Set([1,2,3])
|
---|
61 | >>> S
|
---|
62 | Set([1, 2, 3])
|
---|
63 | >>> 1 in S
|
---|
64 | True
|
---|
65 | >>> 0 in S
|
---|
66 | False
|
---|
67 | >>> S.add(5)
|
---|
68 | >>> S.remove(3)
|
---|
69 | >>> S
|
---|
70 | Set([1, 2, 5])
|
---|
71 | >>>
|
---|
72 | \end{verbatim}
|
---|
73 |
|
---|
74 | The union and intersection of sets can be computed with the
|
---|
75 | \method{union()} and \method{intersection()} methods; an alternative
|
---|
76 | notation uses the bitwise operators \code{\&} and \code{|}.
|
---|
77 | Mutable sets also have in-place versions of these methods,
|
---|
78 | \method{union_update()} and \method{intersection_update()}.
|
---|
79 |
|
---|
80 | \begin{verbatim}
|
---|
81 | >>> S1 = sets.Set([1,2,3])
|
---|
82 | >>> S2 = sets.Set([4,5,6])
|
---|
83 | >>> S1.union(S2)
|
---|
84 | Set([1, 2, 3, 4, 5, 6])
|
---|
85 | >>> S1 | S2 # Alternative notation
|
---|
86 | Set([1, 2, 3, 4, 5, 6])
|
---|
87 | >>> S1.intersection(S2)
|
---|
88 | Set([])
|
---|
89 | >>> S1 & S2 # Alternative notation
|
---|
90 | Set([])
|
---|
91 | >>> S1.union_update(S2)
|
---|
92 | >>> S1
|
---|
93 | Set([1, 2, 3, 4, 5, 6])
|
---|
94 | >>>
|
---|
95 | \end{verbatim}
|
---|
96 |
|
---|
97 | It's also possible to take the symmetric difference of two sets. This
|
---|
98 | is the set of all elements in the union that aren't in the
|
---|
99 | intersection. Another way of putting it is that the symmetric
|
---|
100 | difference contains all elements that are in exactly one
|
---|
101 | set. Again, there's an alternative notation (\code{\^}), and an
|
---|
102 | in-place version with the ungainly name
|
---|
103 | \method{symmetric_difference_update()}.
|
---|
104 |
|
---|
105 | \begin{verbatim}
|
---|
106 | >>> S1 = sets.Set([1,2,3,4])
|
---|
107 | >>> S2 = sets.Set([3,4,5,6])
|
---|
108 | >>> S1.symmetric_difference(S2)
|
---|
109 | Set([1, 2, 5, 6])
|
---|
110 | >>> S1 ^ S2
|
---|
111 | Set([1, 2, 5, 6])
|
---|
112 | >>>
|
---|
113 | \end{verbatim}
|
---|
114 |
|
---|
115 | There are also \method{issubset()} and \method{issuperset()} methods
|
---|
116 | for checking whether one set is a subset or superset of another:
|
---|
117 |
|
---|
118 | \begin{verbatim}
|
---|
119 | >>> S1 = sets.Set([1,2,3])
|
---|
120 | >>> S2 = sets.Set([2,3])
|
---|
121 | >>> S2.issubset(S1)
|
---|
122 | True
|
---|
123 | >>> S1.issubset(S2)
|
---|
124 | False
|
---|
125 | >>> S1.issuperset(S2)
|
---|
126 | True
|
---|
127 | >>>
|
---|
128 | \end{verbatim}
|
---|
129 |
|
---|
130 |
|
---|
131 | \begin{seealso}
|
---|
132 |
|
---|
133 | \seepep{218}{Adding a Built-In Set Object Type}{PEP written by Greg V. Wilson.
|
---|
134 | Implemented by Greg V. Wilson, Alex Martelli, and GvR.}
|
---|
135 |
|
---|
136 | \end{seealso}
|
---|
137 |
|
---|
138 |
|
---|
139 |
|
---|
140 | %======================================================================
|
---|
141 | \section{PEP 255: Simple Generators\label{section-generators}}
|
---|
142 |
|
---|
143 | In Python 2.2, generators were added as an optional feature, to be
|
---|
144 | enabled by a \code{from __future__ import generators} directive. In
|
---|
145 | 2.3 generators no longer need to be specially enabled, and are now
|
---|
146 | always present; this means that \keyword{yield} is now always a
|
---|
147 | keyword. The rest of this section is a copy of the description of
|
---|
148 | generators from the ``What's New in Python 2.2'' document; if you read
|
---|
149 | it back when Python 2.2 came out, you can skip the rest of this section.
|
---|
150 |
|
---|
151 | You're doubtless familiar with how function calls work in Python or C.
|
---|
152 | When you call a function, it gets a private namespace where its local
|
---|
153 | variables are created. When the function reaches a \keyword{return}
|
---|
154 | statement, the local variables are destroyed and the resulting value
|
---|
155 | is returned to the caller. A later call to the same function will get
|
---|
156 | a fresh new set of local variables. But, what if the local variables
|
---|
157 | weren't thrown away on exiting a function? What if you could later
|
---|
158 | resume the function where it left off? This is what generators
|
---|
159 | provide; they can be thought of as resumable functions.
|
---|
160 |
|
---|
161 | Here's the simplest example of a generator function:
|
---|
162 |
|
---|
163 | \begin{verbatim}
|
---|
164 | def generate_ints(N):
|
---|
165 | for i in range(N):
|
---|
166 | yield i
|
---|
167 | \end{verbatim}
|
---|
168 |
|
---|
169 | A new keyword, \keyword{yield}, was introduced for generators. Any
|
---|
170 | function containing a \keyword{yield} statement is a generator
|
---|
171 | function; this is detected by Python's bytecode compiler which
|
---|
172 | compiles the function specially as a result.
|
---|
173 |
|
---|
174 | When you call a generator function, it doesn't return a single value;
|
---|
175 | instead it returns a generator object that supports the iterator
|
---|
176 | protocol. On executing the \keyword{yield} statement, the generator
|
---|
177 | outputs the value of \code{i}, similar to a \keyword{return}
|
---|
178 | statement. The big difference between \keyword{yield} and a
|
---|
179 | \keyword{return} statement is that on reaching a \keyword{yield} the
|
---|
180 | generator's state of execution is suspended and local variables are
|
---|
181 | preserved. On the next call to the generator's \code{.next()} method,
|
---|
182 | the function will resume executing immediately after the
|
---|
183 | \keyword{yield} statement. (For complicated reasons, the
|
---|
184 | \keyword{yield} statement isn't allowed inside the \keyword{try} block
|
---|
185 | of a \keyword{try}...\keyword{finally} statement; read \pep{255} for a full
|
---|
186 | explanation of the interaction between \keyword{yield} and
|
---|
187 | exceptions.)
|
---|
188 |
|
---|
189 | Here's a sample usage of the \function{generate_ints()} generator:
|
---|
190 |
|
---|
191 | \begin{verbatim}
|
---|
192 | >>> gen = generate_ints(3)
|
---|
193 | >>> gen
|
---|
194 | <generator object at 0x8117f90>
|
---|
195 | >>> gen.next()
|
---|
196 | 0
|
---|
197 | >>> gen.next()
|
---|
198 | 1
|
---|
199 | >>> gen.next()
|
---|
200 | 2
|
---|
201 | >>> gen.next()
|
---|
202 | Traceback (most recent call last):
|
---|
203 | File "stdin", line 1, in ?
|
---|
204 | File "stdin", line 2, in generate_ints
|
---|
205 | StopIteration
|
---|
206 | \end{verbatim}
|
---|
207 |
|
---|
208 | You could equally write \code{for i in generate_ints(5)}, or
|
---|
209 | \code{a,b,c = generate_ints(3)}.
|
---|
210 |
|
---|
211 | Inside a generator function, the \keyword{return} statement can only
|
---|
212 | be used without a value, and signals the end of the procession of
|
---|
213 | values; afterwards the generator cannot return any further values.
|
---|
214 | \keyword{return} with a value, such as \code{return 5}, is a syntax
|
---|
215 | error inside a generator function. The end of the generator's results
|
---|
216 | can also be indicated by raising \exception{StopIteration} manually,
|
---|
217 | or by just letting the flow of execution fall off the bottom of the
|
---|
218 | function.
|
---|
219 |
|
---|
220 | You could achieve the effect of generators manually by writing your
|
---|
221 | own class and storing all the local variables of the generator as
|
---|
222 | instance variables. For example, returning a list of integers could
|
---|
223 | be done by setting \code{self.count} to 0, and having the
|
---|
224 | \method{next()} method increment \code{self.count} and return it.
|
---|
225 | However, for a moderately complicated generator, writing a
|
---|
226 | corresponding class would be much messier.
|
---|
227 | \file{Lib/test/test_generators.py} contains a number of more
|
---|
228 | interesting examples. The simplest one implements an in-order
|
---|
229 | traversal of a tree using generators recursively.
|
---|
230 |
|
---|
231 | \begin{verbatim}
|
---|
232 | # A recursive generator that generates Tree leaves in in-order.
|
---|
233 | def inorder(t):
|
---|
234 | if t:
|
---|
235 | for x in inorder(t.left):
|
---|
236 | yield x
|
---|
237 | yield t.label
|
---|
238 | for x in inorder(t.right):
|
---|
239 | yield x
|
---|
240 | \end{verbatim}
|
---|
241 |
|
---|
242 | Two other examples in \file{Lib/test/test_generators.py} produce
|
---|
243 | solutions for the N-Queens problem (placing $N$ queens on an $NxN$
|
---|
244 | chess board so that no queen threatens another) and the Knight's Tour
|
---|
245 | (a route that takes a knight to every square of an $NxN$ chessboard
|
---|
246 | without visiting any square twice).
|
---|
247 |
|
---|
248 | The idea of generators comes from other programming languages,
|
---|
249 | especially Icon (\url{http://www.cs.arizona.edu/icon/}), where the
|
---|
250 | idea of generators is central. In Icon, every
|
---|
251 | expression and function call behaves like a generator. One example
|
---|
252 | from ``An Overview of the Icon Programming Language'' at
|
---|
253 | \url{http://www.cs.arizona.edu/icon/docs/ipd266.htm} gives an idea of
|
---|
254 | what this looks like:
|
---|
255 |
|
---|
256 | \begin{verbatim}
|
---|
257 | sentence := "Store it in the neighboring harbor"
|
---|
258 | if (i := find("or", sentence)) > 5 then write(i)
|
---|
259 | \end{verbatim}
|
---|
260 |
|
---|
261 | In Icon the \function{find()} function returns the indexes at which the
|
---|
262 | substring ``or'' is found: 3, 23, 33. In the \keyword{if} statement,
|
---|
263 | \code{i} is first assigned a value of 3, but 3 is less than 5, so the
|
---|
264 | comparison fails, and Icon retries it with the second value of 23. 23
|
---|
265 | is greater than 5, so the comparison now succeeds, and the code prints
|
---|
266 | the value 23 to the screen.
|
---|
267 |
|
---|
268 | Python doesn't go nearly as far as Icon in adopting generators as a
|
---|
269 | central concept. Generators are considered part of the core
|
---|
270 | Python language, but learning or using them isn't compulsory; if they
|
---|
271 | don't solve any problems that you have, feel free to ignore them.
|
---|
272 | One novel feature of Python's interface as compared to
|
---|
273 | Icon's is that a generator's state is represented as a concrete object
|
---|
274 | (the iterator) that can be passed around to other functions or stored
|
---|
275 | in a data structure.
|
---|
276 |
|
---|
277 | \begin{seealso}
|
---|
278 |
|
---|
279 | \seepep{255}{Simple Generators}{Written by Neil Schemenauer, Tim
|
---|
280 | Peters, Magnus Lie Hetland. Implemented mostly by Neil Schemenauer
|
---|
281 | and Tim Peters, with other fixes from the Python Labs crew.}
|
---|
282 |
|
---|
283 | \end{seealso}
|
---|
284 |
|
---|
285 |
|
---|
286 | %======================================================================
|
---|
287 | \section{PEP 263: Source Code Encodings \label{section-encodings}}
|
---|
288 |
|
---|
289 | Python source files can now be declared as being in different
|
---|
290 | character set encodings. Encodings are declared by including a
|
---|
291 | specially formatted comment in the first or second line of the source
|
---|
292 | file. For example, a UTF-8 file can be declared with:
|
---|
293 |
|
---|
294 | \begin{verbatim}
|
---|
295 | #!/usr/bin/env python
|
---|
296 | # -*- coding: UTF-8 -*-
|
---|
297 | \end{verbatim}
|
---|
298 |
|
---|
299 | Without such an encoding declaration, the default encoding used is
|
---|
300 | 7-bit ASCII. Executing or importing modules that contain string
|
---|
301 | literals with 8-bit characters and have no encoding declaration will result
|
---|
302 | in a \exception{DeprecationWarning} being signalled by Python 2.3; in
|
---|
303 | 2.4 this will be a syntax error.
|
---|
304 |
|
---|
305 | The encoding declaration only affects Unicode string literals, which
|
---|
306 | will be converted to Unicode using the specified encoding. Note that
|
---|
307 | Python identifiers are still restricted to ASCII characters, so you
|
---|
308 | can't have variable names that use characters outside of the usual
|
---|
309 | alphanumerics.
|
---|
310 |
|
---|
311 | \begin{seealso}
|
---|
312 |
|
---|
313 | \seepep{263}{Defining Python Source Code Encodings}{Written by
|
---|
314 | Marc-Andr\'e Lemburg and Martin von~L\"owis; implemented by Suzuki
|
---|
315 | Hisao and Martin von~L\"owis.}
|
---|
316 |
|
---|
317 | \end{seealso}
|
---|
318 |
|
---|
319 |
|
---|
320 | %======================================================================
|
---|
321 | \section{PEP 273: Importing Modules from ZIP Archives}
|
---|
322 |
|
---|
323 | The new \module{zipimport} module adds support for importing
|
---|
324 | modules from a ZIP-format archive. You don't need to import the
|
---|
325 | module explicitly; it will be automatically imported if a ZIP
|
---|
326 | archive's filename is added to \code{sys.path}. For example:
|
---|
327 |
|
---|
328 | \begin{verbatim}
|
---|
329 | amk@nyman:~/src/python$ unzip -l /tmp/example.zip
|
---|
330 | Archive: /tmp/example.zip
|
---|
331 | Length Date Time Name
|
---|
332 | -------- ---- ---- ----
|
---|
333 | 8467 11-26-02 22:30 jwzthreading.py
|
---|
334 | -------- -------
|
---|
335 | 8467 1 file
|
---|
336 | amk@nyman:~/src/python$ ./python
|
---|
337 | Python 2.3 (#1, Aug 1 2003, 19:54:32)
|
---|
338 | >>> import sys
|
---|
339 | >>> sys.path.insert(0, '/tmp/example.zip') # Add .zip file to front of path
|
---|
340 | >>> import jwzthreading
|
---|
341 | >>> jwzthreading.__file__
|
---|
342 | '/tmp/example.zip/jwzthreading.py'
|
---|
343 | >>>
|
---|
344 | \end{verbatim}
|
---|
345 |
|
---|
346 | An entry in \code{sys.path} can now be the filename of a ZIP archive.
|
---|
347 | The ZIP archive can contain any kind of files, but only files named
|
---|
348 | \file{*.py}, \file{*.pyc}, or \file{*.pyo} can be imported. If an
|
---|
349 | archive only contains \file{*.py} files, Python will not attempt to
|
---|
350 | modify the archive by adding the corresponding \file{*.pyc} file, meaning
|
---|
351 | that if a ZIP archive doesn't contain \file{*.pyc} files, importing may be
|
---|
352 | rather slow.
|
---|
353 |
|
---|
354 | A path within the archive can also be specified to only import from a
|
---|
355 | subdirectory; for example, the path \file{/tmp/example.zip/lib/}
|
---|
356 | would only import from the \file{lib/} subdirectory within the
|
---|
357 | archive.
|
---|
358 |
|
---|
359 | \begin{seealso}
|
---|
360 |
|
---|
361 | \seepep{273}{Import Modules from Zip Archives}{Written by James C. Ahlstrom,
|
---|
362 | who also provided an implementation.
|
---|
363 | Python 2.3 follows the specification in \pep{273},
|
---|
364 | but uses an implementation written by Just van~Rossum
|
---|
365 | that uses the import hooks described in \pep{302}.
|
---|
366 | See section~\ref{section-pep302} for a description of the new import hooks.
|
---|
367 | }
|
---|
368 |
|
---|
369 | \end{seealso}
|
---|
370 |
|
---|
371 | %======================================================================
|
---|
372 | \section{PEP 277: Unicode file name support for Windows NT}
|
---|
373 |
|
---|
374 | On Windows NT, 2000, and XP, the system stores file names as Unicode
|
---|
375 | strings. Traditionally, Python has represented file names as byte
|
---|
376 | strings, which is inadequate because it renders some file names
|
---|
377 | inaccessible.
|
---|
378 |
|
---|
379 | Python now allows using arbitrary Unicode strings (within the
|
---|
380 | limitations of the file system) for all functions that expect file
|
---|
381 | names, most notably the \function{open()} built-in function. If a Unicode
|
---|
382 | string is passed to \function{os.listdir()}, Python now returns a list
|
---|
383 | of Unicode strings. A new function, \function{os.getcwdu()}, returns
|
---|
384 | the current directory as a Unicode string.
|
---|
385 |
|
---|
386 | Byte strings still work as file names, and on Windows Python will
|
---|
387 | transparently convert them to Unicode using the \code{mbcs} encoding.
|
---|
388 |
|
---|
389 | Other systems also allow Unicode strings as file names but convert
|
---|
390 | them to byte strings before passing them to the system, which can
|
---|
391 | cause a \exception{UnicodeError} to be raised. Applications can test
|
---|
392 | whether arbitrary Unicode strings are supported as file names by
|
---|
393 | checking \member{os.path.supports_unicode_filenames}, a Boolean value.
|
---|
394 |
|
---|
395 | Under MacOS, \function{os.listdir()} may now return Unicode filenames.
|
---|
396 |
|
---|
397 | \begin{seealso}
|
---|
398 |
|
---|
399 | \seepep{277}{Unicode file name support for Windows NT}{Written by Neil
|
---|
400 | Hodgson; implemented by Neil Hodgson, Martin von~L\"owis, and Mark
|
---|
401 | Hammond.}
|
---|
402 |
|
---|
403 | \end{seealso}
|
---|
404 |
|
---|
405 |
|
---|
406 | %======================================================================
|
---|
407 | \section{PEP 278: Universal Newline Support}
|
---|
408 |
|
---|
409 | The three major operating systems used today are Microsoft Windows,
|
---|
410 | Apple's Macintosh OS, and the various \UNIX\ derivatives. A minor
|
---|
411 | irritation of cross-platform work
|
---|
412 | is that these three platforms all use different characters
|
---|
413 | to mark the ends of lines in text files. \UNIX\ uses the linefeed
|
---|
414 | (ASCII character 10), MacOS uses the carriage return (ASCII
|
---|
415 | character 13), and Windows uses a two-character sequence of a
|
---|
416 | carriage return plus a newline.
|
---|
417 |
|
---|
418 | Python's file objects can now support end of line conventions other
|
---|
419 | than the one followed by the platform on which Python is running.
|
---|
420 | Opening a file with the mode \code{'U'} or \code{'rU'} will open a file
|
---|
421 | for reading in universal newline mode. All three line ending
|
---|
422 | conventions will be translated to a \character{\e n} in the strings
|
---|
423 | returned by the various file methods such as \method{read()} and
|
---|
424 | \method{readline()}.
|
---|
425 |
|
---|
426 | Universal newline support is also used when importing modules and when
|
---|
427 | executing a file with the \function{execfile()} function. This means
|
---|
428 | that Python modules can be shared between all three operating systems
|
---|
429 | without needing to convert the line-endings.
|
---|
430 |
|
---|
431 | This feature can be disabled when compiling Python by specifying
|
---|
432 | the \longprogramopt{without-universal-newlines} switch when running Python's
|
---|
433 | \program{configure} script.
|
---|
434 |
|
---|
435 | \begin{seealso}
|
---|
436 |
|
---|
437 | \seepep{278}{Universal Newline Support}{Written
|
---|
438 | and implemented by Jack Jansen.}
|
---|
439 |
|
---|
440 | \end{seealso}
|
---|
441 |
|
---|
442 |
|
---|
443 | %======================================================================
|
---|
444 | \section{PEP 279: enumerate()\label{section-enumerate}}
|
---|
445 |
|
---|
446 | A new built-in function, \function{enumerate()}, will make
|
---|
447 | certain loops a bit clearer. \code{enumerate(thing)}, where
|
---|
448 | \var{thing} is either an iterator or a sequence, returns a iterator
|
---|
449 | that will return \code{(0, \var{thing}[0])}, \code{(1,
|
---|
450 | \var{thing}[1])}, \code{(2, \var{thing}[2])}, and so forth.
|
---|
451 |
|
---|
452 | A common idiom to change every element of a list looks like this:
|
---|
453 |
|
---|
454 | \begin{verbatim}
|
---|
455 | for i in range(len(L)):
|
---|
456 | item = L[i]
|
---|
457 | # ... compute some result based on item ...
|
---|
458 | L[i] = result
|
---|
459 | \end{verbatim}
|
---|
460 |
|
---|
461 | This can be rewritten using \function{enumerate()} as:
|
---|
462 |
|
---|
463 | \begin{verbatim}
|
---|
464 | for i, item in enumerate(L):
|
---|
465 | # ... compute some result based on item ...
|
---|
466 | L[i] = result
|
---|
467 | \end{verbatim}
|
---|
468 |
|
---|
469 |
|
---|
470 | \begin{seealso}
|
---|
471 |
|
---|
472 | \seepep{279}{The enumerate() built-in function}{Written
|
---|
473 | and implemented by Raymond D. Hettinger.}
|
---|
474 |
|
---|
475 | \end{seealso}
|
---|
476 |
|
---|
477 |
|
---|
478 | %======================================================================
|
---|
479 | \section{PEP 282: The logging Package}
|
---|
480 |
|
---|
481 | A standard package for writing logs, \module{logging}, has been added
|
---|
482 | to Python 2.3. It provides a powerful and flexible mechanism for
|
---|
483 | generating logging output which can then be filtered and processed in
|
---|
484 | various ways. A configuration file written in a standard format can
|
---|
485 | be used to control the logging behavior of a program. Python
|
---|
486 | includes handlers that will write log records to
|
---|
487 | standard error or to a file or socket, send them to the system log, or
|
---|
488 | even e-mail them to a particular address; of course, it's also
|
---|
489 | possible to write your own handler classes.
|
---|
490 |
|
---|
491 | The \class{Logger} class is the primary class.
|
---|
492 | Most application code will deal with one or more \class{Logger}
|
---|
493 | objects, each one used by a particular subsystem of the application.
|
---|
494 | Each \class{Logger} is identified by a name, and names are organized
|
---|
495 | into a hierarchy using \samp{.} as the component separator. For
|
---|
496 | example, you might have \class{Logger} instances named \samp{server},
|
---|
497 | \samp{server.auth} and \samp{server.network}. The latter two
|
---|
498 | instances are below \samp{server} in the hierarchy. This means that
|
---|
499 | if you turn up the verbosity for \samp{server} or direct \samp{server}
|
---|
500 | messages to a different handler, the changes will also apply to
|
---|
501 | records logged to \samp{server.auth} and \samp{server.network}.
|
---|
502 | There's also a root \class{Logger} that's the parent of all other
|
---|
503 | loggers.
|
---|
504 |
|
---|
505 | For simple uses, the \module{logging} package contains some
|
---|
506 | convenience functions that always use the root log:
|
---|
507 |
|
---|
508 | \begin{verbatim}
|
---|
509 | import logging
|
---|
510 |
|
---|
511 | logging.debug('Debugging information')
|
---|
512 | logging.info('Informational message')
|
---|
513 | logging.warning('Warning:config file %s not found', 'server.conf')
|
---|
514 | logging.error('Error occurred')
|
---|
515 | logging.critical('Critical error -- shutting down')
|
---|
516 | \end{verbatim}
|
---|
517 |
|
---|
518 | This produces the following output:
|
---|
519 |
|
---|
520 | \begin{verbatim}
|
---|
521 | WARNING:root:Warning:config file server.conf not found
|
---|
522 | ERROR:root:Error occurred
|
---|
523 | CRITICAL:root:Critical error -- shutting down
|
---|
524 | \end{verbatim}
|
---|
525 |
|
---|
526 | In the default configuration, informational and debugging messages are
|
---|
527 | suppressed and the output is sent to standard error. You can enable
|
---|
528 | the display of informational and debugging messages by calling the
|
---|
529 | \method{setLevel()} method on the root logger.
|
---|
530 |
|
---|
531 | Notice the \function{warning()} call's use of string formatting
|
---|
532 | operators; all of the functions for logging messages take the
|
---|
533 | arguments \code{(\var{msg}, \var{arg1}, \var{arg2}, ...)} and log the
|
---|
534 | string resulting from \code{\var{msg} \% (\var{arg1}, \var{arg2},
|
---|
535 | ...)}.
|
---|
536 |
|
---|
537 | There's also an \function{exception()} function that records the most
|
---|
538 | recent traceback. Any of the other functions will also record the
|
---|
539 | traceback if you specify a true value for the keyword argument
|
---|
540 | \var{exc_info}.
|
---|
541 |
|
---|
542 | \begin{verbatim}
|
---|
543 | def f():
|
---|
544 | try: 1/0
|
---|
545 | except: logging.exception('Problem recorded')
|
---|
546 |
|
---|
547 | f()
|
---|
548 | \end{verbatim}
|
---|
549 |
|
---|
550 | This produces the following output:
|
---|
551 |
|
---|
552 | \begin{verbatim}
|
---|
553 | ERROR:root:Problem recorded
|
---|
554 | Traceback (most recent call last):
|
---|
555 | File "t.py", line 6, in f
|
---|
556 | 1/0
|
---|
557 | ZeroDivisionError: integer division or modulo by zero
|
---|
558 | \end{verbatim}
|
---|
559 |
|
---|
560 | Slightly more advanced programs will use a logger other than the root
|
---|
561 | logger. The \function{getLogger(\var{name})} function is used to get
|
---|
562 | a particular log, creating it if it doesn't exist yet.
|
---|
563 | \function{getLogger(None)} returns the root logger.
|
---|
564 |
|
---|
565 |
|
---|
566 | \begin{verbatim}
|
---|
567 | log = logging.getLogger('server')
|
---|
568 | ...
|
---|
569 | log.info('Listening on port %i', port)
|
---|
570 | ...
|
---|
571 | log.critical('Disk full')
|
---|
572 | ...
|
---|
573 | \end{verbatim}
|
---|
574 |
|
---|
575 | Log records are usually propagated up the hierarchy, so a message
|
---|
576 | logged to \samp{server.auth} is also seen by \samp{server} and
|
---|
577 | \samp{root}, but a \class{Logger} can prevent this by setting its
|
---|
578 | \member{propagate} attribute to \constant{False}.
|
---|
579 |
|
---|
580 | There are more classes provided by the \module{logging} package that
|
---|
581 | can be customized. When a \class{Logger} instance is told to log a
|
---|
582 | message, it creates a \class{LogRecord} instance that is sent to any
|
---|
583 | number of different \class{Handler} instances. Loggers and handlers
|
---|
584 | can also have an attached list of filters, and each filter can cause
|
---|
585 | the \class{LogRecord} to be ignored or can modify the record before
|
---|
586 | passing it along. When they're finally output, \class{LogRecord}
|
---|
587 | instances are converted to text by a \class{Formatter} class. All of
|
---|
588 | these classes can be replaced by your own specially-written classes.
|
---|
589 |
|
---|
590 | With all of these features the \module{logging} package should provide
|
---|
591 | enough flexibility for even the most complicated applications. This
|
---|
592 | is only an incomplete overview of its features, so please see the
|
---|
593 | \ulink{package's reference documentation}{../lib/module-logging.html}
|
---|
594 | for all of the details. Reading \pep{282} will also be helpful.
|
---|
595 |
|
---|
596 |
|
---|
597 | \begin{seealso}
|
---|
598 |
|
---|
599 | \seepep{282}{A Logging System}{Written by Vinay Sajip and Trent Mick;
|
---|
600 | implemented by Vinay Sajip.}
|
---|
601 |
|
---|
602 | \end{seealso}
|
---|
603 |
|
---|
604 |
|
---|
605 | %======================================================================
|
---|
606 | \section{PEP 285: A Boolean Type\label{section-bool}}
|
---|
607 |
|
---|
608 | A Boolean type was added to Python 2.3. Two new constants were added
|
---|
609 | to the \module{__builtin__} module, \constant{True} and
|
---|
610 | \constant{False}. (\constant{True} and
|
---|
611 | \constant{False} constants were added to the built-ins
|
---|
612 | in Python 2.2.1, but the 2.2.1 versions are simply set to integer values of
|
---|
613 | 1 and 0 and aren't a different type.)
|
---|
614 |
|
---|
615 | The type object for this new type is named
|
---|
616 | \class{bool}; the constructor for it takes any Python value and
|
---|
617 | converts it to \constant{True} or \constant{False}.
|
---|
618 |
|
---|
619 | \begin{verbatim}
|
---|
620 | >>> bool(1)
|
---|
621 | True
|
---|
622 | >>> bool(0)
|
---|
623 | False
|
---|
624 | >>> bool([])
|
---|
625 | False
|
---|
626 | >>> bool( (1,) )
|
---|
627 | True
|
---|
628 | \end{verbatim}
|
---|
629 |
|
---|
630 | Most of the standard library modules and built-in functions have been
|
---|
631 | changed to return Booleans.
|
---|
632 |
|
---|
633 | \begin{verbatim}
|
---|
634 | >>> obj = []
|
---|
635 | >>> hasattr(obj, 'append')
|
---|
636 | True
|
---|
637 | >>> isinstance(obj, list)
|
---|
638 | True
|
---|
639 | >>> isinstance(obj, tuple)
|
---|
640 | False
|
---|
641 | \end{verbatim}
|
---|
642 |
|
---|
643 | Python's Booleans were added with the primary goal of making code
|
---|
644 | clearer. For example, if you're reading a function and encounter the
|
---|
645 | statement \code{return 1}, you might wonder whether the \code{1}
|
---|
646 | represents a Boolean truth value, an index, or a
|
---|
647 | coefficient that multiplies some other quantity. If the statement is
|
---|
648 | \code{return True}, however, the meaning of the return value is quite
|
---|
649 | clear.
|
---|
650 |
|
---|
651 | Python's Booleans were \emph{not} added for the sake of strict
|
---|
652 | type-checking. A very strict language such as Pascal would also
|
---|
653 | prevent you performing arithmetic with Booleans, and would require
|
---|
654 | that the expression in an \keyword{if} statement always evaluate to a
|
---|
655 | Boolean result. Python is not this strict and never will be, as
|
---|
656 | \pep{285} explicitly says. This means you can still use any
|
---|
657 | expression in an \keyword{if} statement, even ones that evaluate to a
|
---|
658 | list or tuple or some random object. The Boolean type is a
|
---|
659 | subclass of the \class{int} class so that arithmetic using a Boolean
|
---|
660 | still works.
|
---|
661 |
|
---|
662 | \begin{verbatim}
|
---|
663 | >>> True + 1
|
---|
664 | 2
|
---|
665 | >>> False + 1
|
---|
666 | 1
|
---|
667 | >>> False * 75
|
---|
668 | 0
|
---|
669 | >>> True * 75
|
---|
670 | 75
|
---|
671 | \end{verbatim}
|
---|
672 |
|
---|
673 | To sum up \constant{True} and \constant{False} in a sentence: they're
|
---|
674 | alternative ways to spell the integer values 1 and 0, with the single
|
---|
675 | difference that \function{str()} and \function{repr()} return the
|
---|
676 | strings \code{'True'} and \code{'False'} instead of \code{'1'} and
|
---|
677 | \code{'0'}.
|
---|
678 |
|
---|
679 | \begin{seealso}
|
---|
680 |
|
---|
681 | \seepep{285}{Adding a bool type}{Written and implemented by GvR.}
|
---|
682 |
|
---|
683 | \end{seealso}
|
---|
684 |
|
---|
685 |
|
---|
686 | %======================================================================
|
---|
687 | \section{PEP 293: Codec Error Handling Callbacks}
|
---|
688 |
|
---|
689 | When encoding a Unicode string into a byte string, unencodable
|
---|
690 | characters may be encountered. So far, Python has allowed specifying
|
---|
691 | the error processing as either ``strict'' (raising
|
---|
692 | \exception{UnicodeError}), ``ignore'' (skipping the character), or
|
---|
693 | ``replace'' (using a question mark in the output string), with
|
---|
694 | ``strict'' being the default behavior. It may be desirable to specify
|
---|
695 | alternative processing of such errors, such as inserting an XML
|
---|
696 | character reference or HTML entity reference into the converted
|
---|
697 | string.
|
---|
698 |
|
---|
699 | Python now has a flexible framework to add different processing
|
---|
700 | strategies. New error handlers can be added with
|
---|
701 | \function{codecs.register_error}, and codecs then can access the error
|
---|
702 | handler with \function{codecs.lookup_error}. An equivalent C API has
|
---|
703 | been added for codecs written in C. The error handler gets the
|
---|
704 | necessary state information such as the string being converted, the
|
---|
705 | position in the string where the error was detected, and the target
|
---|
706 | encoding. The handler can then either raise an exception or return a
|
---|
707 | replacement string.
|
---|
708 |
|
---|
709 | Two additional error handlers have been implemented using this
|
---|
710 | framework: ``backslashreplace'' uses Python backslash quoting to
|
---|
711 | represent unencodable characters and ``xmlcharrefreplace'' emits
|
---|
712 | XML character references.
|
---|
713 |
|
---|
714 | \begin{seealso}
|
---|
715 |
|
---|
716 | \seepep{293}{Codec Error Handling Callbacks}{Written and implemented by
|
---|
717 | Walter D\"orwald.}
|
---|
718 |
|
---|
719 | \end{seealso}
|
---|
720 |
|
---|
721 |
|
---|
722 | %======================================================================
|
---|
723 | \section{PEP 301: Package Index and Metadata for
|
---|
724 | Distutils\label{section-pep301}}
|
---|
725 |
|
---|
726 | Support for the long-requested Python catalog makes its first
|
---|
727 | appearance in 2.3.
|
---|
728 |
|
---|
729 | The heart of the catalog is the new Distutils \command{register} command.
|
---|
730 | Running \code{python setup.py register} will collect the metadata
|
---|
731 | describing a package, such as its name, version, maintainer,
|
---|
732 | description, \&c., and send it to a central catalog server. The
|
---|
733 | resulting catalog is available from \url{http://www.python.org/pypi}.
|
---|
734 |
|
---|
735 | To make the catalog a bit more useful, a new optional
|
---|
736 | \var{classifiers} keyword argument has been added to the Distutils
|
---|
737 | \function{setup()} function. A list of
|
---|
738 | \ulink{Trove}{http://catb.org/\textasciitilde esr/trove/}-style
|
---|
739 | strings can be supplied to help classify the software.
|
---|
740 |
|
---|
741 | Here's an example \file{setup.py} with classifiers, written to be compatible
|
---|
742 | with older versions of the Distutils:
|
---|
743 |
|
---|
744 | \begin{verbatim}
|
---|
745 | from distutils import core
|
---|
746 | kw = {'name': "Quixote",
|
---|
747 | 'version': "0.5.1",
|
---|
748 | 'description': "A highly Pythonic Web application framework",
|
---|
749 | # ...
|
---|
750 | }
|
---|
751 |
|
---|
752 | if (hasattr(core, 'setup_keywords') and
|
---|
753 | 'classifiers' in core.setup_keywords):
|
---|
754 | kw['classifiers'] = \
|
---|
755 | ['Topic :: Internet :: WWW/HTTP :: Dynamic Content',
|
---|
756 | 'Environment :: No Input/Output (Daemon)',
|
---|
757 | 'Intended Audience :: Developers'],
|
---|
758 |
|
---|
759 | core.setup(**kw)
|
---|
760 | \end{verbatim}
|
---|
761 |
|
---|
762 | The full list of classifiers can be obtained by running
|
---|
763 | \verb|python setup.py register --list-classifiers|.
|
---|
764 |
|
---|
765 | \begin{seealso}
|
---|
766 |
|
---|
767 | \seepep{301}{Package Index and Metadata for Distutils}{Written and
|
---|
768 | implemented by Richard Jones.}
|
---|
769 |
|
---|
770 | \end{seealso}
|
---|
771 |
|
---|
772 |
|
---|
773 | %======================================================================
|
---|
774 | \section{PEP 302: New Import Hooks \label{section-pep302}}
|
---|
775 |
|
---|
776 | While it's been possible to write custom import hooks ever since the
|
---|
777 | \module{ihooks} module was introduced in Python 1.3, no one has ever
|
---|
778 | been really happy with it because writing new import hooks is
|
---|
779 | difficult and messy. There have been various proposed alternatives
|
---|
780 | such as the \module{imputil} and \module{iu} modules, but none of them
|
---|
781 | has ever gained much acceptance, and none of them were easily usable
|
---|
782 | from \C{} code.
|
---|
783 |
|
---|
784 | \pep{302} borrows ideas from its predecessors, especially from
|
---|
785 | Gordon McMillan's \module{iu} module. Three new items
|
---|
786 | are added to the \module{sys} module:
|
---|
787 |
|
---|
788 | \begin{itemize}
|
---|
789 | \item \code{sys.path_hooks} is a list of callable objects; most
|
---|
790 | often they'll be classes. Each callable takes a string containing a
|
---|
791 | path and either returns an importer object that will handle imports
|
---|
792 | from this path or raises an \exception{ImportError} exception if it
|
---|
793 | can't handle this path.
|
---|
794 |
|
---|
795 | \item \code{sys.path_importer_cache} caches importer objects for
|
---|
796 | each path, so \code{sys.path_hooks} will only need to be traversed
|
---|
797 | once for each path.
|
---|
798 |
|
---|
799 | \item \code{sys.meta_path} is a list of importer objects that will
|
---|
800 | be traversed before \code{sys.path} is checked. This list is
|
---|
801 | initially empty, but user code can add objects to it. Additional
|
---|
802 | built-in and frozen modules can be imported by an object added to
|
---|
803 | this list.
|
---|
804 |
|
---|
805 | \end{itemize}
|
---|
806 |
|
---|
807 | Importer objects must have a single method,
|
---|
808 | \method{find_module(\var{fullname}, \var{path}=None)}. \var{fullname}
|
---|
809 | will be a module or package name, e.g. \samp{string} or
|
---|
810 | \samp{distutils.core}. \method{find_module()} must return a loader object
|
---|
811 | that has a single method, \method{load_module(\var{fullname})}, that
|
---|
812 | creates and returns the corresponding module object.
|
---|
813 |
|
---|
814 | Pseudo-code for Python's new import logic, therefore, looks something
|
---|
815 | like this (simplified a bit; see \pep{302} for the full details):
|
---|
816 |
|
---|
817 | \begin{verbatim}
|
---|
818 | for mp in sys.meta_path:
|
---|
819 | loader = mp(fullname)
|
---|
820 | if loader is not None:
|
---|
821 | <module> = loader.load_module(fullname)
|
---|
822 |
|
---|
823 | for path in sys.path:
|
---|
824 | for hook in sys.path_hooks:
|
---|
825 | try:
|
---|
826 | importer = hook(path)
|
---|
827 | except ImportError:
|
---|
828 | # ImportError, so try the other path hooks
|
---|
829 | pass
|
---|
830 | else:
|
---|
831 | loader = importer.find_module(fullname)
|
---|
832 | <module> = loader.load_module(fullname)
|
---|
833 |
|
---|
834 | # Not found!
|
---|
835 | raise ImportError
|
---|
836 | \end{verbatim}
|
---|
837 |
|
---|
838 | \begin{seealso}
|
---|
839 |
|
---|
840 | \seepep{302}{New Import Hooks}{Written by Just van~Rossum and Paul Moore.
|
---|
841 | Implemented by Just van~Rossum.
|
---|
842 | }
|
---|
843 |
|
---|
844 | \end{seealso}
|
---|
845 |
|
---|
846 |
|
---|
847 | %======================================================================
|
---|
848 | \section{PEP 305: Comma-separated Files \label{section-pep305}}
|
---|
849 |
|
---|
850 | Comma-separated files are a format frequently used for exporting data
|
---|
851 | from databases and spreadsheets. Python 2.3 adds a parser for
|
---|
852 | comma-separated files.
|
---|
853 |
|
---|
854 | Comma-separated format is deceptively simple at first glance:
|
---|
855 |
|
---|
856 | \begin{verbatim}
|
---|
857 | Costs,150,200,3.95
|
---|
858 | \end{verbatim}
|
---|
859 |
|
---|
860 | Read a line and call \code{line.split(',')}: what could be simpler?
|
---|
861 | But toss in string data that can contain commas, and things get more
|
---|
862 | complicated:
|
---|
863 |
|
---|
864 | \begin{verbatim}
|
---|
865 | "Costs",150,200,3.95,"Includes taxes, shipping, and sundry items"
|
---|
866 | \end{verbatim}
|
---|
867 |
|
---|
868 | A big ugly regular expression can parse this, but using the new
|
---|
869 | \module{csv} package is much simpler:
|
---|
870 |
|
---|
871 | \begin{verbatim}
|
---|
872 | import csv
|
---|
873 |
|
---|
874 | input = open('datafile', 'rb')
|
---|
875 | reader = csv.reader(input)
|
---|
876 | for line in reader:
|
---|
877 | print line
|
---|
878 | \end{verbatim}
|
---|
879 |
|
---|
880 | The \function{reader} function takes a number of different options.
|
---|
881 | The field separator isn't limited to the comma and can be changed to
|
---|
882 | any character, and so can the quoting and line-ending characters.
|
---|
883 |
|
---|
884 | Different dialects of comma-separated files can be defined and
|
---|
885 | registered; currently there are two dialects, both used by Microsoft Excel.
|
---|
886 | A separate \class{csv.writer} class will generate comma-separated files
|
---|
887 | from a succession of tuples or lists, quoting strings that contain the
|
---|
888 | delimiter.
|
---|
889 |
|
---|
890 | \begin{seealso}
|
---|
891 |
|
---|
892 | \seepep{305}{CSV File API}{Written and implemented
|
---|
893 | by Kevin Altis, Dave Cole, Andrew McNamara, Skip Montanaro, Cliff Wells.
|
---|
894 | }
|
---|
895 |
|
---|
896 | \end{seealso}
|
---|
897 |
|
---|
898 | %======================================================================
|
---|
899 | \section{PEP 307: Pickle Enhancements \label{section-pep305}}
|
---|
900 |
|
---|
901 | The \module{pickle} and \module{cPickle} modules received some
|
---|
902 | attention during the 2.3 development cycle. In 2.2, new-style classes
|
---|
903 | could be pickled without difficulty, but they weren't pickled very
|
---|
904 | compactly; \pep{307} quotes a trivial example where a new-style class
|
---|
905 | results in a pickled string three times longer than that for a classic
|
---|
906 | class.
|
---|
907 |
|
---|
908 | The solution was to invent a new pickle protocol. The
|
---|
909 | \function{pickle.dumps()} function has supported a text-or-binary flag
|
---|
910 | for a long time. In 2.3, this flag is redefined from a Boolean to an
|
---|
911 | integer: 0 is the old text-mode pickle format, 1 is the old binary
|
---|
912 | format, and now 2 is a new 2.3-specific format. A new constant,
|
---|
913 | \constant{pickle.HIGHEST_PROTOCOL}, can be used to select the fanciest
|
---|
914 | protocol available.
|
---|
915 |
|
---|
916 | Unpickling is no longer considered a safe operation. 2.2's
|
---|
917 | \module{pickle} provided hooks for trying to prevent unsafe classes
|
---|
918 | from being unpickled (specifically, a
|
---|
919 | \member{__safe_for_unpickling__} attribute), but none of this code
|
---|
920 | was ever audited and therefore it's all been ripped out in 2.3. You
|
---|
921 | should not unpickle untrusted data in any version of Python.
|
---|
922 |
|
---|
923 | To reduce the pickling overhead for new-style classes, a new interface
|
---|
924 | for customizing pickling was added using three special methods:
|
---|
925 | \method{__getstate__}, \method{__setstate__}, and
|
---|
926 | \method{__getnewargs__}. Consult \pep{307} for the full semantics
|
---|
927 | of these methods.
|
---|
928 |
|
---|
929 | As a way to compress pickles yet further, it's now possible to use
|
---|
930 | integer codes instead of long strings to identify pickled classes.
|
---|
931 | The Python Software Foundation will maintain a list of standardized
|
---|
932 | codes; there's also a range of codes for private use. Currently no
|
---|
933 | codes have been specified.
|
---|
934 |
|
---|
935 | \begin{seealso}
|
---|
936 |
|
---|
937 | \seepep{307}{Extensions to the pickle protocol}{Written and implemented
|
---|
938 | by Guido van Rossum and Tim Peters.}
|
---|
939 |
|
---|
940 | \end{seealso}
|
---|
941 |
|
---|
942 | %======================================================================
|
---|
943 | \section{Extended Slices\label{section-slices}}
|
---|
944 |
|
---|
945 | Ever since Python 1.4, the slicing syntax has supported an optional
|
---|
946 | third ``step'' or ``stride'' argument. For example, these are all
|
---|
947 | legal Python syntax: \code{L[1:10:2]}, \code{L[:-1:1]},
|
---|
948 | \code{L[::-1]}. This was added to Python at the request of
|
---|
949 | the developers of Numerical Python, which uses the third argument
|
---|
950 | extensively. However, Python's built-in list, tuple, and string
|
---|
951 | sequence types have never supported this feature, raising a
|
---|
952 | \exception{TypeError} if you tried it. Michael Hudson contributed a
|
---|
953 | patch to fix this shortcoming.
|
---|
954 |
|
---|
955 | For example, you can now easily extract the elements of a list that
|
---|
956 | have even indexes:
|
---|
957 |
|
---|
958 | \begin{verbatim}
|
---|
959 | >>> L = range(10)
|
---|
960 | >>> L[::2]
|
---|
961 | [0, 2, 4, 6, 8]
|
---|
962 | \end{verbatim}
|
---|
963 |
|
---|
964 | Negative values also work to make a copy of the same list in reverse
|
---|
965 | order:
|
---|
966 |
|
---|
967 | \begin{verbatim}
|
---|
968 | >>> L[::-1]
|
---|
969 | [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
|
---|
970 | \end{verbatim}
|
---|
971 |
|
---|
972 | This also works for tuples, arrays, and strings:
|
---|
973 |
|
---|
974 | \begin{verbatim}
|
---|
975 | >>> s='abcd'
|
---|
976 | >>> s[::2]
|
---|
977 | 'ac'
|
---|
978 | >>> s[::-1]
|
---|
979 | 'dcba'
|
---|
980 | \end{verbatim}
|
---|
981 |
|
---|
982 | If you have a mutable sequence such as a list or an array you can
|
---|
983 | assign to or delete an extended slice, but there are some differences
|
---|
984 | between assignment to extended and regular slices. Assignment to a
|
---|
985 | regular slice can be used to change the length of the sequence:
|
---|
986 |
|
---|
987 | \begin{verbatim}
|
---|
988 | >>> a = range(3)
|
---|
989 | >>> a
|
---|
990 | [0, 1, 2]
|
---|
991 | >>> a[1:3] = [4, 5, 6]
|
---|
992 | >>> a
|
---|
993 | [0, 4, 5, 6]
|
---|
994 | \end{verbatim}
|
---|
995 |
|
---|
996 | Extended slices aren't this flexible. When assigning to an extended
|
---|
997 | slice, the list on the right hand side of the statement must contain
|
---|
998 | the same number of items as the slice it is replacing:
|
---|
999 |
|
---|
1000 | \begin{verbatim}
|
---|
1001 | >>> a = range(4)
|
---|
1002 | >>> a
|
---|
1003 | [0, 1, 2, 3]
|
---|
1004 | >>> a[::2]
|
---|
1005 | [0, 2]
|
---|
1006 | >>> a[::2] = [0, -1]
|
---|
1007 | >>> a
|
---|
1008 | [0, 1, -1, 3]
|
---|
1009 | >>> a[::2] = [0,1,2]
|
---|
1010 | Traceback (most recent call last):
|
---|
1011 | File "<stdin>", line 1, in ?
|
---|
1012 | ValueError: attempt to assign sequence of size 3 to extended slice of size 2
|
---|
1013 | \end{verbatim}
|
---|
1014 |
|
---|
1015 | Deletion is more straightforward:
|
---|
1016 |
|
---|
1017 | \begin{verbatim}
|
---|
1018 | >>> a = range(4)
|
---|
1019 | >>> a
|
---|
1020 | [0, 1, 2, 3]
|
---|
1021 | >>> a[::2]
|
---|
1022 | [0, 2]
|
---|
1023 | >>> del a[::2]
|
---|
1024 | >>> a
|
---|
1025 | [1, 3]
|
---|
1026 | \end{verbatim}
|
---|
1027 |
|
---|
1028 | One can also now pass slice objects to the
|
---|
1029 | \method{__getitem__} methods of the built-in sequences:
|
---|
1030 |
|
---|
1031 | \begin{verbatim}
|
---|
1032 | >>> range(10).__getitem__(slice(0, 5, 2))
|
---|
1033 | [0, 2, 4]
|
---|
1034 | \end{verbatim}
|
---|
1035 |
|
---|
1036 | Or use slice objects directly in subscripts:
|
---|
1037 |
|
---|
1038 | \begin{verbatim}
|
---|
1039 | >>> range(10)[slice(0, 5, 2)]
|
---|
1040 | [0, 2, 4]
|
---|
1041 | \end{verbatim}
|
---|
1042 |
|
---|
1043 | To simplify implementing sequences that support extended slicing,
|
---|
1044 | slice objects now have a method \method{indices(\var{length})} which,
|
---|
1045 | given the length of a sequence, returns a \code{(\var{start},
|
---|
1046 | \var{stop}, \var{step})} tuple that can be passed directly to
|
---|
1047 | \function{range()}.
|
---|
1048 | \method{indices()} handles omitted and out-of-bounds indices in a
|
---|
1049 | manner consistent with regular slices (and this innocuous phrase hides
|
---|
1050 | a welter of confusing details!). The method is intended to be used
|
---|
1051 | like this:
|
---|
1052 |
|
---|
1053 | \begin{verbatim}
|
---|
1054 | class FakeSeq:
|
---|
1055 | ...
|
---|
1056 | def calc_item(self, i):
|
---|
1057 | ...
|
---|
1058 | def __getitem__(self, item):
|
---|
1059 | if isinstance(item, slice):
|
---|
1060 | indices = item.indices(len(self))
|
---|
1061 | return FakeSeq([self.calc_item(i) for i in range(*indices)])
|
---|
1062 | else:
|
---|
1063 | return self.calc_item(i)
|
---|
1064 | \end{verbatim}
|
---|
1065 |
|
---|
1066 | From this example you can also see that the built-in \class{slice}
|
---|
1067 | object is now the type object for the slice type, and is no longer a
|
---|
1068 | function. This is consistent with Python 2.2, where \class{int},
|
---|
1069 | \class{str}, etc., underwent the same change.
|
---|
1070 |
|
---|
1071 |
|
---|
1072 | %======================================================================
|
---|
1073 | \section{Other Language Changes}
|
---|
1074 |
|
---|
1075 | Here are all of the changes that Python 2.3 makes to the core Python
|
---|
1076 | language.
|
---|
1077 |
|
---|
1078 | \begin{itemize}
|
---|
1079 | \item The \keyword{yield} statement is now always a keyword, as
|
---|
1080 | described in section~\ref{section-generators} of this document.
|
---|
1081 |
|
---|
1082 | \item A new built-in function \function{enumerate()}
|
---|
1083 | was added, as described in section~\ref{section-enumerate} of this
|
---|
1084 | document.
|
---|
1085 |
|
---|
1086 | \item Two new constants, \constant{True} and \constant{False} were
|
---|
1087 | added along with the built-in \class{bool} type, as described in
|
---|
1088 | section~\ref{section-bool} of this document.
|
---|
1089 |
|
---|
1090 | \item The \function{int()} type constructor will now return a long
|
---|
1091 | integer instead of raising an \exception{OverflowError} when a string
|
---|
1092 | or floating-point number is too large to fit into an integer. This
|
---|
1093 | can lead to the paradoxical result that
|
---|
1094 | \code{isinstance(int(\var{expression}), int)} is false, but that seems
|
---|
1095 | unlikely to cause problems in practice.
|
---|
1096 |
|
---|
1097 | \item Built-in types now support the extended slicing syntax,
|
---|
1098 | as described in section~\ref{section-slices} of this document.
|
---|
1099 |
|
---|
1100 | \item A new built-in function, \function{sum(\var{iterable}, \var{start}=0)},
|
---|
1101 | adds up the numeric items in the iterable object and returns their sum.
|
---|
1102 | \function{sum()} only accepts numbers, meaning that you can't use it
|
---|
1103 | to concatenate a bunch of strings. (Contributed by Alex
|
---|
1104 | Martelli.)
|
---|
1105 |
|
---|
1106 | \item \code{list.insert(\var{pos}, \var{value})} used to
|
---|
1107 | insert \var{value} at the front of the list when \var{pos} was
|
---|
1108 | negative. The behaviour has now been changed to be consistent with
|
---|
1109 | slice indexing, so when \var{pos} is -1 the value will be inserted
|
---|
1110 | before the last element, and so forth.
|
---|
1111 |
|
---|
1112 | \item \code{list.index(\var{value})}, which searches for \var{value}
|
---|
1113 | within the list and returns its index, now takes optional
|
---|
1114 | \var{start} and \var{stop} arguments to limit the search to
|
---|
1115 | only part of the list.
|
---|
1116 |
|
---|
1117 | \item Dictionaries have a new method, \method{pop(\var{key}\optional{,
|
---|
1118 | \var{default}})}, that returns the value corresponding to \var{key}
|
---|
1119 | and removes that key/value pair from the dictionary. If the requested
|
---|
1120 | key isn't present in the dictionary, \var{default} is returned if it's
|
---|
1121 | specified and \exception{KeyError} raised if it isn't.
|
---|
1122 |
|
---|
1123 | \begin{verbatim}
|
---|
1124 | >>> d = {1:2}
|
---|
1125 | >>> d
|
---|
1126 | {1: 2}
|
---|
1127 | >>> d.pop(4)
|
---|
1128 | Traceback (most recent call last):
|
---|
1129 | File "stdin", line 1, in ?
|
---|
1130 | KeyError: 4
|
---|
1131 | >>> d.pop(1)
|
---|
1132 | 2
|
---|
1133 | >>> d.pop(1)
|
---|
1134 | Traceback (most recent call last):
|
---|
1135 | File "stdin", line 1, in ?
|
---|
1136 | KeyError: 'pop(): dictionary is empty'
|
---|
1137 | >>> d
|
---|
1138 | {}
|
---|
1139 | >>>
|
---|
1140 | \end{verbatim}
|
---|
1141 |
|
---|
1142 | There's also a new class method,
|
---|
1143 | \method{dict.fromkeys(\var{iterable}, \var{value})}, that
|
---|
1144 | creates a dictionary with keys taken from the supplied iterator
|
---|
1145 | \var{iterable} and all values set to \var{value}, defaulting to
|
---|
1146 | \code{None}.
|
---|
1147 |
|
---|
1148 | (Patches contributed by Raymond Hettinger.)
|
---|
1149 |
|
---|
1150 | Also, the \function{dict()} constructor now accepts keyword arguments to
|
---|
1151 | simplify creating small dictionaries:
|
---|
1152 |
|
---|
1153 | \begin{verbatim}
|
---|
1154 | >>> dict(red=1, blue=2, green=3, black=4)
|
---|
1155 | {'blue': 2, 'black': 4, 'green': 3, 'red': 1}
|
---|
1156 | \end{verbatim}
|
---|
1157 |
|
---|
1158 | (Contributed by Just van~Rossum.)
|
---|
1159 |
|
---|
1160 | \item The \keyword{assert} statement no longer checks the \code{__debug__}
|
---|
1161 | flag, so you can no longer disable assertions by assigning to \code{__debug__}.
|
---|
1162 | Running Python with the \programopt{-O} switch will still generate
|
---|
1163 | code that doesn't execute any assertions.
|
---|
1164 |
|
---|
1165 | \item Most type objects are now callable, so you can use them
|
---|
1166 | to create new objects such as functions, classes, and modules. (This
|
---|
1167 | means that the \module{new} module can be deprecated in a future
|
---|
1168 | Python version, because you can now use the type objects available in
|
---|
1169 | the \module{types} module.)
|
---|
1170 | % XXX should new.py use PendingDeprecationWarning?
|
---|
1171 | For example, you can create a new module object with the following code:
|
---|
1172 |
|
---|
1173 | \begin{verbatim}
|
---|
1174 | >>> import types
|
---|
1175 | >>> m = types.ModuleType('abc','docstring')
|
---|
1176 | >>> m
|
---|
1177 | <module 'abc' (built-in)>
|
---|
1178 | >>> m.__doc__
|
---|
1179 | 'docstring'
|
---|
1180 | \end{verbatim}
|
---|
1181 |
|
---|
1182 | \item
|
---|
1183 | A new warning, \exception{PendingDeprecationWarning} was added to
|
---|
1184 | indicate features which are in the process of being
|
---|
1185 | deprecated. The warning will \emph{not} be printed by default. To
|
---|
1186 | check for use of features that will be deprecated in the future,
|
---|
1187 | supply \programopt{-Walways::PendingDeprecationWarning::} on the
|
---|
1188 | command line or use \function{warnings.filterwarnings()}.
|
---|
1189 |
|
---|
1190 | \item The process of deprecating string-based exceptions, as
|
---|
1191 | in \code{raise "Error occurred"}, has begun. Raising a string will
|
---|
1192 | now trigger \exception{PendingDeprecationWarning}.
|
---|
1193 |
|
---|
1194 | \item Using \code{None} as a variable name will now result in a
|
---|
1195 | \exception{SyntaxWarning} warning. In a future version of Python,
|
---|
1196 | \code{None} may finally become a keyword.
|
---|
1197 |
|
---|
1198 | \item The \method{xreadlines()} method of file objects, introduced in
|
---|
1199 | Python 2.1, is no longer necessary because files now behave as their
|
---|
1200 | own iterator. \method{xreadlines()} was originally introduced as a
|
---|
1201 | faster way to loop over all the lines in a file, but now you can
|
---|
1202 | simply write \code{for line in file_obj}. File objects also have a
|
---|
1203 | new read-only \member{encoding} attribute that gives the encoding used
|
---|
1204 | by the file; Unicode strings written to the file will be automatically
|
---|
1205 | converted to bytes using the given encoding.
|
---|
1206 |
|
---|
1207 | \item The method resolution order used by new-style classes has
|
---|
1208 | changed, though you'll only notice the difference if you have a really
|
---|
1209 | complicated inheritance hierarchy. Classic classes are unaffected by
|
---|
1210 | this change. Python 2.2 originally used a topological sort of a
|
---|
1211 | class's ancestors, but 2.3 now uses the C3 algorithm as described in
|
---|
1212 | the paper \ulink{``A Monotonic Superclass Linearization for
|
---|
1213 | Dylan''}{http://www.webcom.com/haahr/dylan/linearization-oopsla96.html}.
|
---|
1214 | To understand the motivation for this change,
|
---|
1215 | read Michele Simionato's article
|
---|
1216 | \ulink{``Python 2.3 Method Resolution Order''}
|
---|
1217 | {http://www.python.org/2.3/mro.html}, or
|
---|
1218 | read the thread on python-dev starting with the message at
|
---|
1219 | \url{http://mail.python.org/pipermail/python-dev/2002-October/029035.html}.
|
---|
1220 | Samuele Pedroni first pointed out the problem and also implemented the
|
---|
1221 | fix by coding the C3 algorithm.
|
---|
1222 |
|
---|
1223 | \item Python runs multithreaded programs by switching between threads
|
---|
1224 | after executing N bytecodes. The default value for N has been
|
---|
1225 | increased from 10 to 100 bytecodes, speeding up single-threaded
|
---|
1226 | applications by reducing the switching overhead. Some multithreaded
|
---|
1227 | applications may suffer slower response time, but that's easily fixed
|
---|
1228 | by setting the limit back to a lower number using
|
---|
1229 | \function{sys.setcheckinterval(\var{N})}.
|
---|
1230 | The limit can be retrieved with the new
|
---|
1231 | \function{sys.getcheckinterval()} function.
|
---|
1232 |
|
---|
1233 | \item One minor but far-reaching change is that the names of extension
|
---|
1234 | types defined by the modules included with Python now contain the
|
---|
1235 | module and a \character{.} in front of the type name. For example, in
|
---|
1236 | Python 2.2, if you created a socket and printed its
|
---|
1237 | \member{__class__}, you'd get this output:
|
---|
1238 |
|
---|
1239 | \begin{verbatim}
|
---|
1240 | >>> s = socket.socket()
|
---|
1241 | >>> s.__class__
|
---|
1242 | <type 'socket'>
|
---|
1243 | \end{verbatim}
|
---|
1244 |
|
---|
1245 | In 2.3, you get this:
|
---|
1246 | \begin{verbatim}
|
---|
1247 | >>> s.__class__
|
---|
1248 | <type '_socket.socket'>
|
---|
1249 | \end{verbatim}
|
---|
1250 |
|
---|
1251 | \item One of the noted incompatibilities between old- and new-style
|
---|
1252 | classes has been removed: you can now assign to the
|
---|
1253 | \member{__name__} and \member{__bases__} attributes of new-style
|
---|
1254 | classes. There are some restrictions on what can be assigned to
|
---|
1255 | \member{__bases__} along the lines of those relating to assigning to
|
---|
1256 | an instance's \member{__class__} attribute.
|
---|
1257 |
|
---|
1258 | \end{itemize}
|
---|
1259 |
|
---|
1260 |
|
---|
1261 | %======================================================================
|
---|
1262 | \subsection{String Changes}
|
---|
1263 |
|
---|
1264 | \begin{itemize}
|
---|
1265 |
|
---|
1266 | \item The \keyword{in} operator now works differently for strings.
|
---|
1267 | Previously, when evaluating \code{\var{X} in \var{Y}} where \var{X}
|
---|
1268 | and \var{Y} are strings, \var{X} could only be a single character.
|
---|
1269 | That's now changed; \var{X} can be a string of any length, and
|
---|
1270 | \code{\var{X} in \var{Y}} will return \constant{True} if \var{X} is a
|
---|
1271 | substring of \var{Y}. If \var{X} is the empty string, the result is
|
---|
1272 | always \constant{True}.
|
---|
1273 |
|
---|
1274 | \begin{verbatim}
|
---|
1275 | >>> 'ab' in 'abcd'
|
---|
1276 | True
|
---|
1277 | >>> 'ad' in 'abcd'
|
---|
1278 | False
|
---|
1279 | >>> '' in 'abcd'
|
---|
1280 | True
|
---|
1281 | \end{verbatim}
|
---|
1282 |
|
---|
1283 | Note that this doesn't tell you where the substring starts; if you
|
---|
1284 | need that information, use the \method{find()} string method.
|
---|
1285 |
|
---|
1286 | \item The \method{strip()}, \method{lstrip()}, and \method{rstrip()}
|
---|
1287 | string methods now have an optional argument for specifying the
|
---|
1288 | characters to strip. The default is still to remove all whitespace
|
---|
1289 | characters:
|
---|
1290 |
|
---|
1291 | \begin{verbatim}
|
---|
1292 | >>> ' abc '.strip()
|
---|
1293 | 'abc'
|
---|
1294 | >>> '><><abc<><><>'.strip('<>')
|
---|
1295 | 'abc'
|
---|
1296 | >>> '><><abc<><><>\n'.strip('<>')
|
---|
1297 | 'abc<><><>\n'
|
---|
1298 | >>> u'\u4000\u4001abc\u4000'.strip(u'\u4000')
|
---|
1299 | u'\u4001abc'
|
---|
1300 | >>>
|
---|
1301 | \end{verbatim}
|
---|
1302 |
|
---|
1303 | (Suggested by Simon Brunning and implemented by Walter D\"orwald.)
|
---|
1304 |
|
---|
1305 | \item The \method{startswith()} and \method{endswith()}
|
---|
1306 | string methods now accept negative numbers for the \var{start} and \var{end}
|
---|
1307 | parameters.
|
---|
1308 |
|
---|
1309 | \item Another new string method is \method{zfill()}, originally a
|
---|
1310 | function in the \module{string} module. \method{zfill()} pads a
|
---|
1311 | numeric string with zeros on the left until it's the specified width.
|
---|
1312 | Note that the \code{\%} operator is still more flexible and powerful
|
---|
1313 | than \method{zfill()}.
|
---|
1314 |
|
---|
1315 | \begin{verbatim}
|
---|
1316 | >>> '45'.zfill(4)
|
---|
1317 | '0045'
|
---|
1318 | >>> '12345'.zfill(4)
|
---|
1319 | '12345'
|
---|
1320 | >>> 'goofy'.zfill(6)
|
---|
1321 | '0goofy'
|
---|
1322 | \end{verbatim}
|
---|
1323 |
|
---|
1324 | (Contributed by Walter D\"orwald.)
|
---|
1325 |
|
---|
1326 | \item A new type object, \class{basestring}, has been added.
|
---|
1327 | Both 8-bit strings and Unicode strings inherit from this type, so
|
---|
1328 | \code{isinstance(obj, basestring)} will return \constant{True} for
|
---|
1329 | either kind of string. It's a completely abstract type, so you
|
---|
1330 | can't create \class{basestring} instances.
|
---|
1331 |
|
---|
1332 | \item Interned strings are no longer immortal and will now be
|
---|
1333 | garbage-collected in the usual way when the only reference to them is
|
---|
1334 | from the internal dictionary of interned strings. (Implemented by
|
---|
1335 | Oren Tirosh.)
|
---|
1336 |
|
---|
1337 | \end{itemize}
|
---|
1338 |
|
---|
1339 |
|
---|
1340 | %======================================================================
|
---|
1341 | \subsection{Optimizations}
|
---|
1342 |
|
---|
1343 | \begin{itemize}
|
---|
1344 |
|
---|
1345 | \item The creation of new-style class instances has been made much
|
---|
1346 | faster; they're now faster than classic classes!
|
---|
1347 |
|
---|
1348 | \item The \method{sort()} method of list objects has been extensively
|
---|
1349 | rewritten by Tim Peters, and the implementation is significantly
|
---|
1350 | faster.
|
---|
1351 |
|
---|
1352 | \item Multiplication of large long integers is now much faster thanks
|
---|
1353 | to an implementation of Karatsuba multiplication, an algorithm that
|
---|
1354 | scales better than the O(n*n) required for the grade-school
|
---|
1355 | multiplication algorithm. (Original patch by Christopher A. Craig,
|
---|
1356 | and significantly reworked by Tim Peters.)
|
---|
1357 |
|
---|
1358 | \item The \code{SET_LINENO} opcode is now gone. This may provide a
|
---|
1359 | small speed increase, depending on your compiler's idiosyncrasies.
|
---|
1360 | See section~\ref{section-other} for a longer explanation.
|
---|
1361 | (Removed by Michael Hudson.)
|
---|
1362 |
|
---|
1363 | \item \function{xrange()} objects now have their own iterator, making
|
---|
1364 | \code{for i in xrange(n)} slightly faster than
|
---|
1365 | \code{for i in range(n)}. (Patch by Raymond Hettinger.)
|
---|
1366 |
|
---|
1367 | \item A number of small rearrangements have been made in various
|
---|
1368 | hotspots to improve performance, such as inlining a function or removing
|
---|
1369 | some code. (Implemented mostly by GvR, but lots of people have
|
---|
1370 | contributed single changes.)
|
---|
1371 |
|
---|
1372 | \end{itemize}
|
---|
1373 |
|
---|
1374 | The net result of the 2.3 optimizations is that Python 2.3 runs the
|
---|
1375 | pystone benchmark around 25\% faster than Python 2.2.
|
---|
1376 |
|
---|
1377 |
|
---|
1378 | %======================================================================
|
---|
1379 | \section{New, Improved, and Deprecated Modules}
|
---|
1380 |
|
---|
1381 | As usual, Python's standard library received a number of enhancements and
|
---|
1382 | bug fixes. Here's a partial list of the most notable changes, sorted
|
---|
1383 | alphabetically by module name. Consult the
|
---|
1384 | \file{Misc/NEWS} file in the source tree for a more
|
---|
1385 | complete list of changes, or look through the CVS logs for all the
|
---|
1386 | details.
|
---|
1387 |
|
---|
1388 | \begin{itemize}
|
---|
1389 |
|
---|
1390 | \item The \module{array} module now supports arrays of Unicode
|
---|
1391 | characters using the \character{u} format character. Arrays also now
|
---|
1392 | support using the \code{+=} assignment operator to add another array's
|
---|
1393 | contents, and the \code{*=} assignment operator to repeat an array.
|
---|
1394 | (Contributed by Jason Orendorff.)
|
---|
1395 |
|
---|
1396 | \item The \module{bsddb} module has been replaced by version 4.1.6
|
---|
1397 | of the \ulink{PyBSDDB}{http://pybsddb.sourceforge.net} package,
|
---|
1398 | providing a more complete interface to the transactional features of
|
---|
1399 | the BerkeleyDB library.
|
---|
1400 |
|
---|
1401 | The old version of the module has been renamed to
|
---|
1402 | \module{bsddb185} and is no longer built automatically; you'll
|
---|
1403 | have to edit \file{Modules/Setup} to enable it. Note that the new
|
---|
1404 | \module{bsddb} package is intended to be compatible with the
|
---|
1405 | old module, so be sure to file bugs if you discover any
|
---|
1406 | incompatibilities. When upgrading to Python 2.3, if the new interpreter is compiled
|
---|
1407 | with a new version of
|
---|
1408 | the underlying BerkeleyDB library, you will almost certainly have to
|
---|
1409 | convert your database files to the new version. You can do this
|
---|
1410 | fairly easily with the new scripts \file{db2pickle.py} and
|
---|
1411 | \file{pickle2db.py} which you will find in the distribution's
|
---|
1412 | \file{Tools/scripts} directory. If you've already been using the PyBSDDB
|
---|
1413 | package and importing it as \module{bsddb3}, you will have to change your
|
---|
1414 | \code{import} statements to import it as \module{bsddb}.
|
---|
1415 |
|
---|
1416 | \item The new \module{bz2} module is an interface to the bz2 data
|
---|
1417 | compression library. bz2-compressed data is usually smaller than
|
---|
1418 | corresponding \module{zlib}-compressed data. (Contributed by Gustavo Niemeyer.)
|
---|
1419 |
|
---|
1420 | \item A set of standard date/time types has been added in the new \module{datetime}
|
---|
1421 | module. See the following section for more details.
|
---|
1422 |
|
---|
1423 | \item The Distutils \class{Extension} class now supports
|
---|
1424 | an extra constructor argument named \var{depends} for listing
|
---|
1425 | additional source files that an extension depends on. This lets
|
---|
1426 | Distutils recompile the module if any of the dependency files are
|
---|
1427 | modified. For example, if \file{sampmodule.c} includes the header
|
---|
1428 | file \file{sample.h}, you would create the \class{Extension} object like
|
---|
1429 | this:
|
---|
1430 |
|
---|
1431 | \begin{verbatim}
|
---|
1432 | ext = Extension("samp",
|
---|
1433 | sources=["sampmodule.c"],
|
---|
1434 | depends=["sample.h"])
|
---|
1435 | \end{verbatim}
|
---|
1436 |
|
---|
1437 | Modifying \file{sample.h} would then cause the module to be recompiled.
|
---|
1438 | (Contributed by Jeremy Hylton.)
|
---|
1439 |
|
---|
1440 | \item Other minor changes to Distutils:
|
---|
1441 | it now checks for the \envvar{CC}, \envvar{CFLAGS}, \envvar{CPP},
|
---|
1442 | \envvar{LDFLAGS}, and \envvar{CPPFLAGS} environment variables, using
|
---|
1443 | them to override the settings in Python's configuration (contributed
|
---|
1444 | by Robert Weber).
|
---|
1445 |
|
---|
1446 | \item Previously the \module{doctest} module would only search the
|
---|
1447 | docstrings of public methods and functions for test cases, but it now
|
---|
1448 | also examines private ones as well. The \function{DocTestSuite(}
|
---|
1449 | function creates a \class{unittest.TestSuite} object from a set of
|
---|
1450 | \module{doctest} tests.
|
---|
1451 |
|
---|
1452 | \item The new \function{gc.get_referents(\var{object})} function returns a
|
---|
1453 | list of all the objects referenced by \var{object}.
|
---|
1454 |
|
---|
1455 | \item The \module{getopt} module gained a new function,
|
---|
1456 | \function{gnu_getopt()}, that supports the same arguments as the existing
|
---|
1457 | \function{getopt()} function but uses GNU-style scanning mode.
|
---|
1458 | The existing \function{getopt()} stops processing options as soon as a
|
---|
1459 | non-option argument is encountered, but in GNU-style mode processing
|
---|
1460 | continues, meaning that options and arguments can be mixed. For
|
---|
1461 | example:
|
---|
1462 |
|
---|
1463 | \begin{verbatim}
|
---|
1464 | >>> getopt.getopt(['-f', 'filename', 'output', '-v'], 'f:v')
|
---|
1465 | ([('-f', 'filename')], ['output', '-v'])
|
---|
1466 | >>> getopt.gnu_getopt(['-f', 'filename', 'output', '-v'], 'f:v')
|
---|
1467 | ([('-f', 'filename'), ('-v', '')], ['output'])
|
---|
1468 | \end{verbatim}
|
---|
1469 |
|
---|
1470 | (Contributed by Peter \AA{strand}.)
|
---|
1471 |
|
---|
1472 | \item The \module{grp}, \module{pwd}, and \module{resource} modules
|
---|
1473 | now return enhanced tuples:
|
---|
1474 |
|
---|
1475 | \begin{verbatim}
|
---|
1476 | >>> import grp
|
---|
1477 | >>> g = grp.getgrnam('amk')
|
---|
1478 | >>> g.gr_name, g.gr_gid
|
---|
1479 | ('amk', 500)
|
---|
1480 | \end{verbatim}
|
---|
1481 |
|
---|
1482 | \item The \module{gzip} module can now handle files exceeding 2~GiB.
|
---|
1483 |
|
---|
1484 | \item The new \module{heapq} module contains an implementation of a
|
---|
1485 | heap queue algorithm. A heap is an array-like data structure that
|
---|
1486 | keeps items in a partially sorted order such that, for every index
|
---|
1487 | \var{k}, \code{heap[\var{k}] <= heap[2*\var{k}+1]} and
|
---|
1488 | \code{heap[\var{k}] <= heap[2*\var{k}+2]}. This makes it quick to
|
---|
1489 | remove the smallest item, and inserting a new item while maintaining
|
---|
1490 | the heap property is O(lg~n). (See
|
---|
1491 | \url{http://www.nist.gov/dads/HTML/priorityque.html} for more
|
---|
1492 | information about the priority queue data structure.)
|
---|
1493 |
|
---|
1494 | The \module{heapq} module provides \function{heappush()} and
|
---|
1495 | \function{heappop()} functions for adding and removing items while
|
---|
1496 | maintaining the heap property on top of some other mutable Python
|
---|
1497 | sequence type. Here's an example that uses a Python list:
|
---|
1498 |
|
---|
1499 | \begin{verbatim}
|
---|
1500 | >>> import heapq
|
---|
1501 | >>> heap = []
|
---|
1502 | >>> for item in [3, 7, 5, 11, 1]:
|
---|
1503 | ... heapq.heappush(heap, item)
|
---|
1504 | ...
|
---|
1505 | >>> heap
|
---|
1506 | [1, 3, 5, 11, 7]
|
---|
1507 | >>> heapq.heappop(heap)
|
---|
1508 | 1
|
---|
1509 | >>> heapq.heappop(heap)
|
---|
1510 | 3
|
---|
1511 | >>> heap
|
---|
1512 | [5, 7, 11]
|
---|
1513 | \end{verbatim}
|
---|
1514 |
|
---|
1515 | (Contributed by Kevin O'Connor.)
|
---|
1516 |
|
---|
1517 | \item The IDLE integrated development environment has been updated
|
---|
1518 | using the code from the IDLEfork project
|
---|
1519 | (\url{http://idlefork.sf.net}). The most notable feature is that the
|
---|
1520 | code being developed is now executed in a subprocess, meaning that
|
---|
1521 | there's no longer any need for manual \code{reload()} operations.
|
---|
1522 | IDLE's core code has been incorporated into the standard library as the
|
---|
1523 | \module{idlelib} package.
|
---|
1524 |
|
---|
1525 | \item The \module{imaplib} module now supports IMAP over SSL.
|
---|
1526 | (Contributed by Piers Lauder and Tino Lange.)
|
---|
1527 |
|
---|
1528 | \item The \module{itertools} contains a number of useful functions for
|
---|
1529 | use with iterators, inspired by various functions provided by the ML
|
---|
1530 | and Haskell languages. For example,
|
---|
1531 | \code{itertools.ifilter(predicate, iterator)} returns all elements in
|
---|
1532 | the iterator for which the function \function{predicate()} returns
|
---|
1533 | \constant{True}, and \code{itertools.repeat(obj, \var{N})} returns
|
---|
1534 | \code{obj} \var{N} times. There are a number of other functions in
|
---|
1535 | the module; see the \ulink{package's reference
|
---|
1536 | documentation}{../lib/module-itertools.html} for details.
|
---|
1537 | (Contributed by Raymond Hettinger.)
|
---|
1538 |
|
---|
1539 | \item Two new functions in the \module{math} module,
|
---|
1540 | \function{degrees(\var{rads})} and \function{radians(\var{degs})},
|
---|
1541 | convert between radians and degrees. Other functions in the
|
---|
1542 | \module{math} module such as \function{math.sin()} and
|
---|
1543 | \function{math.cos()} have always required input values measured in
|
---|
1544 | radians. Also, an optional \var{base} argument was added to
|
---|
1545 | \function{math.log()} to make it easier to compute logarithms for
|
---|
1546 | bases other than \code{e} and \code{10}. (Contributed by Raymond
|
---|
1547 | Hettinger.)
|
---|
1548 |
|
---|
1549 | \item Several new POSIX functions (\function{getpgid()}, \function{killpg()},
|
---|
1550 | \function{lchown()}, \function{loadavg()}, \function{major()}, \function{makedev()},
|
---|
1551 | \function{minor()}, and \function{mknod()}) were added to the
|
---|
1552 | \module{posix} module that underlies the \module{os} module.
|
---|
1553 | (Contributed by Gustavo Niemeyer, Geert Jansen, and Denis S. Otkidach.)
|
---|
1554 |
|
---|
1555 | \item In the \module{os} module, the \function{*stat()} family of
|
---|
1556 | functions can now report fractions of a second in a timestamp. Such
|
---|
1557 | time stamps are represented as floats, similar to
|
---|
1558 | the value returned by \function{time.time()}.
|
---|
1559 |
|
---|
1560 | During testing, it was found that some applications will break if time
|
---|
1561 | stamps are floats. For compatibility, when using the tuple interface
|
---|
1562 | of the \class{stat_result} time stamps will be represented as integers.
|
---|
1563 | When using named fields (a feature first introduced in Python 2.2),
|
---|
1564 | time stamps are still represented as integers, unless
|
---|
1565 | \function{os.stat_float_times()} is invoked to enable float return
|
---|
1566 | values:
|
---|
1567 |
|
---|
1568 | \begin{verbatim}
|
---|
1569 | >>> os.stat("/tmp").st_mtime
|
---|
1570 | 1034791200
|
---|
1571 | >>> os.stat_float_times(True)
|
---|
1572 | >>> os.stat("/tmp").st_mtime
|
---|
1573 | 1034791200.6335014
|
---|
1574 | \end{verbatim}
|
---|
1575 |
|
---|
1576 | In Python 2.4, the default will change to always returning floats.
|
---|
1577 |
|
---|
1578 | Application developers should enable this feature only if all their
|
---|
1579 | libraries work properly when confronted with floating point time
|
---|
1580 | stamps, or if they use the tuple API. If used, the feature should be
|
---|
1581 | activated on an application level instead of trying to enable it on a
|
---|
1582 | per-use basis.
|
---|
1583 |
|
---|
1584 | \item The \module{optparse} module contains a new parser for command-line arguments
|
---|
1585 | that can convert option values to a particular Python type
|
---|
1586 | and will automatically generate a usage message. See the following section for
|
---|
1587 | more details.
|
---|
1588 |
|
---|
1589 | \item The old and never-documented \module{linuxaudiodev} module has
|
---|
1590 | been deprecated, and a new version named \module{ossaudiodev} has been
|
---|
1591 | added. The module was renamed because the OSS sound drivers can be
|
---|
1592 | used on platforms other than Linux, and the interface has also been
|
---|
1593 | tidied and brought up to date in various ways. (Contributed by Greg
|
---|
1594 | Ward and Nicholas FitzRoy-Dale.)
|
---|
1595 |
|
---|
1596 | \item The new \module{platform} module contains a number of functions
|
---|
1597 | that try to determine various properties of the platform you're
|
---|
1598 | running on. There are functions for getting the architecture, CPU
|
---|
1599 | type, the Windows OS version, and even the Linux distribution version.
|
---|
1600 | (Contributed by Marc-Andr\'e Lemburg.)
|
---|
1601 |
|
---|
1602 | \item The parser objects provided by the \module{pyexpat} module
|
---|
1603 | can now optionally buffer character data, resulting in fewer calls to
|
---|
1604 | your character data handler and therefore faster performance. Setting
|
---|
1605 | the parser object's \member{buffer_text} attribute to \constant{True}
|
---|
1606 | will enable buffering.
|
---|
1607 |
|
---|
1608 | \item The \function{sample(\var{population}, \var{k})} function was
|
---|
1609 | added to the \module{random} module. \var{population} is a sequence or
|
---|
1610 | \class{xrange} object containing the elements of a population, and
|
---|
1611 | \function{sample()} chooses \var{k} elements from the population without
|
---|
1612 | replacing chosen elements. \var{k} can be any value up to
|
---|
1613 | \code{len(\var{population})}. For example:
|
---|
1614 |
|
---|
1615 | \begin{verbatim}
|
---|
1616 | >>> days = ['Mo', 'Tu', 'We', 'Th', 'Fr', 'St', 'Sn']
|
---|
1617 | >>> random.sample(days, 3) # Choose 3 elements
|
---|
1618 | ['St', 'Sn', 'Th']
|
---|
1619 | >>> random.sample(days, 7) # Choose 7 elements
|
---|
1620 | ['Tu', 'Th', 'Mo', 'We', 'St', 'Fr', 'Sn']
|
---|
1621 | >>> random.sample(days, 7) # Choose 7 again
|
---|
1622 | ['We', 'Mo', 'Sn', 'Fr', 'Tu', 'St', 'Th']
|
---|
1623 | >>> random.sample(days, 8) # Can't choose eight
|
---|
1624 | Traceback (most recent call last):
|
---|
1625 | File "<stdin>", line 1, in ?
|
---|
1626 | File "random.py", line 414, in sample
|
---|
1627 | raise ValueError, "sample larger than population"
|
---|
1628 | ValueError: sample larger than population
|
---|
1629 | >>> random.sample(xrange(1,10000,2), 10) # Choose ten odd nos. under 10000
|
---|
1630 | [3407, 3805, 1505, 7023, 2401, 2267, 9733, 3151, 8083, 9195]
|
---|
1631 | \end{verbatim}
|
---|
1632 |
|
---|
1633 | The \module{random} module now uses a new algorithm, the Mersenne
|
---|
1634 | Twister, implemented in C. It's faster and more extensively studied
|
---|
1635 | than the previous algorithm.
|
---|
1636 |
|
---|
1637 | (All changes contributed by Raymond Hettinger.)
|
---|
1638 |
|
---|
1639 | \item The \module{readline} module also gained a number of new
|
---|
1640 | functions: \function{get_history_item()},
|
---|
1641 | \function{get_current_history_length()}, and \function{redisplay()}.
|
---|
1642 |
|
---|
1643 | \item The \module{rexec} and \module{Bastion} modules have been
|
---|
1644 | declared dead, and attempts to import them will fail with a
|
---|
1645 | \exception{RuntimeError}. New-style classes provide new ways to break
|
---|
1646 | out of the restricted execution environment provided by
|
---|
1647 | \module{rexec}, and no one has interest in fixing them or time to do
|
---|
1648 | so. If you have applications using \module{rexec}, rewrite them to
|
---|
1649 | use something else.
|
---|
1650 |
|
---|
1651 | (Sticking with Python 2.2 or 2.1 will not make your applications any
|
---|
1652 | safer because there are known bugs in the \module{rexec} module in
|
---|
1653 | those versions. To repeat: if you're using \module{rexec}, stop using
|
---|
1654 | it immediately.)
|
---|
1655 |
|
---|
1656 | \item The \module{rotor} module has been deprecated because the
|
---|
1657 | algorithm it uses for encryption is not believed to be secure. If
|
---|
1658 | you need encryption, use one of the several AES Python modules
|
---|
1659 | that are available separately.
|
---|
1660 |
|
---|
1661 | \item The \module{shutil} module gained a \function{move(\var{src},
|
---|
1662 | \var{dest})} function that recursively moves a file or directory to a new
|
---|
1663 | location.
|
---|
1664 |
|
---|
1665 | \item Support for more advanced POSIX signal handling was added
|
---|
1666 | to the \module{signal} but then removed again as it proved impossible
|
---|
1667 | to make it work reliably across platforms.
|
---|
1668 |
|
---|
1669 | \item The \module{socket} module now supports timeouts. You
|
---|
1670 | can call the \method{settimeout(\var{t})} method on a socket object to
|
---|
1671 | set a timeout of \var{t} seconds. Subsequent socket operations that
|
---|
1672 | take longer than \var{t} seconds to complete will abort and raise a
|
---|
1673 | \exception{socket.timeout} exception.
|
---|
1674 |
|
---|
1675 | The original timeout implementation was by Tim O'Malley. Michael
|
---|
1676 | Gilfix integrated it into the Python \module{socket} module and
|
---|
1677 | shepherded it through a lengthy review. After the code was checked
|
---|
1678 | in, Guido van~Rossum rewrote parts of it. (This is a good example of
|
---|
1679 | a collaborative development process in action.)
|
---|
1680 |
|
---|
1681 | \item On Windows, the \module{socket} module now ships with Secure
|
---|
1682 | Sockets Layer (SSL) support.
|
---|
1683 |
|
---|
1684 | \item The value of the C \constant{PYTHON_API_VERSION} macro is now
|
---|
1685 | exposed at the Python level as \code{sys.api_version}. The current
|
---|
1686 | exception can be cleared by calling the new \function{sys.exc_clear()}
|
---|
1687 | function.
|
---|
1688 |
|
---|
1689 | \item The new \module{tarfile} module
|
---|
1690 | allows reading from and writing to \program{tar}-format archive files.
|
---|
1691 | (Contributed by Lars Gust\"abel.)
|
---|
1692 |
|
---|
1693 | \item The new \module{textwrap} module contains functions for wrapping
|
---|
1694 | strings containing paragraphs of text. The \function{wrap(\var{text},
|
---|
1695 | \var{width})} function takes a string and returns a list containing
|
---|
1696 | the text split into lines of no more than the chosen width. The
|
---|
1697 | \function{fill(\var{text}, \var{width})} function returns a single
|
---|
1698 | string, reformatted to fit into lines no longer than the chosen width.
|
---|
1699 | (As you can guess, \function{fill()} is built on top of
|
---|
1700 | \function{wrap()}. For example:
|
---|
1701 |
|
---|
1702 | \begin{verbatim}
|
---|
1703 | >>> import textwrap
|
---|
1704 | >>> paragraph = "Not a whit, we defy augury: ... more text ..."
|
---|
1705 | >>> textwrap.wrap(paragraph, 60)
|
---|
1706 | ["Not a whit, we defy augury: there's a special providence in",
|
---|
1707 | "the fall of a sparrow. If it be now, 'tis not to come; if it",
|
---|
1708 | ...]
|
---|
1709 | >>> print textwrap.fill(paragraph, 35)
|
---|
1710 | Not a whit, we defy augury: there's
|
---|
1711 | a special providence in the fall of
|
---|
1712 | a sparrow. If it be now, 'tis not
|
---|
1713 | to come; if it be not to come, it
|
---|
1714 | will be now; if it be not now, yet
|
---|
1715 | it will come: the readiness is all.
|
---|
1716 | >>>
|
---|
1717 | \end{verbatim}
|
---|
1718 |
|
---|
1719 | The module also contains a \class{TextWrapper} class that actually
|
---|
1720 | implements the text wrapping strategy. Both the
|
---|
1721 | \class{TextWrapper} class and the \function{wrap()} and
|
---|
1722 | \function{fill()} functions support a number of additional keyword
|
---|
1723 | arguments for fine-tuning the formatting; consult the \ulink{module's
|
---|
1724 | documentation}{../lib/module-textwrap.html} for details.
|
---|
1725 | (Contributed by Greg Ward.)
|
---|
1726 |
|
---|
1727 | \item The \module{thread} and \module{threading} modules now have
|
---|
1728 | companion modules, \module{dummy_thread} and \module{dummy_threading},
|
---|
1729 | that provide a do-nothing implementation of the \module{thread}
|
---|
1730 | module's interface for platforms where threads are not supported. The
|
---|
1731 | intention is to simplify thread-aware modules (ones that \emph{don't}
|
---|
1732 | rely on threads to run) by putting the following code at the top:
|
---|
1733 |
|
---|
1734 | \begin{verbatim}
|
---|
1735 | try:
|
---|
1736 | import threading as _threading
|
---|
1737 | except ImportError:
|
---|
1738 | import dummy_threading as _threading
|
---|
1739 | \end{verbatim}
|
---|
1740 |
|
---|
1741 | In this example, \module{_threading} is used as the module name to make
|
---|
1742 | it clear that the module being used is not necessarily the actual
|
---|
1743 | \module{threading} module. Code can call functions and use classes in
|
---|
1744 | \module{_threading} whether or not threads are supported, avoiding an
|
---|
1745 | \keyword{if} statement and making the code slightly clearer. This
|
---|
1746 | module will not magically make multithreaded code run without threads;
|
---|
1747 | code that waits for another thread to return or to do something will
|
---|
1748 | simply hang forever.
|
---|
1749 |
|
---|
1750 | \item The \module{time} module's \function{strptime()} function has
|
---|
1751 | long been an annoyance because it uses the platform C library's
|
---|
1752 | \function{strptime()} implementation, and different platforms
|
---|
1753 | sometimes have odd bugs. Brett Cannon contributed a portable
|
---|
1754 | implementation that's written in pure Python and should behave
|
---|
1755 | identically on all platforms.
|
---|
1756 |
|
---|
1757 | \item The new \module{timeit} module helps measure how long snippets
|
---|
1758 | of Python code take to execute. The \file{timeit.py} file can be run
|
---|
1759 | directly from the command line, or the module's \class{Timer} class
|
---|
1760 | can be imported and used directly. Here's a short example that
|
---|
1761 | figures out whether it's faster to convert an 8-bit string to Unicode
|
---|
1762 | by appending an empty Unicode string to it or by using the
|
---|
1763 | \function{unicode()} function:
|
---|
1764 |
|
---|
1765 | \begin{verbatim}
|
---|
1766 | import timeit
|
---|
1767 |
|
---|
1768 | timer1 = timeit.Timer('unicode("abc")')
|
---|
1769 | timer2 = timeit.Timer('"abc" + u""')
|
---|
1770 |
|
---|
1771 | # Run three trials
|
---|
1772 | print timer1.repeat(repeat=3, number=100000)
|
---|
1773 | print timer2.repeat(repeat=3, number=100000)
|
---|
1774 |
|
---|
1775 | # On my laptop this outputs:
|
---|
1776 | # [0.36831796169281006, 0.37441694736480713, 0.35304892063140869]
|
---|
1777 | # [0.17574405670166016, 0.18193507194519043, 0.17565798759460449]
|
---|
1778 | \end{verbatim}
|
---|
1779 |
|
---|
1780 | \item The \module{Tix} module has received various bug fixes and
|
---|
1781 | updates for the current version of the Tix package.
|
---|
1782 |
|
---|
1783 | \item The \module{Tkinter} module now works with a thread-enabled
|
---|
1784 | version of Tcl. Tcl's threading model requires that widgets only be
|
---|
1785 | accessed from the thread in which they're created; accesses from
|
---|
1786 | another thread can cause Tcl to panic. For certain Tcl interfaces,
|
---|
1787 | \module{Tkinter} will now automatically avoid this
|
---|
1788 | when a widget is accessed from a different thread by marshalling a
|
---|
1789 | command, passing it to the correct thread, and waiting for the
|
---|
1790 | results. Other interfaces can't be handled automatically but
|
---|
1791 | \module{Tkinter} will now raise an exception on such an access so that
|
---|
1792 | you can at least find out about the problem. See
|
---|
1793 | \url{http://mail.python.org/pipermail/python-dev/2002-December/031107.html} %
|
---|
1794 | for a more detailed explanation of this change. (Implemented by
|
---|
1795 | Martin von~L\"owis.)
|
---|
1796 |
|
---|
1797 | \item Calling Tcl methods through \module{_tkinter} no longer
|
---|
1798 | returns only strings. Instead, if Tcl returns other objects those
|
---|
1799 | objects are converted to their Python equivalent, if one exists, or
|
---|
1800 | wrapped with a \class{_tkinter.Tcl_Obj} object if no Python equivalent
|
---|
1801 | exists. This behavior can be controlled through the
|
---|
1802 | \method{wantobjects()} method of \class{tkapp} objects.
|
---|
1803 |
|
---|
1804 | When using \module{_tkinter} through the \module{Tkinter} module (as
|
---|
1805 | most Tkinter applications will), this feature is always activated. It
|
---|
1806 | should not cause compatibility problems, since Tkinter would always
|
---|
1807 | convert string results to Python types where possible.
|
---|
1808 |
|
---|
1809 | If any incompatibilities are found, the old behavior can be restored
|
---|
1810 | by setting the \member{wantobjects} variable in the \module{Tkinter}
|
---|
1811 | module to false before creating the first \class{tkapp} object.
|
---|
1812 |
|
---|
1813 | \begin{verbatim}
|
---|
1814 | import Tkinter
|
---|
1815 | Tkinter.wantobjects = 0
|
---|
1816 | \end{verbatim}
|
---|
1817 |
|
---|
1818 | Any breakage caused by this change should be reported as a bug.
|
---|
1819 |
|
---|
1820 | \item The \module{UserDict} module has a new \class{DictMixin} class which
|
---|
1821 | defines all dictionary methods for classes that already have a minimum
|
---|
1822 | mapping interface. This greatly simplifies writing classes that need
|
---|
1823 | to be substitutable for dictionaries, such as the classes in
|
---|
1824 | the \module{shelve} module.
|
---|
1825 |
|
---|
1826 | Adding the mix-in as a superclass provides the full dictionary
|
---|
1827 | interface whenever the class defines \method{__getitem__},
|
---|
1828 | \method{__setitem__}, \method{__delitem__}, and \method{keys}.
|
---|
1829 | For example:
|
---|
1830 |
|
---|
1831 | \begin{verbatim}
|
---|
1832 | >>> import UserDict
|
---|
1833 | >>> class SeqDict(UserDict.DictMixin):
|
---|
1834 | ... """Dictionary lookalike implemented with lists."""
|
---|
1835 | ... def __init__(self):
|
---|
1836 | ... self.keylist = []
|
---|
1837 | ... self.valuelist = []
|
---|
1838 | ... def __getitem__(self, key):
|
---|
1839 | ... try:
|
---|
1840 | ... i = self.keylist.index(key)
|
---|
1841 | ... except ValueError:
|
---|
1842 | ... raise KeyError
|
---|
1843 | ... return self.valuelist[i]
|
---|
1844 | ... def __setitem__(self, key, value):
|
---|
1845 | ... try:
|
---|
1846 | ... i = self.keylist.index(key)
|
---|
1847 | ... self.valuelist[i] = value
|
---|
1848 | ... except ValueError:
|
---|
1849 | ... self.keylist.append(key)
|
---|
1850 | ... self.valuelist.append(value)
|
---|
1851 | ... def __delitem__(self, key):
|
---|
1852 | ... try:
|
---|
1853 | ... i = self.keylist.index(key)
|
---|
1854 | ... except ValueError:
|
---|
1855 | ... raise KeyError
|
---|
1856 | ... self.keylist.pop(i)
|
---|
1857 | ... self.valuelist.pop(i)
|
---|
1858 | ... def keys(self):
|
---|
1859 | ... return list(self.keylist)
|
---|
1860 | ...
|
---|
1861 | >>> s = SeqDict()
|
---|
1862 | >>> dir(s) # See that other dictionary methods are implemented
|
---|
1863 | ['__cmp__', '__contains__', '__delitem__', '__doc__', '__getitem__',
|
---|
1864 | '__init__', '__iter__', '__len__', '__module__', '__repr__',
|
---|
1865 | '__setitem__', 'clear', 'get', 'has_key', 'items', 'iteritems',
|
---|
1866 | 'iterkeys', 'itervalues', 'keylist', 'keys', 'pop', 'popitem',
|
---|
1867 | 'setdefault', 'update', 'valuelist', 'values']
|
---|
1868 | \end{verbatim}
|
---|
1869 |
|
---|
1870 | (Contributed by Raymond Hettinger.)
|
---|
1871 |
|
---|
1872 | \item The DOM implementation
|
---|
1873 | in \module{xml.dom.minidom} can now generate XML output in a
|
---|
1874 | particular encoding by providing an optional encoding argument to
|
---|
1875 | the \method{toxml()} and \method{toprettyxml()} methods of DOM nodes.
|
---|
1876 |
|
---|
1877 | \item The \module{xmlrpclib} module now supports an XML-RPC extension
|
---|
1878 | for handling nil data values such as Python's \code{None}. Nil values
|
---|
1879 | are always supported on unmarshalling an XML-RPC response. To
|
---|
1880 | generate requests containing \code{None}, you must supply a true value
|
---|
1881 | for the \var{allow_none} parameter when creating a \class{Marshaller}
|
---|
1882 | instance.
|
---|
1883 |
|
---|
1884 | \item The new \module{DocXMLRPCServer} module allows writing
|
---|
1885 | self-documenting XML-RPC servers. Run it in demo mode (as a program)
|
---|
1886 | to see it in action. Pointing the Web browser to the RPC server
|
---|
1887 | produces pydoc-style documentation; pointing xmlrpclib to the
|
---|
1888 | server allows invoking the actual methods.
|
---|
1889 | (Contributed by Brian Quinlan.)
|
---|
1890 |
|
---|
1891 | \item Support for internationalized domain names (RFCs 3454, 3490,
|
---|
1892 | 3491, and 3492) has been added. The ``idna'' encoding can be used
|
---|
1893 | to convert between a Unicode domain name and the ASCII-compatible
|
---|
1894 | encoding (ACE) of that name.
|
---|
1895 |
|
---|
1896 | \begin{alltt}
|
---|
1897 | >{}>{}> u"www.Alliancefran\c caise.nu".encode("idna")
|
---|
1898 | 'www.xn--alliancefranaise-npb.nu'
|
---|
1899 | \end{alltt}
|
---|
1900 |
|
---|
1901 | The \module{socket} module has also been extended to transparently
|
---|
1902 | convert Unicode hostnames to the ACE version before passing them to
|
---|
1903 | the C library. Modules that deal with hostnames such as
|
---|
1904 | \module{httplib} and \module{ftplib}) also support Unicode host names;
|
---|
1905 | \module{httplib} also sends HTTP \samp{Host} headers using the ACE
|
---|
1906 | version of the domain name. \module{urllib} supports Unicode URLs
|
---|
1907 | with non-ASCII host names as long as the \code{path} part of the URL
|
---|
1908 | is ASCII only.
|
---|
1909 |
|
---|
1910 | To implement this change, the \module{stringprep} module, the
|
---|
1911 | \code{mkstringprep} tool and the \code{punycode} encoding have been added.
|
---|
1912 |
|
---|
1913 | \end{itemize}
|
---|
1914 |
|
---|
1915 |
|
---|
1916 | %======================================================================
|
---|
1917 | \subsection{Date/Time Type}
|
---|
1918 |
|
---|
1919 | Date and time types suitable for expressing timestamps were added as
|
---|
1920 | the \module{datetime} module. The types don't support different
|
---|
1921 | calendars or many fancy features, and just stick to the basics of
|
---|
1922 | representing time.
|
---|
1923 |
|
---|
1924 | The three primary types are: \class{date}, representing a day, month,
|
---|
1925 | and year; \class{time}, consisting of hour, minute, and second; and
|
---|
1926 | \class{datetime}, which contains all the attributes of both
|
---|
1927 | \class{date} and \class{time}. There's also a
|
---|
1928 | \class{timedelta} class representing differences between two points
|
---|
1929 | in time, and time zone logic is implemented by classes inheriting from
|
---|
1930 | the abstract \class{tzinfo} class.
|
---|
1931 |
|
---|
1932 | You can create instances of \class{date} and \class{time} by either
|
---|
1933 | supplying keyword arguments to the appropriate constructor,
|
---|
1934 | e.g. \code{datetime.date(year=1972, month=10, day=15)}, or by using
|
---|
1935 | one of a number of class methods. For example, the \method{date.today()}
|
---|
1936 | class method returns the current local date.
|
---|
1937 |
|
---|
1938 | Once created, instances of the date/time classes are all immutable.
|
---|
1939 | There are a number of methods for producing formatted strings from
|
---|
1940 | objects:
|
---|
1941 |
|
---|
1942 | \begin{verbatim}
|
---|
1943 | >>> import datetime
|
---|
1944 | >>> now = datetime.datetime.now()
|
---|
1945 | >>> now.isoformat()
|
---|
1946 | '2002-12-30T21:27:03.994956'
|
---|
1947 | >>> now.ctime() # Only available on date, datetime
|
---|
1948 | 'Mon Dec 30 21:27:03 2002'
|
---|
1949 | >>> now.strftime('%Y %d %b')
|
---|
1950 | '2002 30 Dec'
|
---|
1951 | \end{verbatim}
|
---|
1952 |
|
---|
1953 | The \method{replace()} method allows modifying one or more fields
|
---|
1954 | of a \class{date} or \class{datetime} instance, returning a new instance:
|
---|
1955 |
|
---|
1956 | \begin{verbatim}
|
---|
1957 | >>> d = datetime.datetime.now()
|
---|
1958 | >>> d
|
---|
1959 | datetime.datetime(2002, 12, 30, 22, 15, 38, 827738)
|
---|
1960 | >>> d.replace(year=2001, hour = 12)
|
---|
1961 | datetime.datetime(2001, 12, 30, 12, 15, 38, 827738)
|
---|
1962 | >>>
|
---|
1963 | \end{verbatim}
|
---|
1964 |
|
---|
1965 | Instances can be compared, hashed, and converted to strings (the
|
---|
1966 | result is the same as that of \method{isoformat()}). \class{date} and
|
---|
1967 | \class{datetime} instances can be subtracted from each other, and
|
---|
1968 | added to \class{timedelta} instances. The largest missing feature is
|
---|
1969 | that there's no standard library support for parsing strings and getting back a
|
---|
1970 | \class{date} or \class{datetime}.
|
---|
1971 |
|
---|
1972 | For more information, refer to the \ulink{module's reference
|
---|
1973 | documentation}{../lib/module-datetime.html}.
|
---|
1974 | (Contributed by Tim Peters.)
|
---|
1975 |
|
---|
1976 |
|
---|
1977 | %======================================================================
|
---|
1978 | \subsection{The optparse Module}
|
---|
1979 |
|
---|
1980 | The \module{getopt} module provides simple parsing of command-line
|
---|
1981 | arguments. The new \module{optparse} module (originally named Optik)
|
---|
1982 | provides more elaborate command-line parsing that follows the \UNIX{}
|
---|
1983 | conventions, automatically creates the output for \longprogramopt{help},
|
---|
1984 | and can perform different actions for different options.
|
---|
1985 |
|
---|
1986 | You start by creating an instance of \class{OptionParser} and telling
|
---|
1987 | it what your program's options are.
|
---|
1988 |
|
---|
1989 | \begin{verbatim}
|
---|
1990 | import sys
|
---|
1991 | from optparse import OptionParser
|
---|
1992 |
|
---|
1993 | op = OptionParser()
|
---|
1994 | op.add_option('-i', '--input',
|
---|
1995 | action='store', type='string', dest='input',
|
---|
1996 | help='set input filename')
|
---|
1997 | op.add_option('-l', '--length',
|
---|
1998 | action='store', type='int', dest='length',
|
---|
1999 | help='set maximum length of output')
|
---|
2000 | \end{verbatim}
|
---|
2001 |
|
---|
2002 | Parsing a command line is then done by calling the \method{parse_args()}
|
---|
2003 | method.
|
---|
2004 |
|
---|
2005 | \begin{verbatim}
|
---|
2006 | options, args = op.parse_args(sys.argv[1:])
|
---|
2007 | print options
|
---|
2008 | print args
|
---|
2009 | \end{verbatim}
|
---|
2010 |
|
---|
2011 | This returns an object containing all of the option values,
|
---|
2012 | and a list of strings containing the remaining arguments.
|
---|
2013 |
|
---|
2014 | Invoking the script with the various arguments now works as you'd
|
---|
2015 | expect it to. Note that the length argument is automatically
|
---|
2016 | converted to an integer.
|
---|
2017 |
|
---|
2018 | \begin{verbatim}
|
---|
2019 | $ ./python opt.py -i data arg1
|
---|
2020 | <Values at 0x400cad4c: {'input': 'data', 'length': None}>
|
---|
2021 | ['arg1']
|
---|
2022 | $ ./python opt.py --input=data --length=4
|
---|
2023 | <Values at 0x400cad2c: {'input': 'data', 'length': 4}>
|
---|
2024 | []
|
---|
2025 | $
|
---|
2026 | \end{verbatim}
|
---|
2027 |
|
---|
2028 | The help message is automatically generated for you:
|
---|
2029 |
|
---|
2030 | \begin{verbatim}
|
---|
2031 | $ ./python opt.py --help
|
---|
2032 | usage: opt.py [options]
|
---|
2033 |
|
---|
2034 | options:
|
---|
2035 | -h, --help show this help message and exit
|
---|
2036 | -iINPUT, --input=INPUT
|
---|
2037 | set input filename
|
---|
2038 | -lLENGTH, --length=LENGTH
|
---|
2039 | set maximum length of output
|
---|
2040 | $
|
---|
2041 | \end{verbatim}
|
---|
2042 | % $ prevent Emacs tex-mode from getting confused
|
---|
2043 |
|
---|
2044 | See the \ulink{module's documentation}{../lib/module-optparse.html}
|
---|
2045 | for more details.
|
---|
2046 |
|
---|
2047 | Optik was written by Greg Ward, with suggestions from the readers of
|
---|
2048 | the Getopt SIG.
|
---|
2049 |
|
---|
2050 |
|
---|
2051 | %======================================================================
|
---|
2052 | \section{Pymalloc: A Specialized Object Allocator\label{section-pymalloc}}
|
---|
2053 |
|
---|
2054 | Pymalloc, a specialized object allocator written by Vladimir
|
---|
2055 | Marangozov, was a feature added to Python 2.1. Pymalloc is intended
|
---|
2056 | to be faster than the system \cfunction{malloc()} and to have less
|
---|
2057 | memory overhead for allocation patterns typical of Python programs.
|
---|
2058 | The allocator uses C's \cfunction{malloc()} function to get large
|
---|
2059 | pools of memory and then fulfills smaller memory requests from these
|
---|
2060 | pools.
|
---|
2061 |
|
---|
2062 | In 2.1 and 2.2, pymalloc was an experimental feature and wasn't
|
---|
2063 | enabled by default; you had to explicitly enable it when compiling
|
---|
2064 | Python by providing the
|
---|
2065 | \longprogramopt{with-pymalloc} option to the \program{configure}
|
---|
2066 | script. In 2.3, pymalloc has had further enhancements and is now
|
---|
2067 | enabled by default; you'll have to supply
|
---|
2068 | \longprogramopt{without-pymalloc} to disable it.
|
---|
2069 |
|
---|
2070 | This change is transparent to code written in Python; however,
|
---|
2071 | pymalloc may expose bugs in C extensions. Authors of C extension
|
---|
2072 | modules should test their code with pymalloc enabled,
|
---|
2073 | because some incorrect code may cause core dumps at runtime.
|
---|
2074 |
|
---|
2075 | There's one particularly common error that causes problems. There are
|
---|
2076 | a number of memory allocation functions in Python's C API that have
|
---|
2077 | previously just been aliases for the C library's \cfunction{malloc()}
|
---|
2078 | and \cfunction{free()}, meaning that if you accidentally called
|
---|
2079 | mismatched functions the error wouldn't be noticeable. When the
|
---|
2080 | object allocator is enabled, these functions aren't aliases of
|
---|
2081 | \cfunction{malloc()} and \cfunction{free()} any more, and calling the
|
---|
2082 | wrong function to free memory may get you a core dump. For example,
|
---|
2083 | if memory was allocated using \cfunction{PyObject_Malloc()}, it has to
|
---|
2084 | be freed using \cfunction{PyObject_Free()}, not \cfunction{free()}. A
|
---|
2085 | few modules included with Python fell afoul of this and had to be
|
---|
2086 | fixed; doubtless there are more third-party modules that will have the
|
---|
2087 | same problem.
|
---|
2088 |
|
---|
2089 | As part of this change, the confusing multiple interfaces for
|
---|
2090 | allocating memory have been consolidated down into two API families.
|
---|
2091 | Memory allocated with one family must not be manipulated with
|
---|
2092 | functions from the other family. There is one family for allocating
|
---|
2093 | chunks of memory and another family of functions specifically for
|
---|
2094 | allocating Python objects.
|
---|
2095 |
|
---|
2096 | \begin{itemize}
|
---|
2097 | \item To allocate and free an undistinguished chunk of memory use
|
---|
2098 | the ``raw memory'' family: \cfunction{PyMem_Malloc()},
|
---|
2099 | \cfunction{PyMem_Realloc()}, and \cfunction{PyMem_Free()}.
|
---|
2100 |
|
---|
2101 | \item The ``object memory'' family is the interface to the pymalloc
|
---|
2102 | facility described above and is biased towards a large number of
|
---|
2103 | ``small'' allocations: \cfunction{PyObject_Malloc},
|
---|
2104 | \cfunction{PyObject_Realloc}, and \cfunction{PyObject_Free}.
|
---|
2105 |
|
---|
2106 | \item To allocate and free Python objects, use the ``object'' family
|
---|
2107 | \cfunction{PyObject_New()}, \cfunction{PyObject_NewVar()}, and
|
---|
2108 | \cfunction{PyObject_Del()}.
|
---|
2109 | \end{itemize}
|
---|
2110 |
|
---|
2111 | Thanks to lots of work by Tim Peters, pymalloc in 2.3 also provides
|
---|
2112 | debugging features to catch memory overwrites and doubled frees in
|
---|
2113 | both extension modules and in the interpreter itself. To enable this
|
---|
2114 | support, compile a debugging version of the Python interpreter by
|
---|
2115 | running \program{configure} with \longprogramopt{with-pydebug}.
|
---|
2116 |
|
---|
2117 | To aid extension writers, a header file \file{Misc/pymemcompat.h} is
|
---|
2118 | distributed with the source to Python 2.3 that allows Python
|
---|
2119 | extensions to use the 2.3 interfaces to memory allocation while
|
---|
2120 | compiling against any version of Python since 1.5.2. You would copy
|
---|
2121 | the file from Python's source distribution and bundle it with the
|
---|
2122 | source of your extension.
|
---|
2123 |
|
---|
2124 | \begin{seealso}
|
---|
2125 |
|
---|
2126 | \seeurl{http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/python/python/dist/src/Objects/obmalloc.c}
|
---|
2127 | {For the full details of the pymalloc implementation, see
|
---|
2128 | the comments at the top of the file \file{Objects/obmalloc.c} in the
|
---|
2129 | Python source code. The above link points to the file within the
|
---|
2130 | SourceForge CVS browser.}
|
---|
2131 |
|
---|
2132 | \end{seealso}
|
---|
2133 |
|
---|
2134 |
|
---|
2135 | % ======================================================================
|
---|
2136 | \section{Build and C API Changes}
|
---|
2137 |
|
---|
2138 | Changes to Python's build process and to the C API include:
|
---|
2139 |
|
---|
2140 | \begin{itemize}
|
---|
2141 |
|
---|
2142 | \item The cycle detection implementation used by the garbage collection
|
---|
2143 | has proven to be stable, so it's now been made mandatory. You can no
|
---|
2144 | longer compile Python without it, and the
|
---|
2145 | \longprogramopt{with-cycle-gc} switch to \program{configure} has been removed.
|
---|
2146 |
|
---|
2147 | \item Python can now optionally be built as a shared library
|
---|
2148 | (\file{libpython2.3.so}) by supplying \longprogramopt{enable-shared}
|
---|
2149 | when running Python's \program{configure} script. (Contributed by Ondrej
|
---|
2150 | Palkovsky.)
|
---|
2151 |
|
---|
2152 | \item The \csimplemacro{DL_EXPORT} and \csimplemacro{DL_IMPORT} macros
|
---|
2153 | are now deprecated. Initialization functions for Python extension
|
---|
2154 | modules should now be declared using the new macro
|
---|
2155 | \csimplemacro{PyMODINIT_FUNC}, while the Python core will generally
|
---|
2156 | use the \csimplemacro{PyAPI_FUNC} and \csimplemacro{PyAPI_DATA}
|
---|
2157 | macros.
|
---|
2158 |
|
---|
2159 | \item The interpreter can be compiled without any docstrings for
|
---|
2160 | the built-in functions and modules by supplying
|
---|
2161 | \longprogramopt{without-doc-strings} to the \program{configure} script.
|
---|
2162 | This makes the Python executable about 10\% smaller, but will also
|
---|
2163 | mean that you can't get help for Python's built-ins. (Contributed by
|
---|
2164 | Gustavo Niemeyer.)
|
---|
2165 |
|
---|
2166 | \item The \cfunction{PyArg_NoArgs()} macro is now deprecated, and code
|
---|
2167 | that uses it should be changed. For Python 2.2 and later, the method
|
---|
2168 | definition table can specify the
|
---|
2169 | \constant{METH_NOARGS} flag, signalling that there are no arguments, and
|
---|
2170 | the argument checking can then be removed. If compatibility with
|
---|
2171 | pre-2.2 versions of Python is important, the code could use
|
---|
2172 | \code{PyArg_ParseTuple(\var{args}, "")} instead, but this will be slower
|
---|
2173 | than using \constant{METH_NOARGS}.
|
---|
2174 |
|
---|
2175 | \item \cfunction{PyArg_ParseTuple()} accepts new format characters for various sizes of unsigned integers: \samp{B} for \ctype{unsigned char},
|
---|
2176 | \samp{H} for \ctype{unsigned short int},
|
---|
2177 | \samp{I} for \ctype{unsigned int},
|
---|
2178 | and \samp{K} for \ctype{unsigned long long}.
|
---|
2179 |
|
---|
2180 | \item A new function, \cfunction{PyObject_DelItemString(\var{mapping},
|
---|
2181 | char *\var{key})} was added as shorthand for
|
---|
2182 | \code{PyObject_DelItem(\var{mapping}, PyString_New(\var{key}))}.
|
---|
2183 |
|
---|
2184 | \item File objects now manage their internal string buffer
|
---|
2185 | differently, increasing it exponentially when needed. This results in
|
---|
2186 | the benchmark tests in \file{Lib/test/test_bufio.py} speeding up
|
---|
2187 | considerably (from 57 seconds to 1.7 seconds, according to one
|
---|
2188 | measurement).
|
---|
2189 |
|
---|
2190 | \item It's now possible to define class and static methods for a C
|
---|
2191 | extension type by setting either the \constant{METH_CLASS} or
|
---|
2192 | \constant{METH_STATIC} flags in a method's \ctype{PyMethodDef}
|
---|
2193 | structure.
|
---|
2194 |
|
---|
2195 | \item Python now includes a copy of the Expat XML parser's source code,
|
---|
2196 | removing any dependence on a system version or local installation of
|
---|
2197 | Expat.
|
---|
2198 |
|
---|
2199 | \item If you dynamically allocate type objects in your extension, you
|
---|
2200 | should be aware of a change in the rules relating to the
|
---|
2201 | \member{__module__} and \member{__name__} attributes. In summary,
|
---|
2202 | you will want to ensure the type's dictionary contains a
|
---|
2203 | \code{'__module__'} key; making the module name the part of the type
|
---|
2204 | name leading up to the final period will no longer have the desired
|
---|
2205 | effect. For more detail, read the API reference documentation or the
|
---|
2206 | source.
|
---|
2207 |
|
---|
2208 | \end{itemize}
|
---|
2209 |
|
---|
2210 |
|
---|
2211 | %======================================================================
|
---|
2212 | \subsection{Port-Specific Changes}
|
---|
2213 |
|
---|
2214 | Support for a port to IBM's OS/2 using the EMX runtime environment was
|
---|
2215 | merged into the main Python source tree. EMX is a POSIX emulation
|
---|
2216 | layer over the OS/2 system APIs. The Python port for EMX tries to
|
---|
2217 | support all the POSIX-like capability exposed by the EMX runtime, and
|
---|
2218 | mostly succeeds; \function{fork()} and \function{fcntl()} are
|
---|
2219 | restricted by the limitations of the underlying emulation layer. The
|
---|
2220 | standard OS/2 port, which uses IBM's Visual Age compiler, also gained
|
---|
2221 | support for case-sensitive import semantics as part of the integration
|
---|
2222 | of the EMX port into CVS. (Contributed by Andrew MacIntyre.)
|
---|
2223 |
|
---|
2224 | On MacOS, most toolbox modules have been weaklinked to improve
|
---|
2225 | backward compatibility. This means that modules will no longer fail
|
---|
2226 | to load if a single routine is missing on the current OS version.
|
---|
2227 | Instead calling the missing routine will raise an exception.
|
---|
2228 | (Contributed by Jack Jansen.)
|
---|
2229 |
|
---|
2230 | The RPM spec files, found in the \file{Misc/RPM/} directory in the
|
---|
2231 | Python source distribution, were updated for 2.3. (Contributed by
|
---|
2232 | Sean Reifschneider.)
|
---|
2233 |
|
---|
2234 | Other new platforms now supported by Python include AtheOS
|
---|
2235 | (\url{http://www.atheos.cx/}), GNU/Hurd, and OpenVMS.
|
---|
2236 |
|
---|
2237 |
|
---|
2238 | %======================================================================
|
---|
2239 | \section{Other Changes and Fixes \label{section-other}}
|
---|
2240 |
|
---|
2241 | As usual, there were a bunch of other improvements and bugfixes
|
---|
2242 | scattered throughout the source tree. A search through the CVS change
|
---|
2243 | logs finds there were 523 patches applied and 514 bugs fixed between
|
---|
2244 | Python 2.2 and 2.3. Both figures are likely to be underestimates.
|
---|
2245 |
|
---|
2246 | Some of the more notable changes are:
|
---|
2247 |
|
---|
2248 | \begin{itemize}
|
---|
2249 |
|
---|
2250 | \item If the \envvar{PYTHONINSPECT} environment variable is set, the
|
---|
2251 | Python interpreter will enter the interactive prompt after running a
|
---|
2252 | Python program, as if Python had been invoked with the \programopt{-i}
|
---|
2253 | option. The environment variable can be set before running the Python
|
---|
2254 | interpreter, or it can be set by the Python program as part of its
|
---|
2255 | execution.
|
---|
2256 |
|
---|
2257 | \item The \file{regrtest.py} script now provides a way to allow ``all
|
---|
2258 | resources except \var{foo}.'' A resource name passed to the
|
---|
2259 | \programopt{-u} option can now be prefixed with a hyphen
|
---|
2260 | (\character{-}) to mean ``remove this resource.'' For example, the
|
---|
2261 | option `\code{\programopt{-u}all,-bsddb}' could be used to enable the
|
---|
2262 | use of all resources except \code{bsddb}.
|
---|
2263 |
|
---|
2264 | \item The tools used to build the documentation now work under Cygwin
|
---|
2265 | as well as \UNIX.
|
---|
2266 |
|
---|
2267 | \item The \code{SET_LINENO} opcode has been removed. Back in the
|
---|
2268 | mists of time, this opcode was needed to produce line numbers in
|
---|
2269 | tracebacks and support trace functions (for, e.g., \module{pdb}).
|
---|
2270 | Since Python 1.5, the line numbers in tracebacks have been computed
|
---|
2271 | using a different mechanism that works with ``python -O''. For Python
|
---|
2272 | 2.3 Michael Hudson implemented a similar scheme to determine when to
|
---|
2273 | call the trace function, removing the need for \code{SET_LINENO}
|
---|
2274 | entirely.
|
---|
2275 |
|
---|
2276 | It would be difficult to detect any resulting difference from Python
|
---|
2277 | code, apart from a slight speed up when Python is run without
|
---|
2278 | \programopt{-O}.
|
---|
2279 |
|
---|
2280 | C extensions that access the \member{f_lineno} field of frame objects
|
---|
2281 | should instead call \code{PyCode_Addr2Line(f->f_code, f->f_lasti)}.
|
---|
2282 | This will have the added effect of making the code work as desired
|
---|
2283 | under ``python -O'' in earlier versions of Python.
|
---|
2284 |
|
---|
2285 | A nifty new feature is that trace functions can now assign to the
|
---|
2286 | \member{f_lineno} attribute of frame objects, changing the line that
|
---|
2287 | will be executed next. A \samp{jump} command has been added to the
|
---|
2288 | \module{pdb} debugger taking advantage of this new feature.
|
---|
2289 | (Implemented by Richie Hindle.)
|
---|
2290 |
|
---|
2291 | \end{itemize}
|
---|
2292 |
|
---|
2293 |
|
---|
2294 | %======================================================================
|
---|
2295 | \section{Porting to Python 2.3}
|
---|
2296 |
|
---|
2297 | This section lists previously described changes that may require
|
---|
2298 | changes to your code:
|
---|
2299 |
|
---|
2300 | \begin{itemize}
|
---|
2301 |
|
---|
2302 | \item \keyword{yield} is now always a keyword; if it's used as a
|
---|
2303 | variable name in your code, a different name must be chosen.
|
---|
2304 |
|
---|
2305 | \item For strings \var{X} and \var{Y}, \code{\var{X} in \var{Y}} now works
|
---|
2306 | if \var{X} is more than one character long.
|
---|
2307 |
|
---|
2308 | \item The \function{int()} type constructor will now return a long
|
---|
2309 | integer instead of raising an \exception{OverflowError} when a string
|
---|
2310 | or floating-point number is too large to fit into an integer.
|
---|
2311 |
|
---|
2312 | \item If you have Unicode strings that contain 8-bit characters, you
|
---|
2313 | must declare the file's encoding (UTF-8, Latin-1, or whatever) by
|
---|
2314 | adding a comment to the top of the file. See
|
---|
2315 | section~\ref{section-encodings} for more information.
|
---|
2316 |
|
---|
2317 | \item Calling Tcl methods through \module{_tkinter} no longer
|
---|
2318 | returns only strings. Instead, if Tcl returns other objects those
|
---|
2319 | objects are converted to their Python equivalent, if one exists, or
|
---|
2320 | wrapped with a \class{_tkinter.Tcl_Obj} object if no Python equivalent
|
---|
2321 | exists.
|
---|
2322 |
|
---|
2323 | \item Large octal and hex literals such as
|
---|
2324 | \code{0xffffffff} now trigger a \exception{FutureWarning}. Currently
|
---|
2325 | they're stored as 32-bit numbers and result in a negative value, but
|
---|
2326 | in Python 2.4 they'll become positive long integers.
|
---|
2327 |
|
---|
2328 | % The empty groups below prevent conversion to guillemets.
|
---|
2329 | There are a few ways to fix this warning. If you really need a
|
---|
2330 | positive number, just add an \samp{L} to the end of the literal. If
|
---|
2331 | you're trying to get a 32-bit integer with low bits set and have
|
---|
2332 | previously used an expression such as \code{\textasciitilde(1 <{}< 31)},
|
---|
2333 | it's probably
|
---|
2334 | clearest to start with all bits set and clear the desired upper bits.
|
---|
2335 | For example, to clear just the top bit (bit 31), you could write
|
---|
2336 | \code{0xffffffffL {\&}{\textasciitilde}(1L<{}<31)}.
|
---|
2337 |
|
---|
2338 | \item You can no longer disable assertions by assigning to \code{__debug__}.
|
---|
2339 |
|
---|
2340 | \item The Distutils \function{setup()} function has gained various new
|
---|
2341 | keyword arguments such as \var{depends}. Old versions of the
|
---|
2342 | Distutils will abort if passed unknown keywords. A solution is to check
|
---|
2343 | for the presence of the new \function{get_distutil_options()} function
|
---|
2344 | in your \file{setup.py} and only uses the new keywords
|
---|
2345 | with a version of the Distutils that supports them:
|
---|
2346 |
|
---|
2347 | \begin{verbatim}
|
---|
2348 | from distutils import core
|
---|
2349 |
|
---|
2350 | kw = {'sources': 'foo.c', ...}
|
---|
2351 | if hasattr(core, 'get_distutil_options'):
|
---|
2352 | kw['depends'] = ['foo.h']
|
---|
2353 | ext = Extension(**kw)
|
---|
2354 | \end{verbatim}
|
---|
2355 |
|
---|
2356 | \item Using \code{None} as a variable name will now result in a
|
---|
2357 | \exception{SyntaxWarning} warning.
|
---|
2358 |
|
---|
2359 | \item Names of extension types defined by the modules included with
|
---|
2360 | Python now contain the module and a \character{.} in front of the type
|
---|
2361 | name.
|
---|
2362 |
|
---|
2363 | \end{itemize}
|
---|
2364 |
|
---|
2365 |
|
---|
2366 | %======================================================================
|
---|
2367 | \section{Acknowledgements \label{acks}}
|
---|
2368 |
|
---|
2369 | The author would like to thank the following people for offering
|
---|
2370 | suggestions, corrections and assistance with various drafts of this
|
---|
2371 | article: Jeff Bauer, Simon Brunning, Brett Cannon, Michael Chermside,
|
---|
2372 | Andrew Dalke, Scott David Daniels, Fred~L. Drake, Jr., David Fraser,
|
---|
2373 | Kelly Gerber,
|
---|
2374 | Raymond Hettinger, Michael Hudson, Chris Lambert, Detlef Lannert,
|
---|
2375 | Martin von~L\"owis, Andrew MacIntyre, Lalo Martins, Chad Netzer,
|
---|
2376 | Gustavo Niemeyer, Neal Norwitz, Hans Nowak, Chris Reedy, Francesco
|
---|
2377 | Ricciardi, Vinay Sajip, Neil Schemenauer, Roman Suzi, Jason Tishler,
|
---|
2378 | Just van~Rossum.
|
---|
2379 |
|
---|
2380 | \end{document}
|
---|