1 | /* memrchr -- find the last occurrence of a byte in a memory block
|
---|
2 |
|
---|
3 | Copyright (C) 1991, 1993, 1996, 1997, 1999, 2000, 2003, 2004, 2005,
|
---|
4 | 2006 Free Software Foundation, Inc.
|
---|
5 |
|
---|
6 | Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
|
---|
7 | with help from Dan Sahlin (dan@sics.se) and
|
---|
8 | commentary by Jim Blandy (jimb@ai.mit.edu);
|
---|
9 | adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
|
---|
10 | and implemented by Roland McGrath (roland@ai.mit.edu).
|
---|
11 |
|
---|
12 | This program is free software; you can redistribute it and/or modify
|
---|
13 | it under the terms of the GNU General Public License as published by
|
---|
14 | the Free Software Foundation; either version 2, or (at your option)
|
---|
15 | any later version.
|
---|
16 |
|
---|
17 | This program is distributed in the hope that it will be useful,
|
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
20 | GNU General Public License for more details.
|
---|
21 |
|
---|
22 | You should have received a copy of the GNU General Public License along
|
---|
23 | with this program; if not, write to the Free Software Foundation,
|
---|
24 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
---|
25 |
|
---|
26 | #if defined _LIBC
|
---|
27 | # include <string.h>
|
---|
28 | # include <memcopy.h>
|
---|
29 | #else
|
---|
30 | # include <config.h>
|
---|
31 | # include "memrchr.h"
|
---|
32 | # define reg_char char
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | #include <limits.h>
|
---|
36 |
|
---|
37 | #undef __memrchr
|
---|
38 | #undef memrchr
|
---|
39 |
|
---|
40 | #ifndef weak_alias
|
---|
41 | # define __memrchr memrchr
|
---|
42 | #endif
|
---|
43 |
|
---|
44 | /* Search no more than N bytes of S for C. */
|
---|
45 | void *
|
---|
46 | __memrchr (void const *s, int c_in, size_t n)
|
---|
47 | {
|
---|
48 | const unsigned char *char_ptr;
|
---|
49 | const unsigned long int *longword_ptr;
|
---|
50 | unsigned long int longword, magic_bits, charmask;
|
---|
51 | unsigned reg_char c;
|
---|
52 | int i;
|
---|
53 |
|
---|
54 | c = (unsigned char) c_in;
|
---|
55 |
|
---|
56 | /* Handle the last few characters by reading one character at a time.
|
---|
57 | Do this until CHAR_PTR is aligned on a longword boundary. */
|
---|
58 | for (char_ptr = (const unsigned char *) s + n;
|
---|
59 | n > 0 && (size_t) char_ptr % sizeof longword != 0;
|
---|
60 | --n)
|
---|
61 | if (*--char_ptr == c)
|
---|
62 | return (void *) char_ptr;
|
---|
63 |
|
---|
64 | /* All these elucidatory comments refer to 4-byte longwords,
|
---|
65 | but the theory applies equally well to any size longwords. */
|
---|
66 |
|
---|
67 | longword_ptr = (const unsigned long int *) char_ptr;
|
---|
68 |
|
---|
69 | /* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
|
---|
70 | the "holes." Note that there is a hole just to the left of
|
---|
71 | each byte, with an extra at the end:
|
---|
72 |
|
---|
73 | bits: 01111110 11111110 11111110 11111111
|
---|
74 | bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
|
---|
75 |
|
---|
76 | The 1-bits make sure that carries propagate to the next 0-bit.
|
---|
77 | The 0-bits provide holes for carries to fall into. */
|
---|
78 |
|
---|
79 | /* Set MAGIC_BITS to be this pattern of 1 and 0 bits.
|
---|
80 | Set CHARMASK to be a longword, each of whose bytes is C. */
|
---|
81 |
|
---|
82 | magic_bits = 0xfefefefe;
|
---|
83 | charmask = c | (c << 8);
|
---|
84 | charmask |= charmask << 16;
|
---|
85 | #if 0xffffffffU < ULONG_MAX
|
---|
86 | magic_bits |= magic_bits << 32;
|
---|
87 | charmask |= charmask << 32;
|
---|
88 | if (8 < sizeof longword)
|
---|
89 | for (i = 64; i < sizeof longword * 8; i *= 2)
|
---|
90 | {
|
---|
91 | magic_bits |= magic_bits << i;
|
---|
92 | charmask |= charmask << i;
|
---|
93 | }
|
---|
94 | #endif
|
---|
95 | magic_bits = (ULONG_MAX >> 1) & (magic_bits | 1);
|
---|
96 |
|
---|
97 | /* Instead of the traditional loop which tests each character,
|
---|
98 | we will test a longword at a time. The tricky part is testing
|
---|
99 | if *any of the four* bytes in the longword in question are zero. */
|
---|
100 | while (n >= sizeof longword)
|
---|
101 | {
|
---|
102 | /* We tentatively exit the loop if adding MAGIC_BITS to
|
---|
103 | LONGWORD fails to change any of the hole bits of LONGWORD.
|
---|
104 |
|
---|
105 | 1) Is this safe? Will it catch all the zero bytes?
|
---|
106 | Suppose there is a byte with all zeros. Any carry bits
|
---|
107 | propagating from its left will fall into the hole at its
|
---|
108 | least significant bit and stop. Since there will be no
|
---|
109 | carry from its most significant bit, the LSB of the
|
---|
110 | byte to the left will be unchanged, and the zero will be
|
---|
111 | detected.
|
---|
112 |
|
---|
113 | 2) Is this worthwhile? Will it ignore everything except
|
---|
114 | zero bytes? Suppose every byte of LONGWORD has a bit set
|
---|
115 | somewhere. There will be a carry into bit 8. If bit 8
|
---|
116 | is set, this will carry into bit 16. If bit 8 is clear,
|
---|
117 | one of bits 9-15 must be set, so there will be a carry
|
---|
118 | into bit 16. Similarly, there will be a carry into bit
|
---|
119 | 24. If one of bits 24-30 is set, there will be a carry
|
---|
120 | into bit 31, so all of the hole bits will be changed.
|
---|
121 |
|
---|
122 | The one misfire occurs when bits 24-30 are clear and bit
|
---|
123 | 31 is set; in this case, the hole at bit 31 is not
|
---|
124 | changed. If we had access to the processor carry flag,
|
---|
125 | we could close this loophole by putting the fourth hole
|
---|
126 | at bit 32!
|
---|
127 |
|
---|
128 | So it ignores everything except 128's, when they're aligned
|
---|
129 | properly.
|
---|
130 |
|
---|
131 | 3) But wait! Aren't we looking for C, not zero?
|
---|
132 | Good point. So what we do is XOR LONGWORD with a longword,
|
---|
133 | each of whose bytes is C. This turns each byte that is C
|
---|
134 | into a zero. */
|
---|
135 |
|
---|
136 | longword = *--longword_ptr ^ charmask;
|
---|
137 |
|
---|
138 | /* Add MAGIC_BITS to LONGWORD. */
|
---|
139 | if ((((longword + magic_bits)
|
---|
140 |
|
---|
141 | /* Set those bits that were unchanged by the addition. */
|
---|
142 | ^ ~longword)
|
---|
143 |
|
---|
144 | /* Look at only the hole bits. If any of the hole bits
|
---|
145 | are unchanged, most likely one of the bytes was a
|
---|
146 | zero. */
|
---|
147 | & ~magic_bits) != 0)
|
---|
148 | {
|
---|
149 | /* Which of the bytes was C? If none of them were, it was
|
---|
150 | a misfire; continue the search. */
|
---|
151 |
|
---|
152 | const unsigned char *cp = (const unsigned char *) longword_ptr;
|
---|
153 |
|
---|
154 | if (8 < sizeof longword)
|
---|
155 | for (i = sizeof longword - 1; 8 <= i; i--)
|
---|
156 | if (cp[i] == c)
|
---|
157 | return (void *) &cp[i];
|
---|
158 | if (7 < sizeof longword && cp[7] == c)
|
---|
159 | return (void *) &cp[7];
|
---|
160 | if (6 < sizeof longword && cp[6] == c)
|
---|
161 | return (void *) &cp[6];
|
---|
162 | if (5 < sizeof longword && cp[5] == c)
|
---|
163 | return (void *) &cp[5];
|
---|
164 | if (4 < sizeof longword && cp[4] == c)
|
---|
165 | return (void *) &cp[4];
|
---|
166 | if (cp[3] == c)
|
---|
167 | return (void *) &cp[3];
|
---|
168 | if (cp[2] == c)
|
---|
169 | return (void *) &cp[2];
|
---|
170 | if (cp[1] == c)
|
---|
171 | return (void *) &cp[1];
|
---|
172 | if (cp[0] == c)
|
---|
173 | return (void *) cp;
|
---|
174 | }
|
---|
175 |
|
---|
176 | n -= sizeof longword;
|
---|
177 | }
|
---|
178 |
|
---|
179 | char_ptr = (const unsigned char *) longword_ptr;
|
---|
180 |
|
---|
181 | while (n-- > 0)
|
---|
182 | {
|
---|
183 | if (*--char_ptr == c)
|
---|
184 | return (void *) char_ptr;
|
---|
185 | }
|
---|
186 |
|
---|
187 | return 0;
|
---|
188 | }
|
---|
189 | #ifdef weak_alias
|
---|
190 | weak_alias (__memrchr, memrchr)
|
---|
191 | #endif
|
---|