| 1 | /* Inflate deflated data | 
|---|
| 2 |  | 
|---|
| 3 | Copyright (C) 1997, 1998, 1999, 2002, 2006 Free Software | 
|---|
| 4 | Foundation, Inc. | 
|---|
| 5 |  | 
|---|
| 6 | This program is free software; you can redistribute it and/or modify | 
|---|
| 7 | it under the terms of the GNU General Public License as published by | 
|---|
| 8 | the Free Software Foundation; either version 2, or (at your option) | 
|---|
| 9 | any later version. | 
|---|
| 10 |  | 
|---|
| 11 | This program is distributed in the hope that it will be useful, | 
|---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 14 | GNU General Public License for more details. | 
|---|
| 15 |  | 
|---|
| 16 | You should have received a copy of the GNU General Public License | 
|---|
| 17 | along with this program; if not, write to the Free Software Foundation, | 
|---|
| 18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */ | 
|---|
| 19 |  | 
|---|
| 20 | /* Not copyrighted 1992 by Mark Adler | 
|---|
| 21 | version c10p1, 10 January 1993 */ | 
|---|
| 22 |  | 
|---|
| 23 | /* You can do whatever you like with this source file, though I would | 
|---|
| 24 | prefer that if you modify it and redistribute it that you include | 
|---|
| 25 | comments to that effect with your name and the date.  Thank you. | 
|---|
| 26 | [The history has been moved to the file ChangeLog.] | 
|---|
| 27 | */ | 
|---|
| 28 |  | 
|---|
| 29 | /* | 
|---|
| 30 | Inflate deflated (PKZIP's method 8 compressed) data.  The compression | 
|---|
| 31 | method searches for as much of the current string of bytes (up to a | 
|---|
| 32 | length of 258) in the previous 32K bytes.  If it doesn't find any | 
|---|
| 33 | matches (of at least length 3), it codes the next byte.  Otherwise, it | 
|---|
| 34 | codes the length of the matched string and its distance backwards from | 
|---|
| 35 | the current position.  There is a single Huffman code that codes both | 
|---|
| 36 | single bytes (called "literals") and match lengths.  A second Huffman | 
|---|
| 37 | code codes the distance information, which follows a length code.  Each | 
|---|
| 38 | length or distance code actually represents a base value and a number | 
|---|
| 39 | of "extra" (sometimes zero) bits to get to add to the base value.  At | 
|---|
| 40 | the end of each deflated block is a special end-of-block (EOB) literal/ | 
|---|
| 41 | length code.  The decoding process is basically: get a literal/length | 
|---|
| 42 | code; if EOB then done; if a literal, emit the decoded byte; if a | 
|---|
| 43 | length then get the distance and emit the referred-to bytes from the | 
|---|
| 44 | sliding window of previously emitted data. | 
|---|
| 45 |  | 
|---|
| 46 | There are (currently) three kinds of inflate blocks: stored, fixed, and | 
|---|
| 47 | dynamic.  The compressor deals with some chunk of data at a time, and | 
|---|
| 48 | decides which method to use on a chunk-by-chunk basis.  A chunk might | 
|---|
| 49 | typically be 32K or 64K.  If the chunk is uncompressible, then the | 
|---|
| 50 | "stored" method is used.  In this case, the bytes are simply stored as | 
|---|
| 51 | is, eight bits per byte, with none of the above coding.  The bytes are | 
|---|
| 52 | preceded by a count, since there is no longer an EOB code. | 
|---|
| 53 |  | 
|---|
| 54 | If the data is compressible, then either the fixed or dynamic methods | 
|---|
| 55 | are used.  In the dynamic method, the compressed data is preceded by | 
|---|
| 56 | an encoding of the literal/length and distance Huffman codes that are | 
|---|
| 57 | to be used to decode this block.  The representation is itself Huffman | 
|---|
| 58 | coded, and so is preceded by a description of that code.  These code | 
|---|
| 59 | descriptions take up a little space, and so for small blocks, there is | 
|---|
| 60 | a predefined set of codes, called the fixed codes.  The fixed method is | 
|---|
| 61 | used if the block codes up smaller that way (usually for quite small | 
|---|
| 62 | chunks), otherwise the dynamic method is used.  In the latter case, the | 
|---|
| 63 | codes are customized to the probabilities in the current block, and so | 
|---|
| 64 | can code it much better than the pre-determined fixed codes. | 
|---|
| 65 |  | 
|---|
| 66 | The Huffman codes themselves are decoded using a multi-level table | 
|---|
| 67 | lookup, in order to maximize the speed of decoding plus the speed of | 
|---|
| 68 | building the decoding tables.  See the comments below that precede the | 
|---|
| 69 | lbits and dbits tuning parameters. | 
|---|
| 70 | */ | 
|---|
| 71 |  | 
|---|
| 72 |  | 
|---|
| 73 | /* | 
|---|
| 74 | Notes beyond the 1.93a appnote.txt: | 
|---|
| 75 |  | 
|---|
| 76 | 1. Distance pointers never point before the beginning of the output | 
|---|
| 77 | stream. | 
|---|
| 78 | 2. Distance pointers can point back across blocks, up to 32k away. | 
|---|
| 79 | 3. There is an implied maximum of 7 bits for the bit length table and | 
|---|
| 80 | 15 bits for the actual data. | 
|---|
| 81 | 4. If only one code exists, then it is encoded using one bit.  (Zero | 
|---|
| 82 | would be more efficient, but perhaps a little confusing.)  If two | 
|---|
| 83 | codes exist, they are coded using one bit each (0 and 1). | 
|---|
| 84 | 5. There is no way of sending zero distance codes--a dummy must be | 
|---|
| 85 | sent if there are none.  (History: a pre 2.0 version of PKZIP would | 
|---|
| 86 | store blocks with no distance codes, but this was discovered to be | 
|---|
| 87 | too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow | 
|---|
| 88 | zero distance codes, which is sent as one code of zero bits in | 
|---|
| 89 | length. | 
|---|
| 90 | 6. There are up to 286 literal/length codes.  Code 256 represents the | 
|---|
| 91 | end-of-block.  Note however that the static length tree defines | 
|---|
| 92 | 288 codes just to fill out the Huffman codes.  Codes 286 and 287 | 
|---|
| 93 | cannot be used though, since there is no length base or extra bits | 
|---|
| 94 | defined for them.  Similarly, there are up to 30 distance codes. | 
|---|
| 95 | However, static trees define 32 codes (all 5 bits) to fill out the | 
|---|
| 96 | Huffman codes, but the last two had better not show up in the data. | 
|---|
| 97 | 7. Unzip can check dynamic Huffman blocks for complete code sets. | 
|---|
| 98 | The exception is that a single code would not be complete (see #4). | 
|---|
| 99 | 8. The five bits following the block type is really the number of | 
|---|
| 100 | literal codes sent minus 257. | 
|---|
| 101 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits | 
|---|
| 102 | (1+6+6).  Therefore, to output three times the length, you output | 
|---|
| 103 | three codes (1+1+1), whereas to output four times the same length, | 
|---|
| 104 | you only need two codes (1+3).  Hmm. | 
|---|
| 105 | 10. In the tree reconstruction algorithm, Code = Code + Increment | 
|---|
| 106 | only if BitLength(i) is not zero.  (Pretty obvious.) | 
|---|
| 107 | 11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19) | 
|---|
| 108 | 12. Note: length code 284 can represent 227-258, but length code 285 | 
|---|
| 109 | really is 258.  The last length deserves its own, short code | 
|---|
| 110 | since it gets used a lot in very redundant files.  The length | 
|---|
| 111 | 258 is special since 258 - 3 (the min match length) is 255. | 
|---|
| 112 | 13. The literal/length and distance code bit lengths are read as a | 
|---|
| 113 | single stream of lengths.  It is possible (and advantageous) for | 
|---|
| 114 | a repeat code (16, 17, or 18) to go across the boundary between | 
|---|
| 115 | the two sets of lengths. | 
|---|
| 116 | */ | 
|---|
| 117 |  | 
|---|
| 118 | #ifdef RCSID | 
|---|
| 119 | static char rcsid[] = "$Id: inflate.c,v 1.6 2006/12/20 23:30:17 eggert Exp $"; | 
|---|
| 120 | #endif | 
|---|
| 121 |  | 
|---|
| 122 | #include <config.h> | 
|---|
| 123 | #include "tailor.h" | 
|---|
| 124 |  | 
|---|
| 125 | #if defined STDC_HEADERS || defined HAVE_STDLIB_H | 
|---|
| 126 | #  include <stdlib.h> | 
|---|
| 127 | #endif | 
|---|
| 128 |  | 
|---|
| 129 | #include "gzip.h" | 
|---|
| 130 | #define slide window | 
|---|
| 131 |  | 
|---|
| 132 | /* Huffman code lookup table entry--this entry is four bytes for machines | 
|---|
| 133 | that have 16-bit pointers (e.g. PC's in the small or medium model). | 
|---|
| 134 | Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16 | 
|---|
| 135 | means that v is a literal, 16 < e < 32 means that v is a pointer to | 
|---|
| 136 | the next table, which codes e - 16 bits, and lastly e == 99 indicates | 
|---|
| 137 | an unused code.  If a code with e == 99 is looked up, this implies an | 
|---|
| 138 | error in the data. */ | 
|---|
| 139 | struct huft { | 
|---|
| 140 | uch e;                /* number of extra bits or operation */ | 
|---|
| 141 | uch b;                /* number of bits in this code or subcode */ | 
|---|
| 142 | union { | 
|---|
| 143 | ush n;              /* literal, length base, or distance base */ | 
|---|
| 144 | struct huft *t;     /* pointer to next level of table */ | 
|---|
| 145 | } v; | 
|---|
| 146 | }; | 
|---|
| 147 |  | 
|---|
| 148 |  | 
|---|
| 149 | /* Function prototypes */ | 
|---|
| 150 | int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *, | 
|---|
| 151 | struct huft **, int *)); | 
|---|
| 152 | int huft_free OF((struct huft *)); | 
|---|
| 153 | int inflate_codes OF((struct huft *, struct huft *, int, int)); | 
|---|
| 154 | int inflate_stored OF((void)); | 
|---|
| 155 | int inflate_fixed OF((void)); | 
|---|
| 156 | int inflate_dynamic OF((void)); | 
|---|
| 157 | int inflate_block OF((int *)); | 
|---|
| 158 | int inflate OF((void)); | 
|---|
| 159 |  | 
|---|
| 160 |  | 
|---|
| 161 | /* The inflate algorithm uses a sliding 32K byte window on the uncompressed | 
|---|
| 162 | stream to find repeated byte strings.  This is implemented here as a | 
|---|
| 163 | circular buffer.  The index is updated simply by incrementing and then | 
|---|
| 164 | and'ing with 0x7fff (32K-1). */ | 
|---|
| 165 | /* It is left to other modules to supply the 32K area.  It is assumed | 
|---|
| 166 | to be usable as if it were declared "uch slide[32768];" or as just | 
|---|
| 167 | "uch *slide;" and then malloc'ed in the latter case.  The definition | 
|---|
| 168 | must be in unzip.h, included above. */ | 
|---|
| 169 | /* unsigned wp;             current position in slide */ | 
|---|
| 170 | #define wp outcnt | 
|---|
| 171 | #define flush_output(w) (wp=(w),flush_window()) | 
|---|
| 172 |  | 
|---|
| 173 | /* Tables for deflate from PKZIP's appnote.txt. */ | 
|---|
| 174 | static unsigned border[] = {    /* Order of the bit length code lengths */ | 
|---|
| 175 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; | 
|---|
| 176 | static ush cplens[] = {         /* Copy lengths for literal codes 257..285 */ | 
|---|
| 177 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | 
|---|
| 178 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | 
|---|
| 179 | /* note: see note #13 above about the 258 in this list. */ | 
|---|
| 180 | static ush cplext[] = {         /* Extra bits for literal codes 257..285 */ | 
|---|
| 181 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | 
|---|
| 182 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ | 
|---|
| 183 | static ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */ | 
|---|
| 184 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | 
|---|
| 185 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | 
|---|
| 186 | 8193, 12289, 16385, 24577}; | 
|---|
| 187 | static ush cpdext[] = {         /* Extra bits for distance codes */ | 
|---|
| 188 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | 
|---|
| 189 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | 
|---|
| 190 | 12, 12, 13, 13}; | 
|---|
| 191 |  | 
|---|
| 192 |  | 
|---|
| 193 |  | 
|---|
| 194 | /* Macros for inflate() bit peeking and grabbing. | 
|---|
| 195 | The usage is: | 
|---|
| 196 |  | 
|---|
| 197 | NEEDBITS(j) | 
|---|
| 198 | x = b & mask_bits[j]; | 
|---|
| 199 | DUMPBITS(j) | 
|---|
| 200 |  | 
|---|
| 201 | where NEEDBITS makes sure that b has at least j bits in it, and | 
|---|
| 202 | DUMPBITS removes the bits from b.  The macros use the variable k | 
|---|
| 203 | for the number of bits in b.  Normally, b and k are register | 
|---|
| 204 | variables for speed, and are initialized at the beginning of a | 
|---|
| 205 | routine that uses these macros from a global bit buffer and count. | 
|---|
| 206 | The macros also use the variable w, which is a cached copy of wp. | 
|---|
| 207 |  | 
|---|
| 208 | If we assume that EOB will be the longest code, then we will never | 
|---|
| 209 | ask for bits with NEEDBITS that are beyond the end of the stream. | 
|---|
| 210 | So, NEEDBITS should not read any more bytes than are needed to | 
|---|
| 211 | meet the request.  Then no bytes need to be "returned" to the buffer | 
|---|
| 212 | at the end of the last block. | 
|---|
| 213 |  | 
|---|
| 214 | However, this assumption is not true for fixed blocks--the EOB code | 
|---|
| 215 | is 7 bits, but the other literal/length codes can be 8 or 9 bits. | 
|---|
| 216 | (The EOB code is shorter than other codes because fixed blocks are | 
|---|
| 217 | generally short.  So, while a block always has an EOB, many other | 
|---|
| 218 | literal/length codes have a significantly lower probability of | 
|---|
| 219 | showing up at all.)  However, by making the first table have a | 
|---|
| 220 | lookup of seven bits, the EOB code will be found in that first | 
|---|
| 221 | lookup, and so will not require that too many bits be pulled from | 
|---|
| 222 | the stream. | 
|---|
| 223 | */ | 
|---|
| 224 |  | 
|---|
| 225 | ulg bb;                         /* bit buffer */ | 
|---|
| 226 | unsigned bk;                    /* bits in bit buffer */ | 
|---|
| 227 |  | 
|---|
| 228 | ush mask_bits[] = { | 
|---|
| 229 | 0x0000, | 
|---|
| 230 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, | 
|---|
| 231 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff | 
|---|
| 232 | }; | 
|---|
| 233 |  | 
|---|
| 234 | #define GETBYTE() (inptr < insize ? inbuf[inptr++] : (wp = w, fill_inbuf(0))) | 
|---|
| 235 |  | 
|---|
| 236 | #ifdef CRYPT | 
|---|
| 237 | uch cc; | 
|---|
| 238 | #  define NEXTBYTE() \ | 
|---|
| 239 | (decrypt ? (cc = GETBYTE(), zdecode(cc), cc) : GETBYTE()) | 
|---|
| 240 | #else | 
|---|
| 241 | #  define NEXTBYTE()  (uch)GETBYTE() | 
|---|
| 242 | #endif | 
|---|
| 243 | #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} | 
|---|
| 244 | #define DUMPBITS(n) {b>>=(n);k-=(n);} | 
|---|
| 245 |  | 
|---|
| 246 |  | 
|---|
| 247 | /* | 
|---|
| 248 | Huffman code decoding is performed using a multi-level table lookup. | 
|---|
| 249 | The fastest way to decode is to simply build a lookup table whose | 
|---|
| 250 | size is determined by the longest code.  However, the time it takes | 
|---|
| 251 | to build this table can also be a factor if the data being decoded | 
|---|
| 252 | is not very long.  The most common codes are necessarily the | 
|---|
| 253 | shortest codes, so those codes dominate the decoding time, and hence | 
|---|
| 254 | the speed.  The idea is you can have a shorter table that decodes the | 
|---|
| 255 | shorter, more probable codes, and then point to subsidiary tables for | 
|---|
| 256 | the longer codes.  The time it costs to decode the longer codes is | 
|---|
| 257 | then traded against the time it takes to make longer tables. | 
|---|
| 258 |  | 
|---|
| 259 | This results of this trade are in the variables lbits and dbits | 
|---|
| 260 | below.  lbits is the number of bits the first level table for literal/ | 
|---|
| 261 | length codes can decode in one step, and dbits is the same thing for | 
|---|
| 262 | the distance codes.  Subsequent tables are also less than or equal to | 
|---|
| 263 | those sizes.  These values may be adjusted either when all of the | 
|---|
| 264 | codes are shorter than that, in which case the longest code length in | 
|---|
| 265 | bits is used, or when the shortest code is *longer* than the requested | 
|---|
| 266 | table size, in which case the length of the shortest code in bits is | 
|---|
| 267 | used. | 
|---|
| 268 |  | 
|---|
| 269 | There are two different values for the two tables, since they code a | 
|---|
| 270 | different number of possibilities each.  The literal/length table | 
|---|
| 271 | codes 286 possible values, or in a flat code, a little over eight | 
|---|
| 272 | bits.  The distance table codes 30 possible values, or a little less | 
|---|
| 273 | than five bits, flat.  The optimum values for speed end up being | 
|---|
| 274 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. | 
|---|
| 275 | The optimum values may differ though from machine to machine, and | 
|---|
| 276 | possibly even between compilers.  Your mileage may vary. | 
|---|
| 277 | */ | 
|---|
| 278 |  | 
|---|
| 279 |  | 
|---|
| 280 | int lbits = 9;          /* bits in base literal/length lookup table */ | 
|---|
| 281 | int dbits = 6;          /* bits in base distance lookup table */ | 
|---|
| 282 |  | 
|---|
| 283 |  | 
|---|
| 284 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ | 
|---|
| 285 | #define BMAX 16         /* maximum bit length of any code (16 for explode) */ | 
|---|
| 286 | #define N_MAX 288       /* maximum number of codes in any set */ | 
|---|
| 287 |  | 
|---|
| 288 |  | 
|---|
| 289 | unsigned hufts;         /* track memory usage */ | 
|---|
| 290 |  | 
|---|
| 291 |  | 
|---|
| 292 | int huft_build(b, n, s, d, e, t, m) | 
|---|
| 293 | unsigned *b;            /* code lengths in bits (all assumed <= BMAX) */ | 
|---|
| 294 | unsigned n;             /* number of codes (assumed <= N_MAX) */ | 
|---|
| 295 | unsigned s;             /* number of simple-valued codes (0..s-1) */ | 
|---|
| 296 | ush *d;                 /* list of base values for non-simple codes */ | 
|---|
| 297 | ush *e;                 /* list of extra bits for non-simple codes */ | 
|---|
| 298 | struct huft **t;        /* result: starting table */ | 
|---|
| 299 | int *m;                 /* maximum lookup bits, returns actual */ | 
|---|
| 300 | /* Given a list of code lengths and a maximum table size, make a set of | 
|---|
| 301 | tables to decode that set of codes.  Return zero on success, one if | 
|---|
| 302 | the given code set is incomplete (the tables are still built in this | 
|---|
| 303 | case), two if the input is invalid (all zero length codes or an | 
|---|
| 304 | oversubscribed set of lengths), and three if not enough memory. */ | 
|---|
| 305 | { | 
|---|
| 306 | unsigned a;                   /* counter for codes of length k */ | 
|---|
| 307 | unsigned c[BMAX+1];           /* bit length count table */ | 
|---|
| 308 | unsigned f;                   /* i repeats in table every f entries */ | 
|---|
| 309 | int g;                        /* maximum code length */ | 
|---|
| 310 | int h;                        /* table level */ | 
|---|
| 311 | register unsigned i;          /* counter, current code */ | 
|---|
| 312 | register unsigned j;          /* counter */ | 
|---|
| 313 | register int k;               /* number of bits in current code */ | 
|---|
| 314 | int l;                        /* bits per table (returned in m) */ | 
|---|
| 315 | register unsigned *p;         /* pointer into c[], b[], or v[] */ | 
|---|
| 316 | register struct huft *q;      /* points to current table */ | 
|---|
| 317 | struct huft r;                /* table entry for structure assignment */ | 
|---|
| 318 | struct huft *u[BMAX];         /* table stack */ | 
|---|
| 319 | unsigned v[N_MAX];            /* values in order of bit length */ | 
|---|
| 320 | register int w;               /* bits before this table == (l * h) */ | 
|---|
| 321 | unsigned x[BMAX+1];           /* bit offsets, then code stack */ | 
|---|
| 322 | unsigned *xp;                 /* pointer into x */ | 
|---|
| 323 | int y;                        /* number of dummy codes added */ | 
|---|
| 324 | unsigned z;                   /* number of entries in current table */ | 
|---|
| 325 |  | 
|---|
| 326 |  | 
|---|
| 327 | /* Generate counts for each bit length */ | 
|---|
| 328 | memzero(c, sizeof(c)); | 
|---|
| 329 | p = b;  i = n; | 
|---|
| 330 | do { | 
|---|
| 331 | Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), | 
|---|
| 332 | n-i, *p)); | 
|---|
| 333 | c[*p]++;                    /* assume all entries <= BMAX */ | 
|---|
| 334 | p++;                      /* Can't combine with above line (Solaris bug) */ | 
|---|
| 335 | } while (--i); | 
|---|
| 336 | if (c[0] == n)                /* null input--all zero length codes */ | 
|---|
| 337 | { | 
|---|
| 338 | q = (struct huft *) malloc (2 * sizeof *q); | 
|---|
| 339 | if (!q) | 
|---|
| 340 | return 3; | 
|---|
| 341 | hufts += 2; | 
|---|
| 342 | q[0].v.t = (struct huft *) NULL; | 
|---|
| 343 | q[1].e = 99;    /* invalid code marker */ | 
|---|
| 344 | q[1].b = 1; | 
|---|
| 345 | *t = q + 1; | 
|---|
| 346 | *m = 1; | 
|---|
| 347 | return 0; | 
|---|
| 348 | } | 
|---|
| 349 |  | 
|---|
| 350 |  | 
|---|
| 351 | /* Find minimum and maximum length, bound *m by those */ | 
|---|
| 352 | l = *m; | 
|---|
| 353 | for (j = 1; j <= BMAX; j++) | 
|---|
| 354 | if (c[j]) | 
|---|
| 355 | break; | 
|---|
| 356 | k = j;                        /* minimum code length */ | 
|---|
| 357 | if ((unsigned)l < j) | 
|---|
| 358 | l = j; | 
|---|
| 359 | for (i = BMAX; i; i--) | 
|---|
| 360 | if (c[i]) | 
|---|
| 361 | break; | 
|---|
| 362 | g = i;                        /* maximum code length */ | 
|---|
| 363 | if ((unsigned)l > i) | 
|---|
| 364 | l = i; | 
|---|
| 365 | *m = l; | 
|---|
| 366 |  | 
|---|
| 367 |  | 
|---|
| 368 | /* Adjust last length count to fill out codes, if needed */ | 
|---|
| 369 | for (y = 1 << j; j < i; j++, y <<= 1) | 
|---|
| 370 | if ((y -= c[j]) < 0) | 
|---|
| 371 | return 2;                 /* bad input: more codes than bits */ | 
|---|
| 372 | if ((y -= c[i]) < 0) | 
|---|
| 373 | return 2; | 
|---|
| 374 | c[i] += y; | 
|---|
| 375 |  | 
|---|
| 376 |  | 
|---|
| 377 | /* Generate starting offsets into the value table for each length */ | 
|---|
| 378 | x[1] = j = 0; | 
|---|
| 379 | p = c + 1;  xp = x + 2; | 
|---|
| 380 | while (--i) {                 /* note that i == g from above */ | 
|---|
| 381 | *xp++ = (j += *p++); | 
|---|
| 382 | } | 
|---|
| 383 |  | 
|---|
| 384 |  | 
|---|
| 385 | /* Make a table of values in order of bit lengths */ | 
|---|
| 386 | p = b;  i = 0; | 
|---|
| 387 | do { | 
|---|
| 388 | if ((j = *p++) != 0) | 
|---|
| 389 | v[x[j]++] = i; | 
|---|
| 390 | } while (++i < n); | 
|---|
| 391 | n = x[g];                   /* set n to length of v */ | 
|---|
| 392 |  | 
|---|
| 393 |  | 
|---|
| 394 | /* Generate the Huffman codes and for each, make the table entries */ | 
|---|
| 395 | x[0] = i = 0;                 /* first Huffman code is zero */ | 
|---|
| 396 | p = v;                        /* grab values in bit order */ | 
|---|
| 397 | h = -1;                       /* no tables yet--level -1 */ | 
|---|
| 398 | w = -l;                       /* bits decoded == (l * h) */ | 
|---|
| 399 | u[0] = (struct huft *)NULL;   /* just to keep compilers happy */ | 
|---|
| 400 | q = (struct huft *)NULL;      /* ditto */ | 
|---|
| 401 | z = 0;                        /* ditto */ | 
|---|
| 402 |  | 
|---|
| 403 | /* go through the bit lengths (k already is bits in shortest code) */ | 
|---|
| 404 | for (; k <= g; k++) | 
|---|
| 405 | { | 
|---|
| 406 | a = c[k]; | 
|---|
| 407 | while (a--) | 
|---|
| 408 | { | 
|---|
| 409 | /* here i is the Huffman code of length k bits for value *p */ | 
|---|
| 410 | /* make tables up to required level */ | 
|---|
| 411 | while (k > w + l) | 
|---|
| 412 | { | 
|---|
| 413 | h++; | 
|---|
| 414 | w += l;                 /* previous table always l bits */ | 
|---|
| 415 |  | 
|---|
| 416 | /* compute minimum size table less than or equal to l bits */ | 
|---|
| 417 | z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */ | 
|---|
| 418 | if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */ | 
|---|
| 419 | {                       /* too few codes for k-w bit table */ | 
|---|
| 420 | f -= a + 1;           /* deduct codes from patterns left */ | 
|---|
| 421 | xp = c + k; | 
|---|
| 422 | if (j < z) | 
|---|
| 423 | while (++j < z)       /* try smaller tables up to z bits */ | 
|---|
| 424 | { | 
|---|
| 425 | if ((f <<= 1) <= *++xp) | 
|---|
| 426 | break;            /* enough codes to use up j bits */ | 
|---|
| 427 | f -= *xp;           /* else deduct codes from patterns */ | 
|---|
| 428 | } | 
|---|
| 429 | } | 
|---|
| 430 | z = 1 << j;             /* table entries for j-bit table */ | 
|---|
| 431 |  | 
|---|
| 432 | /* allocate and link in new table */ | 
|---|
| 433 | if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == | 
|---|
| 434 | (struct huft *)NULL) | 
|---|
| 435 | { | 
|---|
| 436 | if (h) | 
|---|
| 437 | huft_free(u[0]); | 
|---|
| 438 | return 3;             /* not enough memory */ | 
|---|
| 439 | } | 
|---|
| 440 | hufts += z + 1;         /* track memory usage */ | 
|---|
| 441 | *t = q + 1;             /* link to list for huft_free() */ | 
|---|
| 442 | *(t = &(q->v.t)) = (struct huft *)NULL; | 
|---|
| 443 | u[h] = ++q;             /* table starts after link */ | 
|---|
| 444 |  | 
|---|
| 445 | /* connect to last table, if there is one */ | 
|---|
| 446 | if (h) | 
|---|
| 447 | { | 
|---|
| 448 | x[h] = i;             /* save pattern for backing up */ | 
|---|
| 449 | r.b = (uch)l;         /* bits to dump before this table */ | 
|---|
| 450 | r.e = (uch)(16 + j);  /* bits in this table */ | 
|---|
| 451 | r.v.t = q;            /* pointer to this table */ | 
|---|
| 452 | j = i >> (w - l);     /* (get around Turbo C bug) */ | 
|---|
| 453 | u[h-1][j] = r;        /* connect to last table */ | 
|---|
| 454 | } | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | /* set up table entry in r */ | 
|---|
| 458 | r.b = (uch)(k - w); | 
|---|
| 459 | if (p >= v + n) | 
|---|
| 460 | r.e = 99;               /* out of values--invalid code */ | 
|---|
| 461 | else if (*p < s) | 
|---|
| 462 | { | 
|---|
| 463 | r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */ | 
|---|
| 464 | r.v.n = (ush)(*p);             /* simple code is just the value */ | 
|---|
| 465 | p++;                           /* one compiler does not like *p++ */ | 
|---|
| 466 | } | 
|---|
| 467 | else | 
|---|
| 468 | { | 
|---|
| 469 | r.e = (uch)e[*p - s];   /* non-simple--look up in lists */ | 
|---|
| 470 | r.v.n = d[*p++ - s]; | 
|---|
| 471 | } | 
|---|
| 472 |  | 
|---|
| 473 | /* fill code-like entries with r */ | 
|---|
| 474 | f = 1 << (k - w); | 
|---|
| 475 | for (j = i >> w; j < z; j += f) | 
|---|
| 476 | q[j] = r; | 
|---|
| 477 |  | 
|---|
| 478 | /* backwards increment the k-bit code i */ | 
|---|
| 479 | for (j = 1 << (k - 1); i & j; j >>= 1) | 
|---|
| 480 | i ^= j; | 
|---|
| 481 | i ^= j; | 
|---|
| 482 |  | 
|---|
| 483 | /* backup over finished tables */ | 
|---|
| 484 | while ((i & ((1 << w) - 1)) != x[h]) | 
|---|
| 485 | { | 
|---|
| 486 | h--;                    /* don't need to update q */ | 
|---|
| 487 | w -= l; | 
|---|
| 488 | } | 
|---|
| 489 | } | 
|---|
| 490 | } | 
|---|
| 491 |  | 
|---|
| 492 |  | 
|---|
| 493 | /* Return true (1) if we were given an incomplete table */ | 
|---|
| 494 | return y != 0 && g != 1; | 
|---|
| 495 | } | 
|---|
| 496 |  | 
|---|
| 497 |  | 
|---|
| 498 |  | 
|---|
| 499 | int huft_free(t) | 
|---|
| 500 | struct huft *t;         /* table to free */ | 
|---|
| 501 | /* Free the malloc'ed tables built by huft_build(), which makes a linked | 
|---|
| 502 | list of the tables it made, with the links in a dummy first entry of | 
|---|
| 503 | each table. */ | 
|---|
| 504 | { | 
|---|
| 505 | register struct huft *p, *q; | 
|---|
| 506 |  | 
|---|
| 507 |  | 
|---|
| 508 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ | 
|---|
| 509 | p = t; | 
|---|
| 510 | while (p != (struct huft *)NULL) | 
|---|
| 511 | { | 
|---|
| 512 | q = (--p)->v.t; | 
|---|
| 513 | free((char*)p); | 
|---|
| 514 | p = q; | 
|---|
| 515 | } | 
|---|
| 516 | return 0; | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|
| 519 |  | 
|---|
| 520 | int inflate_codes(tl, td, bl, bd) | 
|---|
| 521 | struct huft *tl, *td;   /* literal/length and distance decoder tables */ | 
|---|
| 522 | int bl, bd;             /* number of bits decoded by tl[] and td[] */ | 
|---|
| 523 | /* inflate (decompress) the codes in a deflated (compressed) block. | 
|---|
| 524 | Return an error code or zero if it all goes ok. */ | 
|---|
| 525 | { | 
|---|
| 526 | register unsigned e;  /* table entry flag/number of extra bits */ | 
|---|
| 527 | unsigned n, d;        /* length and index for copy */ | 
|---|
| 528 | unsigned w;           /* current window position */ | 
|---|
| 529 | struct huft *t;       /* pointer to table entry */ | 
|---|
| 530 | unsigned ml, md;      /* masks for bl and bd bits */ | 
|---|
| 531 | register ulg b;       /* bit buffer */ | 
|---|
| 532 | register unsigned k;  /* number of bits in bit buffer */ | 
|---|
| 533 |  | 
|---|
| 534 |  | 
|---|
| 535 | /* make local copies of globals */ | 
|---|
| 536 | b = bb;                       /* initialize bit buffer */ | 
|---|
| 537 | k = bk; | 
|---|
| 538 | w = wp;                       /* initialize window position */ | 
|---|
| 539 |  | 
|---|
| 540 | /* inflate the coded data */ | 
|---|
| 541 | ml = mask_bits[bl];           /* precompute masks for speed */ | 
|---|
| 542 | md = mask_bits[bd]; | 
|---|
| 543 | for (;;)                      /* do until end of block */ | 
|---|
| 544 | { | 
|---|
| 545 | NEEDBITS((unsigned)bl) | 
|---|
| 546 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) | 
|---|
| 547 | do { | 
|---|
| 548 | if (e == 99) | 
|---|
| 549 | return 1; | 
|---|
| 550 | DUMPBITS(t->b) | 
|---|
| 551 | e -= 16; | 
|---|
| 552 | NEEDBITS(e) | 
|---|
| 553 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | 
|---|
| 554 | DUMPBITS(t->b) | 
|---|
| 555 | if (e == 16)                /* then it's a literal */ | 
|---|
| 556 | { | 
|---|
| 557 | slide[w++] = (uch)t->v.n; | 
|---|
| 558 | Tracevv((stderr, "%c", slide[w-1])); | 
|---|
| 559 | if (w == WSIZE) | 
|---|
| 560 | { | 
|---|
| 561 | flush_output(w); | 
|---|
| 562 | w = 0; | 
|---|
| 563 | } | 
|---|
| 564 | } | 
|---|
| 565 | else                        /* it's an EOB or a length */ | 
|---|
| 566 | { | 
|---|
| 567 | /* exit if end of block */ | 
|---|
| 568 | if (e == 15) | 
|---|
| 569 | break; | 
|---|
| 570 |  | 
|---|
| 571 | /* get length of block to copy */ | 
|---|
| 572 | NEEDBITS(e) | 
|---|
| 573 | n = t->v.n + ((unsigned)b & mask_bits[e]); | 
|---|
| 574 | DUMPBITS(e); | 
|---|
| 575 |  | 
|---|
| 576 | /* decode distance of block to copy */ | 
|---|
| 577 | NEEDBITS((unsigned)bd) | 
|---|
| 578 | if ((e = (t = td + ((unsigned)b & md))->e) > 16) | 
|---|
| 579 | do { | 
|---|
| 580 | if (e == 99) | 
|---|
| 581 | return 1; | 
|---|
| 582 | DUMPBITS(t->b) | 
|---|
| 583 | e -= 16; | 
|---|
| 584 | NEEDBITS(e) | 
|---|
| 585 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | 
|---|
| 586 | DUMPBITS(t->b) | 
|---|
| 587 | NEEDBITS(e) | 
|---|
| 588 | d = w - t->v.n - ((unsigned)b & mask_bits[e]); | 
|---|
| 589 | DUMPBITS(e) | 
|---|
| 590 | Tracevv((stderr,"\\[%d,%d]", w-d, n)); | 
|---|
| 591 |  | 
|---|
| 592 | /* do the copy */ | 
|---|
| 593 | do { | 
|---|
| 594 | n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); | 
|---|
| 595 | #if !defined(NOMEMCPY) && !defined(DEBUG) | 
|---|
| 596 | if (w - d >= e)         /* (this test assumes unsigned comparison) */ | 
|---|
| 597 | { | 
|---|
| 598 | memcpy(slide + w, slide + d, e); | 
|---|
| 599 | w += e; | 
|---|
| 600 | d += e; | 
|---|
| 601 | } | 
|---|
| 602 | else                      /* do it slow to avoid memcpy() overlap */ | 
|---|
| 603 | #endif /* !NOMEMCPY */ | 
|---|
| 604 | do { | 
|---|
| 605 | slide[w++] = slide[d++]; | 
|---|
| 606 | Tracevv((stderr, "%c", slide[w-1])); | 
|---|
| 607 | } while (--e); | 
|---|
| 608 | if (w == WSIZE) | 
|---|
| 609 | { | 
|---|
| 610 | flush_output(w); | 
|---|
| 611 | w = 0; | 
|---|
| 612 | } | 
|---|
| 613 | } while (n); | 
|---|
| 614 | } | 
|---|
| 615 | } | 
|---|
| 616 |  | 
|---|
| 617 |  | 
|---|
| 618 | /* restore the globals from the locals */ | 
|---|
| 619 | wp = w;                       /* restore global window pointer */ | 
|---|
| 620 | bb = b;                       /* restore global bit buffer */ | 
|---|
| 621 | bk = k; | 
|---|
| 622 |  | 
|---|
| 623 | /* done */ | 
|---|
| 624 | return 0; | 
|---|
| 625 | } | 
|---|
| 626 |  | 
|---|
| 627 |  | 
|---|
| 628 |  | 
|---|
| 629 | int inflate_stored() | 
|---|
| 630 | /* "decompress" an inflated type 0 (stored) block. */ | 
|---|
| 631 | { | 
|---|
| 632 | unsigned n;           /* number of bytes in block */ | 
|---|
| 633 | unsigned w;           /* current window position */ | 
|---|
| 634 | register ulg b;       /* bit buffer */ | 
|---|
| 635 | register unsigned k;  /* number of bits in bit buffer */ | 
|---|
| 636 |  | 
|---|
| 637 |  | 
|---|
| 638 | /* make local copies of globals */ | 
|---|
| 639 | b = bb;                       /* initialize bit buffer */ | 
|---|
| 640 | k = bk; | 
|---|
| 641 | w = wp;                       /* initialize window position */ | 
|---|
| 642 |  | 
|---|
| 643 |  | 
|---|
| 644 | /* go to byte boundary */ | 
|---|
| 645 | n = k & 7; | 
|---|
| 646 | DUMPBITS(n); | 
|---|
| 647 |  | 
|---|
| 648 |  | 
|---|
| 649 | /* get the length and its complement */ | 
|---|
| 650 | NEEDBITS(16) | 
|---|
| 651 | n = ((unsigned)b & 0xffff); | 
|---|
| 652 | DUMPBITS(16) | 
|---|
| 653 | NEEDBITS(16) | 
|---|
| 654 | if (n != (unsigned)((~b) & 0xffff)) | 
|---|
| 655 | return 1;                   /* error in compressed data */ | 
|---|
| 656 | DUMPBITS(16) | 
|---|
| 657 |  | 
|---|
| 658 |  | 
|---|
| 659 | /* read and output the compressed data */ | 
|---|
| 660 | while (n--) | 
|---|
| 661 | { | 
|---|
| 662 | NEEDBITS(8) | 
|---|
| 663 | slide[w++] = (uch)b; | 
|---|
| 664 | if (w == WSIZE) | 
|---|
| 665 | { | 
|---|
| 666 | flush_output(w); | 
|---|
| 667 | w = 0; | 
|---|
| 668 | } | 
|---|
| 669 | DUMPBITS(8) | 
|---|
| 670 | } | 
|---|
| 671 |  | 
|---|
| 672 |  | 
|---|
| 673 | /* restore the globals from the locals */ | 
|---|
| 674 | wp = w;                       /* restore global window pointer */ | 
|---|
| 675 | bb = b;                       /* restore global bit buffer */ | 
|---|
| 676 | bk = k; | 
|---|
| 677 | return 0; | 
|---|
| 678 | } | 
|---|
| 679 |  | 
|---|
| 680 |  | 
|---|
| 681 |  | 
|---|
| 682 | int inflate_fixed() | 
|---|
| 683 | /* decompress an inflated type 1 (fixed Huffman codes) block.  We should | 
|---|
| 684 | either replace this with a custom decoder, or at least precompute the | 
|---|
| 685 | Huffman tables. */ | 
|---|
| 686 | { | 
|---|
| 687 | int i;                /* temporary variable */ | 
|---|
| 688 | struct huft *tl;      /* literal/length code table */ | 
|---|
| 689 | struct huft *td;      /* distance code table */ | 
|---|
| 690 | int bl;               /* lookup bits for tl */ | 
|---|
| 691 | int bd;               /* lookup bits for td */ | 
|---|
| 692 | unsigned l[288];      /* length list for huft_build */ | 
|---|
| 693 |  | 
|---|
| 694 |  | 
|---|
| 695 | /* set up literal table */ | 
|---|
| 696 | for (i = 0; i < 144; i++) | 
|---|
| 697 | l[i] = 8; | 
|---|
| 698 | for (; i < 256; i++) | 
|---|
| 699 | l[i] = 9; | 
|---|
| 700 | for (; i < 280; i++) | 
|---|
| 701 | l[i] = 7; | 
|---|
| 702 | for (; i < 288; i++)          /* make a complete, but wrong code set */ | 
|---|
| 703 | l[i] = 8; | 
|---|
| 704 | bl = 7; | 
|---|
| 705 | if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) | 
|---|
| 706 | return i; | 
|---|
| 707 |  | 
|---|
| 708 |  | 
|---|
| 709 | /* set up distance table */ | 
|---|
| 710 | for (i = 0; i < 30; i++)      /* make an incomplete code set */ | 
|---|
| 711 | l[i] = 5; | 
|---|
| 712 | bd = 5; | 
|---|
| 713 | if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) | 
|---|
| 714 | { | 
|---|
| 715 | huft_free(tl); | 
|---|
| 716 | return i; | 
|---|
| 717 | } | 
|---|
| 718 |  | 
|---|
| 719 |  | 
|---|
| 720 | /* decompress until an end-of-block code */ | 
|---|
| 721 | if (inflate_codes(tl, td, bl, bd)) | 
|---|
| 722 | return 1; | 
|---|
| 723 |  | 
|---|
| 724 |  | 
|---|
| 725 | /* free the decoding tables, return */ | 
|---|
| 726 | huft_free(tl); | 
|---|
| 727 | huft_free(td); | 
|---|
| 728 | return 0; | 
|---|
| 729 | } | 
|---|
| 730 |  | 
|---|
| 731 |  | 
|---|
| 732 |  | 
|---|
| 733 | int inflate_dynamic() | 
|---|
| 734 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */ | 
|---|
| 735 | { | 
|---|
| 736 | int i;                /* temporary variables */ | 
|---|
| 737 | unsigned j; | 
|---|
| 738 | unsigned l;           /* last length */ | 
|---|
| 739 | unsigned m;           /* mask for bit lengths table */ | 
|---|
| 740 | unsigned n;           /* number of lengths to get */ | 
|---|
| 741 | unsigned w;           /* current window position */ | 
|---|
| 742 | struct huft *tl;      /* literal/length code table */ | 
|---|
| 743 | struct huft *td;      /* distance code table */ | 
|---|
| 744 | int bl;               /* lookup bits for tl */ | 
|---|
| 745 | int bd;               /* lookup bits for td */ | 
|---|
| 746 | unsigned nb;          /* number of bit length codes */ | 
|---|
| 747 | unsigned nl;          /* number of literal/length codes */ | 
|---|
| 748 | unsigned nd;          /* number of distance codes */ | 
|---|
| 749 | #ifdef PKZIP_BUG_WORKAROUND | 
|---|
| 750 | unsigned ll[288+32];  /* literal/length and distance code lengths */ | 
|---|
| 751 | #else | 
|---|
| 752 | unsigned ll[286+30];  /* literal/length and distance code lengths */ | 
|---|
| 753 | #endif | 
|---|
| 754 | register ulg b;       /* bit buffer */ | 
|---|
| 755 | register unsigned k;  /* number of bits in bit buffer */ | 
|---|
| 756 |  | 
|---|
| 757 |  | 
|---|
| 758 | /* make local bit buffer */ | 
|---|
| 759 | b = bb; | 
|---|
| 760 | k = bk; | 
|---|
| 761 | w = wp; | 
|---|
| 762 |  | 
|---|
| 763 |  | 
|---|
| 764 | /* read in table lengths */ | 
|---|
| 765 | NEEDBITS(5) | 
|---|
| 766 | nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */ | 
|---|
| 767 | DUMPBITS(5) | 
|---|
| 768 | NEEDBITS(5) | 
|---|
| 769 | nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */ | 
|---|
| 770 | DUMPBITS(5) | 
|---|
| 771 | NEEDBITS(4) | 
|---|
| 772 | nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */ | 
|---|
| 773 | DUMPBITS(4) | 
|---|
| 774 | #ifdef PKZIP_BUG_WORKAROUND | 
|---|
| 775 | if (nl > 288 || nd > 32) | 
|---|
| 776 | #else | 
|---|
| 777 | if (nl > 286 || nd > 30) | 
|---|
| 778 | #endif | 
|---|
| 779 | return 1;                   /* bad lengths */ | 
|---|
| 780 |  | 
|---|
| 781 |  | 
|---|
| 782 | /* read in bit-length-code lengths */ | 
|---|
| 783 | for (j = 0; j < nb; j++) | 
|---|
| 784 | { | 
|---|
| 785 | NEEDBITS(3) | 
|---|
| 786 | ll[border[j]] = (unsigned)b & 7; | 
|---|
| 787 | DUMPBITS(3) | 
|---|
| 788 | } | 
|---|
| 789 | for (; j < 19; j++) | 
|---|
| 790 | ll[border[j]] = 0; | 
|---|
| 791 |  | 
|---|
| 792 |  | 
|---|
| 793 | /* build decoding table for trees--single level, 7 bit lookup */ | 
|---|
| 794 | bl = 7; | 
|---|
| 795 | if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) | 
|---|
| 796 | { | 
|---|
| 797 | if (i == 1) | 
|---|
| 798 | huft_free(tl); | 
|---|
| 799 | return i;                   /* incomplete code set */ | 
|---|
| 800 | } | 
|---|
| 801 |  | 
|---|
| 802 | if (tl == NULL)               /* Grrrhhh */ | 
|---|
| 803 | return 2; | 
|---|
| 804 |  | 
|---|
| 805 | /* read in literal and distance code lengths */ | 
|---|
| 806 | n = nl + nd; | 
|---|
| 807 | m = mask_bits[bl]; | 
|---|
| 808 | i = l = 0; | 
|---|
| 809 | while ((unsigned)i < n) | 
|---|
| 810 | { | 
|---|
| 811 | NEEDBITS((unsigned)bl) | 
|---|
| 812 | j = (td = tl + ((unsigned)b & m))->b; | 
|---|
| 813 | DUMPBITS(j) | 
|---|
| 814 | j = td->v.n; | 
|---|
| 815 | if (j < 16)                 /* length of code in bits (0..15) */ | 
|---|
| 816 | ll[i++] = l = j;          /* save last length in l */ | 
|---|
| 817 | else if (j == 16)           /* repeat last length 3 to 6 times */ | 
|---|
| 818 | { | 
|---|
| 819 | NEEDBITS(2) | 
|---|
| 820 | j = 3 + ((unsigned)b & 3); | 
|---|
| 821 | DUMPBITS(2) | 
|---|
| 822 | if ((unsigned)i + j > n) | 
|---|
| 823 | return 1; | 
|---|
| 824 | while (j--) | 
|---|
| 825 | ll[i++] = l; | 
|---|
| 826 | } | 
|---|
| 827 | else if (j == 17)           /* 3 to 10 zero length codes */ | 
|---|
| 828 | { | 
|---|
| 829 | NEEDBITS(3) | 
|---|
| 830 | j = 3 + ((unsigned)b & 7); | 
|---|
| 831 | DUMPBITS(3) | 
|---|
| 832 | if ((unsigned)i + j > n) | 
|---|
| 833 | return 1; | 
|---|
| 834 | while (j--) | 
|---|
| 835 | ll[i++] = 0; | 
|---|
| 836 | l = 0; | 
|---|
| 837 | } | 
|---|
| 838 | else                        /* j == 18: 11 to 138 zero length codes */ | 
|---|
| 839 | { | 
|---|
| 840 | NEEDBITS(7) | 
|---|
| 841 | j = 11 + ((unsigned)b & 0x7f); | 
|---|
| 842 | DUMPBITS(7) | 
|---|
| 843 | if ((unsigned)i + j > n) | 
|---|
| 844 | return 1; | 
|---|
| 845 | while (j--) | 
|---|
| 846 | ll[i++] = 0; | 
|---|
| 847 | l = 0; | 
|---|
| 848 | } | 
|---|
| 849 | } | 
|---|
| 850 |  | 
|---|
| 851 |  | 
|---|
| 852 | /* free decoding table for trees */ | 
|---|
| 853 | huft_free(tl); | 
|---|
| 854 |  | 
|---|
| 855 |  | 
|---|
| 856 | /* restore the global bit buffer */ | 
|---|
| 857 | bb = b; | 
|---|
| 858 | bk = k; | 
|---|
| 859 |  | 
|---|
| 860 |  | 
|---|
| 861 | /* build the decoding tables for literal/length and distance codes */ | 
|---|
| 862 | bl = lbits; | 
|---|
| 863 | if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) | 
|---|
| 864 | { | 
|---|
| 865 | if (i == 1) { | 
|---|
| 866 | Trace ((stderr, " incomplete literal tree\n")); | 
|---|
| 867 | huft_free(tl); | 
|---|
| 868 | } | 
|---|
| 869 | return i;                   /* incomplete code set */ | 
|---|
| 870 | } | 
|---|
| 871 | bd = dbits; | 
|---|
| 872 | if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) | 
|---|
| 873 | { | 
|---|
| 874 | if (i == 1) { | 
|---|
| 875 | Trace ((stderr, " incomplete distance tree\n")); | 
|---|
| 876 | #ifdef PKZIP_BUG_WORKAROUND | 
|---|
| 877 | i = 0; | 
|---|
| 878 | } | 
|---|
| 879 | #else | 
|---|
| 880 | huft_free(td); | 
|---|
| 881 | } | 
|---|
| 882 | huft_free(tl); | 
|---|
| 883 | return i;                   /* incomplete code set */ | 
|---|
| 884 | #endif | 
|---|
| 885 | } | 
|---|
| 886 |  | 
|---|
| 887 |  | 
|---|
| 888 | /* decompress until an end-of-block code */ | 
|---|
| 889 | if (inflate_codes(tl, td, bl, bd)) | 
|---|
| 890 | return 1; | 
|---|
| 891 |  | 
|---|
| 892 |  | 
|---|
| 893 | /* free the decoding tables, return */ | 
|---|
| 894 | huft_free(tl); | 
|---|
| 895 | huft_free(td); | 
|---|
| 896 | return 0; | 
|---|
| 897 | } | 
|---|
| 898 |  | 
|---|
| 899 |  | 
|---|
| 900 |  | 
|---|
| 901 | int inflate_block(e) | 
|---|
| 902 | int *e;                 /* last block flag */ | 
|---|
| 903 | /* decompress an inflated block */ | 
|---|
| 904 | { | 
|---|
| 905 | unsigned t;           /* block type */ | 
|---|
| 906 | unsigned w;           /* current window position */ | 
|---|
| 907 | register ulg b;       /* bit buffer */ | 
|---|
| 908 | register unsigned k;  /* number of bits in bit buffer */ | 
|---|
| 909 |  | 
|---|
| 910 |  | 
|---|
| 911 | /* make local bit buffer */ | 
|---|
| 912 | b = bb; | 
|---|
| 913 | k = bk; | 
|---|
| 914 | w = wp; | 
|---|
| 915 |  | 
|---|
| 916 |  | 
|---|
| 917 | /* read in last block bit */ | 
|---|
| 918 | NEEDBITS(1) | 
|---|
| 919 | *e = (int)b & 1; | 
|---|
| 920 | DUMPBITS(1) | 
|---|
| 921 |  | 
|---|
| 922 |  | 
|---|
| 923 | /* read in block type */ | 
|---|
| 924 | NEEDBITS(2) | 
|---|
| 925 | t = (unsigned)b & 3; | 
|---|
| 926 | DUMPBITS(2) | 
|---|
| 927 |  | 
|---|
| 928 |  | 
|---|
| 929 | /* restore the global bit buffer */ | 
|---|
| 930 | bb = b; | 
|---|
| 931 | bk = k; | 
|---|
| 932 |  | 
|---|
| 933 |  | 
|---|
| 934 | /* inflate that block type */ | 
|---|
| 935 | if (t == 2) | 
|---|
| 936 | return inflate_dynamic(); | 
|---|
| 937 | if (t == 0) | 
|---|
| 938 | return inflate_stored(); | 
|---|
| 939 | if (t == 1) | 
|---|
| 940 | return inflate_fixed(); | 
|---|
| 941 |  | 
|---|
| 942 |  | 
|---|
| 943 | /* bad block type */ | 
|---|
| 944 | return 2; | 
|---|
| 945 | } | 
|---|
| 946 |  | 
|---|
| 947 |  | 
|---|
| 948 |  | 
|---|
| 949 | int inflate() | 
|---|
| 950 | /* decompress an inflated entry */ | 
|---|
| 951 | { | 
|---|
| 952 | int e;                /* last block flag */ | 
|---|
| 953 | int r;                /* result code */ | 
|---|
| 954 | unsigned h;           /* maximum struct huft's malloc'ed */ | 
|---|
| 955 |  | 
|---|
| 956 |  | 
|---|
| 957 | /* initialize window, bit buffer */ | 
|---|
| 958 | wp = 0; | 
|---|
| 959 | bk = 0; | 
|---|
| 960 | bb = 0; | 
|---|
| 961 |  | 
|---|
| 962 |  | 
|---|
| 963 | /* decompress until the last block */ | 
|---|
| 964 | h = 0; | 
|---|
| 965 | do { | 
|---|
| 966 | hufts = 0; | 
|---|
| 967 | if ((r = inflate_block(&e)) != 0) | 
|---|
| 968 | return r; | 
|---|
| 969 | if (hufts > h) | 
|---|
| 970 | h = hufts; | 
|---|
| 971 | } while (!e); | 
|---|
| 972 |  | 
|---|
| 973 | /* Undo too much lookahead. The next read will be byte aligned so we | 
|---|
| 974 | * can discard unused bits in the last meaningful byte. | 
|---|
| 975 | */ | 
|---|
| 976 | while (bk >= 8) { | 
|---|
| 977 | bk -= 8; | 
|---|
| 978 | inptr--; | 
|---|
| 979 | } | 
|---|
| 980 |  | 
|---|
| 981 | /* flush out slide */ | 
|---|
| 982 | flush_output(wp); | 
|---|
| 983 |  | 
|---|
| 984 |  | 
|---|
| 985 | /* return success */ | 
|---|
| 986 | Trace ((stderr, "<%u> ", h)); | 
|---|
| 987 | return 0; | 
|---|
| 988 | } | 
|---|