1 | @c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001
|
---|
2 | @c Free Software Foundation, Inc.
|
---|
3 | @c This is part of the GAS manual.
|
---|
4 | @c For copying conditions, see the file as.texinfo.
|
---|
5 | @ifset GENERIC
|
---|
6 | @page
|
---|
7 | @node i386-Dependent
|
---|
8 | @chapter 80386 Dependent Features
|
---|
9 | @end ifset
|
---|
10 | @ifclear GENERIC
|
---|
11 | @node Machine Dependencies
|
---|
12 | @chapter 80386 Dependent Features
|
---|
13 | @end ifclear
|
---|
14 |
|
---|
15 | @cindex i386 support
|
---|
16 | @cindex i80306 support
|
---|
17 | @cindex x86-64 support
|
---|
18 |
|
---|
19 | The i386 version @code{@value{AS}} supports both the original Intel 386
|
---|
20 | architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
|
---|
21 | extending the Intel architecture to 64-bits.
|
---|
22 |
|
---|
23 | @menu
|
---|
24 | * i386-Options:: Options
|
---|
25 | * i386-Syntax:: AT&T Syntax versus Intel Syntax
|
---|
26 | * i386-Mnemonics:: Instruction Naming
|
---|
27 | * i386-Regs:: Register Naming
|
---|
28 | * i386-Prefixes:: Instruction Prefixes
|
---|
29 | * i386-Memory:: Memory References
|
---|
30 | * i386-Jumps:: Handling of Jump Instructions
|
---|
31 | * i386-Float:: Floating Point
|
---|
32 | * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
|
---|
33 | * i386-16bit:: Writing 16-bit Code
|
---|
34 | * i386-Arch:: Specifying an x86 CPU architecture
|
---|
35 | * i386-Bugs:: AT&T Syntax bugs
|
---|
36 | * i386-Notes:: Notes
|
---|
37 | @end menu
|
---|
38 |
|
---|
39 | @node i386-Options
|
---|
40 | @section Options
|
---|
41 |
|
---|
42 | @cindex options for i386
|
---|
43 | @cindex options for x86-64
|
---|
44 | @cindex i386 options
|
---|
45 | @cindex x86-64 options
|
---|
46 |
|
---|
47 | The i386 version of @code{@value{AS}} has a few machine
|
---|
48 | dependent options:
|
---|
49 |
|
---|
50 | @table @code
|
---|
51 | @cindex @samp{--32} option, i386
|
---|
52 | @cindex @samp{--32} option, x86-64
|
---|
53 | @cindex @samp{--64} option, i386
|
---|
54 | @cindex @samp{--64} option, x86-64
|
---|
55 | @item --32 | --64
|
---|
56 | Select the word size, either 32 bits or 64 bits. Selecting 32-bit
|
---|
57 | implies Intel i386 architecture, while 64-bit implies AMD x86-64
|
---|
58 | architecture.
|
---|
59 |
|
---|
60 | These options are only available with the ELF object file format, and
|
---|
61 | require that the necessary BFD support has been included (on a 32-bit
|
---|
62 | platform you have to add --enable-64-bit-bfd to configure enable 64-bit
|
---|
63 | usage and use x86-64 as target platform).
|
---|
64 | @end table
|
---|
65 |
|
---|
66 | @node i386-Syntax
|
---|
67 | @section AT&T Syntax versus Intel Syntax
|
---|
68 |
|
---|
69 | @cindex i386 intel_syntax pseudo op
|
---|
70 | @cindex intel_syntax pseudo op, i386
|
---|
71 | @cindex i386 att_syntax pseudo op
|
---|
72 | @cindex att_syntax pseudo op, i386
|
---|
73 | @cindex i386 syntax compatibility
|
---|
74 | @cindex syntax compatibility, i386
|
---|
75 | @cindex x86-64 intel_syntax pseudo op
|
---|
76 | @cindex intel_syntax pseudo op, x86-64
|
---|
77 | @cindex x86-64 att_syntax pseudo op
|
---|
78 | @cindex att_syntax pseudo op, x86-64
|
---|
79 | @cindex x86-64 syntax compatibility
|
---|
80 | @cindex syntax compatibility, x86-64
|
---|
81 |
|
---|
82 | @code{@value{AS}} now supports assembly using Intel assembler syntax.
|
---|
83 | @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
|
---|
84 | back to the usual AT&T mode for compatibility with the output of
|
---|
85 | @code{@value{GCC}}. Either of these directives may have an optional
|
---|
86 | argument, @code{prefix}, or @code{noprefix} specifying whether registers
|
---|
87 | require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
|
---|
88 | different from Intel syntax. We mention these differences because
|
---|
89 | almost all 80386 documents use Intel syntax. Notable differences
|
---|
90 | between the two syntaxes are:
|
---|
91 |
|
---|
92 | @cindex immediate operands, i386
|
---|
93 | @cindex i386 immediate operands
|
---|
94 | @cindex register operands, i386
|
---|
95 | @cindex i386 register operands
|
---|
96 | @cindex jump/call operands, i386
|
---|
97 | @cindex i386 jump/call operands
|
---|
98 | @cindex operand delimiters, i386
|
---|
99 |
|
---|
100 | @cindex immediate operands, x86-64
|
---|
101 | @cindex x86-64 immediate operands
|
---|
102 | @cindex register operands, x86-64
|
---|
103 | @cindex x86-64 register operands
|
---|
104 | @cindex jump/call operands, x86-64
|
---|
105 | @cindex x86-64 jump/call operands
|
---|
106 | @cindex operand delimiters, x86-64
|
---|
107 | @itemize @bullet
|
---|
108 | @item
|
---|
109 | AT&T immediate operands are preceded by @samp{$}; Intel immediate
|
---|
110 | operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
|
---|
111 | AT&T register operands are preceded by @samp{%}; Intel register operands
|
---|
112 | are undelimited. AT&T absolute (as opposed to PC relative) jump/call
|
---|
113 | operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
|
---|
114 |
|
---|
115 | @cindex i386 source, destination operands
|
---|
116 | @cindex source, destination operands; i386
|
---|
117 | @cindex x86-64 source, destination operands
|
---|
118 | @cindex source, destination operands; x86-64
|
---|
119 | @item
|
---|
120 | AT&T and Intel syntax use the opposite order for source and destination
|
---|
121 | operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
|
---|
122 | @samp{source, dest} convention is maintained for compatibility with
|
---|
123 | previous Unix assemblers. Note that instructions with more than one
|
---|
124 | source operand, such as the @samp{enter} instruction, do @emph{not} have
|
---|
125 | reversed order. @ref{i386-Bugs}.
|
---|
126 |
|
---|
127 | @cindex mnemonic suffixes, i386
|
---|
128 | @cindex sizes operands, i386
|
---|
129 | @cindex i386 size suffixes
|
---|
130 | @cindex mnemonic suffixes, x86-64
|
---|
131 | @cindex sizes operands, x86-64
|
---|
132 | @cindex x86-64 size suffixes
|
---|
133 | @item
|
---|
134 | In AT&T syntax the size of memory operands is determined from the last
|
---|
135 | character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
|
---|
136 | @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
|
---|
137 | (32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
|
---|
138 | this by prefixing memory operands (@emph{not} the instruction mnemonics) with
|
---|
139 | @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
|
---|
140 | Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
|
---|
141 | syntax.
|
---|
142 |
|
---|
143 | @cindex return instructions, i386
|
---|
144 | @cindex i386 jump, call, return
|
---|
145 | @cindex return instructions, x86-64
|
---|
146 | @cindex x86-64 jump, call, return
|
---|
147 | @item
|
---|
148 | Immediate form long jumps and calls are
|
---|
149 | @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
|
---|
150 | Intel syntax is
|
---|
151 | @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
|
---|
152 | instruction
|
---|
153 | is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
|
---|
154 | @samp{ret far @var{stack-adjust}}.
|
---|
155 |
|
---|
156 | @cindex sections, i386
|
---|
157 | @cindex i386 sections
|
---|
158 | @cindex sections, x86-64
|
---|
159 | @cindex x86-64 sections
|
---|
160 | @item
|
---|
161 | The AT&T assembler does not provide support for multiple section
|
---|
162 | programs. Unix style systems expect all programs to be single sections.
|
---|
163 | @end itemize
|
---|
164 |
|
---|
165 | @node i386-Mnemonics
|
---|
166 | @section Instruction Naming
|
---|
167 |
|
---|
168 | @cindex i386 instruction naming
|
---|
169 | @cindex instruction naming, i386
|
---|
170 | @cindex x86-64 instruction naming
|
---|
171 | @cindex instruction naming, x86-64
|
---|
172 |
|
---|
173 | Instruction mnemonics are suffixed with one character modifiers which
|
---|
174 | specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
|
---|
175 | and @samp{q} specify byte, word, long and quadruple word operands. If
|
---|
176 | no suffix is specified by an instruction then @code{@value{AS}} tries to
|
---|
177 | fill in the missing suffix based on the destination register operand
|
---|
178 | (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
|
---|
179 | to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
|
---|
180 | @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
|
---|
181 | assembler which assumes that a missing mnemonic suffix implies long
|
---|
182 | operand size. (This incompatibility does not affect compiler output
|
---|
183 | since compilers always explicitly specify the mnemonic suffix.)
|
---|
184 |
|
---|
185 | Almost all instructions have the same names in AT&T and Intel format.
|
---|
186 | There are a few exceptions. The sign extend and zero extend
|
---|
187 | instructions need two sizes to specify them. They need a size to
|
---|
188 | sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
|
---|
189 | is accomplished by using two instruction mnemonic suffixes in AT&T
|
---|
190 | syntax. Base names for sign extend and zero extend are
|
---|
191 | @samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
|
---|
192 | and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
|
---|
193 | are tacked on to this base name, the @emph{from} suffix before the
|
---|
194 | @emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
|
---|
195 | ``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
|
---|
196 | thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
|
---|
197 | @samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
|
---|
198 | @samp{wq} (from word to quadruple word), and @samp{lq} (from long to
|
---|
199 | quadruple word).
|
---|
200 |
|
---|
201 | @cindex conversion instructions, i386
|
---|
202 | @cindex i386 conversion instructions
|
---|
203 | @cindex conversion instructions, x86-64
|
---|
204 | @cindex x86-64 conversion instructions
|
---|
205 | The Intel-syntax conversion instructions
|
---|
206 |
|
---|
207 | @itemize @bullet
|
---|
208 | @item
|
---|
209 | @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
|
---|
210 |
|
---|
211 | @item
|
---|
212 | @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
|
---|
213 |
|
---|
214 | @item
|
---|
215 | @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
|
---|
216 |
|
---|
217 | @item
|
---|
218 | @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
|
---|
219 |
|
---|
220 | @item
|
---|
221 | @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
|
---|
222 | (x86-64 only),
|
---|
223 |
|
---|
224 | @item
|
---|
225 | @samp{cdo} --- sign-extend quad in @samp{%rax} to octuple in
|
---|
226 | @samp{%rdx:%rax} (x86-64 only),
|
---|
227 | @end itemize
|
---|
228 |
|
---|
229 | @noindent
|
---|
230 | are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
|
---|
231 | @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
|
---|
232 | instructions.
|
---|
233 |
|
---|
234 | @cindex jump instructions, i386
|
---|
235 | @cindex call instructions, i386
|
---|
236 | @cindex jump instructions, x86-64
|
---|
237 | @cindex call instructions, x86-64
|
---|
238 | Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
|
---|
239 | AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
|
---|
240 | convention.
|
---|
241 |
|
---|
242 | @node i386-Regs
|
---|
243 | @section Register Naming
|
---|
244 |
|
---|
245 | @cindex i386 registers
|
---|
246 | @cindex registers, i386
|
---|
247 | @cindex x86-64 registers
|
---|
248 | @cindex registers, x86-64
|
---|
249 | Register operands are always prefixed with @samp{%}. The 80386 registers
|
---|
250 | consist of
|
---|
251 |
|
---|
252 | @itemize @bullet
|
---|
253 | @item
|
---|
254 | the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
|
---|
255 | @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
|
---|
256 | frame pointer), and @samp{%esp} (the stack pointer).
|
---|
257 |
|
---|
258 | @item
|
---|
259 | the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
|
---|
260 | @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
|
---|
261 |
|
---|
262 | @item
|
---|
263 | the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
|
---|
264 | @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
|
---|
265 | are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
|
---|
266 | @samp{%cx}, and @samp{%dx})
|
---|
267 |
|
---|
268 | @item
|
---|
269 | the 6 section registers @samp{%cs} (code section), @samp{%ds}
|
---|
270 | (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
|
---|
271 | and @samp{%gs}.
|
---|
272 |
|
---|
273 | @item
|
---|
274 | the 3 processor control registers @samp{%cr0}, @samp{%cr2}, and
|
---|
275 | @samp{%cr3}.
|
---|
276 |
|
---|
277 | @item
|
---|
278 | the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
|
---|
279 | @samp{%db3}, @samp{%db6}, and @samp{%db7}.
|
---|
280 |
|
---|
281 | @item
|
---|
282 | the 2 test registers @samp{%tr6} and @samp{%tr7}.
|
---|
283 |
|
---|
284 | @item
|
---|
285 | the 8 floating point register stack @samp{%st} or equivalently
|
---|
286 | @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
|
---|
287 | @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
|
---|
288 | These registers are overloaded by 8 MMX registers @samp{%mm0},
|
---|
289 | @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
|
---|
290 | @samp{%mm6} and @samp{%mm7}.
|
---|
291 |
|
---|
292 | @item
|
---|
293 | the 8 SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
|
---|
294 | @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
|
---|
295 | @end itemize
|
---|
296 |
|
---|
297 | The AMD x86-64 architecture extends the register set by:
|
---|
298 |
|
---|
299 | @itemize @bullet
|
---|
300 | @item
|
---|
301 | enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
|
---|
302 | accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
|
---|
303 | @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
|
---|
304 | pointer)
|
---|
305 |
|
---|
306 | @item
|
---|
307 | the 8 extended registers @samp{%r8}--@samp{%r15}.
|
---|
308 |
|
---|
309 | @item
|
---|
310 | the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}
|
---|
311 |
|
---|
312 | @item
|
---|
313 | the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}
|
---|
314 |
|
---|
315 | @item
|
---|
316 | the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}
|
---|
317 |
|
---|
318 | @item
|
---|
319 | the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
|
---|
320 |
|
---|
321 | @item
|
---|
322 | the 8 debug registers: @samp{%db8}--@samp{%db15}.
|
---|
323 |
|
---|
324 | @item
|
---|
325 | the 8 SSE registers: @samp{%xmm8}--@samp{%xmm15}.
|
---|
326 | @end itemize
|
---|
327 |
|
---|
328 | @node i386-Prefixes
|
---|
329 | @section Instruction Prefixes
|
---|
330 |
|
---|
331 | @cindex i386 instruction prefixes
|
---|
332 | @cindex instruction prefixes, i386
|
---|
333 | @cindex prefixes, i386
|
---|
334 | Instruction prefixes are used to modify the following instruction. They
|
---|
335 | are used to repeat string instructions, to provide section overrides, to
|
---|
336 | perform bus lock operations, and to change operand and address sizes.
|
---|
337 | (Most instructions that normally operate on 32-bit operands will use
|
---|
338 | 16-bit operands if the instruction has an ``operand size'' prefix.)
|
---|
339 | Instruction prefixes are best written on the same line as the instruction
|
---|
340 | they act upon. For example, the @samp{scas} (scan string) instruction is
|
---|
341 | repeated with:
|
---|
342 |
|
---|
343 | @smallexample
|
---|
344 | repne scas %es:(%edi),%al
|
---|
345 | @end smallexample
|
---|
346 |
|
---|
347 | You may also place prefixes on the lines immediately preceding the
|
---|
348 | instruction, but this circumvents checks that @code{@value{AS}} does
|
---|
349 | with prefixes, and will not work with all prefixes.
|
---|
350 |
|
---|
351 | Here is a list of instruction prefixes:
|
---|
352 |
|
---|
353 | @cindex section override prefixes, i386
|
---|
354 | @itemize @bullet
|
---|
355 | @item
|
---|
356 | Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
|
---|
357 | @samp{fs}, @samp{gs}. These are automatically added by specifying
|
---|
358 | using the @var{section}:@var{memory-operand} form for memory references.
|
---|
359 |
|
---|
360 | @cindex size prefixes, i386
|
---|
361 | @item
|
---|
362 | Operand/Address size prefixes @samp{data16} and @samp{addr16}
|
---|
363 | change 32-bit operands/addresses into 16-bit operands/addresses,
|
---|
364 | while @samp{data32} and @samp{addr32} change 16-bit ones (in a
|
---|
365 | @code{.code16} section) into 32-bit operands/addresses. These prefixes
|
---|
366 | @emph{must} appear on the same line of code as the instruction they
|
---|
367 | modify. For example, in a 16-bit @code{.code16} section, you might
|
---|
368 | write:
|
---|
369 |
|
---|
370 | @smallexample
|
---|
371 | addr32 jmpl *(%ebx)
|
---|
372 | @end smallexample
|
---|
373 |
|
---|
374 | @cindex bus lock prefixes, i386
|
---|
375 | @cindex inhibiting interrupts, i386
|
---|
376 | @item
|
---|
377 | The bus lock prefix @samp{lock} inhibits interrupts during execution of
|
---|
378 | the instruction it precedes. (This is only valid with certain
|
---|
379 | instructions; see a 80386 manual for details).
|
---|
380 |
|
---|
381 | @cindex coprocessor wait, i386
|
---|
382 | @item
|
---|
383 | The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
|
---|
384 | complete the current instruction. This should never be needed for the
|
---|
385 | 80386/80387 combination.
|
---|
386 |
|
---|
387 | @cindex repeat prefixes, i386
|
---|
388 | @item
|
---|
389 | The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
|
---|
390 | to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
|
---|
391 | times if the current address size is 16-bits).
|
---|
392 | @cindex REX prefixes, i386
|
---|
393 | @item
|
---|
394 | The @samp{rex} family of prefixes is used by x86-64 to encode
|
---|
395 | extensions to i386 instruction set. The @samp{rex} prefix has four
|
---|
396 | bits --- an operand size overwrite (@code{64}) used to change operand size
|
---|
397 | from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
|
---|
398 | register set.
|
---|
399 |
|
---|
400 | You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
|
---|
401 | instruction emits @samp{rex} prefix with all the bits set. By omitting
|
---|
402 | the @code{64}, @code{x}, @code{y} or @code{z} you may write other
|
---|
403 | prefixes as well. Normally, there is no need to write the prefixes
|
---|
404 | explicitly, since gas will automatically generate them based on the
|
---|
405 | instruction operands.
|
---|
406 | @end itemize
|
---|
407 |
|
---|
408 | @node i386-Memory
|
---|
409 | @section Memory References
|
---|
410 |
|
---|
411 | @cindex i386 memory references
|
---|
412 | @cindex memory references, i386
|
---|
413 | @cindex x86-64 memory references
|
---|
414 | @cindex memory references, x86-64
|
---|
415 | An Intel syntax indirect memory reference of the form
|
---|
416 |
|
---|
417 | @smallexample
|
---|
418 | @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
|
---|
419 | @end smallexample
|
---|
420 |
|
---|
421 | @noindent
|
---|
422 | is translated into the AT&T syntax
|
---|
423 |
|
---|
424 | @smallexample
|
---|
425 | @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
|
---|
426 | @end smallexample
|
---|
427 |
|
---|
428 | @noindent
|
---|
429 | where @var{base} and @var{index} are the optional 32-bit base and
|
---|
430 | index registers, @var{disp} is the optional displacement, and
|
---|
431 | @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
|
---|
432 | to calculate the address of the operand. If no @var{scale} is
|
---|
433 | specified, @var{scale} is taken to be 1. @var{section} specifies the
|
---|
434 | optional section register for the memory operand, and may override the
|
---|
435 | default section register (see a 80386 manual for section register
|
---|
436 | defaults). Note that section overrides in AT&T syntax @emph{must}
|
---|
437 | be preceded by a @samp{%}. If you specify a section override which
|
---|
438 | coincides with the default section register, @code{@value{AS}} does @emph{not}
|
---|
439 | output any section register override prefixes to assemble the given
|
---|
440 | instruction. Thus, section overrides can be specified to emphasize which
|
---|
441 | section register is used for a given memory operand.
|
---|
442 |
|
---|
443 | Here are some examples of Intel and AT&T style memory references:
|
---|
444 |
|
---|
445 | @table @asis
|
---|
446 | @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
|
---|
447 | @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
|
---|
448 | missing, and the default section is used (@samp{%ss} for addressing with
|
---|
449 | @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
|
---|
450 |
|
---|
451 | @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
|
---|
452 | @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
|
---|
453 | @samp{foo}. All other fields are missing. The section register here
|
---|
454 | defaults to @samp{%ds}.
|
---|
455 |
|
---|
456 | @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
|
---|
457 | This uses the value pointed to by @samp{foo} as a memory operand.
|
---|
458 | Note that @var{base} and @var{index} are both missing, but there is only
|
---|
459 | @emph{one} @samp{,}. This is a syntactic exception.
|
---|
460 |
|
---|
461 | @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
|
---|
462 | This selects the contents of the variable @samp{foo} with section
|
---|
463 | register @var{section} being @samp{%gs}.
|
---|
464 | @end table
|
---|
465 |
|
---|
466 | Absolute (as opposed to PC relative) call and jump operands must be
|
---|
467 | prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
|
---|
468 | always chooses PC relative addressing for jump/call labels.
|
---|
469 |
|
---|
470 | Any instruction that has a memory operand, but no register operand,
|
---|
471 | @emph{must} specify its size (byte, word, long, or quadruple) with an
|
---|
472 | instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
|
---|
473 | respectively).
|
---|
474 |
|
---|
475 | The x86-64 architecture adds an RIP (instruction pointer relative)
|
---|
476 | addressing. This addressing mode is specified by using @samp{rip} as a
|
---|
477 | base register. Only constant offsets are valid. For example:
|
---|
478 |
|
---|
479 | @table @asis
|
---|
480 | @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
|
---|
481 | Points to the address 1234 bytes past the end of the current
|
---|
482 | instruction.
|
---|
483 |
|
---|
484 | @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
|
---|
485 | Points to the @code{symbol} in RIP relative way, this is shorter than
|
---|
486 | the default absolute addressing.
|
---|
487 | @end table
|
---|
488 |
|
---|
489 | Other addressing modes remain unchanged in x86-64 architecture, except
|
---|
490 | registers used are 64-bit instead of 32-bit.
|
---|
491 |
|
---|
492 | @node i386-Jumps
|
---|
493 | @section Handling of Jump Instructions
|
---|
494 |
|
---|
495 | @cindex jump optimization, i386
|
---|
496 | @cindex i386 jump optimization
|
---|
497 | @cindex jump optimization, x86-64
|
---|
498 | @cindex x86-64 jump optimization
|
---|
499 | Jump instructions are always optimized to use the smallest possible
|
---|
500 | displacements. This is accomplished by using byte (8-bit) displacement
|
---|
501 | jumps whenever the target is sufficiently close. If a byte displacement
|
---|
502 | is insufficient a long displacement is used. We do not support
|
---|
503 | word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
|
---|
504 | instruction with the @samp{data16} instruction prefix), since the 80386
|
---|
505 | insists upon masking @samp{%eip} to 16 bits after the word displacement
|
---|
506 | is added. (See also @pxref{i386-Arch})
|
---|
507 |
|
---|
508 | Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
|
---|
509 | @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
|
---|
510 | displacements, so that if you use these instructions (@code{@value{GCC}} does
|
---|
511 | not use them) you may get an error message (and incorrect code). The AT&T
|
---|
512 | 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
|
---|
513 | to
|
---|
514 |
|
---|
515 | @smallexample
|
---|
516 | jcxz cx_zero
|
---|
517 | jmp cx_nonzero
|
---|
518 | cx_zero: jmp foo
|
---|
519 | cx_nonzero:
|
---|
520 | @end smallexample
|
---|
521 |
|
---|
522 | @node i386-Float
|
---|
523 | @section Floating Point
|
---|
524 |
|
---|
525 | @cindex i386 floating point
|
---|
526 | @cindex floating point, i386
|
---|
527 | @cindex x86-64 floating point
|
---|
528 | @cindex floating point, x86-64
|
---|
529 | All 80387 floating point types except packed BCD are supported.
|
---|
530 | (BCD support may be added without much difficulty). These data
|
---|
531 | types are 16-, 32-, and 64- bit integers, and single (32-bit),
|
---|
532 | double (64-bit), and extended (80-bit) precision floating point.
|
---|
533 | Each supported type has an instruction mnemonic suffix and a constructor
|
---|
534 | associated with it. Instruction mnemonic suffixes specify the operand's
|
---|
535 | data type. Constructors build these data types into memory.
|
---|
536 |
|
---|
537 | @cindex @code{float} directive, i386
|
---|
538 | @cindex @code{single} directive, i386
|
---|
539 | @cindex @code{double} directive, i386
|
---|
540 | @cindex @code{tfloat} directive, i386
|
---|
541 | @cindex @code{float} directive, x86-64
|
---|
542 | @cindex @code{single} directive, x86-64
|
---|
543 | @cindex @code{double} directive, x86-64
|
---|
544 | @cindex @code{tfloat} directive, x86-64
|
---|
545 | @itemize @bullet
|
---|
546 | @item
|
---|
547 | Floating point constructors are @samp{.float} or @samp{.single},
|
---|
548 | @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
|
---|
549 | These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
|
---|
550 | and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
|
---|
551 | only supports this format via the @samp{fldt} (load 80-bit real to stack
|
---|
552 | top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
|
---|
553 |
|
---|
554 | @cindex @code{word} directive, i386
|
---|
555 | @cindex @code{long} directive, i386
|
---|
556 | @cindex @code{int} directive, i386
|
---|
557 | @cindex @code{quad} directive, i386
|
---|
558 | @cindex @code{word} directive, x86-64
|
---|
559 | @cindex @code{long} directive, x86-64
|
---|
560 | @cindex @code{int} directive, x86-64
|
---|
561 | @cindex @code{quad} directive, x86-64
|
---|
562 | @item
|
---|
563 | Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
|
---|
564 | @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
|
---|
565 | corresponding instruction mnemonic suffixes are @samp{s} (single),
|
---|
566 | @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
|
---|
567 | the 64-bit @samp{q} format is only present in the @samp{fildq} (load
|
---|
568 | quad integer to stack top) and @samp{fistpq} (store quad integer and pop
|
---|
569 | stack) instructions.
|
---|
570 | @end itemize
|
---|
571 |
|
---|
572 | Register to register operations should not use instruction mnemonic suffixes.
|
---|
573 | @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
|
---|
574 | wrote @samp{fst %st, %st(1)}, since all register to register operations
|
---|
575 | use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
|
---|
576 | which converts @samp{%st} from 80-bit to 64-bit floating point format,
|
---|
577 | then stores the result in the 4 byte location @samp{mem})
|
---|
578 |
|
---|
579 | @node i386-SIMD
|
---|
580 | @section Intel's MMX and AMD's 3DNow! SIMD Operations
|
---|
581 |
|
---|
582 | @cindex MMX, i386
|
---|
583 | @cindex 3DNow!, i386
|
---|
584 | @cindex SIMD, i386
|
---|
585 | @cindex MMX, x86-64
|
---|
586 | @cindex 3DNow!, x86-64
|
---|
587 | @cindex SIMD, x86-64
|
---|
588 |
|
---|
589 | @code{@value{AS}} supports Intel's MMX instruction set (SIMD
|
---|
590 | instructions for integer data), available on Intel's Pentium MMX
|
---|
591 | processors and Pentium II processors, AMD's K6 and K6-2 processors,
|
---|
592 | Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!
|
---|
593 | instruction set (SIMD instructions for 32-bit floating point data)
|
---|
594 | available on AMD's K6-2 processor and possibly others in the future.
|
---|
595 |
|
---|
596 | Currently, @code{@value{AS}} does not support Intel's floating point
|
---|
597 | SIMD, Katmai (KNI).
|
---|
598 |
|
---|
599 | The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
|
---|
600 | @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
|
---|
601 | 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
|
---|
602 | floating point values. The MMX registers cannot be used at the same time
|
---|
603 | as the floating point stack.
|
---|
604 |
|
---|
605 | See Intel and AMD documentation, keeping in mind that the operand order in
|
---|
606 | instructions is reversed from the Intel syntax.
|
---|
607 |
|
---|
608 | @node i386-16bit
|
---|
609 | @section Writing 16-bit Code
|
---|
610 |
|
---|
611 | @cindex i386 16-bit code
|
---|
612 | @cindex 16-bit code, i386
|
---|
613 | @cindex real-mode code, i386
|
---|
614 | @cindex @code{code16gcc} directive, i386
|
---|
615 | @cindex @code{code16} directive, i386
|
---|
616 | @cindex @code{code32} directive, i386
|
---|
617 | @cindex @code{code64} directive, i386
|
---|
618 | @cindex @code{code64} directive, x86-64
|
---|
619 | While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
|
---|
620 | or 64-bit x86-64 code depending on the default configuration,
|
---|
621 | it also supports writing code to run in real mode or in 16-bit protected
|
---|
622 | mode code segments. To do this, put a @samp{.code16} or
|
---|
623 | @samp{.code16gcc} directive before the assembly language instructions to
|
---|
624 | be run in 16-bit mode. You can switch @code{@value{AS}} back to writing
|
---|
625 | normal 32-bit code with the @samp{.code32} directive.
|
---|
626 |
|
---|
627 | @samp{.code16gcc} provides experimental support for generating 16-bit
|
---|
628 | code from gcc, and differs from @samp{.code16} in that @samp{call},
|
---|
629 | @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
|
---|
630 | @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
|
---|
631 | default to 32-bit size. This is so that the stack pointer is
|
---|
632 | manipulated in the same way over function calls, allowing access to
|
---|
633 | function parameters at the same stack offsets as in 32-bit mode.
|
---|
634 | @samp{.code16gcc} also automatically adds address size prefixes where
|
---|
635 | necessary to use the 32-bit addressing modes that gcc generates.
|
---|
636 |
|
---|
637 | The code which @code{@value{AS}} generates in 16-bit mode will not
|
---|
638 | necessarily run on a 16-bit pre-80386 processor. To write code that
|
---|
639 | runs on such a processor, you must refrain from using @emph{any} 32-bit
|
---|
640 | constructs which require @code{@value{AS}} to output address or operand
|
---|
641 | size prefixes.
|
---|
642 |
|
---|
643 | Note that writing 16-bit code instructions by explicitly specifying a
|
---|
644 | prefix or an instruction mnemonic suffix within a 32-bit code section
|
---|
645 | generates different machine instructions than those generated for a
|
---|
646 | 16-bit code segment. In a 32-bit code section, the following code
|
---|
647 | generates the machine opcode bytes @samp{66 6a 04}, which pushes the
|
---|
648 | value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
|
---|
649 |
|
---|
650 | @smallexample
|
---|
651 | pushw $4
|
---|
652 | @end smallexample
|
---|
653 |
|
---|
654 | The same code in a 16-bit code section would generate the machine
|
---|
655 | opcode bytes @samp{6a 04} (ie. without the operand size prefix), which
|
---|
656 | is correct since the processor default operand size is assumed to be 16
|
---|
657 | bits in a 16-bit code section.
|
---|
658 |
|
---|
659 | @node i386-Bugs
|
---|
660 | @section AT&T Syntax bugs
|
---|
661 |
|
---|
662 | The UnixWare assembler, and probably other AT&T derived ix86 Unix
|
---|
663 | assemblers, generate floating point instructions with reversed source
|
---|
664 | and destination registers in certain cases. Unfortunately, gcc and
|
---|
665 | possibly many other programs use this reversed syntax, so we're stuck
|
---|
666 | with it.
|
---|
667 |
|
---|
668 | For example
|
---|
669 |
|
---|
670 | @smallexample
|
---|
671 | fsub %st,%st(3)
|
---|
672 | @end smallexample
|
---|
673 | @noindent
|
---|
674 | results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
|
---|
675 | than the expected @samp{%st(3) - %st}. This happens with all the
|
---|
676 | non-commutative arithmetic floating point operations with two register
|
---|
677 | operands where the source register is @samp{%st} and the destination
|
---|
678 | register is @samp{%st(i)}.
|
---|
679 |
|
---|
680 | @node i386-Arch
|
---|
681 | @section Specifying CPU Architecture
|
---|
682 |
|
---|
683 | @cindex arch directive, i386
|
---|
684 | @cindex i386 arch directive
|
---|
685 | @cindex arch directive, x86-64
|
---|
686 | @cindex x86-64 arch directive
|
---|
687 |
|
---|
688 | @code{@value{AS}} may be told to assemble for a particular CPU
|
---|
689 | architecture with the @code{.arch @var{cpu_type}} directive. This
|
---|
690 | directive enables a warning when gas detects an instruction that is not
|
---|
691 | supported on the CPU specified. The choices for @var{cpu_type} are:
|
---|
692 |
|
---|
693 | @multitable @columnfractions .20 .20 .20 .20
|
---|
694 | @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
|
---|
695 | @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
|
---|
696 | @item @samp{pentiumpro} @tab @samp{pentium4} @tab @samp{k6} @tab @samp{athlon}
|
---|
697 | @item @samp{sledgehammer}
|
---|
698 | @end multitable
|
---|
699 |
|
---|
700 | Apart from the warning, there are only two other effects on
|
---|
701 | @code{@value{AS}} operation; Firstly, if you specify a CPU other than
|
---|
702 | @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
|
---|
703 | will automatically use a two byte opcode sequence. The larger three
|
---|
704 | byte opcode sequence is used on the 486 (and when no architecture is
|
---|
705 | specified) because it executes faster on the 486. Note that you can
|
---|
706 | explicitly request the two byte opcode by writing @samp{sarl %eax}.
|
---|
707 | Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
|
---|
708 | @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
|
---|
709 | conditional jumps will be promoted when necessary to a two instruction
|
---|
710 | sequence consisting of a conditional jump of the opposite sense around
|
---|
711 | an unconditional jump to the target.
|
---|
712 |
|
---|
713 | Following the CPU architecture, you may specify @samp{jumps} or
|
---|
714 | @samp{nojumps} to control automatic promotion of conditional jumps.
|
---|
715 | @samp{jumps} is the default, and enables jump promotion; All external
|
---|
716 | jumps will be of the long variety, and file-local jumps will be promoted
|
---|
717 | as necessary. (@pxref{i386-Jumps}) @samp{nojumps} leaves external
|
---|
718 | conditional jumps as byte offset jumps, and warns about file-local
|
---|
719 | conditional jumps that @code{@value{AS}} promotes.
|
---|
720 | Unconditional jumps are treated as for @samp{jumps}.
|
---|
721 |
|
---|
722 | For example
|
---|
723 |
|
---|
724 | @smallexample
|
---|
725 | .arch i8086,nojumps
|
---|
726 | @end smallexample
|
---|
727 |
|
---|
728 | @node i386-Notes
|
---|
729 | @section Notes
|
---|
730 |
|
---|
731 | @cindex i386 @code{mul}, @code{imul} instructions
|
---|
732 | @cindex @code{mul} instruction, i386
|
---|
733 | @cindex @code{imul} instruction, i386
|
---|
734 | @cindex @code{mul} instruction, x86-64
|
---|
735 | @cindex @code{imul} instruction, x86-64
|
---|
736 | There is some trickery concerning the @samp{mul} and @samp{imul}
|
---|
737 | instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
|
---|
738 | multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
|
---|
739 | for @samp{imul}) can be output only in the one operand form. Thus,
|
---|
740 | @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
|
---|
741 | the expanding multiply would clobber the @samp{%edx} register, and this
|
---|
742 | would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
|
---|
743 | 64-bit product in @samp{%edx:%eax}.
|
---|
744 |
|
---|
745 | We have added a two operand form of @samp{imul} when the first operand
|
---|
746 | is an immediate mode expression and the second operand is a register.
|
---|
747 | This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
|
---|
748 | example, can be done with @samp{imul $69, %eax} rather than @samp{imul
|
---|
749 | $69, %eax, %eax}.
|
---|
750 |
|
---|