source: trunk/binutils/bfd/doc/section.texi@ 3232

Last change on this file since 3232 was 610, checked in by bird, 22 years ago

This commit was generated by cvs2svn to compensate for changes in r609,
which included commits to RCS files with non-trunk default branches.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 28.6 KB
Line 
1@section Sections
2The raw data contained within a BFD is maintained through the
3section abstraction. A single BFD may have any number of
4sections. It keeps hold of them by pointing to the first;
5each one points to the next in the list.
6
7Sections are supported in BFD in @code{section.c}.
8
9@menu
10* Section Input::
11* Section Output::
12* typedef asection::
13* section prototypes::
14@end menu
15
16@node Section Input, Section Output, Sections, Sections
17@subsection Section input
18When a BFD is opened for reading, the section structures are
19created and attached to the BFD.
20
21Each section has a name which describes the section in the
22outside world---for example, @code{a.out} would contain at least
23three sections, called @code{.text}, @code{.data} and @code{.bss}.
24
25Names need not be unique; for example a COFF file may have several
26sections named @code{.data}.
27
28Sometimes a BFD will contain more than the ``natural'' number of
29sections. A back end may attach other sections containing
30constructor data, or an application may add a section (using
31@code{bfd_make_section}) to the sections attached to an already open
32BFD. For example, the linker creates an extra section
33@code{COMMON} for each input file's BFD to hold information about
34common storage.
35
36The raw data is not necessarily read in when
37the section descriptor is created. Some targets may leave the
38data in place until a @code{bfd_get_section_contents} call is
39made. Other back ends may read in all the data at once. For
40example, an S-record file has to be read once to determine the
41size of the data. An IEEE-695 file doesn't contain raw data in
42sections, but data and relocation expressions intermixed, so
43the data area has to be parsed to get out the data and
44relocations.
45
46@node Section Output, typedef asection, Section Input, Sections
47@subsection Section output
48To write a new object style BFD, the various sections to be
49written have to be created. They are attached to the BFD in
50the same way as input sections; data is written to the
51sections using @code{bfd_set_section_contents}.
52
53Any program that creates or combines sections (e.g., the assembler
54and linker) must use the @code{asection} fields @code{output_section} and
55@code{output_offset} to indicate the file sections to which each
56section must be written. (If the section is being created from
57scratch, @code{output_section} should probably point to the section
58itself and @code{output_offset} should probably be zero.)
59
60The data to be written comes from input sections attached
61(via @code{output_section} pointers) to
62the output sections. The output section structure can be
63considered a filter for the input section: the output section
64determines the vma of the output data and the name, but the
65input section determines the offset into the output section of
66the data to be written.
67
68E.g., to create a section "O", starting at 0x100, 0x123 long,
69containing two subsections, "A" at offset 0x0 (i.e., at vma
700x100) and "B" at offset 0x20 (i.e., at vma 0x120) the @code{asection}
71structures would look like:
72
73@example
74 section name "A"
75 output_offset 0x00
76 size 0x20
77 output_section -----------> section name "O"
78 | vma 0x100
79 section name "B" | size 0x123
80 output_offset 0x20 |
81 size 0x103 |
82 output_section --------|
83@end example
84
85@subsection Link orders
86The data within a section is stored in a @dfn{link_order}.
87These are much like the fixups in @code{gas}. The link_order
88abstraction allows a section to grow and shrink within itself.
89
90A link_order knows how big it is, and which is the next
91link_order and where the raw data for it is; it also points to
92a list of relocations which apply to it.
93
94The link_order is used by the linker to perform relaxing on
95final code. The compiler creates code which is as big as
96necessary to make it work without relaxing, and the user can
97select whether to relax. Sometimes relaxing takes a lot of
98time. The linker runs around the relocations to see if any
99are attached to data which can be shrunk, if so it does it on
100a link_order by link_order basis.
101
102
103@node typedef asection, section prototypes, Section Output, Sections
104@subsection typedef asection
105Here is the section structure:
106
107
108@example
109
110/* This structure is used for a comdat section, as in PE. A comdat
111 section is associated with a particular symbol. When the linker
112 sees a comdat section, it keeps only one of the sections with a
113 given name and associated with a given symbol. */
114
115struct bfd_comdat_info
116@{
117 /* The name of the symbol associated with a comdat section. */
118 const char *name;
119
120 /* The local symbol table index of the symbol associated with a
121 comdat section. This is only meaningful to the object file format
122 specific code; it is not an index into the list returned by
123 bfd_canonicalize_symtab. */
124 long symbol;
125@};
126
127typedef struct sec
128@{
129 /* The name of the section; the name isn't a copy, the pointer is
130 the same as that passed to bfd_make_section. */
131 const char *name;
132
133 /* A unique sequence number. */
134 int id;
135
136 /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */
137 int index;
138
139 /* The next section in the list belonging to the BFD, or NULL. */
140 struct sec *next;
141
142 /* The field flags contains attributes of the section. Some
143 flags are read in from the object file, and some are
144 synthesized from other information. */
145 flagword flags;
146
147#define SEC_NO_FLAGS 0x000
148
149 /* Tells the OS to allocate space for this section when loading.
150 This is clear for a section containing debug information only. */
151#define SEC_ALLOC 0x001
152
153 /* Tells the OS to load the section from the file when loading.
154 This is clear for a .bss section. */
155#define SEC_LOAD 0x002
156
157 /* The section contains data still to be relocated, so there is
158 some relocation information too. */
159#define SEC_RELOC 0x004
160
161 /* ELF reserves 4 processor specific bits and 8 operating system
162 specific bits in sh_flags; at present we can get away with just
163 one in communicating between the assembler and BFD, but this
164 isn't a good long-term solution. */
165#define SEC_ARCH_BIT_0 0x008
166
167 /* A signal to the OS that the section contains read only data. */
168#define SEC_READONLY 0x010
169
170 /* The section contains code only. */
171#define SEC_CODE 0x020
172
173 /* The section contains data only. */
174#define SEC_DATA 0x040
175
176 /* The section will reside in ROM. */
177#define SEC_ROM 0x080
178
179 /* The section contains constructor information. This section
180 type is used by the linker to create lists of constructors and
181 destructors used by @code{g++}. When a back end sees a symbol
182 which should be used in a constructor list, it creates a new
183 section for the type of name (e.g., @code{__CTOR_LIST__}), attaches
184 the symbol to it, and builds a relocation. To build the lists
185 of constructors, all the linker has to do is catenate all the
186 sections called @code{__CTOR_LIST__} and relocate the data
187 contained within - exactly the operations it would peform on
188 standard data. */
189#define SEC_CONSTRUCTOR 0x100
190
191 /* The section has contents - a data section could be
192 @code{SEC_ALLOC} | @code{SEC_HAS_CONTENTS}; a debug section could be
193 @code{SEC_HAS_CONTENTS} */
194#define SEC_HAS_CONTENTS 0x200
195
196 /* An instruction to the linker to not output the section
197 even if it has information which would normally be written. */
198#define SEC_NEVER_LOAD 0x400
199
200 /* The section is a COFF shared library section. This flag is
201 only for the linker. If this type of section appears in
202 the input file, the linker must copy it to the output file
203 without changing the vma or size. FIXME: Although this
204 was originally intended to be general, it really is COFF
205 specific (and the flag was renamed to indicate this). It
206 might be cleaner to have some more general mechanism to
207 allow the back end to control what the linker does with
208 sections. */
209#define SEC_COFF_SHARED_LIBRARY 0x800
210
211 /* The section contains thread local data. */
212#define SEC_THREAD_LOCAL 0x1000
213
214 /* The section has GOT references. This flag is only for the
215 linker, and is currently only used by the elf32-hppa back end.
216 It will be set if global offset table references were detected
217 in this section, which indicate to the linker that the section
218 contains PIC code, and must be handled specially when doing a
219 static link. */
220#define SEC_HAS_GOT_REF 0x4000
221
222 /* The section contains common symbols (symbols may be defined
223 multiple times, the value of a symbol is the amount of
224 space it requires, and the largest symbol value is the one
225 used). Most targets have exactly one of these (which we
226 translate to bfd_com_section_ptr), but ECOFF has two. */
227#define SEC_IS_COMMON 0x8000
228
229 /* The section contains only debugging information. For
230 example, this is set for ELF .debug and .stab sections.
231 strip tests this flag to see if a section can be
232 discarded. */
233#define SEC_DEBUGGING 0x10000
234
235 /* The contents of this section are held in memory pointed to
236 by the contents field. This is checked by bfd_get_section_contents,
237 and the data is retrieved from memory if appropriate. */
238#define SEC_IN_MEMORY 0x20000
239
240 /* The contents of this section are to be excluded by the
241 linker for executable and shared objects unless those
242 objects are to be further relocated. */
243#define SEC_EXCLUDE 0x40000
244
245 /* The contents of this section are to be sorted based on the sum of
246 the symbol and addend values specified by the associated relocation
247 entries. Entries without associated relocation entries will be
248 appended to the end of the section in an unspecified order. */
249#define SEC_SORT_ENTRIES 0x80000
250
251 /* When linking, duplicate sections of the same name should be
252 discarded, rather than being combined into a single section as
253 is usually done. This is similar to how common symbols are
254 handled. See SEC_LINK_DUPLICATES below. */
255#define SEC_LINK_ONCE 0x100000
256
257 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker
258 should handle duplicate sections. */
259#define SEC_LINK_DUPLICATES 0x600000
260
261 /* This value for SEC_LINK_DUPLICATES means that duplicate
262 sections with the same name should simply be discarded. */
263#define SEC_LINK_DUPLICATES_DISCARD 0x0
264
265 /* This value for SEC_LINK_DUPLICATES means that the linker
266 should warn if there are any duplicate sections, although
267 it should still only link one copy. */
268#define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000
269
270 /* This value for SEC_LINK_DUPLICATES means that the linker
271 should warn if any duplicate sections are a different size. */
272#define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000
273
274 /* This value for SEC_LINK_DUPLICATES means that the linker
275 should warn if any duplicate sections contain different
276 contents. */
277#define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000
278
279 /* This section was created by the linker as part of dynamic
280 relocation or other arcane processing. It is skipped when
281 going through the first-pass output, trusting that someone
282 else up the line will take care of it later. */
283#define SEC_LINKER_CREATED 0x800000
284
285 /* This section should not be subject to garbage collection. */
286#define SEC_KEEP 0x1000000
287
288 /* This section contains "short" data, and should be placed
289 "near" the GP. */
290#define SEC_SMALL_DATA 0x2000000
291
292 /* This section contains data which may be shared with other
293 executables or shared objects. */
294#define SEC_SHARED 0x4000000
295
296 /* When a section with this flag is being linked, then if the size of
297 the input section is less than a page, it should not cross a page
298 boundary. If the size of the input section is one page or more, it
299 should be aligned on a page boundary. */
300#define SEC_BLOCK 0x8000000
301
302 /* Conditionally link this section; do not link if there are no
303 references found to any symbol in the section. */
304#define SEC_CLINK 0x10000000
305
306 /* Attempt to merge identical entities in the section.
307 Entity size is given in the entsize field. */
308#define SEC_MERGE 0x20000000
309
310 /* If given with SEC_MERGE, entities to merge are zero terminated
311 strings where entsize specifies character size instead of fixed
312 size entries. */
313#define SEC_STRINGS 0x40000000
314
315 /* This section contains data about section groups. */
316#define SEC_GROUP 0x80000000
317
318 /* End of section flags. */
319
320 /* Some internal packed boolean fields. */
321
322 /* See the vma field. */
323 unsigned int user_set_vma : 1;
324
325 /* Whether relocations have been processed. */
326 unsigned int reloc_done : 1;
327
328 /* A mark flag used by some of the linker backends. */
329 unsigned int linker_mark : 1;
330
331 /* Another mark flag used by some of the linker backends. Set for
332 output sections that have an input section. */
333 unsigned int linker_has_input : 1;
334
335 /* A mark flag used by some linker backends for garbage collection. */
336 unsigned int gc_mark : 1;
337
338 /* The following flags are used by the ELF linker. */
339
340 /* Mark sections which have been allocated to segments. */
341 unsigned int segment_mark : 1;
342
343 /* Type of sec_info information. */
344 unsigned int sec_info_type:3;
345#define ELF_INFO_TYPE_NONE 0
346#define ELF_INFO_TYPE_STABS 1
347#define ELF_INFO_TYPE_MERGE 2
348#define ELF_INFO_TYPE_EH_FRAME 3
349#define ELF_INFO_TYPE_JUST_SYMS 4
350
351 /* Nonzero if this section uses RELA relocations, rather than REL. */
352 unsigned int use_rela_p:1;
353
354 /* Bits used by various backends. */
355 unsigned int has_tls_reloc:1;
356
357 /* Nonzero if this section needs the relax finalize pass. */
358 unsigned int need_finalize_relax:1;
359
360 /* Usused bits. */
361 unsigned int flag12:1;
362 unsigned int flag13:1;
363 unsigned int flag14:1;
364 unsigned int flag15:1;
365 unsigned int flag16:4;
366 unsigned int flag20:4;
367 unsigned int flag24:8;
368
369 /* End of internal packed boolean fields. */
370
371 /* The virtual memory address of the section - where it will be
372 at run time. The symbols are relocated against this. The
373 user_set_vma flag is maintained by bfd; if it's not set, the
374 backend can assign addresses (for example, in @code{a.out}, where
375 the default address for @code{.data} is dependent on the specific
376 target and various flags). */
377 bfd_vma vma;
378
379 /* The load address of the section - where it would be in a
380 rom image; really only used for writing section header
381 information. */
382 bfd_vma lma;
383
384 /* The size of the section in octets, as it will be output.
385 Contains a value even if the section has no contents (e.g., the
386 size of @code{.bss}). This will be filled in after relocation. */
387 bfd_size_type _cooked_size;
388
389 /* The original size on disk of the section, in octets. Normally this
390 value is the same as the size, but if some relaxing has
391 been done, then this value will be bigger. */
392 bfd_size_type _raw_size;
393
394 /* If this section is going to be output, then this value is the
395 offset in *bytes* into the output section of the first byte in the
396 input section (byte ==> smallest addressable unit on the
397 target). In most cases, if this was going to start at the
398 100th octet (8-bit quantity) in the output section, this value
399 would be 100. However, if the target byte size is 16 bits
400 (bfd_octets_per_byte is "2"), this value would be 50. */
401 bfd_vma output_offset;
402
403 /* The output section through which to map on output. */
404 struct sec *output_section;
405
406 /* The alignment requirement of the section, as an exponent of 2 -
407 e.g., 3 aligns to 2^3 (or 8). */
408 unsigned int alignment_power;
409
410 /* If an input section, a pointer to a vector of relocation
411 records for the data in this section. */
412 struct reloc_cache_entry *relocation;
413
414 /* If an output section, a pointer to a vector of pointers to
415 relocation records for the data in this section. */
416 struct reloc_cache_entry **orelocation;
417
418 /* The number of relocation records in one of the above. */
419 unsigned reloc_count;
420
421 /* Information below is back end specific - and not always used
422 or updated. */
423
424 /* File position of section data. */
425 file_ptr filepos;
426
427 /* File position of relocation info. */
428 file_ptr rel_filepos;
429
430 /* File position of line data. */
431 file_ptr line_filepos;
432
433 /* Pointer to data for applications. */
434 PTR userdata;
435
436 /* If the SEC_IN_MEMORY flag is set, this points to the actual
437 contents. */
438 unsigned char *contents;
439
440 /* Attached line number information. */
441 alent *lineno;
442
443 /* Number of line number records. */
444 unsigned int lineno_count;
445
446 /* Entity size for merging purposes. */
447 unsigned int entsize;
448
449 /* Optional information about a COMDAT entry; NULL if not COMDAT. */
450 struct bfd_comdat_info *comdat;
451
452 /* When a section is being output, this value changes as more
453 linenumbers are written out. */
454 file_ptr moving_line_filepos;
455
456 /* What the section number is in the target world. */
457 int target_index;
458
459 PTR used_by_bfd;
460
461 /* If this is a constructor section then here is a list of the
462 relocations created to relocate items within it. */
463 struct relent_chain *constructor_chain;
464
465 /* The BFD which owns the section. */
466 bfd *owner;
467
468 /* A symbol which points at this section only. */
469 struct symbol_cache_entry *symbol;
470 struct symbol_cache_entry **symbol_ptr_ptr;
471
472 struct bfd_link_order *link_order_head;
473 struct bfd_link_order *link_order_tail;
474@} asection;
475
476/* These sections are global, and are managed by BFD. The application
477 and target back end are not permitted to change the values in
478 these sections. New code should use the section_ptr macros rather
479 than referring directly to the const sections. The const sections
480 may eventually vanish. */
481#define BFD_ABS_SECTION_NAME "*ABS*"
482#define BFD_UND_SECTION_NAME "*UND*"
483#define BFD_COM_SECTION_NAME "*COM*"
484#define BFD_IND_SECTION_NAME "*IND*"
485
486/* The absolute section. */
487extern const asection bfd_abs_section;
488#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
489#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
490/* Pointer to the undefined section. */
491extern const asection bfd_und_section;
492#define bfd_und_section_ptr ((asection *) &bfd_und_section)
493#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
494/* Pointer to the common section. */
495extern const asection bfd_com_section;
496#define bfd_com_section_ptr ((asection *) &bfd_com_section)
497/* Pointer to the indirect section. */
498extern const asection bfd_ind_section;
499#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
500#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
501
502#define bfd_is_const_section(SEC) \
503 ( ((SEC) == bfd_abs_section_ptr) \
504 || ((SEC) == bfd_und_section_ptr) \
505 || ((SEC) == bfd_com_section_ptr) \
506 || ((SEC) == bfd_ind_section_ptr))
507
508extern const struct symbol_cache_entry * const bfd_abs_symbol;
509extern const struct symbol_cache_entry * const bfd_com_symbol;
510extern const struct symbol_cache_entry * const bfd_und_symbol;
511extern const struct symbol_cache_entry * const bfd_ind_symbol;
512#define bfd_get_section_size_before_reloc(section) \
513 ((section)->reloc_done ? (abort (), (bfd_size_type) 1) \
514 : (section)->_raw_size)
515#define bfd_get_section_size_after_reloc(section) \
516 ((section)->reloc_done ? (section)->_cooked_size \
517 : (abort (), (bfd_size_type) 1))
518
519/* Macros to handle insertion and deletion of a bfd's sections. These
520 only handle the list pointers, ie. do not adjust section_count,
521 target_index etc. */
522#define bfd_section_list_remove(ABFD, PS) \
523 do \
524 @{ \
525 asection **_ps = PS; \
526 asection *_s = *_ps; \
527 *_ps = _s->next; \
528 if (_s->next == NULL) \
529 (ABFD)->section_tail = _ps; \
530 @} \
531 while (0)
532#define bfd_section_list_insert(ABFD, PS, S) \
533 do \
534 @{ \
535 asection **_ps = PS; \
536 asection *_s = S; \
537 _s->next = *_ps; \
538 *_ps = _s; \
539 if (_s->next == NULL) \
540 (ABFD)->section_tail = &_s->next; \
541 @} \
542 while (0)
543
544@end example
545
546@node section prototypes, , typedef asection, Sections
547@subsection Section prototypes
548These are the functions exported by the section handling part of BFD.
549
550@findex bfd_section_list_clear
551@subsubsection @code{bfd_section_list_clear}
552@strong{Synopsis}
553@example
554void bfd_section_list_clear (bfd *);
555@end example
556@strong{Description}@*
557Clears the section list, and also resets the section count and
558hash table entries.
559
560@findex bfd_get_section_by_name
561@subsubsection @code{bfd_get_section_by_name}
562@strong{Synopsis}
563@example
564asection *bfd_get_section_by_name(bfd *abfd, const char *name);
565@end example
566@strong{Description}@*
567Run through @var{abfd} and return the one of the
568@code{asection}s whose name matches @var{name}, otherwise @code{NULL}.
569@xref{Sections}, for more information.
570
571This should only be used in special cases; the normal way to process
572all sections of a given name is to use @code{bfd_map_over_sections} and
573@code{strcmp} on the name (or better yet, base it on the section flags
574or something else) for each section.
575
576@findex bfd_get_unique_section_name
577@subsubsection @code{bfd_get_unique_section_name}
578@strong{Synopsis}
579@example
580char *bfd_get_unique_section_name(bfd *abfd,
581 const char *templat,
582 int *count);
583@end example
584@strong{Description}@*
585Invent a section name that is unique in @var{abfd} by tacking
586a dot and a digit suffix onto the original @var{templat}. If
587@var{count} is non-NULL, then it specifies the first number
588tried as a suffix to generate a unique name. The value
589pointed to by @var{count} will be incremented in this case.
590
591@findex bfd_make_section_old_way
592@subsubsection @code{bfd_make_section_old_way}
593@strong{Synopsis}
594@example
595asection *bfd_make_section_old_way(bfd *abfd, const char *name);
596@end example
597@strong{Description}@*
598Create a new empty section called @var{name}
599and attach it to the end of the chain of sections for the
600BFD @var{abfd}. An attempt to create a section with a name which
601is already in use returns its pointer without changing the
602section chain.
603
604It has the funny name since this is the way it used to be
605before it was rewritten....
606
607Possible errors are:
608@itemize @bullet
609
610@item
611@code{bfd_error_invalid_operation} -
612If output has already started for this BFD.
613@item
614@code{bfd_error_no_memory} -
615If memory allocation fails.
616@end itemize
617
618@findex bfd_make_section_anyway
619@subsubsection @code{bfd_make_section_anyway}
620@strong{Synopsis}
621@example
622asection *bfd_make_section_anyway(bfd *abfd, const char *name);
623@end example
624@strong{Description}@*
625Create a new empty section called @var{name} and attach it to the end of
626the chain of sections for @var{abfd}. Create a new section even if there
627is already a section with that name.
628
629Return @code{NULL} and set @code{bfd_error} on error; possible errors are:
630@itemize @bullet
631
632@item
633@code{bfd_error_invalid_operation} - If output has already started for @var{abfd}.
634@item
635@code{bfd_error_no_memory} - If memory allocation fails.
636@end itemize
637
638@findex bfd_make_section
639@subsubsection @code{bfd_make_section}
640@strong{Synopsis}
641@example
642asection *bfd_make_section(bfd *, const char *name);
643@end example
644@strong{Description}@*
645Like @code{bfd_make_section_anyway}, but return @code{NULL} (without calling
646bfd_set_error ()) without changing the section chain if there is already a
647section named @var{name}. If there is an error, return @code{NULL} and set
648@code{bfd_error}.
649
650@findex bfd_set_section_flags
651@subsubsection @code{bfd_set_section_flags}
652@strong{Synopsis}
653@example
654bfd_boolean bfd_set_section_flags (bfd *abfd, asection *sec, flagword flags);
655@end example
656@strong{Description}@*
657Set the attributes of the section @var{sec} in the BFD
658@var{abfd} to the value @var{flags}. Return @code{TRUE} on success,
659@code{FALSE} on error. Possible error returns are:
660
661@itemize @bullet
662
663@item
664@code{bfd_error_invalid_operation} -
665The section cannot have one or more of the attributes
666requested. For example, a .bss section in @code{a.out} may not
667have the @code{SEC_HAS_CONTENTS} field set.
668@end itemize
669
670@findex bfd_map_over_sections
671@subsubsection @code{bfd_map_over_sections}
672@strong{Synopsis}
673@example
674void bfd_map_over_sections(bfd *abfd,
675 void (*func) (bfd *abfd,
676 asection *sect,
677 PTR obj),
678 PTR obj);
679@end example
680@strong{Description}@*
681Call the provided function @var{func} for each section
682attached to the BFD @var{abfd}, passing @var{obj} as an
683argument. The function will be called as if by
684
685@example
686 func(abfd, the_section, obj);
687@end example
688
689This is the prefered method for iterating over sections; an
690alternative would be to use a loop:
691
692@example
693 section *p;
694 for (p = abfd->sections; p != NULL; p = p->next)
695 func(abfd, p, ...)
696@end example
697
698@findex bfd_set_section_size
699@subsubsection @code{bfd_set_section_size}
700@strong{Synopsis}
701@example
702bfd_boolean bfd_set_section_size (bfd *abfd, asection *sec, bfd_size_type val);
703@end example
704@strong{Description}@*
705Set @var{sec} to the size @var{val}. If the operation is
706ok, then @code{TRUE} is returned, else @code{FALSE}.
707
708Possible error returns:
709@itemize @bullet
710
711@item
712@code{bfd_error_invalid_operation} -
713Writing has started to the BFD, so setting the size is invalid.
714@end itemize
715
716@findex bfd_set_section_contents
717@subsubsection @code{bfd_set_section_contents}
718@strong{Synopsis}
719@example
720bfd_boolean bfd_set_section_contents (bfd *abfd, asection *section,
721 PTR data, file_ptr offset,
722 bfd_size_type count);
723@end example
724@strong{Description}@*
725Sets the contents of the section @var{section} in BFD
726@var{abfd} to the data starting in memory at @var{data}. The
727data is written to the output section starting at offset
728@var{offset} for @var{count} octets.
729
730Normally @code{TRUE} is returned, else @code{FALSE}. Possible error
731returns are:
732@itemize @bullet
733
734@item
735@code{bfd_error_no_contents} -
736The output section does not have the @code{SEC_HAS_CONTENTS}
737attribute, so nothing can be written to it.
738@item
739and some more too
740@end itemize
741This routine is front end to the back end function
742@code{_bfd_set_section_contents}.
743
744@findex bfd_get_section_contents
745@subsubsection @code{bfd_get_section_contents}
746@strong{Synopsis}
747@example
748bfd_boolean bfd_get_section_contents (bfd *abfd, asection *section,
749 PTR location, file_ptr offset,
750 bfd_size_type count);
751@end example
752@strong{Description}@*
753Read data from @var{section} in BFD @var{abfd}
754into memory starting at @var{location}. The data is read at an
755offset of @var{offset} from the start of the input section,
756and is read for @var{count} bytes.
757
758If the contents of a constructor with the @code{SEC_CONSTRUCTOR}
759flag set are requested or if the section does not have the
760@code{SEC_HAS_CONTENTS} flag set, then the @var{location} is filled
761with zeroes. If no errors occur, @code{TRUE} is returned, else
762@code{FALSE}.
763
764@findex bfd_copy_private_section_data
765@subsubsection @code{bfd_copy_private_section_data}
766@strong{Synopsis}
767@example
768bfd_boolean bfd_copy_private_section_data (bfd *ibfd, asection *isec,
769 bfd *obfd, asection *osec);
770@end example
771@strong{Description}@*
772Copy private section information from @var{isec} in the BFD
773@var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
774Return @code{TRUE} on success, @code{FALSE} on error. Possible error
775returns are:
776
777@itemize @bullet
778
779@item
780@code{bfd_error_no_memory} -
781Not enough memory exists to create private data for @var{osec}.
782@end itemize
783@example
784#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
785 BFD_SEND (obfd, _bfd_copy_private_section_data, \
786 (ibfd, isection, obfd, osection))
787@end example
788
789@findex _bfd_strip_section_from_output
790@subsubsection @code{_bfd_strip_section_from_output}
791@strong{Synopsis}
792@example
793void _bfd_strip_section_from_output
794 (struct bfd_link_info *info, asection *section);
795@end example
796@strong{Description}@*
797Remove @var{section} from the output. If the output section
798becomes empty, remove it from the output bfd.
799
800This function won't actually do anything except twiddle flags
801if called too late in the linking process, when it's not safe
802to remove sections.
803
804@findex bfd_generic_discard_group
805@subsubsection @code{bfd_generic_discard_group}
806@strong{Synopsis}
807@example
808bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
809@end example
810@strong{Description}@*
811Remove all members of @var{group} from the output.
812
Note: See TracBrowser for help on using the repository browser.