1 | @section mmo backend
|
---|
2 | The mmo object format is used exclusively together with Professor
|
---|
3 | Donald E.@: Knuth's educational 64-bit processor MMIX. The simulator
|
---|
4 | @command{mmix} which is available at
|
---|
5 | @url{http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz}
|
---|
6 | understands this format. That package also includes a combined
|
---|
7 | assembler and linker called @command{mmixal}. The mmo format has
|
---|
8 | no advantages feature-wise compared to e.g. ELF. It is a simple
|
---|
9 | non-relocatable object format with no support for archives or
|
---|
10 | debugging information, except for symbol value information and
|
---|
11 | line numbers (which is not yet implemented in BFD). See
|
---|
12 | @url{http://www-cs-faculty.stanford.edu/~knuth/mmix.html} for more
|
---|
13 | information about MMIX. The ELF format is used for intermediate
|
---|
14 | object files in the BFD implementation.
|
---|
15 |
|
---|
16 | @c We want to xref the symbol table node. A feature in "chew"
|
---|
17 | @c requires that "commands" do not contain spaces in the
|
---|
18 | @c arguments. Hence the hyphen in "Symbol-table".
|
---|
19 | @menu
|
---|
20 | * File layout::
|
---|
21 | * Symbol-table::
|
---|
22 | * mmo section mapping::
|
---|
23 | @end menu
|
---|
24 |
|
---|
25 | @node File layout, Symbol-table, mmo, mmo
|
---|
26 | @subsection File layout
|
---|
27 | The mmo file contents is not partitioned into named sections as
|
---|
28 | with e.g.@: ELF. Memory areas is formed by specifying the
|
---|
29 | location of the data that follows. Only the memory area
|
---|
30 | @samp{0x0000@dots{}00} to @samp{0x01ff@dots{}ff} is executable, so
|
---|
31 | it is used for code (and constants) and the area
|
---|
32 | @samp{0x2000@dots{}00} to @samp{0x20ff@dots{}ff} is used for
|
---|
33 | writable data. @xref{mmo section mapping}.
|
---|
34 |
|
---|
35 | Contents is entered as 32-bit words, xor:ed over previous
|
---|
36 | contents, always zero-initialized. A word that starts with the
|
---|
37 | byte @samp{0x98} forms a command called a @samp{lopcode}, where
|
---|
38 | the next byte distinguished between the thirteen lopcodes. The
|
---|
39 | two remaining bytes, called the @samp{Y} and @samp{Z} fields, or
|
---|
40 | the @samp{YZ} field (a 16-bit big-endian number), are used for
|
---|
41 | various purposes different for each lopcode. As documented in
|
---|
42 | @url{http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz},
|
---|
43 | the lopcodes are:
|
---|
44 |
|
---|
45 | There is provision for specifying ``special data'' of 65536
|
---|
46 | different types. We use type 80 (decimal), arbitrarily chosen the
|
---|
47 | same as the ELF @code{e_machine} number for MMIX, filling it with
|
---|
48 | section information normally found in ELF objects. @xref{mmo
|
---|
49 | section mapping}.
|
---|
50 |
|
---|
51 | @table @code
|
---|
52 | @item lop_quote
|
---|
53 | 0x98000001. The next word is contents, regardless of whether it
|
---|
54 | starts with 0x98 or not.
|
---|
55 |
|
---|
56 | @item lop_loc
|
---|
57 | 0x9801YYZZ, where @samp{Z} is 1 or 2. This is a location
|
---|
58 | directive, setting the location for the next data to the next
|
---|
59 | 32-bit word (for @math{Z = 1}) or 64-bit word (for @math{Z = 2}),
|
---|
60 | plus @math{Y * 2^56}. Normally @samp{Y} is 0 for the text segment
|
---|
61 | and 2 for the data segment.
|
---|
62 |
|
---|
63 | @item lop_skip
|
---|
64 | 0x9802YYZZ. Increase the current location by @samp{YZ} bytes.
|
---|
65 |
|
---|
66 | @item lop_fixo
|
---|
67 | 0x9803YYZZ, where @samp{Z} is 1 or 2. Store the current location
|
---|
68 | as 64 bits into the location pointed to by the next 32-bit
|
---|
69 | (@math{Z = 1}) or 64-bit (@math{Z = 2}) word, plus @math{Y *
|
---|
70 | 2^56}.
|
---|
71 |
|
---|
72 | @item lop_fixr
|
---|
73 | 0x9804YYZZ. @samp{YZ} is stored into the current location plus
|
---|
74 | @math{2 - 4 * YZ}.
|
---|
75 |
|
---|
76 | @item lop_fixrx
|
---|
77 | 0x980500ZZ. @samp{Z} is 16 or 24. A value @samp{L} derived from
|
---|
78 | the following 32-bit word are used in a manner similar to
|
---|
79 | @samp{YZ} in lop_fixr: it is xor:ed into the current location
|
---|
80 | minus @math{4 * L}. The first byte of the word is 0 or 1. If it
|
---|
81 | is 1, then @math{L = (@var{lowest 24 bits of word}) - 2^Z}, if 0,
|
---|
82 | then @math{L = (@var{lowest 24 bits of word})}.
|
---|
83 |
|
---|
84 | @item lop_file
|
---|
85 | 0x9806YYZZ. @samp{Y} is the file number, @samp{Z} is count of
|
---|
86 | 32-bit words. Set the file number to @samp{Y} and the line
|
---|
87 | counter to 0. The next @math{Z * 4} bytes contain the file name,
|
---|
88 | padded with zeros if the count is not a multiple of four. The
|
---|
89 | same @samp{Y} may occur multiple times, but @samp{Z} must be 0 for
|
---|
90 | all but the first occurrence.
|
---|
91 |
|
---|
92 | @item lop_line
|
---|
93 | 0x9807YYZZ. @samp{YZ} is the line number. Together with
|
---|
94 | lop_file, it forms the source location for the next 32-bit word.
|
---|
95 | Note that for each non-lopcode 32-bit word, line numbers are
|
---|
96 | assumed incremented by one.
|
---|
97 |
|
---|
98 | @item lop_spec
|
---|
99 | 0x9808YYZZ. @samp{YZ} is the type number. Data until the next
|
---|
100 | lopcode other than lop_quote forms special data of type @samp{YZ}.
|
---|
101 | @xref{mmo section mapping}.
|
---|
102 |
|
---|
103 | Other types than 80, (or type 80 with a content that does not
|
---|
104 | parse) is stored in sections named @code{.MMIX.spec_data.@var{n}}
|
---|
105 | where @var{n} is the @samp{YZ}-type. The flags for such a
|
---|
106 | sections say not to allocate or load the data. The vma is 0.
|
---|
107 | Contents of multiple occurrences of special data @var{n} is
|
---|
108 | concatenated to the data of the previous lop_spec @var{n}s. The
|
---|
109 | location in data or code at which the lop_spec occurred is lost.
|
---|
110 |
|
---|
111 | @item lop_pre
|
---|
112 | 0x980901ZZ. The first lopcode in a file. The @samp{Z} field forms the
|
---|
113 | length of header information in 32-bit words, where the first word
|
---|
114 | tells the time in seconds since @samp{00:00:00 GMT Jan 1 1970}.
|
---|
115 |
|
---|
116 | @item lop_post
|
---|
117 | 0x980a00ZZ. @math{Z > 32}. This lopcode follows after all
|
---|
118 | content-generating lopcodes in a program. The @samp{Z} field
|
---|
119 | denotes the value of @samp{rG} at the beginning of the program.
|
---|
120 | The following @math{256 - Z} big-endian 64-bit words are loaded
|
---|
121 | into global registers @samp{$G} @dots{} @samp{$255}.
|
---|
122 |
|
---|
123 | @item lop_stab
|
---|
124 | 0x980b0000. The next-to-last lopcode in a program. Must follow
|
---|
125 | immediately after the lop_post lopcode and its data. After this
|
---|
126 | lopcode follows all symbols in a compressed format
|
---|
127 | (@pxref{Symbol-table}).
|
---|
128 |
|
---|
129 | @item lop_end
|
---|
130 | 0x980cYYZZ. The last lopcode in a program. It must follow the
|
---|
131 | lop_stab lopcode and its data. The @samp{YZ} field contains the
|
---|
132 | number of 32-bit words of symbol table information after the
|
---|
133 | preceding lop_stab lopcode.
|
---|
134 | @end table
|
---|
135 |
|
---|
136 | Note that the lopcode "fixups"; @code{lop_fixr}, @code{lop_fixrx} and
|
---|
137 | @code{lop_fixo} are not generated by BFD, but are handled. They are
|
---|
138 | generated by @code{mmixal}.
|
---|
139 |
|
---|
140 | This trivial one-label, one-instruction file:
|
---|
141 |
|
---|
142 | @example
|
---|
143 | :Main TRAP 1,2,3
|
---|
144 | @end example
|
---|
145 |
|
---|
146 | can be represented this way in mmo:
|
---|
147 |
|
---|
148 | @example
|
---|
149 | 0x98090101 - lop_pre, one 32-bit word with timestamp.
|
---|
150 | <timestamp>
|
---|
151 | 0x98010002 - lop_loc, text segment, using a 64-bit address.
|
---|
152 | Note that mmixal does not emit this for the file above.
|
---|
153 | 0x00000000 - Address, high 32 bits.
|
---|
154 | 0x00000000 - Address, low 32 bits.
|
---|
155 | 0x98060002 - lop_file, 2 32-bit words for file-name.
|
---|
156 | 0x74657374 - "test"
|
---|
157 | 0x2e730000 - ".s\0\0"
|
---|
158 | 0x98070001 - lop_line, line 1.
|
---|
159 | 0x00010203 - TRAP 1,2,3
|
---|
160 | 0x980a00ff - lop_post, setting $255 to 0.
|
---|
161 | 0x00000000
|
---|
162 | 0x00000000
|
---|
163 | 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
|
---|
164 | 0x203a4040 @xref{Symbol-table}.
|
---|
165 | 0x10404020
|
---|
166 | 0x4d206120
|
---|
167 | 0x69016e00
|
---|
168 | 0x81000000
|
---|
169 | 0x980c0005 - lop_end; symbol table contained five 32-bit words.
|
---|
170 | @end example
|
---|
171 | @node Symbol-table, mmo section mapping, File layout, mmo
|
---|
172 | @subsection Symbol table format
|
---|
173 | From mmixal.w (or really, the generated mmixal.tex) in
|
---|
174 | @url{http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz}):
|
---|
175 | ``Symbols are stored and retrieved by means of a @samp{ternary
|
---|
176 | search trie}, following ideas of Bentley and Sedgewick. (See
|
---|
177 | ACM--SIAM Symp.@: on Discrete Algorithms @samp{8} (1997), 360--369;
|
---|
178 | R.@:Sedgewick, @samp{Algorithms in C} (Reading, Mass.@:
|
---|
179 | Addison--Wesley, 1998), @samp{15.4}.) Each trie node stores a
|
---|
180 | character, and there are branches to subtries for the cases where
|
---|
181 | a given character is less than, equal to, or greater than the
|
---|
182 | character in the trie. There also is a pointer to a symbol table
|
---|
183 | entry if a symbol ends at the current node.''
|
---|
184 |
|
---|
185 | So it's a tree encoded as a stream of bytes. The stream of bytes
|
---|
186 | acts on a single virtual global symbol, adding and removing
|
---|
187 | characters and signalling complete symbol points. Here, we read
|
---|
188 | the stream and create symbols at the completion points.
|
---|
189 |
|
---|
190 | First, there's a control byte @code{m}. If any of the listed bits
|
---|
191 | in @code{m} is nonzero, we execute what stands at the right, in
|
---|
192 | the listed order:
|
---|
193 |
|
---|
194 | @example
|
---|
195 | (MMO3_LEFT)
|
---|
196 | 0x40 - Traverse left trie.
|
---|
197 | (Read a new command byte and recurse.)
|
---|
198 |
|
---|
199 | (MMO3_SYMBITS)
|
---|
200 | 0x2f - Read the next byte as a character and store it in the
|
---|
201 | current character position; increment character position.
|
---|
202 | Test the bits of @code{m}:
|
---|
203 |
|
---|
204 | (MMO3_WCHAR)
|
---|
205 | 0x80 - The character is 16-bit (so read another byte,
|
---|
206 | merge into current character.
|
---|
207 |
|
---|
208 | (MMO3_TYPEBITS)
|
---|
209 | 0xf - We have a complete symbol; parse the type, value
|
---|
210 | and serial number and do what should be done
|
---|
211 | with a symbol. The type and length information
|
---|
212 | is in j = (m & 0xf).
|
---|
213 |
|
---|
214 | (MMO3_REGQUAL_BITS)
|
---|
215 | j == 0xf: A register variable. The following
|
---|
216 | byte tells which register.
|
---|
217 | j <= 8: An absolute symbol. Read j bytes as the
|
---|
218 | big-endian number the symbol equals.
|
---|
219 | A j = 2 with two zero bytes denotes an
|
---|
220 | unknown symbol.
|
---|
221 | j > 8: As with j <= 8, but add (0x20 << 56)
|
---|
222 | to the value in the following j - 8
|
---|
223 | bytes.
|
---|
224 |
|
---|
225 | Then comes the serial number, as a variant of
|
---|
226 | uleb128, but better named ubeb128:
|
---|
227 | Read bytes and shift the previous value left 7
|
---|
228 | (multiply by 128). Add in the new byte, repeat
|
---|
229 | until a byte has bit 7 set. The serial number
|
---|
230 | is the computed value minus 128.
|
---|
231 |
|
---|
232 | (MMO3_MIDDLE)
|
---|
233 | 0x20 - Traverse middle trie. (Read a new command byte
|
---|
234 | and recurse.) Decrement character position.
|
---|
235 |
|
---|
236 | (MMO3_RIGHT)
|
---|
237 | 0x10 - Traverse right trie. (Read a new command byte and
|
---|
238 | recurse.)
|
---|
239 | @end example
|
---|
240 |
|
---|
241 | Let's look again at the @code{lop_stab} for the trivial file
|
---|
242 | (@pxref{File layout}).
|
---|
243 |
|
---|
244 | @example
|
---|
245 | 0x980b0000 - lop_stab for ":Main" = 0, serial 1.
|
---|
246 | 0x203a4040
|
---|
247 | 0x10404020
|
---|
248 | 0x4d206120
|
---|
249 | 0x69016e00
|
---|
250 | 0x81000000
|
---|
251 | @end example
|
---|
252 |
|
---|
253 | This forms the trivial trie (note that the path between ``:'' and
|
---|
254 | ``M'' is redundant):
|
---|
255 |
|
---|
256 | @example
|
---|
257 | 203a ":"
|
---|
258 | 40 /
|
---|
259 | 40 /
|
---|
260 | 10 \
|
---|
261 | 40 /
|
---|
262 | 40 /
|
---|
263 | 204d "M"
|
---|
264 | 2061 "a"
|
---|
265 | 2069 "i"
|
---|
266 | 016e "n" is the last character in a full symbol, and
|
---|
267 | with a value represented in one byte.
|
---|
268 | 00 The value is 0.
|
---|
269 | 81 The serial number is 1.
|
---|
270 | @end example
|
---|
271 |
|
---|
272 | @node mmo section mapping, , Symbol-table, mmo
|
---|
273 | @subsection mmo section mapping
|
---|
274 | The implementation in BFD uses special data type 80 (decimal) to
|
---|
275 | encapsulate and describe named sections, containing e.g.@: debug
|
---|
276 | information. If needed, any datum in the encapsulation will be
|
---|
277 | quoted using lop_quote. First comes a 32-bit word holding the
|
---|
278 | number of 32-bit words containing the zero-terminated zero-padded
|
---|
279 | segment name. After the name there's a 32-bit word holding flags
|
---|
280 | describing the section type. Then comes a 64-bit big-endian word
|
---|
281 | with the section length (in bytes), then another with the section
|
---|
282 | start address. Depending on the type of section, the contents
|
---|
283 | might follow, zero-padded to 32-bit boundary. For a loadable
|
---|
284 | section (such as data or code), the contents might follow at some
|
---|
285 | later point, not necessarily immediately, as a lop_loc with the
|
---|
286 | same start address as in the section description, followed by the
|
---|
287 | contents. This in effect forms a descriptor that must be emitted
|
---|
288 | before the actual contents. Sections described this way must not
|
---|
289 | overlap.
|
---|
290 |
|
---|
291 | For areas that don't have such descriptors, synthetic sections are
|
---|
292 | formed by BFD. Consecutive contents in the two memory areas
|
---|
293 | @samp{0x0000@dots{}00} to @samp{0x01ff@dots{}ff} and
|
---|
294 | @samp{0x2000@dots{}00} to @samp{0x20ff@dots{}ff} are entered in
|
---|
295 | sections named @code{.text} and @code{.data} respectively. If an area
|
---|
296 | is not otherwise described, but would together with a neighboring
|
---|
297 | lower area be less than @samp{0x40000000} bytes long, it is joined
|
---|
298 | with the lower area and the gap is zero-filled. For other cases,
|
---|
299 | a new section is formed, named @code{.MMIX.sec.@var{n}}. Here,
|
---|
300 | @var{n} is a number, a running count through the mmo file,
|
---|
301 | starting at 0.
|
---|
302 |
|
---|
303 | A loadable section specified as:
|
---|
304 |
|
---|
305 | @example
|
---|
306 | .section secname,"ax"
|
---|
307 | TETRA 1,2,3,4,-1,-2009
|
---|
308 | BYTE 80
|
---|
309 | @end example
|
---|
310 |
|
---|
311 | and linked to address @samp{0x4}, is represented by the sequence:
|
---|
312 |
|
---|
313 | @example
|
---|
314 | 0x98080050 - lop_spec 80
|
---|
315 | 0x00000002 - two 32-bit words for the section name
|
---|
316 | 0x7365636e - "secn"
|
---|
317 | 0x616d6500 - "ame\0"
|
---|
318 | 0x00000033 - flags CODE, READONLY, LOAD, ALLOC
|
---|
319 | 0x00000000 - high 32 bits of section length
|
---|
320 | 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits
|
---|
321 | 0x00000000 - high 32 bits of section address
|
---|
322 | 0x00000004 - section address is 4
|
---|
323 | 0x98010002 - 64 bits with address of following data
|
---|
324 | 0x00000000 - high 32 bits of address
|
---|
325 | 0x00000004 - low 32 bits: data starts at address 4
|
---|
326 | 0x00000001 - 1
|
---|
327 | 0x00000002 - 2
|
---|
328 | 0x00000003 - 3
|
---|
329 | 0x00000004 - 4
|
---|
330 | 0xffffffff - -1
|
---|
331 | 0xfffff827 - -2009
|
---|
332 | 0x50000000 - 80 as a byte, padded with zeros.
|
---|
333 | @end example
|
---|
334 |
|
---|
335 | Note that the lop_spec wrapping does not include the section
|
---|
336 | contents. Compare this to a non-loaded section specified as:
|
---|
337 |
|
---|
338 | @example
|
---|
339 | .section thirdsec
|
---|
340 | TETRA 200001,100002
|
---|
341 | BYTE 38,40
|
---|
342 | @end example
|
---|
343 |
|
---|
344 | This, when linked to address @samp{0x200000000000001c}, is
|
---|
345 | represented by:
|
---|
346 |
|
---|
347 | @example
|
---|
348 | 0x98080050 - lop_spec 80
|
---|
349 | 0x00000002 - two 32-bit words for the section name
|
---|
350 | 0x7365636e - "thir"
|
---|
351 | 0x616d6500 - "dsec"
|
---|
352 | 0x00000010 - flag READONLY
|
---|
353 | 0x00000000 - high 32 bits of section length
|
---|
354 | 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits
|
---|
355 | 0x20000000 - high 32 bits of address
|
---|
356 | 0x0000001c - low 32 bits of address 0x200000000000001c
|
---|
357 | 0x00030d41 - 200001
|
---|
358 | 0x000186a2 - 100002
|
---|
359 | 0x26280000 - 38, 40 as bytes, padded with zeros
|
---|
360 | @end example
|
---|
361 |
|
---|
362 | For the latter example, the section contents must not be
|
---|
363 | loaded in memory, and is therefore specified as part of the
|
---|
364 | special data. The address is usually unimportant but might
|
---|
365 | provide information for e.g.@: the DWARF 2 debugging format.
|
---|