1 | This is bfd.info, produced by makeinfo version 4.3 from bfd.texinfo.
|
---|
2 |
|
---|
3 | START-INFO-DIR-ENTRY
|
---|
4 | * Bfd: (bfd). The Binary File Descriptor library.
|
---|
5 | END-INFO-DIR-ENTRY
|
---|
6 |
|
---|
7 | This file documents the BFD library.
|
---|
8 |
|
---|
9 | Copyright (C) 1991, 2000, 2001, 2003 Free Software Foundation, Inc.
|
---|
10 |
|
---|
11 | Permission is granted to copy, distribute and/or modify this document
|
---|
12 | under the terms of the GNU Free Documentation License, Version 1.1
|
---|
13 | or any later version published by the Free Software Foundation;
|
---|
14 | with no Invariant Sections, with no Front-Cover Texts, and with no
|
---|
15 | Back-Cover Texts. A copy of the license is included in the
|
---|
16 | section entitled "GNU Free Documentation License".
|
---|
17 |
|
---|
18 |
|
---|
19 | File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir)
|
---|
20 |
|
---|
21 | This file documents the binary file descriptor library libbfd.
|
---|
22 |
|
---|
23 | * Menu:
|
---|
24 |
|
---|
25 | * Overview:: Overview of BFD
|
---|
26 | * BFD front end:: BFD front end
|
---|
27 | * BFD back ends:: BFD back ends
|
---|
28 | * GNU Free Documentation License:: GNU Free Documentation License
|
---|
29 | * Index:: Index
|
---|
30 |
|
---|
31 |
|
---|
32 | File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top
|
---|
33 |
|
---|
34 | Introduction
|
---|
35 | ************
|
---|
36 |
|
---|
37 | BFD is a package which allows applications to use the same routines
|
---|
38 | to operate on object files whatever the object file format. A new
|
---|
39 | object file format can be supported simply by creating a new BFD back
|
---|
40 | end and adding it to the library.
|
---|
41 |
|
---|
42 | BFD is split into two parts: the front end, and the back ends (one
|
---|
43 | for each object file format).
|
---|
44 | * The front end of BFD provides the interface to the user. It manages
|
---|
45 | memory and various canonical data structures. The front end also
|
---|
46 | decides which back end to use and when to call back end routines.
|
---|
47 |
|
---|
48 | * The back ends provide BFD its view of the real world. Each back
|
---|
49 | end provides a set of calls which the BFD front end can use to
|
---|
50 | maintain its canonical form. The back ends also may keep around
|
---|
51 | information for their own use, for greater efficiency.
|
---|
52 |
|
---|
53 | * Menu:
|
---|
54 |
|
---|
55 | * History:: History
|
---|
56 | * How It Works:: How It Works
|
---|
57 | * What BFD Version 2 Can Do:: What BFD Version 2 Can Do
|
---|
58 |
|
---|
59 |
|
---|
60 | File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview
|
---|
61 |
|
---|
62 | History
|
---|
63 | =======
|
---|
64 |
|
---|
65 | One spur behind BFD was the desire, on the part of the GNU 960 team
|
---|
66 | at Intel Oregon, for interoperability of applications on their COFF and
|
---|
67 | b.out file formats. Cygnus was providing GNU support for the team, and
|
---|
68 | was contracted to provide the required functionality.
|
---|
69 |
|
---|
70 | The name came from a conversation David Wallace was having with
|
---|
71 | Richard Stallman about the library: RMS said that it would be quite
|
---|
72 | hard--David said "BFD". Stallman was right, but the name stuck.
|
---|
73 |
|
---|
74 | At the same time, Ready Systems wanted much the same thing, but for
|
---|
75 | different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
|
---|
76 | coff.
|
---|
77 |
|
---|
78 | BFD was first implemented by members of Cygnus Support; Steve
|
---|
79 | Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K.
|
---|
80 | Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace
|
---|
81 | (`gumby@cygnus.com').
|
---|
82 |
|
---|
83 |
|
---|
84 | File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview
|
---|
85 |
|
---|
86 | How To Use BFD
|
---|
87 | ==============
|
---|
88 |
|
---|
89 | To use the library, include `bfd.h' and link with `libbfd.a'.
|
---|
90 |
|
---|
91 | BFD provides a common interface to the parts of an object file for a
|
---|
92 | calling application.
|
---|
93 |
|
---|
94 | When an application sucessfully opens a target file (object,
|
---|
95 | archive, or whatever), a pointer to an internal structure is returned.
|
---|
96 | This pointer points to a structure called `bfd', described in `bfd.h'.
|
---|
97 | Our convention is to call this pointer a BFD, and instances of it
|
---|
98 | within code `abfd'. All operations on the target object file are
|
---|
99 | applied as methods to the BFD. The mapping is defined within `bfd.h'
|
---|
100 | in a set of macros, all beginning with `bfd_' to reduce namespace
|
---|
101 | pollution.
|
---|
102 |
|
---|
103 | For example, this sequence does what you would probably expect:
|
---|
104 | return the number of sections in an object file attached to a BFD
|
---|
105 | `abfd'.
|
---|
106 |
|
---|
107 | #include "bfd.h"
|
---|
108 |
|
---|
109 | unsigned int number_of_sections (abfd)
|
---|
110 | bfd *abfd;
|
---|
111 | {
|
---|
112 | return bfd_count_sections (abfd);
|
---|
113 | }
|
---|
114 |
|
---|
115 | The abstraction used within BFD is that an object file has:
|
---|
116 |
|
---|
117 | * a header,
|
---|
118 |
|
---|
119 | * a number of sections containing raw data (*note Sections::),
|
---|
120 |
|
---|
121 | * a set of relocations (*note Relocations::), and
|
---|
122 |
|
---|
123 | * some symbol information (*note Symbols::).
|
---|
124 |
|
---|
125 | Also, BFDs opened for archives have the additional attribute of an index
|
---|
126 | and contain subordinate BFDs. This approach is fine for a.out and coff,
|
---|
127 | but loses efficiency when applied to formats such as S-records and
|
---|
128 | IEEE-695.
|
---|
129 |
|
---|
130 |
|
---|
131 | File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview
|
---|
132 |
|
---|
133 | What BFD Version 2 Can Do
|
---|
134 | =========================
|
---|
135 |
|
---|
136 | When an object file is opened, BFD subroutines automatically
|
---|
137 | determine the format of the input object file. They then build a
|
---|
138 | descriptor in memory with pointers to routines that will be used to
|
---|
139 | access elements of the object file's data structures.
|
---|
140 |
|
---|
141 | As different information from the object files is required, BFD
|
---|
142 | reads from different sections of the file and processes them. For
|
---|
143 | example, a very common operation for the linker is processing symbol
|
---|
144 | tables. Each BFD back end provides a routine for converting between
|
---|
145 | the object file's representation of symbols and an internal canonical
|
---|
146 | format. When the linker asks for the symbol table of an object file, it
|
---|
147 | calls through a memory pointer to the routine from the relevant BFD
|
---|
148 | back end which reads and converts the table into a canonical form. The
|
---|
149 | linker then operates upon the canonical form. When the link is finished
|
---|
150 | and the linker writes the output file's symbol table, another BFD back
|
---|
151 | end routine is called to take the newly created symbol table and
|
---|
152 | convert it into the chosen output format.
|
---|
153 |
|
---|
154 | * Menu:
|
---|
155 |
|
---|
156 | * BFD information loss:: Information Loss
|
---|
157 | * Canonical format:: The BFD canonical object-file format
|
---|
158 |
|
---|
159 |
|
---|
160 | File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do
|
---|
161 |
|
---|
162 | Information Loss
|
---|
163 | ----------------
|
---|
164 |
|
---|
165 | _Information can be lost during output._ The output formats
|
---|
166 | supported by BFD do not provide identical facilities, and information
|
---|
167 | which can be described in one form has nowhere to go in another format.
|
---|
168 | One example of this is alignment information in `b.out'. There is
|
---|
169 | nowhere in an `a.out' format file to store alignment information on the
|
---|
170 | contained data, so when a file is linked from `b.out' and an `a.out'
|
---|
171 | image is produced, alignment information will not propagate to the
|
---|
172 | output file. (The linker will still use the alignment information
|
---|
173 | internally, so the link is performed correctly).
|
---|
174 |
|
---|
175 | Another example is COFF section names. COFF files may contain an
|
---|
176 | unlimited number of sections, each one with a textual section name. If
|
---|
177 | the target of the link is a format which does not have many sections
|
---|
178 | (e.g., `a.out') or has sections without names (e.g., the Oasys format),
|
---|
179 | the link cannot be done simply. You can circumvent this problem by
|
---|
180 | describing the desired input-to-output section mapping with the linker
|
---|
181 | command language.
|
---|
182 |
|
---|
183 | _Information can be lost during canonicalization._ The BFD internal
|
---|
184 | canonical form of the external formats is not exhaustive; there are
|
---|
185 | structures in input formats for which there is no direct representation
|
---|
186 | internally. This means that the BFD back ends cannot maintain all
|
---|
187 | possible data richness through the transformation between external to
|
---|
188 | internal and back to external formats.
|
---|
189 |
|
---|
190 | This limitation is only a problem when an application reads one
|
---|
191 | format and writes another. Each BFD back end is responsible for
|
---|
192 | maintaining as much data as possible, and the internal BFD canonical
|
---|
193 | form has structures which are opaque to the BFD core, and exported only
|
---|
194 | to the back ends. When a file is read in one format, the canonical form
|
---|
195 | is generated for BFD and the application. At the same time, the back
|
---|
196 | end saves away any information which may otherwise be lost. If the data
|
---|
197 | is then written back in the same format, the back end routine will be
|
---|
198 | able to use the canonical form provided by the BFD core as well as the
|
---|
199 | information it prepared earlier. Since there is a great deal of
|
---|
200 | commonality between back ends, there is no information lost when
|
---|
201 | linking or copying big endian COFF to little endian COFF, or `a.out' to
|
---|
202 | `b.out'. When a mixture of formats is linked, the information is only
|
---|
203 | lost from the files whose format differs from the destination.
|
---|
204 |
|
---|
205 |
|
---|
206 | File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do
|
---|
207 |
|
---|
208 | The BFD canonical object-file format
|
---|
209 | ------------------------------------
|
---|
210 |
|
---|
211 | The greatest potential for loss of information occurs when there is
|
---|
212 | the least overlap between the information provided by the source
|
---|
213 | format, that stored by the canonical format, and that needed by the
|
---|
214 | destination format. A brief description of the canonical form may help
|
---|
215 | you understand which kinds of data you can count on preserving across
|
---|
216 | conversions.
|
---|
217 |
|
---|
218 | _files_
|
---|
219 | Information stored on a per-file basis includes target machine
|
---|
220 | architecture, particular implementation format type, a demand
|
---|
221 | pageable bit, and a write protected bit. Information like Unix
|
---|
222 | magic numbers is not stored here--only the magic numbers' meaning,
|
---|
223 | so a `ZMAGIC' file would have both the demand pageable bit and the
|
---|
224 | write protected text bit set. The byte order of the target is
|
---|
225 | stored on a per-file basis, so that big- and little-endian object
|
---|
226 | files may be used with one another.
|
---|
227 |
|
---|
228 | _sections_
|
---|
229 | Each section in the input file contains the name of the section,
|
---|
230 | the section's original address in the object file, size and
|
---|
231 | alignment information, various flags, and pointers into other BFD
|
---|
232 | data structures.
|
---|
233 |
|
---|
234 | _symbols_
|
---|
235 | Each symbol contains a pointer to the information for the object
|
---|
236 | file which originally defined it, its name, its value, and various
|
---|
237 | flag bits. When a BFD back end reads in a symbol table, it
|
---|
238 | relocates all symbols to make them relative to the base of the
|
---|
239 | section where they were defined. Doing this ensures that each
|
---|
240 | symbol points to its containing section. Each symbol also has a
|
---|
241 | varying amount of hidden private data for the BFD back end. Since
|
---|
242 | the symbol points to the original file, the private data format
|
---|
243 | for that symbol is accessible. `ld' can operate on a collection
|
---|
244 | of symbols of wildly different formats without problems.
|
---|
245 |
|
---|
246 | Normal global and simple local symbols are maintained on output,
|
---|
247 | so an output file (no matter its format) will retain symbols
|
---|
248 | pointing to functions and to global, static, and common variables.
|
---|
249 | Some symbol information is not worth retaining; in `a.out', type
|
---|
250 | information is stored in the symbol table as long symbol names.
|
---|
251 | This information would be useless to most COFF debuggers; the
|
---|
252 | linker has command line switches to allow users to throw it away.
|
---|
253 |
|
---|
254 | There is one word of type information within the symbol, so if the
|
---|
255 | format supports symbol type information within symbols (for
|
---|
256 | example, COFF, IEEE, Oasys) and the type is simple enough to fit
|
---|
257 | within one word (nearly everything but aggregates), the
|
---|
258 | information will be preserved.
|
---|
259 |
|
---|
260 | _relocation level_
|
---|
261 | Each canonical BFD relocation record contains a pointer to the
|
---|
262 | symbol to relocate to, the offset of the data to relocate, the
|
---|
263 | section the data is in, and a pointer to a relocation type
|
---|
264 | descriptor. Relocation is performed by passing messages through
|
---|
265 | the relocation type descriptor and the symbol pointer. Therefore,
|
---|
266 | relocations can be performed on output data using a relocation
|
---|
267 | method that is only available in one of the input formats. For
|
---|
268 | instance, Oasys provides a byte relocation format. A relocation
|
---|
269 | record requesting this relocation type would point indirectly to a
|
---|
270 | routine to perform this, so the relocation may be performed on a
|
---|
271 | byte being written to a 68k COFF file, even though 68k COFF has no
|
---|
272 | such relocation type.
|
---|
273 |
|
---|
274 | _line numbers_
|
---|
275 | Object formats can contain, for debugging purposes, some form of
|
---|
276 | mapping between symbols, source line numbers, and addresses in the
|
---|
277 | output file. These addresses have to be relocated along with the
|
---|
278 | symbol information. Each symbol with an associated list of line
|
---|
279 | number records points to the first record of the list. The head
|
---|
280 | of a line number list consists of a pointer to the symbol, which
|
---|
281 | allows finding out the address of the function whose line number
|
---|
282 | is being described. The rest of the list is made up of pairs:
|
---|
283 | offsets into the section and line numbers. Any format which can
|
---|
284 | simply derive this information can pass it successfully between
|
---|
285 | formats (COFF, IEEE and Oasys).
|
---|
286 |
|
---|
287 |
|
---|
288 | File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top
|
---|
289 |
|
---|
290 | BFD Front End
|
---|
291 | *************
|
---|
292 |
|
---|
293 | `typedef bfd'
|
---|
294 | =============
|
---|
295 |
|
---|
296 | A BFD has type `bfd'; objects of this type are the cornerstone of
|
---|
297 | any application using BFD. Using BFD consists of making references
|
---|
298 | though the BFD and to data in the BFD.
|
---|
299 |
|
---|
300 | Here is the structure that defines the type `bfd'. It contains the
|
---|
301 | major data about the file and pointers to the rest of the data.
|
---|
302 |
|
---|
303 |
|
---|
304 | struct bfd
|
---|
305 | {
|
---|
306 | /* A unique identifier of the BFD */
|
---|
307 | unsigned int id;
|
---|
308 |
|
---|
309 | /* The filename the application opened the BFD with. */
|
---|
310 | const char *filename;
|
---|
311 |
|
---|
312 | /* A pointer to the target jump table. */
|
---|
313 | const struct bfd_target *xvec;
|
---|
314 |
|
---|
315 | /* To avoid dragging too many header files into every file that
|
---|
316 | includes ``bfd.h'', IOSTREAM has been declared as a "char *",
|
---|
317 | and MTIME as a "long". Their correct types, to which they
|
---|
318 | are cast when used, are "FILE *" and "time_t". The iostream
|
---|
319 | is the result of an fopen on the filename. However, if the
|
---|
320 | BFD_IN_MEMORY flag is set, then iostream is actually a pointer
|
---|
321 | to a bfd_in_memory struct. */
|
---|
322 | PTR iostream;
|
---|
323 |
|
---|
324 | /* Is the file descriptor being cached? That is, can it be closed as
|
---|
325 | needed, and re-opened when accessed later? */
|
---|
326 | bfd_boolean cacheable;
|
---|
327 |
|
---|
328 | /* Marks whether there was a default target specified when the
|
---|
329 | BFD was opened. This is used to select which matching algorithm
|
---|
330 | to use to choose the back end. */
|
---|
331 | bfd_boolean target_defaulted;
|
---|
332 |
|
---|
333 | /* The caching routines use these to maintain a
|
---|
334 | least-recently-used list of BFDs. */
|
---|
335 | struct bfd *lru_prev, *lru_next;
|
---|
336 |
|
---|
337 | /* When a file is closed by the caching routines, BFD retains
|
---|
338 | state information on the file here... */
|
---|
339 | ufile_ptr where;
|
---|
340 |
|
---|
341 | /* ... and here: (``once'' means at least once). */
|
---|
342 | bfd_boolean opened_once;
|
---|
343 |
|
---|
344 | /* Set if we have a locally maintained mtime value, rather than
|
---|
345 | getting it from the file each time. */
|
---|
346 | bfd_boolean mtime_set;
|
---|
347 |
|
---|
348 | /* File modified time, if mtime_set is TRUE. */
|
---|
349 | long mtime;
|
---|
350 |
|
---|
351 | /* Reserved for an unimplemented file locking extension. */
|
---|
352 | int ifd;
|
---|
353 |
|
---|
354 | /* The format which belongs to the BFD. (object, core, etc.) */
|
---|
355 | bfd_format format;
|
---|
356 |
|
---|
357 | /* The direction with which the BFD was opened. */
|
---|
358 | enum bfd_direction
|
---|
359 | {
|
---|
360 | no_direction = 0,
|
---|
361 | read_direction = 1,
|
---|
362 | write_direction = 2,
|
---|
363 | both_direction = 3
|
---|
364 | }
|
---|
365 | direction;
|
---|
366 |
|
---|
367 | /* Format_specific flags. */
|
---|
368 | flagword flags;
|
---|
369 |
|
---|
370 | /* Currently my_archive is tested before adding origin to
|
---|
371 | anything. I believe that this can become always an add of
|
---|
372 | origin, with origin set to 0 for non archive files. */
|
---|
373 | ufile_ptr origin;
|
---|
374 |
|
---|
375 | /* Remember when output has begun, to stop strange things
|
---|
376 | from happening. */
|
---|
377 | bfd_boolean output_has_begun;
|
---|
378 |
|
---|
379 | /* A hash table for section names. */
|
---|
380 | struct bfd_hash_table section_htab;
|
---|
381 |
|
---|
382 | /* Pointer to linked list of sections. */
|
---|
383 | struct sec *sections;
|
---|
384 |
|
---|
385 | /* The place where we add to the section list. */
|
---|
386 | struct sec **section_tail;
|
---|
387 |
|
---|
388 | /* The number of sections. */
|
---|
389 | unsigned int section_count;
|
---|
390 |
|
---|
391 | /* Stuff only useful for object files:
|
---|
392 | The start address. */
|
---|
393 | bfd_vma start_address;
|
---|
394 |
|
---|
395 | /* Used for input and output. */
|
---|
396 | unsigned int symcount;
|
---|
397 |
|
---|
398 | /* Symbol table for output BFD (with symcount entries). */
|
---|
399 | struct symbol_cache_entry **outsymbols;
|
---|
400 |
|
---|
401 | /* Used for slurped dynamic symbol tables. */
|
---|
402 | unsigned int dynsymcount;
|
---|
403 |
|
---|
404 | /* Pointer to structure which contains architecture information. */
|
---|
405 | const struct bfd_arch_info *arch_info;
|
---|
406 |
|
---|
407 | /* Stuff only useful for archives. */
|
---|
408 | PTR arelt_data;
|
---|
409 | struct bfd *my_archive; /* The containing archive BFD. */
|
---|
410 | struct bfd *next; /* The next BFD in the archive. */
|
---|
411 | struct bfd *archive_head; /* The first BFD in the archive. */
|
---|
412 | bfd_boolean has_armap;
|
---|
413 |
|
---|
414 | /* A chain of BFD structures involved in a link. */
|
---|
415 | struct bfd *link_next;
|
---|
416 |
|
---|
417 | /* A field used by _bfd_generic_link_add_archive_symbols. This will
|
---|
418 | be used only for archive elements. */
|
---|
419 | int archive_pass;
|
---|
420 |
|
---|
421 | /* Used by the back end to hold private data. */
|
---|
422 | union
|
---|
423 | {
|
---|
424 | struct aout_data_struct *aout_data;
|
---|
425 | struct artdata *aout_ar_data;
|
---|
426 | struct _oasys_data *oasys_obj_data;
|
---|
427 | struct _oasys_ar_data *oasys_ar_data;
|
---|
428 | struct coff_tdata *coff_obj_data;
|
---|
429 | struct pe_tdata *pe_obj_data;
|
---|
430 | struct xcoff_tdata *xcoff_obj_data;
|
---|
431 | struct ecoff_tdata *ecoff_obj_data;
|
---|
432 | struct ieee_data_struct *ieee_data;
|
---|
433 | struct ieee_ar_data_struct *ieee_ar_data;
|
---|
434 | struct srec_data_struct *srec_data;
|
---|
435 | struct ihex_data_struct *ihex_data;
|
---|
436 | struct tekhex_data_struct *tekhex_data;
|
---|
437 | struct elf_obj_tdata *elf_obj_data;
|
---|
438 | struct nlm_obj_tdata *nlm_obj_data;
|
---|
439 | struct bout_data_struct *bout_data;
|
---|
440 | struct mmo_data_struct *mmo_data;
|
---|
441 | struct sun_core_struct *sun_core_data;
|
---|
442 | struct sco5_core_struct *sco5_core_data;
|
---|
443 | struct trad_core_struct *trad_core_data;
|
---|
444 | struct som_data_struct *som_data;
|
---|
445 | struct hpux_core_struct *hpux_core_data;
|
---|
446 | struct hppabsd_core_struct *hppabsd_core_data;
|
---|
447 | struct sgi_core_struct *sgi_core_data;
|
---|
448 | struct lynx_core_struct *lynx_core_data;
|
---|
449 | struct osf_core_struct *osf_core_data;
|
---|
450 | struct cisco_core_struct *cisco_core_data;
|
---|
451 | struct versados_data_struct *versados_data;
|
---|
452 | struct netbsd_core_struct *netbsd_core_data;
|
---|
453 | struct mach_o_data_struct *mach_o_data;
|
---|
454 | struct mach_o_fat_data_struct *mach_o_fat_data;
|
---|
455 | struct bfd_pef_data_struct *pef_data;
|
---|
456 | struct bfd_pef_xlib_data_struct *pef_xlib_data;
|
---|
457 | struct bfd_sym_data_struct *sym_data;
|
---|
458 | PTR any;
|
---|
459 | }
|
---|
460 | tdata;
|
---|
461 |
|
---|
462 | /* Used by the application to hold private data. */
|
---|
463 | PTR usrdata;
|
---|
464 |
|
---|
465 | /* Where all the allocated stuff under this BFD goes. This is a
|
---|
466 | struct objalloc *, but we use PTR to avoid requiring the inclusion of
|
---|
467 | objalloc.h. */
|
---|
468 | PTR memory;
|
---|
469 | };
|
---|
470 |
|
---|
471 | Error reporting
|
---|
472 | ===============
|
---|
473 |
|
---|
474 | Most BFD functions return nonzero on success (check their individual
|
---|
475 | documentation for precise semantics). On an error, they call
|
---|
476 | `bfd_set_error' to set an error condition that callers can check by
|
---|
477 | calling `bfd_get_error'. If that returns `bfd_error_system_call', then
|
---|
478 | check `errno'.
|
---|
479 |
|
---|
480 | The easiest way to report a BFD error to the user is to use
|
---|
481 | `bfd_perror'.
|
---|
482 |
|
---|
483 | Type `bfd_error_type'
|
---|
484 | ---------------------
|
---|
485 |
|
---|
486 | The values returned by `bfd_get_error' are defined by the enumerated
|
---|
487 | type `bfd_error_type'.
|
---|
488 |
|
---|
489 |
|
---|
490 | typedef enum bfd_error
|
---|
491 | {
|
---|
492 | bfd_error_no_error = 0,
|
---|
493 | bfd_error_system_call,
|
---|
494 | bfd_error_invalid_target,
|
---|
495 | bfd_error_wrong_format,
|
---|
496 | bfd_error_wrong_object_format,
|
---|
497 | bfd_error_invalid_operation,
|
---|
498 | bfd_error_no_memory,
|
---|
499 | bfd_error_no_symbols,
|
---|
500 | bfd_error_no_armap,
|
---|
501 | bfd_error_no_more_archived_files,
|
---|
502 | bfd_error_malformed_archive,
|
---|
503 | bfd_error_file_not_recognized,
|
---|
504 | bfd_error_file_ambiguously_recognized,
|
---|
505 | bfd_error_no_contents,
|
---|
506 | bfd_error_nonrepresentable_section,
|
---|
507 | bfd_error_no_debug_section,
|
---|
508 | bfd_error_bad_value,
|
---|
509 | bfd_error_file_truncated,
|
---|
510 | bfd_error_file_too_big,
|
---|
511 | bfd_error_invalid_error_code
|
---|
512 | }
|
---|
513 | bfd_error_type;
|
---|
514 |
|
---|
515 | `bfd_get_error'
|
---|
516 | ...............
|
---|
517 |
|
---|
518 | *Synopsis*
|
---|
519 | bfd_error_type bfd_get_error (void);
|
---|
520 | *Description*
|
---|
521 | Return the current BFD error condition.
|
---|
522 |
|
---|
523 | `bfd_set_error'
|
---|
524 | ...............
|
---|
525 |
|
---|
526 | *Synopsis*
|
---|
527 | void bfd_set_error (bfd_error_type error_tag);
|
---|
528 | *Description*
|
---|
529 | Set the BFD error condition to be ERROR_TAG.
|
---|
530 |
|
---|
531 | `bfd_errmsg'
|
---|
532 | ............
|
---|
533 |
|
---|
534 | *Synopsis*
|
---|
535 | const char *bfd_errmsg (bfd_error_type error_tag);
|
---|
536 | *Description*
|
---|
537 | Return a string describing the error ERROR_TAG, or the system error if
|
---|
538 | ERROR_TAG is `bfd_error_system_call'.
|
---|
539 |
|
---|
540 | `bfd_perror'
|
---|
541 | ............
|
---|
542 |
|
---|
543 | *Synopsis*
|
---|
544 | void bfd_perror (const char *message);
|
---|
545 | *Description*
|
---|
546 | Print to the standard error stream a string describing the last BFD
|
---|
547 | error that occurred, or the last system error if the last BFD error was
|
---|
548 | a system call failure. If MESSAGE is non-NULL and non-empty, the error
|
---|
549 | string printed is preceded by MESSAGE, a colon, and a space. It is
|
---|
550 | followed by a newline.
|
---|
551 |
|
---|
552 | BFD error handler
|
---|
553 | -----------------
|
---|
554 |
|
---|
555 | Some BFD functions want to print messages describing the problem.
|
---|
556 | They call a BFD error handler function. This function may be overriden
|
---|
557 | by the program.
|
---|
558 |
|
---|
559 | The BFD error handler acts like printf.
|
---|
560 |
|
---|
561 |
|
---|
562 | typedef void (*bfd_error_handler_type) PARAMS ((const char *, ...));
|
---|
563 |
|
---|
564 | `bfd_set_error_handler'
|
---|
565 | .......................
|
---|
566 |
|
---|
567 | *Synopsis*
|
---|
568 | bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
|
---|
569 | *Description*
|
---|
570 | Set the BFD error handler function. Returns the previous function.
|
---|
571 |
|
---|
572 | `bfd_set_error_program_name'
|
---|
573 | ............................
|
---|
574 |
|
---|
575 | *Synopsis*
|
---|
576 | void bfd_set_error_program_name (const char *);
|
---|
577 | *Description*
|
---|
578 | Set the program name to use when printing a BFD error. This is printed
|
---|
579 | before the error message followed by a colon and space. The string
|
---|
580 | must not be changed after it is passed to this function.
|
---|
581 |
|
---|
582 | `bfd_get_error_handler'
|
---|
583 | .......................
|
---|
584 |
|
---|
585 | *Synopsis*
|
---|
586 | bfd_error_handler_type bfd_get_error_handler (void);
|
---|
587 | *Description*
|
---|
588 | Return the BFD error handler function.
|
---|
589 |
|
---|
590 | `bfd_archive_filename'
|
---|
591 | ......................
|
---|
592 |
|
---|
593 | *Synopsis*
|
---|
594 | const char *bfd_archive_filename (bfd *);
|
---|
595 | *Description*
|
---|
596 | For a BFD that is a component of an archive, returns a string with both
|
---|
597 | the archive name and file name. For other BFDs, just returns the file
|
---|
598 | name.
|
---|
599 |
|
---|
600 | Symbols
|
---|
601 | =======
|
---|
602 |
|
---|
603 | `bfd_get_reloc_upper_bound'
|
---|
604 | ...........................
|
---|
605 |
|
---|
606 | *Synopsis*
|
---|
607 | long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect);
|
---|
608 | *Description*
|
---|
609 | Return the number of bytes required to store the relocation information
|
---|
610 | associated with section SECT attached to bfd ABFD. If an error occurs,
|
---|
611 | return -1.
|
---|
612 |
|
---|
613 | `bfd_canonicalize_reloc'
|
---|
614 | ........................
|
---|
615 |
|
---|
616 | *Synopsis*
|
---|
617 | long bfd_canonicalize_reloc
|
---|
618 | (bfd *abfd,
|
---|
619 | asection *sec,
|
---|
620 | arelent **loc,
|
---|
621 | asymbol **syms);
|
---|
622 | *Description*
|
---|
623 | Call the back end associated with the open BFD ABFD and translate the
|
---|
624 | external form of the relocation information attached to SEC into the
|
---|
625 | internal canonical form. Place the table into memory at LOC, which has
|
---|
626 | been preallocated, usually by a call to `bfd_get_reloc_upper_bound'.
|
---|
627 | Returns the number of relocs, or -1 on error.
|
---|
628 |
|
---|
629 | The SYMS table is also needed for horrible internal magic reasons.
|
---|
630 |
|
---|
631 | `bfd_set_reloc'
|
---|
632 | ...............
|
---|
633 |
|
---|
634 | *Synopsis*
|
---|
635 | void bfd_set_reloc
|
---|
636 | (bfd *abfd, asection *sec, arelent **rel, unsigned int count);
|
---|
637 | *Description*
|
---|
638 | Set the relocation pointer and count within section SEC to the values
|
---|
639 | REL and COUNT. The argument ABFD is ignored.
|
---|
640 |
|
---|
641 | `bfd_set_file_flags'
|
---|
642 | ....................
|
---|
643 |
|
---|
644 | *Synopsis*
|
---|
645 | bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags);
|
---|
646 | *Description*
|
---|
647 | Set the flag word in the BFD ABFD to the value FLAGS.
|
---|
648 |
|
---|
649 | Possible errors are:
|
---|
650 | * `bfd_error_wrong_format' - The target bfd was not of object format.
|
---|
651 |
|
---|
652 | * `bfd_error_invalid_operation' - The target bfd was open for
|
---|
653 | reading.
|
---|
654 |
|
---|
655 | * `bfd_error_invalid_operation' - The flag word contained a bit
|
---|
656 | which was not applicable to the type of file. E.g., an attempt
|
---|
657 | was made to set the `D_PAGED' bit on a BFD format which does not
|
---|
658 | support demand paging.
|
---|
659 |
|
---|
660 | `bfd_get_arch_size'
|
---|
661 | ...................
|
---|
662 |
|
---|
663 | *Synopsis*
|
---|
664 | int bfd_get_arch_size (bfd *abfd);
|
---|
665 | *Description*
|
---|
666 | Returns the architecture address size, in bits, as determined by the
|
---|
667 | object file's format. For ELF, this information is included in the
|
---|
668 | header.
|
---|
669 |
|
---|
670 | *Returns*
|
---|
671 | Returns the arch size in bits if known, `-1' otherwise.
|
---|
672 |
|
---|
673 | `bfd_get_sign_extend_vma'
|
---|
674 | .........................
|
---|
675 |
|
---|
676 | *Synopsis*
|
---|
677 | int bfd_get_sign_extend_vma (bfd *abfd);
|
---|
678 | *Description*
|
---|
679 | Indicates if the target architecture "naturally" sign extends an
|
---|
680 | address. Some architectures implicitly sign extend address values when
|
---|
681 | they are converted to types larger than the size of an address. For
|
---|
682 | instance, bfd_get_start_address() will return an address sign extended
|
---|
683 | to fill a bfd_vma when this is the case.
|
---|
684 |
|
---|
685 | *Returns*
|
---|
686 | Returns `1' if the target architecture is known to sign extend
|
---|
687 | addresses, `0' if the target architecture is known to not sign extend
|
---|
688 | addresses, and `-1' otherwise.
|
---|
689 |
|
---|
690 | `bfd_set_start_address'
|
---|
691 | .......................
|
---|
692 |
|
---|
693 | *Synopsis*
|
---|
694 | bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma);
|
---|
695 | *Description*
|
---|
696 | Make VMA the entry point of output BFD ABFD.
|
---|
697 |
|
---|
698 | *Returns*
|
---|
699 | Returns `TRUE' on success, `FALSE' otherwise.
|
---|
700 |
|
---|
701 | `bfd_get_gp_size'
|
---|
702 | .................
|
---|
703 |
|
---|
704 | *Synopsis*
|
---|
705 | unsigned int bfd_get_gp_size (bfd *abfd);
|
---|
706 | *Description*
|
---|
707 | Return the maximum size of objects to be optimized using the GP
|
---|
708 | register under MIPS ECOFF. This is typically set by the `-G' argument
|
---|
709 | to the compiler, assembler or linker.
|
---|
710 |
|
---|
711 | `bfd_set_gp_size'
|
---|
712 | .................
|
---|
713 |
|
---|
714 | *Synopsis*
|
---|
715 | void bfd_set_gp_size (bfd *abfd, unsigned int i);
|
---|
716 | *Description*
|
---|
717 | Set the maximum size of objects to be optimized using the GP register
|
---|
718 | under ECOFF or MIPS ELF. This is typically set by the `-G' argument to
|
---|
719 | the compiler, assembler or linker.
|
---|
720 |
|
---|
721 | `bfd_scan_vma'
|
---|
722 | ..............
|
---|
723 |
|
---|
724 | *Synopsis*
|
---|
725 | bfd_vma bfd_scan_vma (const char *string, const char **end, int base);
|
---|
726 | *Description*
|
---|
727 | Convert, like `strtoul', a numerical expression STRING into a `bfd_vma'
|
---|
728 | integer, and return that integer. (Though without as many bells and
|
---|
729 | whistles as `strtoul'.) The expression is assumed to be unsigned
|
---|
730 | (i.e., positive). If given a BASE, it is used as the base for
|
---|
731 | conversion. A base of 0 causes the function to interpret the string in
|
---|
732 | hex if a leading "0x" or "0X" is found, otherwise in octal if a leading
|
---|
733 | zero is found, otherwise in decimal.
|
---|
734 |
|
---|
735 | If the value would overflow, the maximum `bfd_vma' value is returned.
|
---|
736 |
|
---|
737 | `bfd_copy_private_bfd_data'
|
---|
738 | ...........................
|
---|
739 |
|
---|
740 | *Synopsis*
|
---|
741 | bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd);
|
---|
742 | *Description*
|
---|
743 | Copy private BFD information from the BFD IBFD to the the BFD OBFD.
|
---|
744 | Return `TRUE' on success, `FALSE' on error. Possible error returns are:
|
---|
745 |
|
---|
746 | * `bfd_error_no_memory' - Not enough memory exists to create private
|
---|
747 | data for OBFD.
|
---|
748 |
|
---|
749 | #define bfd_copy_private_bfd_data(ibfd, obfd) \
|
---|
750 | BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
|
---|
751 | (ibfd, obfd))
|
---|
752 |
|
---|
753 | `bfd_merge_private_bfd_data'
|
---|
754 | ............................
|
---|
755 |
|
---|
756 | *Synopsis*
|
---|
757 | bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd);
|
---|
758 | *Description*
|
---|
759 | Merge private BFD information from the BFD IBFD to the the output file
|
---|
760 | BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error.
|
---|
761 | Possible error returns are:
|
---|
762 |
|
---|
763 | * `bfd_error_no_memory' - Not enough memory exists to create private
|
---|
764 | data for OBFD.
|
---|
765 |
|
---|
766 | #define bfd_merge_private_bfd_data(ibfd, obfd) \
|
---|
767 | BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
|
---|
768 | (ibfd, obfd))
|
---|
769 |
|
---|
770 | `bfd_set_private_flags'
|
---|
771 | .......................
|
---|
772 |
|
---|
773 | *Synopsis*
|
---|
774 | bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags);
|
---|
775 | *Description*
|
---|
776 | Set private BFD flag information in the BFD ABFD. Return `TRUE' on
|
---|
777 | success, `FALSE' on error. Possible error returns are:
|
---|
778 |
|
---|
779 | * `bfd_error_no_memory' - Not enough memory exists to create private
|
---|
780 | data for OBFD.
|
---|
781 |
|
---|
782 | #define bfd_set_private_flags(abfd, flags) \
|
---|
783 | BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags))
|
---|
784 |
|
---|
785 | `Other functions'
|
---|
786 | .................
|
---|
787 |
|
---|
788 | *Description*
|
---|
789 | The following functions exist but have not yet been documented.
|
---|
790 | #define bfd_sizeof_headers(abfd, reloc) \
|
---|
791 | BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, reloc))
|
---|
792 |
|
---|
793 | #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
|
---|
794 | BFD_SEND (abfd, _bfd_find_nearest_line, \
|
---|
795 | (abfd, sec, syms, off, file, func, line))
|
---|
796 |
|
---|
797 | #define bfd_debug_info_start(abfd) \
|
---|
798 | BFD_SEND (abfd, _bfd_debug_info_start, (abfd))
|
---|
799 |
|
---|
800 | #define bfd_debug_info_end(abfd) \
|
---|
801 | BFD_SEND (abfd, _bfd_debug_info_end, (abfd))
|
---|
802 |
|
---|
803 | #define bfd_debug_info_accumulate(abfd, section) \
|
---|
804 | BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
|
---|
805 |
|
---|
806 | #define bfd_stat_arch_elt(abfd, stat) \
|
---|
807 | BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))
|
---|
808 |
|
---|
809 | #define bfd_update_armap_timestamp(abfd) \
|
---|
810 | BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))
|
---|
811 |
|
---|
812 | #define bfd_set_arch_mach(abfd, arch, mach)\
|
---|
813 | BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach))
|
---|
814 |
|
---|
815 | #define bfd_relax_section(abfd, section, link_info, again) \
|
---|
816 | BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))
|
---|
817 |
|
---|
818 | #define bfd_gc_sections(abfd, link_info) \
|
---|
819 | BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info))
|
---|
820 |
|
---|
821 | #define bfd_merge_sections(abfd, link_info) \
|
---|
822 | BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info))
|
---|
823 |
|
---|
824 | #define bfd_discard_group(abfd, sec) \
|
---|
825 | BFD_SEND (abfd, _bfd_discard_group, (abfd, sec))
|
---|
826 |
|
---|
827 | #define bfd_link_hash_table_create(abfd) \
|
---|
828 | BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))
|
---|
829 |
|
---|
830 | #define bfd_link_hash_table_free(abfd, hash) \
|
---|
831 | BFD_SEND (abfd, _bfd_link_hash_table_free, (hash))
|
---|
832 |
|
---|
833 | #define bfd_link_add_symbols(abfd, info) \
|
---|
834 | BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))
|
---|
835 |
|
---|
836 | #define bfd_link_just_syms(sec, info) \
|
---|
837 | BFD_SEND (abfd, _bfd_link_just_syms, (sec, info))
|
---|
838 |
|
---|
839 | #define bfd_final_link(abfd, info) \
|
---|
840 | BFD_SEND (abfd, _bfd_final_link, (abfd, info))
|
---|
841 |
|
---|
842 | #define bfd_free_cached_info(abfd) \
|
---|
843 | BFD_SEND (abfd, _bfd_free_cached_info, (abfd))
|
---|
844 |
|
---|
845 | #define bfd_get_dynamic_symtab_upper_bound(abfd) \
|
---|
846 | BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))
|
---|
847 |
|
---|
848 | #define bfd_print_private_bfd_data(abfd, file)\
|
---|
849 | BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))
|
---|
850 |
|
---|
851 | #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
|
---|
852 | BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))
|
---|
853 |
|
---|
854 | #define bfd_get_dynamic_reloc_upper_bound(abfd) \
|
---|
855 | BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))
|
---|
856 |
|
---|
857 | #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
|
---|
858 | BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))
|
---|
859 |
|
---|
860 | extern bfd_byte *bfd_get_relocated_section_contents
|
---|
861 | PARAMS ((bfd *, struct bfd_link_info *,
|
---|
862 | struct bfd_link_order *, bfd_byte *,
|
---|
863 | bfd_boolean, asymbol **));
|
---|
864 |
|
---|
865 | `bfd_alt_mach_code'
|
---|
866 | ...................
|
---|
867 |
|
---|
868 | *Synopsis*
|
---|
869 | bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative);
|
---|
870 | *Description*
|
---|
871 | When more than one machine code number is available for the same
|
---|
872 | machine type, this function can be used to switch between the preferred
|
---|
873 | one (alternative == 0) and any others. Currently, only ELF supports
|
---|
874 | this feature, with up to two alternate machine codes.
|
---|
875 |
|
---|
876 | struct bfd_preserve
|
---|
877 | {
|
---|
878 | PTR marker;
|
---|
879 | PTR tdata;
|
---|
880 | flagword flags;
|
---|
881 | const struct bfd_arch_info *arch_info;
|
---|
882 | struct sec *sections;
|
---|
883 | struct sec **section_tail;
|
---|
884 | unsigned int section_count;
|
---|
885 | struct bfd_hash_table section_htab;
|
---|
886 | };
|
---|
887 |
|
---|
888 | `bfd_preserve_save'
|
---|
889 | ...................
|
---|
890 |
|
---|
891 | *Synopsis*
|
---|
892 | bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *);
|
---|
893 | *Description*
|
---|
894 | When testing an object for compatibility with a particular target
|
---|
895 | back-end, the back-end object_p function needs to set up certain fields
|
---|
896 | in the bfd on successfully recognizing the object. This typically
|
---|
897 | happens in a piecemeal fashion, with failures possible at many points.
|
---|
898 | On failure, the bfd is supposed to be restored to its initial state,
|
---|
899 | which is virtually impossible. However, restoring a subset of the bfd
|
---|
900 | state works in practice. This function stores the subset and
|
---|
901 | reinitializes the bfd.
|
---|
902 |
|
---|
903 | `bfd_preserve_restore'
|
---|
904 | ......................
|
---|
905 |
|
---|
906 | *Synopsis*
|
---|
907 | void bfd_preserve_restore (bfd *, struct bfd_preserve *);
|
---|
908 | *Description*
|
---|
909 | This function restores bfd state saved by bfd_preserve_save. If MARKER
|
---|
910 | is non-NULL in struct bfd_preserve then that block and all subsequently
|
---|
911 | bfd_alloc'd memory is freed.
|
---|
912 |
|
---|
913 | `bfd_preserve_finish'
|
---|
914 | .....................
|
---|
915 |
|
---|
916 | *Synopsis*
|
---|
917 | void bfd_preserve_finish (bfd *, struct bfd_preserve *);
|
---|
918 | *Description*
|
---|
919 | This function should be called when the bfd state saved by
|
---|
920 | bfd_preserve_save is no longer needed. ie. when the back-end object_p
|
---|
921 | function returns with success.
|
---|
922 |
|
---|
923 | `bfd_get_mtime'
|
---|
924 | ...............
|
---|
925 |
|
---|
926 | *Synopsis*
|
---|
927 | long bfd_get_mtime(bfd *abfd);
|
---|
928 | *Description*
|
---|
929 | Return the file modification time (as read from the file system, or
|
---|
930 | from the archive header for archive members).
|
---|
931 |
|
---|
932 | `bfd_get_size'
|
---|
933 | ..............
|
---|
934 |
|
---|
935 | *Synopsis*
|
---|
936 | long bfd_get_size(bfd *abfd);
|
---|
937 | *Description*
|
---|
938 | Return the file size (as read from file system) for the file associated
|
---|
939 | with BFD ABFD.
|
---|
940 |
|
---|
941 | The initial motivation for, and use of, this routine is not so we
|
---|
942 | can get the exact size of the object the BFD applies to, since that
|
---|
943 | might not be generally possible (archive members for example). It
|
---|
944 | would be ideal if someone could eventually modify it so that such
|
---|
945 | results were guaranteed.
|
---|
946 |
|
---|
947 | Instead, we want to ask questions like "is this NNN byte sized
|
---|
948 | object I'm about to try read from file offset YYY reasonable?" As as
|
---|
949 | example of where we might do this, some object formats use string
|
---|
950 | tables for which the first `sizeof (long)' bytes of the table contain
|
---|
951 | the size of the table itself, including the size bytes. If an
|
---|
952 | application tries to read what it thinks is one of these string tables,
|
---|
953 | without some way to validate the size, and for some reason the size is
|
---|
954 | wrong (byte swapping error, wrong location for the string table, etc.),
|
---|
955 | the only clue is likely to be a read error when it tries to read the
|
---|
956 | table, or a "virtual memory exhausted" error when it tries to allocate
|
---|
957 | 15 bazillon bytes of space for the 15 bazillon byte table it is about
|
---|
958 | to read. This function at least allows us to answer the quesion, "is
|
---|
959 | the size reasonable?".
|
---|
960 |
|
---|
961 | * Menu:
|
---|
962 |
|
---|
963 | * Memory Usage::
|
---|
964 | * Initialization::
|
---|
965 | * Sections::
|
---|
966 | * Symbols::
|
---|
967 | * Archives::
|
---|
968 | * Formats::
|
---|
969 | * Relocations::
|
---|
970 | * Core Files::
|
---|
971 | * Targets::
|
---|
972 | * Architectures::
|
---|
973 | * Opening and Closing::
|
---|
974 | * Internal::
|
---|
975 | * File Caching::
|
---|
976 | * Linker Functions::
|
---|
977 | * Hash Tables::
|
---|
978 |
|
---|
979 |
|
---|
980 | File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end
|
---|
981 |
|
---|
982 | Memory Usage
|
---|
983 | ============
|
---|
984 |
|
---|
985 | BFD keeps all of its internal structures in obstacks. There is one
|
---|
986 | obstack per open BFD file, into which the current state is stored. When
|
---|
987 | a BFD is closed, the obstack is deleted, and so everything which has
|
---|
988 | been allocated by BFD for the closing file is thrown away.
|
---|
989 |
|
---|
990 | BFD does not free anything created by an application, but pointers
|
---|
991 | into `bfd' structures become invalid on a `bfd_close'; for example,
|
---|
992 | after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is
|
---|
993 | still around, since it has been allocated by the application, but the
|
---|
994 | data that it pointed to are lost.
|
---|
995 |
|
---|
996 | The general rule is to not close a BFD until all operations dependent
|
---|
997 | upon data from the BFD have been completed, or all the data from within
|
---|
998 | the file has been copied. To help with the management of memory, there
|
---|
999 | is a function (`bfd_alloc_size') which returns the number of bytes in
|
---|
1000 | obstacks associated with the supplied BFD. This could be used to select
|
---|
1001 | the greediest open BFD, close it to reclaim the memory, perform some
|
---|
1002 | operation and reopen the BFD again, to get a fresh copy of the data
|
---|
1003 | structures.
|
---|
1004 |
|
---|
1005 |
|
---|
1006 | File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end
|
---|
1007 |
|
---|
1008 | Initialization
|
---|
1009 | ==============
|
---|
1010 |
|
---|
1011 | These are the functions that handle initializing a BFD.
|
---|
1012 |
|
---|
1013 | `bfd_init'
|
---|
1014 | ..........
|
---|
1015 |
|
---|
1016 | *Synopsis*
|
---|
1017 | void bfd_init(void);
|
---|
1018 | *Description*
|
---|
1019 | This routine must be called before any other BFD function to initialize
|
---|
1020 | magical internal data structures.
|
---|
1021 |
|
---|
1022 |
|
---|
1023 | File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end
|
---|
1024 |
|
---|
1025 | Sections
|
---|
1026 | ========
|
---|
1027 |
|
---|
1028 | The raw data contained within a BFD is maintained through the
|
---|
1029 | section abstraction. A single BFD may have any number of sections. It
|
---|
1030 | keeps hold of them by pointing to the first; each one points to the
|
---|
1031 | next in the list.
|
---|
1032 |
|
---|
1033 | Sections are supported in BFD in `section.c'.
|
---|
1034 |
|
---|
1035 | * Menu:
|
---|
1036 |
|
---|
1037 | * Section Input::
|
---|
1038 | * Section Output::
|
---|
1039 | * typedef asection::
|
---|
1040 | * section prototypes::
|
---|
1041 |
|
---|
1042 |
|
---|
1043 | File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections
|
---|
1044 |
|
---|
1045 | Section input
|
---|
1046 | -------------
|
---|
1047 |
|
---|
1048 | When a BFD is opened for reading, the section structures are created
|
---|
1049 | and attached to the BFD.
|
---|
1050 |
|
---|
1051 | Each section has a name which describes the section in the outside
|
---|
1052 | world--for example, `a.out' would contain at least three sections,
|
---|
1053 | called `.text', `.data' and `.bss'.
|
---|
1054 |
|
---|
1055 | Names need not be unique; for example a COFF file may have several
|
---|
1056 | sections named `.data'.
|
---|
1057 |
|
---|
1058 | Sometimes a BFD will contain more than the "natural" number of
|
---|
1059 | sections. A back end may attach other sections containing constructor
|
---|
1060 | data, or an application may add a section (using `bfd_make_section') to
|
---|
1061 | the sections attached to an already open BFD. For example, the linker
|
---|
1062 | creates an extra section `COMMON' for each input file's BFD to hold
|
---|
1063 | information about common storage.
|
---|
1064 |
|
---|
1065 | The raw data is not necessarily read in when the section descriptor
|
---|
1066 | is created. Some targets may leave the data in place until a
|
---|
1067 | `bfd_get_section_contents' call is made. Other back ends may read in
|
---|
1068 | all the data at once. For example, an S-record file has to be read
|
---|
1069 | once to determine the size of the data. An IEEE-695 file doesn't
|
---|
1070 | contain raw data in sections, but data and relocation expressions
|
---|
1071 | intermixed, so the data area has to be parsed to get out the data and
|
---|
1072 | relocations.
|
---|
1073 |
|
---|
1074 |
|
---|
1075 | File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections
|
---|
1076 |
|
---|
1077 | Section output
|
---|
1078 | --------------
|
---|
1079 |
|
---|
1080 | To write a new object style BFD, the various sections to be written
|
---|
1081 | have to be created. They are attached to the BFD in the same way as
|
---|
1082 | input sections; data is written to the sections using
|
---|
1083 | `bfd_set_section_contents'.
|
---|
1084 |
|
---|
1085 | Any program that creates or combines sections (e.g., the assembler
|
---|
1086 | and linker) must use the `asection' fields `output_section' and
|
---|
1087 | `output_offset' to indicate the file sections to which each section
|
---|
1088 | must be written. (If the section is being created from scratch,
|
---|
1089 | `output_section' should probably point to the section itself and
|
---|
1090 | `output_offset' should probably be zero.)
|
---|
1091 |
|
---|
1092 | The data to be written comes from input sections attached (via
|
---|
1093 | `output_section' pointers) to the output sections. The output section
|
---|
1094 | structure can be considered a filter for the input section: the output
|
---|
1095 | section determines the vma of the output data and the name, but the
|
---|
1096 | input section determines the offset into the output section of the data
|
---|
1097 | to be written.
|
---|
1098 |
|
---|
1099 | E.g., to create a section "O", starting at 0x100, 0x123 long,
|
---|
1100 | containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and
|
---|
1101 | "B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would
|
---|
1102 | look like:
|
---|
1103 |
|
---|
1104 | section name "A"
|
---|
1105 | output_offset 0x00
|
---|
1106 | size 0x20
|
---|
1107 | output_section -----------> section name "O"
|
---|
1108 | | vma 0x100
|
---|
1109 | section name "B" | size 0x123
|
---|
1110 | output_offset 0x20 |
|
---|
1111 | size 0x103 |
|
---|
1112 | output_section --------|
|
---|
1113 |
|
---|
1114 | Link orders
|
---|
1115 | -----------
|
---|
1116 |
|
---|
1117 | The data within a section is stored in a "link_order". These are
|
---|
1118 | much like the fixups in `gas'. The link_order abstraction allows a
|
---|
1119 | section to grow and shrink within itself.
|
---|
1120 |
|
---|
1121 | A link_order knows how big it is, and which is the next link_order
|
---|
1122 | and where the raw data for it is; it also points to a list of
|
---|
1123 | relocations which apply to it.
|
---|
1124 |
|
---|
1125 | The link_order is used by the linker to perform relaxing on final
|
---|
1126 | code. The compiler creates code which is as big as necessary to make
|
---|
1127 | it work without relaxing, and the user can select whether to relax.
|
---|
1128 | Sometimes relaxing takes a lot of time. The linker runs around the
|
---|
1129 | relocations to see if any are attached to data which can be shrunk, if
|
---|
1130 | so it does it on a link_order by link_order basis.
|
---|
1131 |
|
---|