1 | /* inftrees.c -- generate Huffman trees for efficient decoding
|
---|
2 | * Copyright (C) 1995-2002 Mark Adler
|
---|
3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
4 | */
|
---|
5 |
|
---|
6 | #include "zutil.h"
|
---|
7 | #include "inftrees.h"
|
---|
8 |
|
---|
9 | #if !defined(BUILDFIXED) && !defined(STDC)
|
---|
10 | # define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */
|
---|
11 | #endif
|
---|
12 |
|
---|
13 | const char inflate_copyright[] =
|
---|
14 | " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
|
---|
15 | /*
|
---|
16 | If you use the zlib library in a product, an acknowledgment is welcome
|
---|
17 | in the documentation of your product. If for some reason you cannot
|
---|
18 | include such an acknowledgment, I would appreciate that you keep this
|
---|
19 | copyright string in the executable of your product.
|
---|
20 | */
|
---|
21 | struct internal_state {int dummy;}; /* for buggy compilers */
|
---|
22 |
|
---|
23 | /* simplify the use of the inflate_huft type with some defines */
|
---|
24 | #define exop word.what.Exop
|
---|
25 | #define bits word.what.Bits
|
---|
26 |
|
---|
27 |
|
---|
28 | local int huft_build OF((
|
---|
29 | uIntf *, /* code lengths in bits */
|
---|
30 | uInt, /* number of codes */
|
---|
31 | uInt, /* number of "simple" codes */
|
---|
32 | const uIntf *, /* list of base values for non-simple codes */
|
---|
33 | const uIntf *, /* list of extra bits for non-simple codes */
|
---|
34 | inflate_huft * FAR*,/* result: starting table */
|
---|
35 | uIntf *, /* maximum lookup bits (returns actual) */
|
---|
36 | inflate_huft *, /* space for trees */
|
---|
37 | uInt *, /* hufts used in space */
|
---|
38 | uIntf * )); /* space for values */
|
---|
39 |
|
---|
40 | /* Tables for deflate from PKZIP's appnote.txt. */
|
---|
41 | local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
|
---|
42 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
|
---|
43 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
|
---|
44 | /* see note #13 above about 258 */
|
---|
45 | local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
|
---|
46 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
|
---|
47 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
|
---|
48 | local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
|
---|
49 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
|
---|
50 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
|
---|
51 | 8193, 12289, 16385, 24577};
|
---|
52 | local const uInt cpdext[30] = { /* Extra bits for distance codes */
|
---|
53 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
|
---|
54 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
|
---|
55 | 12, 12, 13, 13};
|
---|
56 |
|
---|
57 | /*
|
---|
58 | Huffman code decoding is performed using a multi-level table lookup.
|
---|
59 | The fastest way to decode is to simply build a lookup table whose
|
---|
60 | size is determined by the longest code. However, the time it takes
|
---|
61 | to build this table can also be a factor if the data being decoded
|
---|
62 | is not very long. The most common codes are necessarily the
|
---|
63 | shortest codes, so those codes dominate the decoding time, and hence
|
---|
64 | the speed. The idea is you can have a shorter table that decodes the
|
---|
65 | shorter, more probable codes, and then point to subsidiary tables for
|
---|
66 | the longer codes. The time it costs to decode the longer codes is
|
---|
67 | then traded against the time it takes to make longer tables.
|
---|
68 |
|
---|
69 | This results of this trade are in the variables lbits and dbits
|
---|
70 | below. lbits is the number of bits the first level table for literal/
|
---|
71 | length codes can decode in one step, and dbits is the same thing for
|
---|
72 | the distance codes. Subsequent tables are also less than or equal to
|
---|
73 | those sizes. These values may be adjusted either when all of the
|
---|
74 | codes are shorter than that, in which case the longest code length in
|
---|
75 | bits is used, or when the shortest code is *longer* than the requested
|
---|
76 | table size, in which case the length of the shortest code in bits is
|
---|
77 | used.
|
---|
78 |
|
---|
79 | There are two different values for the two tables, since they code a
|
---|
80 | different number of possibilities each. The literal/length table
|
---|
81 | codes 286 possible values, or in a flat code, a little over eight
|
---|
82 | bits. The distance table codes 30 possible values, or a little less
|
---|
83 | than five bits, flat. The optimum values for speed end up being
|
---|
84 | about one bit more than those, so lbits is 8+1 and dbits is 5+1.
|
---|
85 | The optimum values may differ though from machine to machine, and
|
---|
86 | possibly even between compilers. Your mileage may vary.
|
---|
87 | */
|
---|
88 |
|
---|
89 |
|
---|
90 | /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
|
---|
91 | #define BMAX 15 /* maximum bit length of any code */
|
---|
92 |
|
---|
93 | local int huft_build(b, n, s, d, e, t, m, hp, hn, v)
|
---|
94 | uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
|
---|
95 | uInt n; /* number of codes (assumed <= 288) */
|
---|
96 | uInt s; /* number of simple-valued codes (0..s-1) */
|
---|
97 | const uIntf *d; /* list of base values for non-simple codes */
|
---|
98 | const uIntf *e; /* list of extra bits for non-simple codes */
|
---|
99 | inflate_huft * FAR *t; /* result: starting table */
|
---|
100 | uIntf *m; /* maximum lookup bits, returns actual */
|
---|
101 | inflate_huft *hp; /* space for trees */
|
---|
102 | uInt *hn; /* hufts used in space */
|
---|
103 | uIntf *v; /* working area: values in order of bit length */
|
---|
104 | /* Given a list of code lengths and a maximum table size, make a set of
|
---|
105 | tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
|
---|
106 | if the given code set is incomplete (the tables are still built in this
|
---|
107 | case), or Z_DATA_ERROR if the input is invalid. */
|
---|
108 | {
|
---|
109 |
|
---|
110 | uInt a; /* counter for codes of length k */
|
---|
111 | uInt c[BMAX+1]; /* bit length count table */
|
---|
112 | uInt f; /* i repeats in table every f entries */
|
---|
113 | int g; /* maximum code length */
|
---|
114 | int h; /* table level */
|
---|
115 | register uInt i; /* counter, current code */
|
---|
116 | register uInt j; /* counter */
|
---|
117 | register int k; /* number of bits in current code */
|
---|
118 | int l; /* bits per table (returned in m) */
|
---|
119 | uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */
|
---|
120 | register uIntf *p; /* pointer into c[], b[], or v[] */
|
---|
121 | inflate_huft *q; /* points to current table */
|
---|
122 | struct inflate_huft_s r; /* table entry for structure assignment */
|
---|
123 | inflate_huft *u[BMAX]; /* table stack */
|
---|
124 | register int w; /* bits before this table == (l * h) */
|
---|
125 | uInt x[BMAX+1]; /* bit offsets, then code stack */
|
---|
126 | uIntf *xp; /* pointer into x */
|
---|
127 | int y; /* number of dummy codes added */
|
---|
128 | uInt z; /* number of entries in current table */
|
---|
129 |
|
---|
130 |
|
---|
131 | /* Generate counts for each bit length */
|
---|
132 | p = c;
|
---|
133 | #define C0 *p++ = 0;
|
---|
134 | #define C2 C0 C0 C0 C0
|
---|
135 | #define C4 C2 C2 C2 C2
|
---|
136 | C4 /* clear c[]--assume BMAX+1 is 16 */
|
---|
137 | p = b; i = n;
|
---|
138 | do {
|
---|
139 | c[*p++]++; /* assume all entries <= BMAX */
|
---|
140 | } while (--i);
|
---|
141 | if (c[0] == n) /* null input--all zero length codes */
|
---|
142 | {
|
---|
143 | *t = (inflate_huft *)Z_NULL;
|
---|
144 | *m = 0;
|
---|
145 | return Z_OK;
|
---|
146 | }
|
---|
147 |
|
---|
148 |
|
---|
149 | /* Find minimum and maximum length, bound *m by those */
|
---|
150 | l = *m;
|
---|
151 | for (j = 1; j <= BMAX; j++)
|
---|
152 | if (c[j])
|
---|
153 | break;
|
---|
154 | k = j; /* minimum code length */
|
---|
155 | if ((uInt)l < j)
|
---|
156 | l = j;
|
---|
157 | for (i = BMAX; i; i--)
|
---|
158 | if (c[i])
|
---|
159 | break;
|
---|
160 | g = i; /* maximum code length */
|
---|
161 | if ((uInt)l > i)
|
---|
162 | l = i;
|
---|
163 | *m = l;
|
---|
164 |
|
---|
165 |
|
---|
166 | /* Adjust last length count to fill out codes, if needed */
|
---|
167 | for (y = 1 << j; j < i; j++, y <<= 1)
|
---|
168 | if ((y -= c[j]) < 0)
|
---|
169 | return Z_DATA_ERROR;
|
---|
170 | if ((y -= c[i]) < 0)
|
---|
171 | return Z_DATA_ERROR;
|
---|
172 | c[i] += y;
|
---|
173 |
|
---|
174 |
|
---|
175 | /* Generate starting offsets into the value table for each length */
|
---|
176 | x[1] = j = 0;
|
---|
177 | p = c + 1; xp = x + 2;
|
---|
178 | while (--i) { /* note that i == g from above */
|
---|
179 | *xp++ = (j += *p++);
|
---|
180 | }
|
---|
181 |
|
---|
182 |
|
---|
183 | /* Make a table of values in order of bit lengths */
|
---|
184 | p = b; i = 0;
|
---|
185 | do {
|
---|
186 | if ((j = *p++) != 0)
|
---|
187 | v[x[j]++] = i;
|
---|
188 | } while (++i < n);
|
---|
189 | n = x[g]; /* set n to length of v */
|
---|
190 |
|
---|
191 |
|
---|
192 | /* Generate the Huffman codes and for each, make the table entries */
|
---|
193 | x[0] = i = 0; /* first Huffman code is zero */
|
---|
194 | p = v; /* grab values in bit order */
|
---|
195 | h = -1; /* no tables yet--level -1 */
|
---|
196 | w = -l; /* bits decoded == (l * h) */
|
---|
197 | u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
|
---|
198 | q = (inflate_huft *)Z_NULL; /* ditto */
|
---|
199 | z = 0; /* ditto */
|
---|
200 |
|
---|
201 | /* go through the bit lengths (k already is bits in shortest code) */
|
---|
202 | for (; k <= g; k++)
|
---|
203 | {
|
---|
204 | a = c[k];
|
---|
205 | while (a--)
|
---|
206 | {
|
---|
207 | /* here i is the Huffman code of length k bits for value *p */
|
---|
208 | /* make tables up to required level */
|
---|
209 | while (k > w + l)
|
---|
210 | {
|
---|
211 | h++;
|
---|
212 | w += l; /* previous table always l bits */
|
---|
213 |
|
---|
214 | /* compute minimum size table less than or equal to l bits */
|
---|
215 | z = g - w;
|
---|
216 | z = z > (uInt)l ? l : z; /* table size upper limit */
|
---|
217 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
|
---|
218 | { /* too few codes for k-w bit table */
|
---|
219 | f -= a + 1; /* deduct codes from patterns left */
|
---|
220 | xp = c + k;
|
---|
221 | if (j < z)
|
---|
222 | while (++j < z) /* try smaller tables up to z bits */
|
---|
223 | {
|
---|
224 | if ((f <<= 1) <= *++xp)
|
---|
225 | break; /* enough codes to use up j bits */
|
---|
226 | f -= *xp; /* else deduct codes from patterns */
|
---|
227 | }
|
---|
228 | }
|
---|
229 | z = 1 << j; /* table entries for j-bit table */
|
---|
230 |
|
---|
231 | /* allocate new table */
|
---|
232 | if (*hn + z > MANY) /* (note: doesn't matter for fixed) */
|
---|
233 | return Z_DATA_ERROR; /* overflow of MANY */
|
---|
234 | u[h] = q = hp + *hn;
|
---|
235 | *hn += z;
|
---|
236 |
|
---|
237 | /* connect to last table, if there is one */
|
---|
238 | if (h)
|
---|
239 | {
|
---|
240 | x[h] = i; /* save pattern for backing up */
|
---|
241 | r.bits = (Byte)l; /* bits to dump before this table */
|
---|
242 | r.exop = (Byte)j; /* bits in this table */
|
---|
243 | j = i >> (w - l);
|
---|
244 | r.base = (uInt)(q - u[h-1] - j); /* offset to this table */
|
---|
245 | u[h-1][j] = r; /* connect to last table */
|
---|
246 | }
|
---|
247 | else
|
---|
248 | *t = q; /* first table is returned result */
|
---|
249 | }
|
---|
250 |
|
---|
251 | /* set up table entry in r */
|
---|
252 | r.bits = (Byte)(k - w);
|
---|
253 | if (p >= v + n)
|
---|
254 | r.exop = 128 + 64; /* out of values--invalid code */
|
---|
255 | else if (*p < s)
|
---|
256 | {
|
---|
257 | r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
|
---|
258 | r.base = *p++; /* simple code is just the value */
|
---|
259 | }
|
---|
260 | else
|
---|
261 | {
|
---|
262 | r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
|
---|
263 | r.base = d[*p++ - s];
|
---|
264 | }
|
---|
265 |
|
---|
266 | /* fill code-like entries with r */
|
---|
267 | f = 1 << (k - w);
|
---|
268 | for (j = i >> w; j < z; j += f)
|
---|
269 | q[j] = r;
|
---|
270 |
|
---|
271 | /* backwards increment the k-bit code i */
|
---|
272 | for (j = 1 << (k - 1); i & j; j >>= 1)
|
---|
273 | i ^= j;
|
---|
274 | i ^= j;
|
---|
275 |
|
---|
276 | /* backup over finished tables */
|
---|
277 | mask = (1 << w) - 1; /* needed on HP, cc -O bug */
|
---|
278 | while ((i & mask) != x[h])
|
---|
279 | {
|
---|
280 | h--; /* don't need to update q */
|
---|
281 | w -= l;
|
---|
282 | mask = (1 << w) - 1;
|
---|
283 | }
|
---|
284 | }
|
---|
285 | }
|
---|
286 |
|
---|
287 |
|
---|
288 | /* Return Z_BUF_ERROR if we were given an incomplete table */
|
---|
289 | return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
|
---|
290 | }
|
---|
291 |
|
---|
292 |
|
---|
293 | int inflate_trees_bits(c, bb, tb, hp, z)
|
---|
294 | uIntf *c; /* 19 code lengths */
|
---|
295 | uIntf *bb; /* bits tree desired/actual depth */
|
---|
296 | inflate_huft * FAR *tb; /* bits tree result */
|
---|
297 | inflate_huft *hp; /* space for trees */
|
---|
298 | z_streamp z; /* for messages */
|
---|
299 | {
|
---|
300 | int r;
|
---|
301 | uInt hn = 0; /* hufts used in space */
|
---|
302 | uIntf *v; /* work area for huft_build */
|
---|
303 |
|
---|
304 | if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
|
---|
305 | return Z_MEM_ERROR;
|
---|
306 | r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
|
---|
307 | tb, bb, hp, &hn, v);
|
---|
308 | if (r == Z_DATA_ERROR)
|
---|
309 | z->msg = (char*)"oversubscribed dynamic bit lengths tree";
|
---|
310 | else if (r == Z_BUF_ERROR || *bb == 0)
|
---|
311 | {
|
---|
312 | z->msg = (char*)"incomplete dynamic bit lengths tree";
|
---|
313 | r = Z_DATA_ERROR;
|
---|
314 | }
|
---|
315 | ZFREE(z, v);
|
---|
316 | return r;
|
---|
317 | }
|
---|
318 |
|
---|
319 |
|
---|
320 | int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z)
|
---|
321 | uInt nl; /* number of literal/length codes */
|
---|
322 | uInt nd; /* number of distance codes */
|
---|
323 | uIntf *c; /* that many (total) code lengths */
|
---|
324 | uIntf *bl; /* literal desired/actual bit depth */
|
---|
325 | uIntf *bd; /* distance desired/actual bit depth */
|
---|
326 | inflate_huft * FAR *tl; /* literal/length tree result */
|
---|
327 | inflate_huft * FAR *td; /* distance tree result */
|
---|
328 | inflate_huft *hp; /* space for trees */
|
---|
329 | z_streamp z; /* for messages */
|
---|
330 | {
|
---|
331 | int r;
|
---|
332 | uInt hn = 0; /* hufts used in space */
|
---|
333 | uIntf *v; /* work area for huft_build */
|
---|
334 |
|
---|
335 | /* allocate work area */
|
---|
336 | if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
|
---|
337 | return Z_MEM_ERROR;
|
---|
338 |
|
---|
339 | /* build literal/length tree */
|
---|
340 | r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
|
---|
341 | if (r != Z_OK || *bl == 0)
|
---|
342 | {
|
---|
343 | if (r == Z_DATA_ERROR)
|
---|
344 | z->msg = (char*)"oversubscribed literal/length tree";
|
---|
345 | else if (r != Z_MEM_ERROR)
|
---|
346 | {
|
---|
347 | z->msg = (char*)"incomplete literal/length tree";
|
---|
348 | r = Z_DATA_ERROR;
|
---|
349 | }
|
---|
350 | ZFREE(z, v);
|
---|
351 | return r;
|
---|
352 | }
|
---|
353 |
|
---|
354 | /* build distance tree */
|
---|
355 | r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
|
---|
356 | if (r != Z_OK || (*bd == 0 && nl > 257))
|
---|
357 | {
|
---|
358 | if (r == Z_DATA_ERROR)
|
---|
359 | z->msg = (char*)"oversubscribed distance tree";
|
---|
360 | else if (r == Z_BUF_ERROR) {
|
---|
361 | #ifdef PKZIP_BUG_WORKAROUND
|
---|
362 | r = Z_OK;
|
---|
363 | }
|
---|
364 | #else
|
---|
365 | z->msg = (char*)"incomplete distance tree";
|
---|
366 | r = Z_DATA_ERROR;
|
---|
367 | }
|
---|
368 | else if (r != Z_MEM_ERROR)
|
---|
369 | {
|
---|
370 | z->msg = (char*)"empty distance tree with lengths";
|
---|
371 | r = Z_DATA_ERROR;
|
---|
372 | }
|
---|
373 | ZFREE(z, v);
|
---|
374 | return r;
|
---|
375 | #endif
|
---|
376 | }
|
---|
377 |
|
---|
378 | /* done */
|
---|
379 | ZFREE(z, v);
|
---|
380 | return Z_OK;
|
---|
381 | }
|
---|
382 |
|
---|
383 |
|
---|
384 | /* build fixed tables only once--keep them here */
|
---|
385 | #ifdef BUILDFIXED
|
---|
386 | local int fixed_built = 0;
|
---|
387 | #define FIXEDH 544 /* number of hufts used by fixed tables */
|
---|
388 | local inflate_huft fixed_mem[FIXEDH];
|
---|
389 | local uInt fixed_bl;
|
---|
390 | local uInt fixed_bd;
|
---|
391 | local inflate_huft *fixed_tl;
|
---|
392 | local inflate_huft *fixed_td;
|
---|
393 | #else
|
---|
394 | #include "inffixed.h"
|
---|
395 | #endif
|
---|
396 |
|
---|
397 |
|
---|
398 | int inflate_trees_fixed(bl, bd, tl, td, z)
|
---|
399 | uIntf *bl; /* literal desired/actual bit depth */
|
---|
400 | uIntf *bd; /* distance desired/actual bit depth */
|
---|
401 | inflate_huft * FAR *tl; /* literal/length tree result */
|
---|
402 | inflate_huft * FAR *td; /* distance tree result */
|
---|
403 | z_streamp z; /* for memory allocation */
|
---|
404 | {
|
---|
405 | #ifdef BUILDFIXED
|
---|
406 | /* build fixed tables if not already */
|
---|
407 | if (!fixed_built)
|
---|
408 | {
|
---|
409 | int k; /* temporary variable */
|
---|
410 | uInt f = 0; /* number of hufts used in fixed_mem */
|
---|
411 | uIntf *c; /* length list for huft_build */
|
---|
412 | uIntf *v; /* work area for huft_build */
|
---|
413 |
|
---|
414 | /* allocate memory */
|
---|
415 | if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
|
---|
416 | return Z_MEM_ERROR;
|
---|
417 | if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
|
---|
418 | {
|
---|
419 | ZFREE(z, c);
|
---|
420 | return Z_MEM_ERROR;
|
---|
421 | }
|
---|
422 |
|
---|
423 | /* literal table */
|
---|
424 | for (k = 0; k < 144; k++)
|
---|
425 | c[k] = 8;
|
---|
426 | for (; k < 256; k++)
|
---|
427 | c[k] = 9;
|
---|
428 | for (; k < 280; k++)
|
---|
429 | c[k] = 7;
|
---|
430 | for (; k < 288; k++)
|
---|
431 | c[k] = 8;
|
---|
432 | fixed_bl = 9;
|
---|
433 | huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
|
---|
434 | fixed_mem, &f, v);
|
---|
435 |
|
---|
436 | /* distance table */
|
---|
437 | for (k = 0; k < 30; k++)
|
---|
438 | c[k] = 5;
|
---|
439 | fixed_bd = 5;
|
---|
440 | huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
|
---|
441 | fixed_mem, &f, v);
|
---|
442 |
|
---|
443 | /* done */
|
---|
444 | ZFREE(z, v);
|
---|
445 | ZFREE(z, c);
|
---|
446 | fixed_built = 1;
|
---|
447 | }
|
---|
448 | #endif
|
---|
449 | *bl = fixed_bl;
|
---|
450 | *bd = fixed_bd;
|
---|
451 | *tl = fixed_tl;
|
---|
452 | *td = fixed_td;
|
---|
453 | return Z_OK;
|
---|
454 | }
|
---|