source: branches/libc-0.6/src/binutils/bfd/syms.c

Last change on this file was 2002, checked in by bird, 20 years ago

N_EXP - EMX extension for export declarations.

  • Property cvs2svn:cvs-rev set to 1.4
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 37.7 KB
Line 
1/* Generic symbol-table support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23/*
24SECTION
25 Symbols
26
27 BFD tries to maintain as much symbol information as it can when
28 it moves information from file to file. BFD passes information
29 to applications though the <<asymbol>> structure. When the
30 application requests the symbol table, BFD reads the table in
31 the native form and translates parts of it into the internal
32 format. To maintain more than the information passed to
33 applications, some targets keep some information ``behind the
34 scenes'' in a structure only the particular back end knows
35 about. For example, the coff back end keeps the original
36 symbol table structure as well as the canonical structure when
37 a BFD is read in. On output, the coff back end can reconstruct
38 the output symbol table so that no information is lost, even
39 information unique to coff which BFD doesn't know or
40 understand. If a coff symbol table were read, but were written
41 through an a.out back end, all the coff specific information
42 would be lost. The symbol table of a BFD
43 is not necessarily read in until a canonicalize request is
44 made. Then the BFD back end fills in a table provided by the
45 application with pointers to the canonical information. To
46 output symbols, the application provides BFD with a table of
47 pointers to pointers to <<asymbol>>s. This allows applications
48 like the linker to output a symbol as it was read, since the ``behind
49 the scenes'' information will be still available.
50@menu
51@* Reading Symbols::
52@* Writing Symbols::
53@* Mini Symbols::
54@* typedef asymbol::
55@* symbol handling functions::
56@end menu
57
58INODE
59Reading Symbols, Writing Symbols, Symbols, Symbols
60SUBSECTION
61 Reading symbols
62
63 There are two stages to reading a symbol table from a BFD:
64 allocating storage, and the actual reading process. This is an
65 excerpt from an application which reads the symbol table:
66
67| long storage_needed;
68| asymbol **symbol_table;
69| long number_of_symbols;
70| long i;
71|
72| storage_needed = bfd_get_symtab_upper_bound (abfd);
73|
74| if (storage_needed < 0)
75| FAIL
76|
77| if (storage_needed == 0)
78| return;
79|
80| symbol_table = (asymbol **) xmalloc (storage_needed);
81| ...
82| number_of_symbols =
83| bfd_canonicalize_symtab (abfd, symbol_table);
84|
85| if (number_of_symbols < 0)
86| FAIL
87|
88| for (i = 0; i < number_of_symbols; i++)
89| process_symbol (symbol_table[i]);
90
91 All storage for the symbols themselves is in an objalloc
92 connected to the BFD; it is freed when the BFD is closed.
93
94INODE
95Writing Symbols, Mini Symbols, Reading Symbols, Symbols
96SUBSECTION
97 Writing symbols
98
99 Writing of a symbol table is automatic when a BFD open for
100 writing is closed. The application attaches a vector of
101 pointers to pointers to symbols to the BFD being written, and
102 fills in the symbol count. The close and cleanup code reads
103 through the table provided and performs all the necessary
104 operations. The BFD output code must always be provided with an
105 ``owned'' symbol: one which has come from another BFD, or one
106 which has been created using <<bfd_make_empty_symbol>>. Here is an
107 example showing the creation of a symbol table with only one element:
108
109| #include "bfd.h"
110| int main (void)
111| {
112| bfd *abfd;
113| asymbol *ptrs[2];
114| asymbol *new;
115|
116| abfd = bfd_openw ("foo","a.out-sunos-big");
117| bfd_set_format (abfd, bfd_object);
118| new = bfd_make_empty_symbol (abfd);
119| new->name = "dummy_symbol";
120| new->section = bfd_make_section_old_way (abfd, ".text");
121| new->flags = BSF_GLOBAL;
122| new->value = 0x12345;
123|
124| ptrs[0] = new;
125| ptrs[1] = (asymbol *)0;
126|
127| bfd_set_symtab (abfd, ptrs, 1);
128| bfd_close (abfd);
129| return 0;
130| }
131|
132| ./makesym
133| nm foo
134| 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166/*
167DOCDD
168INODE
169typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171*/
172/*
173SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178*/
179
180/*
181CODE_FRAGMENT
182
183.
184.typedef struct symbol_cache_entry
185.{
186. {* A pointer to the BFD which owns the symbol. This information
187. is necessary so that a back end can work out what additional
188. information (invisible to the application writer) is carried
189. with the symbol.
190.
191. This field is *almost* redundant, since you can use section->owner
192. instead, except that some symbols point to the global sections
193. bfd_{abs,com,und}_section. This could be fixed by making
194. these globals be per-bfd (or per-target-flavor). FIXME. *}
195. struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196.
197. {* The text of the symbol. The name is left alone, and not copied; the
198. application may not alter it. *}
199. const char *name;
200.
201. {* The value of the symbol. This really should be a union of a
202. numeric value with a pointer, since some flags indicate that
203. a pointer to another symbol is stored here. *}
204. symvalue value;
205.
206. {* Attributes of a symbol. *}
207.#define BSF_NO_FLAGS 0x00
208.
209. {* The symbol has local scope; <<static>> in <<C>>. The value
210. is the offset into the section of the data. *}
211.#define BSF_LOCAL 0x01
212.
213. {* The symbol has global scope; initialized data in <<C>>. The
214. value is the offset into the section of the data. *}
215.#define BSF_GLOBAL 0x02
216.
217. {* The symbol has global scope and is exported. The value is
218. the offset into the section of the data. *}
219.#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220.
221. {* A normal C symbol would be one of:
222. <<BSF_LOCAL>>, <<BSF_FORT_COMM>>, <<BSF_UNDEFINED>> or
223. <<BSF_GLOBAL>>. *}
224.
225. {* The symbol is a debugging record. The value has an arbitary
226. meaning, unless BSF_DEBUGGING_RELOC is also set. *}
227.#define BSF_DEBUGGING 0x08
228.
229. {* The symbol denotes a function entry point. Used in ELF,
230. perhaps others someday. *}
231.#define BSF_FUNCTION 0x10
232.
233. {* Used by the linker. *}
234.#define BSF_KEEP 0x20
235.#define BSF_KEEP_G 0x40
236.
237. {* A weak global symbol, overridable without warnings by
238. a regular global symbol of the same name. *}
239.#define BSF_WEAK 0x80
240.
241. {* This symbol was created to point to a section, e.g. ELF's
242. STT_SECTION symbols. *}
243.#define BSF_SECTION_SYM 0x100
244.
245. {* The symbol used to be a common symbol, but now it is
246. allocated. *}
247.#define BSF_OLD_COMMON 0x200
248.
249. {* The default value for common data. *}
250.#define BFD_FORT_COMM_DEFAULT_VALUE 0
251.
252. {* In some files the type of a symbol sometimes alters its
253. location in an output file - ie in coff a <<ISFCN>> symbol
254. which is also <<C_EXT>> symbol appears where it was
255. declared and not at the end of a section. This bit is set
256. by the target BFD part to convey this information. *}
257.#define BSF_NOT_AT_END 0x400
258.
259. {* Signal that the symbol is the label of constructor section. *}
260.#define BSF_CONSTRUCTOR 0x800
261.
262. {* Signal that the symbol is a warning symbol. The name is a
263. warning. The name of the next symbol is the one to warn about;
264. if a reference is made to a symbol with the same name as the next
265. symbol, a warning is issued by the linker. *}
266.#define BSF_WARNING 0x1000
267.
268. {* Signal that the symbol is indirect. This symbol is an indirect
269. pointer to the symbol with the same name as the next symbol. *}
270.#define BSF_INDIRECT 0x2000
271.
272. {* BSF_FILE marks symbols that contain a file name. This is used
273. for ELF STT_FILE symbols. *}
274.#define BSF_FILE 0x4000
275.
276. {* Symbol is from dynamic linking information. *}
277.#define BSF_DYNAMIC 0x8000
278.
279. {* The symbol denotes a data object. Used in ELF, and perhaps
280. others someday. *}
281.#define BSF_OBJECT 0x10000
282.
283. {* This symbol is a debugging symbol. The value is the offset
284. into the section of the data. BSF_DEBUGGING should be set
285. as well. *}
286.#define BSF_DEBUGGING_RELOC 0x20000
287.
288. {* This symbol is thread local. Used in ELF. *}
289.#define BSF_THREAD_LOCAL 0x40000
290.
291. {* Symbol is an emx export definition. *}
292.#define BSF_EMX_EXPORT 0x10000000
293.
294. {* Symbol is an emx import reference. *}
295.#define BSF_EMX_IMPORT1 0x20000000
296.
297. {* Symbol is an emx import definition. *}
298.#define BSF_EMX_IMPORT2 0x40000000
299.
300. flagword flags;
301.
302. {* A pointer to the section to which this symbol is
303. relative. This will always be non NULL, there are special
304. sections for undefined and absolute symbols. *}
305. struct sec *section;
306.
307. {* Back end special data. *}
308. union
309. {
310. PTR p;
311. bfd_vma i;
312. }
313. udata;
314.}
315.asymbol;
316.
317*/
318
319#include "bfd.h"
320#include "sysdep.h"
321#include "libbfd.h"
322#include "safe-ctype.h"
323#include "bfdlink.h"
324#include "aout/stab_gnu.h"
325
326static char coff_section_type PARAMS ((const char *));
327static char decode_section_type PARAMS ((const struct sec *));
328static int cmpindexentry PARAMS ((const PTR, const PTR));
329
330/*
331DOCDD
332INODE
333symbol handling functions, , typedef asymbol, Symbols
334SUBSECTION
335 Symbol handling functions
336*/
337
338/*
339FUNCTION
340 bfd_get_symtab_upper_bound
341
342DESCRIPTION
343 Return the number of bytes required to store a vector of pointers
344 to <<asymbols>> for all the symbols in the BFD @var{abfd},
345 including a terminal NULL pointer. If there are no symbols in
346 the BFD, then return 0. If an error occurs, return -1.
347
348.#define bfd_get_symtab_upper_bound(abfd) \
349. BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
350.
351*/
352
353/*
354FUNCTION
355 bfd_is_local_label
356
357SYNOPSIS
358 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
359
360DESCRIPTION
361 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
362 a compiler generated local label, else return FALSE.
363*/
364
365bfd_boolean
366bfd_is_local_label (abfd, sym)
367 bfd *abfd;
368 asymbol *sym;
369{
370 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
371 starts with '.' is local. This would accidentally catch section names
372 if we didn't reject them here. */
373 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_SECTION_SYM)) != 0)
374 return FALSE;
375 if (sym->name == NULL)
376 return FALSE;
377 return bfd_is_local_label_name (abfd, sym->name);
378}
379
380/*
381FUNCTION
382 bfd_is_local_label_name
383
384SYNOPSIS
385 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
386
387DESCRIPTION
388 Return TRUE if a symbol with the name @var{name} in the BFD
389 @var{abfd} is a compiler generated local label, else return
390 FALSE. This just checks whether the name has the form of a
391 local label.
392
393.#define bfd_is_local_label_name(abfd, name) \
394. BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
395.
396*/
397
398/*
399FUNCTION
400 bfd_canonicalize_symtab
401
402DESCRIPTION
403 Read the symbols from the BFD @var{abfd}, and fills in
404 the vector @var{location} with pointers to the symbols and
405 a trailing NULL.
406 Return the actual number of symbol pointers, not
407 including the NULL.
408
409.#define bfd_canonicalize_symtab(abfd, location) \
410. BFD_SEND (abfd, _bfd_canonicalize_symtab,\
411. (abfd, location))
412.
413*/
414
415/*
416FUNCTION
417 bfd_set_symtab
418
419SYNOPSIS
420 bfd_boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);
421
422DESCRIPTION
423 Arrange that when the output BFD @var{abfd} is closed,
424 the table @var{location} of @var{count} pointers to symbols
425 will be written.
426*/
427
428bfd_boolean
429bfd_set_symtab (abfd, location, symcount)
430 bfd *abfd;
431 asymbol **location;
432 unsigned int symcount;
433{
434 if ((abfd->format != bfd_object) || (bfd_read_p (abfd)))
435 {
436 bfd_set_error (bfd_error_invalid_operation);
437 return FALSE;
438 }
439
440 bfd_get_outsymbols (abfd) = location;
441 bfd_get_symcount (abfd) = symcount;
442 return TRUE;
443}
444
445/*
446FUNCTION
447 bfd_print_symbol_vandf
448
449SYNOPSIS
450 void bfd_print_symbol_vandf (bfd *abfd, PTR file, asymbol *symbol);
451
452DESCRIPTION
453 Print the value and flags of the @var{symbol} supplied to the
454 stream @var{file}.
455*/
456void
457bfd_print_symbol_vandf (abfd, arg, symbol)
458 bfd *abfd;
459 PTR arg;
460 asymbol *symbol;
461{
462 FILE *file = (FILE *) arg;
463
464 flagword type = symbol->flags;
465
466 if (symbol->section != (asection *) NULL)
467 bfd_fprintf_vma (abfd, file,
468 symbol->value + symbol->section->vma);
469 else
470 bfd_fprintf_vma (abfd, file, symbol->value);
471
472 /* This presumes that a symbol can not be both BSF_DEBUGGING and
473 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
474 BSF_OBJECT. */
475 fprintf (file, " %c%c%c%c%c%c%c",
476 ((type & BSF_LOCAL)
477 ? (type & BSF_GLOBAL) ? '!' : 'l'
478 : (type & BSF_GLOBAL) ? 'g' : ' '),
479#ifdef EMX
480 (type & BSF_EMX_IMPORT1) ? 'e' :
481 (type & BSF_EMX_IMPORT2) ? 'E' :
482 (type & BSF_EMX_EXPORT) ? 'X' :
483#endif /* EMX */
484 (type & BSF_WEAK) ? 'w' : ' ',
485 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
486 (type & BSF_WARNING) ? 'W' : ' ',
487 (type & BSF_INDIRECT) ? 'I' : ' ',
488 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
489 ((type & BSF_FUNCTION)
490 ? 'F'
491 : ((type & BSF_FILE)
492 ? 'f'
493 : ((type & BSF_OBJECT) ? 'O' : ' '))));
494}
495
496/*
497FUNCTION
498 bfd_make_empty_symbol
499
500DESCRIPTION
501 Create a new <<asymbol>> structure for the BFD @var{abfd}
502 and return a pointer to it.
503
504 This routine is necessary because each back end has private
505 information surrounding the <<asymbol>>. Building your own
506 <<asymbol>> and pointing to it will not create the private
507 information, and will cause problems later on.
508
509.#define bfd_make_empty_symbol(abfd) \
510. BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
511.
512*/
513
514/*
515FUNCTION
516 _bfd_generic_make_empty_symbol
517
518SYNOPSIS
519 asymbol * _bfd_generic_make_empty_symbol (bfd *);
520
521DESCRIPTION
522 Create a new <<asymbol>> structure for the BFD @var{abfd}
523 and return a pointer to it. Used by core file routines,
524 binary back-end and anywhere else where no private info
525 is needed.
526*/
527
528asymbol *
529_bfd_generic_make_empty_symbol (abfd)
530 bfd *abfd;
531{
532 bfd_size_type amt = sizeof (asymbol);
533 asymbol *new = (asymbol *) bfd_zalloc (abfd, amt);
534 if (new)
535 new->the_bfd = abfd;
536 return new;
537}
538
539/*
540FUNCTION
541 bfd_make_debug_symbol
542
543DESCRIPTION
544 Create a new <<asymbol>> structure for the BFD @var{abfd},
545 to be used as a debugging symbol. Further details of its use have
546 yet to be worked out.
547
548.#define bfd_make_debug_symbol(abfd,ptr,size) \
549. BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
550.
551*/
552
553struct section_to_type
554{
555 const char *section;
556 char type;
557};
558
559/* Map section names to POSIX/BSD single-character symbol types.
560 This table is probably incomplete. It is sorted for convenience of
561 adding entries. Since it is so short, a linear search is used. */
562static const struct section_to_type stt[] =
563{
564 {".bss", 'b'},
565 {"code", 't'}, /* MRI .text */
566 {".data", 'd'},
567 {"*DEBUG*", 'N'},
568 {".debug", 'N'}, /* MSVC's .debug (non-standard debug syms) */
569 {".drectve", 'i'}, /* MSVC's .drective section */
570 {".edata", 'e'}, /* MSVC's .edata (export) section */
571 {".fini", 't'}, /* ELF fini section */
572 {".idata", 'i'}, /* MSVC's .idata (import) section */
573 {".init", 't'}, /* ELF init section */
574 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
575 {".rdata", 'r'}, /* Read only data. */
576 {".rodata", 'r'}, /* Read only data. */
577 {".sbss", 's'}, /* Small BSS (uninitialized data). */
578 {".scommon", 'c'}, /* Small common. */
579 {".sdata", 'g'}, /* Small initialized data. */
580 {".text", 't'},
581 {"vars", 'd'}, /* MRI .data */
582 {"zerovars", 'b'}, /* MRI .bss */
583 {0, 0}
584};
585
586/* Return the single-character symbol type corresponding to
587 section S, or '?' for an unknown COFF section.
588
589 Check for any leading string which matches, so .text5 returns
590 't' as well as .text */
591
592static char
593coff_section_type (s)
594 const char *s;
595{
596 const struct section_to_type *t;
597
598 for (t = &stt[0]; t->section; t++)
599 if (!strncmp (s, t->section, strlen (t->section)))
600 return t->type;
601
602 return '?';
603}
604
605/* Return the single-character symbol type corresponding to section
606 SECTION, or '?' for an unknown section. This uses section flags to
607 identify sections.
608
609 FIXME These types are unhandled: c, i, e, p. If we handled these also,
610 we could perhaps obsolete coff_section_type. */
611
612static char
613decode_section_type (section)
614 const struct sec *section;
615{
616 if (section->flags & SEC_CODE)
617 return 't';
618 if (section->flags & SEC_DATA)
619 {
620 if (section->flags & SEC_READONLY)
621 return 'r';
622 else if (section->flags & SEC_SMALL_DATA)
623 return 'g';
624 else
625 return 'd';
626 }
627 if ((section->flags & SEC_HAS_CONTENTS) == 0)
628 {
629 if (section->flags & SEC_SMALL_DATA)
630 return 's';
631 else
632 return 'b';
633 }
634 if (section->flags & SEC_DEBUGGING)
635 return 'N';
636
637 return '?';
638}
639
640/*
641FUNCTION
642 bfd_decode_symclass
643
644DESCRIPTION
645 Return a character corresponding to the symbol
646 class of @var{symbol}, or '?' for an unknown class.
647
648SYNOPSIS
649 int bfd_decode_symclass (asymbol *symbol);
650*/
651int
652bfd_decode_symclass (symbol)
653 asymbol *symbol;
654{
655 char c;
656
657 if (bfd_is_com_section (symbol->section))
658 return 'C';
659 if (bfd_is_und_section (symbol->section))
660 {
661 if (symbol->flags & BSF_WEAK)
662 {
663 /* If weak, determine if it's specifically an object
664 or non-object weak. */
665 if (symbol->flags & BSF_OBJECT)
666 return 'v';
667 else
668 return 'w';
669 }
670 else
671 return 'U';
672 }
673 if (bfd_is_ind_section (symbol->section))
674 return 'I';
675 if (symbol->flags & BSF_WEAK)
676 {
677 /* If weak, determine if it's specifically an object
678 or non-object weak. */
679 if (symbol->flags & BSF_OBJECT)
680 return 'V';
681 else
682 return 'W';
683 }
684#ifdef EMX
685 if (symbol->flags & BSF_EMX_IMPORT1)
686 return 'e';
687 if (symbol->flags & BSF_EMX_IMPORT2)
688 return 'E';
689 if (symbol->flags & BSF_EMX_EXPORT)
690 return 'X';
691#endif /* EMX */
692 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
693 return '?';
694
695 if (bfd_is_abs_section (symbol->section))
696 c = 'a';
697 else if (symbol->section)
698 {
699 c = coff_section_type (symbol->section->name);
700 if (c == '?')
701 c = decode_section_type (symbol->section);
702 }
703 else
704 return '?';
705 if (symbol->flags & BSF_GLOBAL)
706 c = TOUPPER (c);
707 return c;
708
709 /* We don't have to handle these cases just yet, but we will soon:
710 N_SETV: 'v';
711 N_SETA: 'l';
712 N_SETT: 'x';
713 N_SETD: 'z';
714 N_SETB: 's';
715 N_INDR: 'i';
716 */
717}
718
719/*
720FUNCTION
721 bfd_is_undefined_symclass
722
723DESCRIPTION
724 Returns non-zero if the class symbol returned by
725 bfd_decode_symclass represents an undefined symbol.
726 Returns zero otherwise.
727
728SYNOPSIS
729 bfd_boolean bfd_is_undefined_symclass (int symclass);
730*/
731
732bfd_boolean
733bfd_is_undefined_symclass (symclass)
734 int symclass;
735{
736 return symclass == 'U' || symclass == 'w' || symclass == 'v';
737}
738
739/*
740FUNCTION
741 bfd_symbol_info
742
743DESCRIPTION
744 Fill in the basic info about symbol that nm needs.
745 Additional info may be added by the back-ends after
746 calling this function.
747
748SYNOPSIS
749 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
750*/
751
752void
753bfd_symbol_info (symbol, ret)
754 asymbol *symbol;
755 symbol_info *ret;
756{
757 ret->type = bfd_decode_symclass (symbol);
758
759 if (bfd_is_undefined_symclass (ret->type))
760 ret->value = 0;
761 else
762 ret->value = symbol->value + symbol->section->vma;
763
764 ret->name = symbol->name;
765}
766
767/*
768FUNCTION
769 bfd_copy_private_symbol_data
770
771SYNOPSIS
772 bfd_boolean bfd_copy_private_symbol_data (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
773
774DESCRIPTION
775 Copy private symbol information from @var{isym} in the BFD
776 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
777 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
778 returns are:
779
780 o <<bfd_error_no_memory>> -
781 Not enough memory exists to create private data for @var{osec}.
782
783.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
784. BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
785. (ibfd, isymbol, obfd, osymbol))
786.
787*/
788
789/* The generic version of the function which returns mini symbols.
790 This is used when the backend does not provide a more efficient
791 version. It just uses BFD asymbol structures as mini symbols. */
792
793long
794_bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep)
795 bfd *abfd;
796 bfd_boolean dynamic;
797 PTR *minisymsp;
798 unsigned int *sizep;
799{
800 long storage;
801 asymbol **syms = NULL;
802 long symcount;
803
804 if (dynamic)
805 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
806 else
807 storage = bfd_get_symtab_upper_bound (abfd);
808 if (storage < 0)
809 goto error_return;
810 if (storage == 0)
811 return 0;
812
813 syms = (asymbol **) bfd_malloc ((bfd_size_type) storage);
814 if (syms == NULL)
815 goto error_return;
816
817 if (dynamic)
818 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
819 else
820 symcount = bfd_canonicalize_symtab (abfd, syms);
821 if (symcount < 0)
822 goto error_return;
823
824 *minisymsp = (PTR) syms;
825 *sizep = sizeof (asymbol *);
826 return symcount;
827
828 error_return:
829 bfd_set_error (bfd_error_no_symbols);
830 if (syms != NULL)
831 free (syms);
832 return -1;
833}
834
835/* The generic version of the function which converts a minisymbol to
836 an asymbol. We don't worry about the sym argument we are passed;
837 we just return the asymbol the minisymbol points to. */
838
839asymbol *
840_bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym)
841 bfd *abfd ATTRIBUTE_UNUSED;
842 bfd_boolean dynamic ATTRIBUTE_UNUSED;
843 const PTR minisym;
844 asymbol *sym ATTRIBUTE_UNUSED;
845{
846 return *(asymbol **) minisym;
847}
848
849/* Look through stabs debugging information in .stab and .stabstr
850 sections to find the source file and line closest to a desired
851 location. This is used by COFF and ELF targets. It sets *pfound
852 to TRUE if it finds some information. The *pinfo field is used to
853 pass cached information in and out of this routine; this first time
854 the routine is called for a BFD, *pinfo should be NULL. The value
855 placed in *pinfo should be saved with the BFD, and passed back each
856 time this function is called. */
857
858/* We use a cache by default. */
859
860#define ENABLE_CACHING
861
862/* We keep an array of indexentry structures to record where in the
863 stabs section we should look to find line number information for a
864 particular address. */
865
866struct indexentry
867{
868 bfd_vma val;
869 bfd_byte *stab;
870 bfd_byte *str;
871 char *directory_name;
872 char *file_name;
873 char *function_name;
874};
875
876/* Compare two indexentry structures. This is called via qsort. */
877
878static int
879cmpindexentry (a, b)
880 const PTR a;
881 const PTR b;
882{
883 const struct indexentry *contestantA = (const struct indexentry *) a;
884 const struct indexentry *contestantB = (const struct indexentry *) b;
885
886 if (contestantA->val < contestantB->val)
887 return -1;
888 else if (contestantA->val > contestantB->val)
889 return 1;
890 else
891 return 0;
892}
893
894/* A pointer to this structure is stored in *pinfo. */
895
896struct stab_find_info
897{
898 /* The .stab section. */
899 asection *stabsec;
900 /* The .stabstr section. */
901 asection *strsec;
902 /* The contents of the .stab section. */
903 bfd_byte *stabs;
904 /* The contents of the .stabstr section. */
905 bfd_byte *strs;
906
907 /* A table that indexes stabs by memory address. */
908 struct indexentry *indextable;
909 /* The number of entries in indextable. */
910 int indextablesize;
911
912#ifdef ENABLE_CACHING
913 /* Cached values to restart quickly. */
914 struct indexentry *cached_indexentry;
915 bfd_vma cached_offset;
916 bfd_byte *cached_stab;
917 char *cached_file_name;
918#endif
919
920 /* Saved ptr to malloc'ed filename. */
921 char *filename;
922};
923
924bfd_boolean
925_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, pfound,
926 pfilename, pfnname, pline, pinfo)
927 bfd *abfd;
928 asymbol **symbols;
929 asection *section;
930 bfd_vma offset;
931 bfd_boolean *pfound;
932 const char **pfilename;
933 const char **pfnname;
934 unsigned int *pline;
935 PTR *pinfo;
936{
937 struct stab_find_info *info;
938 bfd_size_type stabsize, strsize;
939 bfd_byte *stab, *str;
940 bfd_byte *last_stab = NULL;
941 bfd_size_type stroff;
942 struct indexentry *indexentry;
943 char *file_name;
944 char *directory_name;
945 int saw_fun;
946 bfd_boolean saw_line, saw_func;
947
948 *pfound = FALSE;
949 *pfilename = bfd_get_filename (abfd);
950 *pfnname = NULL;
951 *pline = 0;
952
953 /* Stabs entries use a 12 byte format:
954 4 byte string table index
955 1 byte stab type
956 1 byte stab other field
957 2 byte stab desc field
958 4 byte stab value
959 FIXME: This will have to change for a 64 bit object format.
960
961 The stabs symbols are divided into compilation units. For the
962 first entry in each unit, the type of 0, the value is the length
963 of the string table for this unit, and the desc field is the
964 number of stabs symbols for this unit. */
965
966#define STRDXOFF (0)
967#define TYPEOFF (4)
968#define OTHEROFF (5)
969#define DESCOFF (6)
970#define VALOFF (8)
971#define STABSIZE (12)
972
973 info = (struct stab_find_info *) *pinfo;
974 if (info != NULL)
975 {
976 if (info->stabsec == NULL || info->strsec == NULL)
977 {
978 /* No stabs debugging information. */
979 return TRUE;
980 }
981
982 stabsize = info->stabsec->_raw_size;
983 strsize = info->strsec->_raw_size;
984 }
985 else
986 {
987 long reloc_size, reloc_count;
988 arelent **reloc_vector;
989 int i;
990 char *name;
991 char *function_name;
992 bfd_size_type amt = sizeof *info;
993
994 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
995 if (info == NULL)
996 return FALSE;
997
998 /* FIXME: When using the linker --split-by-file or
999 --split-by-reloc options, it is possible for the .stab and
1000 .stabstr sections to be split. We should handle that. */
1001
1002 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1003 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1004
1005 if (info->stabsec == NULL || info->strsec == NULL)
1006 {
1007 /* No stabs debugging information. Set *pinfo so that we
1008 can return quickly in the info != NULL case above. */
1009 *pinfo = (PTR) info;
1010 return TRUE;
1011 }
1012
1013 stabsize = info->stabsec->_raw_size;
1014 strsize = info->strsec->_raw_size;
1015
1016 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1017 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1018 if (info->stabs == NULL || info->strs == NULL)
1019 return FALSE;
1020
1021 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1022 (bfd_vma) 0, stabsize)
1023 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1024 (bfd_vma) 0, strsize))
1025 return FALSE;
1026
1027 /* If this is a relocateable object file, we have to relocate
1028 the entries in .stab. This should always be simple 32 bit
1029 relocations against symbols defined in this object file, so
1030 this should be no big deal. */
1031 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1032 if (reloc_size < 0)
1033 return FALSE;
1034 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1035 if (reloc_vector == NULL && reloc_size != 0)
1036 return FALSE;
1037 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1038 symbols);
1039 if (reloc_count < 0)
1040 {
1041 if (reloc_vector != NULL)
1042 free (reloc_vector);
1043 return FALSE;
1044 }
1045 if (reloc_count > 0)
1046 {
1047 arelent **pr;
1048
1049 for (pr = reloc_vector; *pr != NULL; pr++)
1050 {
1051 arelent *r;
1052 unsigned long val;
1053 asymbol *sym;
1054
1055 r = *pr;
1056 if (r->howto->rightshift != 0
1057 || r->howto->size != 2
1058 || r->howto->bitsize != 32
1059 || r->howto->pc_relative
1060 || r->howto->bitpos != 0
1061 || r->howto->dst_mask != 0xffffffff)
1062 {
1063 (*_bfd_error_handler)
1064 (_("Unsupported .stab relocation"));
1065 bfd_set_error (bfd_error_invalid_operation);
1066 if (reloc_vector != NULL)
1067 free (reloc_vector);
1068 return FALSE;
1069 }
1070
1071 val = bfd_get_32 (abfd, info->stabs + r->address);
1072 val &= r->howto->src_mask;
1073 sym = *r->sym_ptr_ptr;
1074 val += sym->value + sym->section->vma + r->addend;
1075 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + r->address);
1076 }
1077 }
1078
1079 if (reloc_vector != NULL)
1080 free (reloc_vector);
1081
1082 /* First time through this function, build a table matching
1083 function VM addresses to stabs, then sort based on starting
1084 VM address. Do this in two passes: once to count how many
1085 table entries we'll need, and a second to actually build the
1086 table. */
1087
1088 info->indextablesize = 0;
1089 saw_fun = 1;
1090 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1091 {
1092 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1093 {
1094 /* N_SO with null name indicates EOF */
1095 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1096 continue;
1097
1098 /* if we did not see a function def, leave space for one. */
1099 if (saw_fun == 0)
1100 ++info->indextablesize;
1101
1102 saw_fun = 0;
1103
1104 /* two N_SO's in a row is a filename and directory. Skip */
1105 if (stab + STABSIZE < info->stabs + stabsize
1106 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1107 {
1108 stab += STABSIZE;
1109 }
1110 }
1111 else if (stab[TYPEOFF] == (bfd_byte) N_FUN)
1112 {
1113 saw_fun = 1;
1114 ++info->indextablesize;
1115 }
1116 }
1117
1118 if (saw_fun == 0)
1119 ++info->indextablesize;
1120
1121 if (info->indextablesize == 0)
1122 return TRUE;
1123 ++info->indextablesize;
1124
1125 amt = info->indextablesize;
1126 amt *= sizeof (struct indexentry);
1127 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1128 if (info->indextable == NULL)
1129 return FALSE;
1130
1131 file_name = NULL;
1132 directory_name = NULL;
1133 saw_fun = 1;
1134
1135 for (i = 0, stroff = 0, stab = info->stabs, str = info->strs;
1136 i < info->indextablesize && stab < info->stabs + stabsize;
1137 stab += STABSIZE)
1138 {
1139 switch (stab[TYPEOFF])
1140 {
1141 case 0:
1142 /* This is the first entry in a compilation unit. */
1143 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1144 break;
1145 str += stroff;
1146 stroff = bfd_get_32 (abfd, stab + VALOFF);
1147 break;
1148
1149 case N_SO:
1150 /* The main file name. */
1151
1152 /* The following code creates a new indextable entry with
1153 a NULL function name if there were no N_FUNs in a file.
1154 Note that a N_SO without a file name is an EOF and
1155 there could be 2 N_SO following it with the new filename
1156 and directory. */
1157 if (saw_fun == 0)
1158 {
1159 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1160 info->indextable[i].stab = last_stab;
1161 info->indextable[i].str = str;
1162 info->indextable[i].directory_name = directory_name;
1163 info->indextable[i].file_name = file_name;
1164 info->indextable[i].function_name = NULL;
1165 ++i;
1166 }
1167 saw_fun = 0;
1168
1169 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1170 if (*file_name == '\0')
1171 {
1172 directory_name = NULL;
1173 file_name = NULL;
1174 saw_fun = 1;
1175 }
1176 else
1177 {
1178 last_stab = stab;
1179 if (stab + STABSIZE >= info->stabs + stabsize
1180 || *(stab + STABSIZE + TYPEOFF) != (bfd_byte) N_SO)
1181 {
1182 directory_name = NULL;
1183 }
1184 else
1185 {
1186 /* Two consecutive N_SOs are a directory and a
1187 file name. */
1188 stab += STABSIZE;
1189 directory_name = file_name;
1190 file_name = ((char *) str
1191 + bfd_get_32 (abfd, stab + STRDXOFF));
1192 }
1193 }
1194 break;
1195
1196 case N_SOL:
1197 /* The name of an include file. */
1198 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1199 break;
1200
1201 case N_FUN:
1202 /* A function name. */
1203 saw_fun = 1;
1204 name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1205
1206 if (*name == '\0')
1207 name = NULL;
1208
1209 function_name = name;
1210
1211 if (name == NULL)
1212 continue;
1213
1214 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1215 info->indextable[i].stab = stab;
1216 info->indextable[i].str = str;
1217 info->indextable[i].directory_name = directory_name;
1218 info->indextable[i].file_name = file_name;
1219 info->indextable[i].function_name = function_name;
1220 ++i;
1221 break;
1222 }
1223 }
1224
1225 if (saw_fun == 0)
1226 {
1227 info->indextable[i].val = bfd_get_32 (abfd, last_stab + VALOFF);
1228 info->indextable[i].stab = last_stab;
1229 info->indextable[i].str = str;
1230 info->indextable[i].directory_name = directory_name;
1231 info->indextable[i].file_name = file_name;
1232 info->indextable[i].function_name = NULL;
1233 ++i;
1234 }
1235
1236 info->indextable[i].val = (bfd_vma) -1;
1237 info->indextable[i].stab = info->stabs + stabsize;
1238 info->indextable[i].str = str;
1239 info->indextable[i].directory_name = NULL;
1240 info->indextable[i].file_name = NULL;
1241 info->indextable[i].function_name = NULL;
1242 ++i;
1243
1244 info->indextablesize = i;
1245 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1246 cmpindexentry);
1247
1248 *pinfo = (PTR) info;
1249 }
1250
1251 /* We are passed a section relative offset. The offsets in the
1252 stabs information are absolute. */
1253 offset += bfd_get_section_vma (abfd, section);
1254
1255#ifdef ENABLE_CACHING
1256 if (info->cached_indexentry != NULL
1257 && offset >= info->cached_offset
1258 && offset < (info->cached_indexentry + 1)->val)
1259 {
1260 stab = info->cached_stab;
1261 indexentry = info->cached_indexentry;
1262 file_name = info->cached_file_name;
1263 }
1264 else
1265#endif
1266 {
1267 long low, high;
1268 long mid = -1;
1269
1270 /* Cache non-existant or invalid. Do binary search on
1271 indextable. */
1272 indexentry = NULL;
1273
1274 low = 0;
1275 high = info->indextablesize - 1;
1276 while (low != high)
1277 {
1278 mid = (high + low) / 2;
1279 if (offset >= info->indextable[mid].val
1280 && offset < info->indextable[mid + 1].val)
1281 {
1282 indexentry = &info->indextable[mid];
1283 break;
1284 }
1285
1286 if (info->indextable[mid].val > offset)
1287 high = mid;
1288 else
1289 low = mid + 1;
1290 }
1291
1292 if (indexentry == NULL)
1293 return TRUE;
1294
1295 stab = indexentry->stab + STABSIZE;
1296 file_name = indexentry->file_name;
1297 }
1298
1299 directory_name = indexentry->directory_name;
1300 str = indexentry->str;
1301
1302 saw_line = FALSE;
1303 saw_func = FALSE;
1304 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1305 {
1306 bfd_boolean done;
1307 bfd_vma val;
1308
1309 done = FALSE;
1310
1311 switch (stab[TYPEOFF])
1312 {
1313 case N_SOL:
1314 /* The name of an include file. */
1315 val = bfd_get_32 (abfd, stab + VALOFF);
1316 if (val <= offset)
1317 {
1318 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1319 *pline = 0;
1320 }
1321 break;
1322
1323 case N_SLINE:
1324 case N_DSLINE:
1325 case N_BSLINE:
1326 /* A line number. If the function was specified, then the value
1327 is relative to the start of the function. Otherwise, the
1328 value is an absolute address. */
1329 val = ((indexentry->function_name ? indexentry->val : 0)
1330 + bfd_get_32 (abfd, stab + VALOFF));
1331 /* If this line starts before our desired offset, or if it's
1332 the first line we've been able to find, use it. The
1333 !saw_line check works around a bug in GCC 2.95.3, which emits
1334 the first N_SLINE late. */
1335 if (!saw_line || val <= offset)
1336 {
1337 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1338
1339#ifdef ENABLE_CACHING
1340 info->cached_stab = stab;
1341 info->cached_offset = val;
1342 info->cached_file_name = file_name;
1343 info->cached_indexentry = indexentry;
1344#endif
1345 }
1346 if (val > offset)
1347 done = TRUE;
1348 saw_line = TRUE;
1349 break;
1350
1351 case N_FUN:
1352 case N_SO:
1353 if (saw_func || saw_line)
1354 done = TRUE;
1355 saw_func = TRUE;
1356 break;
1357 }
1358
1359 if (done)
1360 break;
1361 }
1362
1363 *pfound = TRUE;
1364
1365 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1366 || directory_name == NULL)
1367 *pfilename = file_name;
1368 else
1369 {
1370 size_t dirlen;
1371
1372 dirlen = strlen (directory_name);
1373 if (info->filename == NULL
1374 || strncmp (info->filename, directory_name, dirlen) != 0
1375 || strcmp (info->filename + dirlen, file_name) != 0)
1376 {
1377 size_t len;
1378
1379 if (info->filename != NULL)
1380 free (info->filename);
1381 len = strlen (file_name) + 1;
1382 info->filename = (char *) bfd_malloc ((bfd_size_type) dirlen + len);
1383 if (info->filename == NULL)
1384 return FALSE;
1385 memcpy (info->filename, directory_name, dirlen);
1386 memcpy (info->filename + dirlen, file_name, len);
1387 }
1388
1389 *pfilename = info->filename;
1390 }
1391
1392 if (indexentry->function_name != NULL)
1393 {
1394 char *s;
1395
1396 /* This will typically be something like main:F(0,1), so we want
1397 to clobber the colon. It's OK to change the name, since the
1398 string is in our own local storage anyhow. */
1399 s = strchr (indexentry->function_name, ':');
1400 if (s != NULL)
1401 *s = '\0';
1402
1403 *pfnname = indexentry->function_name;
1404 }
1405
1406 return TRUE;
1407}
Note: See TracBrowser for help on using the repository browser.