source: branches/libc-0.6/src/binutils/bfd/elf64-mmix.c

Last change on this file was 607, checked in by bird, 22 years ago

Initial revision

  • Property cvs2svn:cvs-rev set to 1.1
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 80.1 KB
Line 
1/* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5This file is part of BFD, the Binary File Descriptor library.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21/* No specific ABI or "processor-specific supplement" defined. */
22
23/* TODO:
24 - Linker relaxation. */
25
26#include "bfd.h"
27#include "sysdep.h"
28#include "libbfd.h"
29#include "elf-bfd.h"
30#include "elf/mmix.h"
31#include "opcode/mmix.h"
32
33#define MINUS_ONE (((bfd_vma) 0) - 1)
34
35/* Put these everywhere in new code. */
36#define FATAL_DEBUG \
37 _bfd_abort (__FILE__, __LINE__, \
38 "Internal: Non-debugged code (test-case missing)")
39
40#define BAD_CASE(x) \
41 _bfd_abort (__FILE__, __LINE__, \
42 "bad case for " #x)
43
44struct _mmix_elf_section_data
45{
46 struct bfd_elf_section_data elf;
47 union
48 {
49 struct bpo_reloc_section_info *reloc;
50 struct bpo_greg_section_info *greg;
51 } bpo;
52};
53
54#define mmix_elf_section_data(sec) \
55 ((struct _mmix_elf_section_data *) elf_section_data (sec))
56
57/* For each section containing a base-plus-offset (BPO) reloc, we attach
58 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
59 NULL. */
60struct bpo_reloc_section_info
61 {
62 /* The base is 1; this is the first number in this section. */
63 size_t first_base_plus_offset_reloc;
64
65 /* Number of BPO-relocs in this section. */
66 size_t n_bpo_relocs_this_section;
67
68 /* Running index, used at relocation time. */
69 size_t bpo_index;
70
71 /* We don't have access to the bfd_link_info struct in
72 mmix_final_link_relocate. What we really want to get at is the
73 global single struct greg_relocation, so we stash it here. */
74 asection *bpo_greg_section;
75 };
76
77/* Helper struct (in global context) for the one below.
78 There's one of these created for every BPO reloc. */
79struct bpo_reloc_request
80 {
81 bfd_vma value;
82
83 /* Valid after relaxation. The base is 0; the first register number
84 must be added. The offset is in range 0..255. */
85 size_t regindex;
86 size_t offset;
87
88 /* The order number for this BPO reloc, corresponding to the order in
89 which BPO relocs were found. Used to create an index after reloc
90 requests are sorted. */
91 size_t bpo_reloc_no;
92
93 /* Set when the value is computed. Better than coding "guard values"
94 into the other members. Is FALSE only for BPO relocs in a GC:ed
95 section. */
96 bfd_boolean valid;
97 };
98
99/* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
100 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
101 which is linked into the register contents section
102 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
103 linker; using the same hook as for usual with BPO relocs does not
104 collide. */
105struct bpo_greg_section_info
106 {
107 /* After GC, this reflects the number of remaining, non-excluded
108 BPO-relocs. */
109 size_t n_bpo_relocs;
110
111 /* This is the number of allocated bpo_reloc_requests; the size of
112 sorted_indexes. Valid after the check.*relocs functions are called
113 for all incoming sections. It includes the number of BPO relocs in
114 sections that were GC:ed. */
115 size_t n_max_bpo_relocs;
116
117 /* A counter used to find out when to fold the BPO gregs, since we
118 don't have a single "after-relaxation" hook. */
119 size_t n_remaining_bpo_relocs_this_relaxation_round;
120
121 /* The number of linker-allocated GREGs resulting from BPO relocs.
122 This is an approximation after _bfd_mmix_allocated_gregs_init and
123 supposedly accurate after mmix_elf_relax_section is called for all
124 incoming non-collected sections. */
125 size_t n_allocated_bpo_gregs;
126
127 /* Index into reloc_request[], sorted on increasing "value", secondary
128 by increasing index for strict sorting order. */
129 size_t *bpo_reloc_indexes;
130
131 /* An array of all relocations, with the "value" member filled in by
132 the relaxation function. */
133 struct bpo_reloc_request *reloc_request;
134 };
135
136static bfd_boolean mmix_elf_link_output_symbol_hook
137 PARAMS ((bfd *, struct bfd_link_info *, const char *,
138 Elf_Internal_Sym *, asection *));
139
140static bfd_reloc_status_type mmix_elf_reloc
141 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
142
143static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
144 PARAMS ((bfd *, bfd_reloc_code_real_type));
145
146static void mmix_info_to_howto_rela
147 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
148
149static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
150
151static bfd_boolean mmix_elf_new_section_hook
152 PARAMS ((bfd *, asection *));
153
154static bfd_boolean mmix_elf_check_relocs
155 PARAMS ((bfd *, struct bfd_link_info *, asection *,
156 const Elf_Internal_Rela *));
157
158static bfd_boolean mmix_elf_check_common_relocs
159 PARAMS ((bfd *, struct bfd_link_info *, asection *,
160 const Elf_Internal_Rela *));
161
162static bfd_boolean mmix_elf_relocate_section
163 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
164 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
165
166static asection * mmix_elf_gc_mark_hook
167 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
168 struct elf_link_hash_entry *, Elf_Internal_Sym *));
169
170static bfd_boolean mmix_elf_gc_sweep_hook
171 PARAMS ((bfd *, struct bfd_link_info *, asection *,
172 const Elf_Internal_Rela *));
173
174static bfd_reloc_status_type mmix_final_link_relocate
175 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
176 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
177
178static bfd_reloc_status_type mmix_elf_perform_relocation
179 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
180
181static bfd_boolean mmix_elf_section_from_bfd_section
182 PARAMS ((bfd *, asection *, int *));
183
184static bfd_boolean mmix_elf_add_symbol_hook
185 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
186 const char **, flagword *, asection **, bfd_vma *));
187
188static bfd_boolean mmix_elf_is_local_label_name
189 PARAMS ((bfd *, const char *));
190
191static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
192
193static bfd_boolean mmix_elf_relax_section
194 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
195 bfd_boolean *again));
196
197extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
198
199extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
200
201/* Only intended to be called from a debugger. */
202extern void mmix_dump_bpo_gregs
203 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
204
205/* Watch out: this currently needs to have elements with the same index as
206 their R_MMIX_ number. */
207static reloc_howto_type elf_mmix_howto_table[] =
208 {
209 /* This reloc does nothing. */
210 HOWTO (R_MMIX_NONE, /* type */
211 0, /* rightshift */
212 2, /* size (0 = byte, 1 = short, 2 = long) */
213 32, /* bitsize */
214 FALSE, /* pc_relative */
215 0, /* bitpos */
216 complain_overflow_bitfield, /* complain_on_overflow */
217 bfd_elf_generic_reloc, /* special_function */
218 "R_MMIX_NONE", /* name */
219 FALSE, /* partial_inplace */
220 0, /* src_mask */
221 0, /* dst_mask */
222 FALSE), /* pcrel_offset */
223
224 /* An 8 bit absolute relocation. */
225 HOWTO (R_MMIX_8, /* type */
226 0, /* rightshift */
227 0, /* size (0 = byte, 1 = short, 2 = long) */
228 8, /* bitsize */
229 FALSE, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_bitfield, /* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_MMIX_8", /* name */
234 FALSE, /* partial_inplace */
235 0, /* src_mask */
236 0xff, /* dst_mask */
237 FALSE), /* pcrel_offset */
238
239 /* An 16 bit absolute relocation. */
240 HOWTO (R_MMIX_16, /* type */
241 0, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 16, /* bitsize */
244 FALSE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_MMIX_16", /* name */
249 FALSE, /* partial_inplace */
250 0, /* src_mask */
251 0xffff, /* dst_mask */
252 FALSE), /* pcrel_offset */
253
254 /* An 24 bit absolute relocation. */
255 HOWTO (R_MMIX_24, /* type */
256 0, /* rightshift */
257 2, /* size (0 = byte, 1 = short, 2 = long) */
258 24, /* bitsize */
259 FALSE, /* pc_relative */
260 0, /* bitpos */
261 complain_overflow_bitfield, /* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_MMIX_24", /* name */
264 FALSE, /* partial_inplace */
265 ~0xffffff, /* src_mask */
266 0xffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
268
269 /* A 32 bit absolute relocation. */
270 HOWTO (R_MMIX_32, /* type */
271 0, /* rightshift */
272 2, /* size (0 = byte, 1 = short, 2 = long) */
273 32, /* bitsize */
274 FALSE, /* pc_relative */
275 0, /* bitpos */
276 complain_overflow_bitfield, /* complain_on_overflow */
277 bfd_elf_generic_reloc, /* special_function */
278 "R_MMIX_32", /* name */
279 FALSE, /* partial_inplace */
280 0, /* src_mask */
281 0xffffffff, /* dst_mask */
282 FALSE), /* pcrel_offset */
283
284 /* 64 bit relocation. */
285 HOWTO (R_MMIX_64, /* type */
286 0, /* rightshift */
287 4, /* size (0 = byte, 1 = short, 2 = long) */
288 64, /* bitsize */
289 FALSE, /* pc_relative */
290 0, /* bitpos */
291 complain_overflow_bitfield, /* complain_on_overflow */
292 bfd_elf_generic_reloc, /* special_function */
293 "R_MMIX_64", /* name */
294 FALSE, /* partial_inplace */
295 0, /* src_mask */
296 MINUS_ONE, /* dst_mask */
297 FALSE), /* pcrel_offset */
298
299 /* An 8 bit PC-relative relocation. */
300 HOWTO (R_MMIX_PC_8, /* type */
301 0, /* rightshift */
302 0, /* size (0 = byte, 1 = short, 2 = long) */
303 8, /* bitsize */
304 TRUE, /* pc_relative */
305 0, /* bitpos */
306 complain_overflow_bitfield, /* complain_on_overflow */
307 bfd_elf_generic_reloc, /* special_function */
308 "R_MMIX_PC_8", /* name */
309 FALSE, /* partial_inplace */
310 0, /* src_mask */
311 0xff, /* dst_mask */
312 TRUE), /* pcrel_offset */
313
314 /* An 16 bit PC-relative relocation. */
315 HOWTO (R_MMIX_PC_16, /* type */
316 0, /* rightshift */
317 1, /* size (0 = byte, 1 = short, 2 = long) */
318 16, /* bitsize */
319 TRUE, /* pc_relative */
320 0, /* bitpos */
321 complain_overflow_bitfield, /* complain_on_overflow */
322 bfd_elf_generic_reloc, /* special_function */
323 "R_MMIX_PC_16", /* name */
324 FALSE, /* partial_inplace */
325 0, /* src_mask */
326 0xffff, /* dst_mask */
327 TRUE), /* pcrel_offset */
328
329 /* An 24 bit PC-relative relocation. */
330 HOWTO (R_MMIX_PC_24, /* type */
331 0, /* rightshift */
332 2, /* size (0 = byte, 1 = short, 2 = long) */
333 24, /* bitsize */
334 TRUE, /* pc_relative */
335 0, /* bitpos */
336 complain_overflow_bitfield, /* complain_on_overflow */
337 bfd_elf_generic_reloc, /* special_function */
338 "R_MMIX_PC_24", /* name */
339 FALSE, /* partial_inplace */
340 ~0xffffff, /* src_mask */
341 0xffffff, /* dst_mask */
342 TRUE), /* pcrel_offset */
343
344 /* A 32 bit absolute PC-relative relocation. */
345 HOWTO (R_MMIX_PC_32, /* type */
346 0, /* rightshift */
347 2, /* size (0 = byte, 1 = short, 2 = long) */
348 32, /* bitsize */
349 TRUE, /* pc_relative */
350 0, /* bitpos */
351 complain_overflow_bitfield, /* complain_on_overflow */
352 bfd_elf_generic_reloc, /* special_function */
353 "R_MMIX_PC_32", /* name */
354 FALSE, /* partial_inplace */
355 0, /* src_mask */
356 0xffffffff, /* dst_mask */
357 TRUE), /* pcrel_offset */
358
359 /* 64 bit PC-relative relocation. */
360 HOWTO (R_MMIX_PC_64, /* type */
361 0, /* rightshift */
362 4, /* size (0 = byte, 1 = short, 2 = long) */
363 64, /* bitsize */
364 TRUE, /* pc_relative */
365 0, /* bitpos */
366 complain_overflow_bitfield, /* complain_on_overflow */
367 bfd_elf_generic_reloc, /* special_function */
368 "R_MMIX_PC_64", /* name */
369 FALSE, /* partial_inplace */
370 0, /* src_mask */
371 MINUS_ONE, /* dst_mask */
372 TRUE), /* pcrel_offset */
373
374 /* GNU extension to record C++ vtable hierarchy. */
375 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
376 0, /* rightshift */
377 0, /* size (0 = byte, 1 = short, 2 = long) */
378 0, /* bitsize */
379 FALSE, /* pc_relative */
380 0, /* bitpos */
381 complain_overflow_dont, /* complain_on_overflow */
382 NULL, /* special_function */
383 "R_MMIX_GNU_VTINHERIT", /* name */
384 FALSE, /* partial_inplace */
385 0, /* src_mask */
386 0, /* dst_mask */
387 TRUE), /* pcrel_offset */
388
389 /* GNU extension to record C++ vtable member usage. */
390 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
391 0, /* rightshift */
392 0, /* size (0 = byte, 1 = short, 2 = long) */
393 0, /* bitsize */
394 FALSE, /* pc_relative */
395 0, /* bitpos */
396 complain_overflow_dont, /* complain_on_overflow */
397 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
398 "R_MMIX_GNU_VTENTRY", /* name */
399 FALSE, /* partial_inplace */
400 0, /* src_mask */
401 0, /* dst_mask */
402 FALSE), /* pcrel_offset */
403
404 /* The GETA relocation is supposed to get any address that could
405 possibly be reached by the GETA instruction. It can silently expand
406 to get a 64-bit operand, but will complain if any of the two least
407 significant bits are set. The howto members reflect a simple GETA. */
408 HOWTO (R_MMIX_GETA, /* type */
409 2, /* rightshift */
410 2, /* size (0 = byte, 1 = short, 2 = long) */
411 19, /* bitsize */
412 TRUE, /* pc_relative */
413 0, /* bitpos */
414 complain_overflow_signed, /* complain_on_overflow */
415 mmix_elf_reloc, /* special_function */
416 "R_MMIX_GETA", /* name */
417 FALSE, /* partial_inplace */
418 ~0x0100ffff, /* src_mask */
419 0x0100ffff, /* dst_mask */
420 TRUE), /* pcrel_offset */
421
422 HOWTO (R_MMIX_GETA_1, /* type */
423 2, /* rightshift */
424 2, /* size (0 = byte, 1 = short, 2 = long) */
425 19, /* bitsize */
426 TRUE, /* pc_relative */
427 0, /* bitpos */
428 complain_overflow_signed, /* complain_on_overflow */
429 mmix_elf_reloc, /* special_function */
430 "R_MMIX_GETA_1", /* name */
431 FALSE, /* partial_inplace */
432 ~0x0100ffff, /* src_mask */
433 0x0100ffff, /* dst_mask */
434 TRUE), /* pcrel_offset */
435
436 HOWTO (R_MMIX_GETA_2, /* type */
437 2, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 19, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 mmix_elf_reloc, /* special_function */
444 "R_MMIX_GETA_2", /* name */
445 FALSE, /* partial_inplace */
446 ~0x0100ffff, /* src_mask */
447 0x0100ffff, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 HOWTO (R_MMIX_GETA_3, /* type */
451 2, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 19, /* bitsize */
454 TRUE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_signed, /* complain_on_overflow */
457 mmix_elf_reloc, /* special_function */
458 "R_MMIX_GETA_3", /* name */
459 FALSE, /* partial_inplace */
460 ~0x0100ffff, /* src_mask */
461 0x0100ffff, /* dst_mask */
462 TRUE), /* pcrel_offset */
463
464 /* The conditional branches are supposed to reach any (code) address.
465 It can silently expand to a 64-bit operand, but will emit an error if
466 any of the two least significant bits are set. The howto members
467 reflect a simple branch. */
468 HOWTO (R_MMIX_CBRANCH, /* type */
469 2, /* rightshift */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
471 19, /* bitsize */
472 TRUE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_signed, /* complain_on_overflow */
475 mmix_elf_reloc, /* special_function */
476 "R_MMIX_CBRANCH", /* name */
477 FALSE, /* partial_inplace */
478 ~0x0100ffff, /* src_mask */
479 0x0100ffff, /* dst_mask */
480 TRUE), /* pcrel_offset */
481
482 HOWTO (R_MMIX_CBRANCH_J, /* type */
483 2, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 19, /* bitsize */
486 TRUE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_signed, /* complain_on_overflow */
489 mmix_elf_reloc, /* special_function */
490 "R_MMIX_CBRANCH_J", /* name */
491 FALSE, /* partial_inplace */
492 ~0x0100ffff, /* src_mask */
493 0x0100ffff, /* dst_mask */
494 TRUE), /* pcrel_offset */
495
496 HOWTO (R_MMIX_CBRANCH_1, /* type */
497 2, /* rightshift */
498 2, /* size (0 = byte, 1 = short, 2 = long) */
499 19, /* bitsize */
500 TRUE, /* pc_relative */
501 0, /* bitpos */
502 complain_overflow_signed, /* complain_on_overflow */
503 mmix_elf_reloc, /* special_function */
504 "R_MMIX_CBRANCH_1", /* name */
505 FALSE, /* partial_inplace */
506 ~0x0100ffff, /* src_mask */
507 0x0100ffff, /* dst_mask */
508 TRUE), /* pcrel_offset */
509
510 HOWTO (R_MMIX_CBRANCH_2, /* type */
511 2, /* rightshift */
512 2, /* size (0 = byte, 1 = short, 2 = long) */
513 19, /* bitsize */
514 TRUE, /* pc_relative */
515 0, /* bitpos */
516 complain_overflow_signed, /* complain_on_overflow */
517 mmix_elf_reloc, /* special_function */
518 "R_MMIX_CBRANCH_2", /* name */
519 FALSE, /* partial_inplace */
520 ~0x0100ffff, /* src_mask */
521 0x0100ffff, /* dst_mask */
522 TRUE), /* pcrel_offset */
523
524 HOWTO (R_MMIX_CBRANCH_3, /* type */
525 2, /* rightshift */
526 2, /* size (0 = byte, 1 = short, 2 = long) */
527 19, /* bitsize */
528 TRUE, /* pc_relative */
529 0, /* bitpos */
530 complain_overflow_signed, /* complain_on_overflow */
531 mmix_elf_reloc, /* special_function */
532 "R_MMIX_CBRANCH_3", /* name */
533 FALSE, /* partial_inplace */
534 ~0x0100ffff, /* src_mask */
535 0x0100ffff, /* dst_mask */
536 TRUE), /* pcrel_offset */
537
538 /* The PUSHJ instruction can reach any (code) address, as long as it's
539 the beginning of a function (no usable restriction). It can silently
540 expand to a 64-bit operand, but will emit an error if any of the two
541 least significant bits are set. The howto members reflect a simple
542 PUSHJ. */
543 HOWTO (R_MMIX_PUSHJ, /* type */
544 2, /* rightshift */
545 2, /* size (0 = byte, 1 = short, 2 = long) */
546 19, /* bitsize */
547 TRUE, /* pc_relative */
548 0, /* bitpos */
549 complain_overflow_signed, /* complain_on_overflow */
550 mmix_elf_reloc, /* special_function */
551 "R_MMIX_PUSHJ", /* name */
552 FALSE, /* partial_inplace */
553 ~0x0100ffff, /* src_mask */
554 0x0100ffff, /* dst_mask */
555 TRUE), /* pcrel_offset */
556
557 HOWTO (R_MMIX_PUSHJ_1, /* type */
558 2, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 19, /* bitsize */
561 TRUE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_signed, /* complain_on_overflow */
564 mmix_elf_reloc, /* special_function */
565 "R_MMIX_PUSHJ_1", /* name */
566 FALSE, /* partial_inplace */
567 ~0x0100ffff, /* src_mask */
568 0x0100ffff, /* dst_mask */
569 TRUE), /* pcrel_offset */
570
571 HOWTO (R_MMIX_PUSHJ_2, /* type */
572 2, /* rightshift */
573 2, /* size (0 = byte, 1 = short, 2 = long) */
574 19, /* bitsize */
575 TRUE, /* pc_relative */
576 0, /* bitpos */
577 complain_overflow_signed, /* complain_on_overflow */
578 mmix_elf_reloc, /* special_function */
579 "R_MMIX_PUSHJ_2", /* name */
580 FALSE, /* partial_inplace */
581 ~0x0100ffff, /* src_mask */
582 0x0100ffff, /* dst_mask */
583 TRUE), /* pcrel_offset */
584
585 HOWTO (R_MMIX_PUSHJ_3, /* type */
586 2, /* rightshift */
587 2, /* size (0 = byte, 1 = short, 2 = long) */
588 19, /* bitsize */
589 TRUE, /* pc_relative */
590 0, /* bitpos */
591 complain_overflow_signed, /* complain_on_overflow */
592 mmix_elf_reloc, /* special_function */
593 "R_MMIX_PUSHJ_3", /* name */
594 FALSE, /* partial_inplace */
595 ~0x0100ffff, /* src_mask */
596 0x0100ffff, /* dst_mask */
597 TRUE), /* pcrel_offset */
598
599 /* A JMP is supposed to reach any (code) address. By itself, it can
600 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
601 limit is soon reached if you link the program in wildly different
602 memory segments. The howto members reflect a trivial JMP. */
603 HOWTO (R_MMIX_JMP, /* type */
604 2, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 27, /* bitsize */
607 TRUE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 mmix_elf_reloc, /* special_function */
611 "R_MMIX_JMP", /* name */
612 FALSE, /* partial_inplace */
613 ~0x1ffffff, /* src_mask */
614 0x1ffffff, /* dst_mask */
615 TRUE), /* pcrel_offset */
616
617 HOWTO (R_MMIX_JMP_1, /* type */
618 2, /* rightshift */
619 2, /* size (0 = byte, 1 = short, 2 = long) */
620 27, /* bitsize */
621 TRUE, /* pc_relative */
622 0, /* bitpos */
623 complain_overflow_signed, /* complain_on_overflow */
624 mmix_elf_reloc, /* special_function */
625 "R_MMIX_JMP_1", /* name */
626 FALSE, /* partial_inplace */
627 ~0x1ffffff, /* src_mask */
628 0x1ffffff, /* dst_mask */
629 TRUE), /* pcrel_offset */
630
631 HOWTO (R_MMIX_JMP_2, /* type */
632 2, /* rightshift */
633 2, /* size (0 = byte, 1 = short, 2 = long) */
634 27, /* bitsize */
635 TRUE, /* pc_relative */
636 0, /* bitpos */
637 complain_overflow_signed, /* complain_on_overflow */
638 mmix_elf_reloc, /* special_function */
639 "R_MMIX_JMP_2", /* name */
640 FALSE, /* partial_inplace */
641 ~0x1ffffff, /* src_mask */
642 0x1ffffff, /* dst_mask */
643 TRUE), /* pcrel_offset */
644
645 HOWTO (R_MMIX_JMP_3, /* type */
646 2, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 27, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 mmix_elf_reloc, /* special_function */
653 "R_MMIX_JMP_3", /* name */
654 FALSE, /* partial_inplace */
655 ~0x1ffffff, /* src_mask */
656 0x1ffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* When we don't emit link-time-relaxable code from the assembler, or
660 when relaxation has done all it can do, these relocs are used. For
661 GETA/PUSHJ/branches. */
662 HOWTO (R_MMIX_ADDR19, /* type */
663 2, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 19, /* bitsize */
666 TRUE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed, /* complain_on_overflow */
669 mmix_elf_reloc, /* special_function */
670 "R_MMIX_ADDR19", /* name */
671 FALSE, /* partial_inplace */
672 ~0x0100ffff, /* src_mask */
673 0x0100ffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 /* For JMP. */
677 HOWTO (R_MMIX_ADDR27, /* type */
678 2, /* rightshift */
679 2, /* size (0 = byte, 1 = short, 2 = long) */
680 27, /* bitsize */
681 TRUE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_signed, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_ADDR27", /* name */
686 FALSE, /* partial_inplace */
687 ~0x1ffffff, /* src_mask */
688 0x1ffffff, /* dst_mask */
689 TRUE), /* pcrel_offset */
690
691 /* A general register or the value 0..255. If a value, then the
692 instruction (offset -3) needs adjusting. */
693 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
694 0, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 8, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_bitfield, /* complain_on_overflow */
700 mmix_elf_reloc, /* special_function */
701 "R_MMIX_REG_OR_BYTE", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* A general register. */
708 HOWTO (R_MMIX_REG, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 8, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 mmix_elf_reloc, /* special_function */
716 "R_MMIX_REG", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* A register plus an index, corresponding to the relocation expression.
723 The sizes must correspond to the valid range of the expression, while
724 the bitmasks correspond to what we store in the image. */
725 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
726 0, /* rightshift */
727 4, /* size (0 = byte, 1 = short, 2 = long) */
728 64, /* bitsize */
729 FALSE, /* pc_relative */
730 0, /* bitpos */
731 complain_overflow_bitfield, /* complain_on_overflow */
732 mmix_elf_reloc, /* special_function */
733 "R_MMIX_BASE_PLUS_OFFSET", /* name */
734 FALSE, /* partial_inplace */
735 0, /* src_mask */
736 0xffff, /* dst_mask */
737 FALSE), /* pcrel_offset */
738
739 /* A "magic" relocation for a LOCAL expression, asserting that the
740 expression is less than the number of global registers. No actual
741 modification of the contents is done. Implementing this as a
742 relocation was less intrusive than e.g. putting such expressions in a
743 section to discard *after* relocation. */
744 HOWTO (R_MMIX_LOCAL, /* type */
745 0, /* rightshift */
746 0, /* size (0 = byte, 1 = short, 2 = long) */
747 0, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont, /* complain_on_overflow */
751 mmix_elf_reloc, /* special_function */
752 "R_MMIX_LOCAL", /* name */
753 FALSE, /* partial_inplace */
754 0, /* src_mask */
755 0, /* dst_mask */
756 FALSE), /* pcrel_offset */
757 };
758
759
760/* Map BFD reloc types to MMIX ELF reloc types. */
761
762struct mmix_reloc_map
763 {
764 bfd_reloc_code_real_type bfd_reloc_val;
765 enum elf_mmix_reloc_type elf_reloc_val;
766 };
767
768
769static const struct mmix_reloc_map mmix_reloc_map[] =
770 {
771 {BFD_RELOC_NONE, R_MMIX_NONE},
772 {BFD_RELOC_8, R_MMIX_8},
773 {BFD_RELOC_16, R_MMIX_16},
774 {BFD_RELOC_24, R_MMIX_24},
775 {BFD_RELOC_32, R_MMIX_32},
776 {BFD_RELOC_64, R_MMIX_64},
777 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
778 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
779 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
780 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
781 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
782 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
783 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
784 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
785 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
786 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
787 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
788 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
789 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
790 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
791 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
792 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
793 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}
794 };
795
796static reloc_howto_type *
797bfd_elf64_bfd_reloc_type_lookup (abfd, code)
798 bfd *abfd ATTRIBUTE_UNUSED;
799 bfd_reloc_code_real_type code;
800{
801 unsigned int i;
802
803 for (i = 0;
804 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
805 i++)
806 {
807 if (mmix_reloc_map[i].bfd_reloc_val == code)
808 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
809 }
810
811 return NULL;
812}
813
814static bfd_boolean
815mmix_elf_new_section_hook (abfd, sec)
816 bfd *abfd;
817 asection *sec;
818{
819 struct _mmix_elf_section_data *sdata;
820 bfd_size_type amt = sizeof (*sdata);
821
822 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
823 if (sdata == NULL)
824 return FALSE;
825 sec->used_by_bfd = (PTR) sdata;
826
827 return _bfd_elf_new_section_hook (abfd, sec);
828}
829
830
831/* This function performs the actual bitfiddling and sanity check for a
832 final relocation. Each relocation gets its *worst*-case expansion
833 in size when it arrives here; any reduction in size should have been
834 caught in linker relaxation earlier. When we get here, the relocation
835 looks like the smallest instruction with SWYM:s (nop:s) appended to the
836 max size. We fill in those nop:s.
837
838 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
839 GETA $N,foo
840 ->
841 SETL $N,foo & 0xffff
842 INCML $N,(foo >> 16) & 0xffff
843 INCMH $N,(foo >> 32) & 0xffff
844 INCH $N,(foo >> 48) & 0xffff
845
846 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
847 condbranches needing relaxation might be rare enough to not be
848 worthwhile.)
849 [P]Bcc $N,foo
850 ->
851 [~P]B~cc $N,.+20
852 SETL $255,foo & ...
853 INCML ...
854 INCMH ...
855 INCH ...
856 GO $255,$255,0
857
858 R_MMIX_PUSHJ: (FIXME: Relaxation...)
859 PUSHJ $N,foo
860 ->
861 SETL $255,foo & ...
862 INCML ...
863 INCMH ...
864 INCH ...
865 PUSHGO $N,$255,0
866
867 R_MMIX_JMP: (FIXME: Relaxation...)
868 JMP foo
869 ->
870 SETL $255,foo & ...
871 INCML ...
872 INCMH ...
873 INCH ...
874 GO $255,$255,0
875
876 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
877
878static bfd_reloc_status_type
879mmix_elf_perform_relocation (isec, howto, datap, addr, value)
880 asection *isec;
881 reloc_howto_type *howto;
882 PTR datap;
883 bfd_vma addr ATTRIBUTE_UNUSED;
884 bfd_vma value;
885{
886 bfd *abfd = isec->owner;
887 bfd_reloc_status_type flag = bfd_reloc_ok;
888 bfd_reloc_status_type r;
889 int offs = 0;
890 int reg = 255;
891
892 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
893 We handle the differences here and the common sequence later. */
894 switch (howto->type)
895 {
896 case R_MMIX_GETA:
897 offs = 0;
898 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
899
900 /* We change to an absolute value. */
901 value += addr;
902 break;
903
904 case R_MMIX_CBRANCH:
905 {
906 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
907
908 /* Invert the condition and prediction bit, and set the offset
909 to five instructions ahead.
910
911 We *can* do better if we want to. If the branch is found to be
912 within limits, we could leave the branch as is; there'll just
913 be a bunch of NOP:s after it. But we shouldn't see this
914 sequence often enough that it's worth doing it. */
915
916 bfd_put_32 (abfd,
917 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
918 | (24/4)),
919 (bfd_byte *) datap);
920
921 /* Put a "GO $255,$255,0" after the common sequence. */
922 bfd_put_32 (abfd,
923 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
924 (bfd_byte *) datap + 20);
925
926 /* Common sequence starts at offset 4. */
927 offs = 4;
928
929 /* We change to an absolute value. */
930 value += addr;
931 }
932 break;
933
934 case R_MMIX_PUSHJ:
935 {
936 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
937
938 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
939 bfd_put_32 (abfd,
940 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
941 | (inreg << 16)
942 | 0xff00,
943 (bfd_byte *) datap + 16);
944
945 /* We change to an absolute value. */
946 value += addr;
947 }
948 break;
949
950 case R_MMIX_JMP:
951 /* This one is a little special. If we get here on a non-relaxing
952 link, and the destination is actually in range, we don't need to
953 execute the nops.
954 If so, we fall through to the bit-fiddling relocs.
955
956 FIXME: bfd_check_overflow seems broken; the relocation is
957 rightshifted before testing, so supply a zero rightshift. */
958
959 if (! ((value & 3) == 0
960 && (r = bfd_check_overflow (complain_overflow_signed,
961 howto->bitsize,
962 0,
963 bfd_arch_bits_per_address (abfd),
964 value)) == bfd_reloc_ok))
965 {
966 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
967 modified below, and put a "GO $255,$255,0" after the
968 address-loading sequence. */
969 bfd_put_32 (abfd,
970 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
971 | 0xffff00,
972 (bfd_byte *) datap + 16);
973
974 /* We change to an absolute value. */
975 value += addr;
976 break;
977 }
978 /* FALLTHROUGH. */
979 case R_MMIX_ADDR19:
980 case R_MMIX_ADDR27:
981 /* These must be in range, or else we emit an error. */
982 if ((value & 3) == 0
983 /* Note rightshift 0; see above. */
984 && (r = bfd_check_overflow (complain_overflow_signed,
985 howto->bitsize,
986 0,
987 bfd_arch_bits_per_address (abfd),
988 value)) == bfd_reloc_ok)
989 {
990 bfd_vma in1
991 = bfd_get_32 (abfd, (bfd_byte *) datap);
992 bfd_vma highbit;
993
994 if ((bfd_signed_vma) value < 0)
995 {
996 highbit = (1 << 24);
997 value += (1 << (howto->bitsize - 1));
998 }
999 else
1000 highbit = 0;
1001
1002 value >>= 2;
1003
1004 bfd_put_32 (abfd,
1005 (in1 & howto->src_mask)
1006 | highbit
1007 | (value & howto->dst_mask),
1008 (bfd_byte *) datap);
1009
1010 return bfd_reloc_ok;
1011 }
1012 else
1013 return bfd_reloc_overflow;
1014
1015 case R_MMIX_BASE_PLUS_OFFSET:
1016 {
1017 struct bpo_reloc_section_info *bpodata
1018 = mmix_elf_section_data (isec)->bpo.reloc;
1019 asection *bpo_greg_section
1020 = bpodata->bpo_greg_section;
1021 struct bpo_greg_section_info *gregdata
1022 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1023 size_t bpo_index
1024 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1025
1026 /* A consistency check: The value we now have in "relocation" must
1027 be the same as the value we stored for that relocation. It
1028 doesn't cost much, so can be left in at all times. */
1029 if (value != gregdata->reloc_request[bpo_index].value)
1030 {
1031 (*_bfd_error_handler)
1032 (_("%s: Internal inconsistency error for value for\n\
1033 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1034 bfd_get_filename (isec->owner),
1035 (unsigned long) (value >> 32), (unsigned long) value,
1036 (unsigned long) (gregdata->reloc_request[bpo_index].value
1037 >> 32),
1038 (unsigned long) gregdata->reloc_request[bpo_index].value);
1039 bfd_set_error (bfd_error_bad_value);
1040 return bfd_reloc_overflow;
1041 }
1042
1043 /* Then store the register number and offset for that register
1044 into datap and datap + 1 respectively. */
1045 bfd_put_8 (abfd,
1046 gregdata->reloc_request[bpo_index].regindex
1047 + bpo_greg_section->output_section->vma / 8,
1048 datap);
1049 bfd_put_8 (abfd,
1050 gregdata->reloc_request[bpo_index].offset,
1051 ((unsigned char *) datap) + 1);
1052 return bfd_reloc_ok;
1053 }
1054
1055 case R_MMIX_REG_OR_BYTE:
1056 case R_MMIX_REG:
1057 if (value > 255)
1058 return bfd_reloc_overflow;
1059 bfd_put_8 (abfd, value, datap);
1060 return bfd_reloc_ok;
1061
1062 default:
1063 BAD_CASE (howto->type);
1064 }
1065
1066 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1067 sequence. */
1068
1069 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1070 everything that looks strange. */
1071 if (value & 3)
1072 flag = bfd_reloc_overflow;
1073
1074 bfd_put_32 (abfd,
1075 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1076 (bfd_byte *) datap + offs);
1077 bfd_put_32 (abfd,
1078 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1079 (bfd_byte *) datap + offs + 4);
1080 bfd_put_32 (abfd,
1081 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1082 (bfd_byte *) datap + offs + 8);
1083 bfd_put_32 (abfd,
1084 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1085 (bfd_byte *) datap + offs + 12);
1086
1087 return flag;
1088}
1089
1090/* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1091
1092static void
1093mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1094 bfd *abfd ATTRIBUTE_UNUSED;
1095 arelent *cache_ptr;
1096 Elf_Internal_Rela *dst;
1097{
1098 unsigned int r_type;
1099
1100 r_type = ELF64_R_TYPE (dst->r_info);
1101 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1102 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1103}
1104
1105/* Any MMIX-specific relocation gets here at assembly time or when linking
1106 to other formats (such as mmo); this is the relocation function from
1107 the reloc_table. We don't get here for final pure ELF linking. */
1108
1109static bfd_reloc_status_type
1110mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1111 output_bfd, error_message)
1112 bfd *abfd;
1113 arelent *reloc_entry;
1114 asymbol *symbol;
1115 PTR data;
1116 asection *input_section;
1117 bfd *output_bfd;
1118 char **error_message ATTRIBUTE_UNUSED;
1119{
1120 bfd_vma relocation;
1121 bfd_reloc_status_type r;
1122 asection *reloc_target_output_section;
1123 bfd_reloc_status_type flag = bfd_reloc_ok;
1124 bfd_vma output_base = 0;
1125 bfd_vma addr;
1126
1127 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1128 input_section, output_bfd, error_message);
1129
1130 /* If that was all that was needed (i.e. this isn't a final link, only
1131 some segment adjustments), we're done. */
1132 if (r != bfd_reloc_continue)
1133 return r;
1134
1135 if (bfd_is_und_section (symbol->section)
1136 && (symbol->flags & BSF_WEAK) == 0
1137 && output_bfd == (bfd *) NULL)
1138 return bfd_reloc_undefined;
1139
1140 /* Is the address of the relocation really within the section? */
1141 if (reloc_entry->address > input_section->_cooked_size)
1142 return bfd_reloc_outofrange;
1143
1144 /* Work out which section the relocation is targetted at and the
1145 initial relocation command value. */
1146
1147 /* Get symbol value. (Common symbols are special.) */
1148 if (bfd_is_com_section (symbol->section))
1149 relocation = 0;
1150 else
1151 relocation = symbol->value;
1152
1153 reloc_target_output_section = bfd_get_output_section (symbol);
1154
1155 /* Here the variable relocation holds the final address of the symbol we
1156 are relocating against, plus any addend. */
1157 if (output_bfd)
1158 output_base = 0;
1159 else
1160 output_base = reloc_target_output_section->vma;
1161
1162 relocation += output_base + symbol->section->output_offset;
1163
1164 /* Get position of relocation. */
1165 addr = (reloc_entry->address + input_section->output_section->vma
1166 + input_section->output_offset);
1167 if (output_bfd != (bfd *) NULL)
1168 {
1169 /* Add in supplied addend. */
1170 relocation += reloc_entry->addend;
1171
1172 /* This is a partial relocation, and we want to apply the
1173 relocation to the reloc entry rather than the raw data.
1174 Modify the reloc inplace to reflect what we now know. */
1175 reloc_entry->addend = relocation;
1176 reloc_entry->address += input_section->output_offset;
1177 return flag;
1178 }
1179
1180 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1181 data, reloc_entry->address,
1182 reloc_entry->addend, relocation,
1183 bfd_asymbol_name (symbol),
1184 reloc_target_output_section);
1185}
1186
1187
1188/* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1189 for guidance if you're thinking of copying this. */
1190
1191static bfd_boolean
1192mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1193 contents, relocs, local_syms, local_sections)
1194 bfd *output_bfd ATTRIBUTE_UNUSED;
1195 struct bfd_link_info *info;
1196 bfd *input_bfd;
1197 asection *input_section;
1198 bfd_byte *contents;
1199 Elf_Internal_Rela *relocs;
1200 Elf_Internal_Sym *local_syms;
1201 asection **local_sections;
1202{
1203 Elf_Internal_Shdr *symtab_hdr;
1204 struct elf_link_hash_entry **sym_hashes;
1205 Elf_Internal_Rela *rel;
1206 Elf_Internal_Rela *relend;
1207
1208 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1209 sym_hashes = elf_sym_hashes (input_bfd);
1210 relend = relocs + input_section->reloc_count;
1211
1212 for (rel = relocs; rel < relend; rel ++)
1213 {
1214 reloc_howto_type *howto;
1215 unsigned long r_symndx;
1216 Elf_Internal_Sym *sym;
1217 asection *sec;
1218 struct elf_link_hash_entry *h;
1219 bfd_vma relocation;
1220 bfd_reloc_status_type r;
1221 const char *name = NULL;
1222 int r_type;
1223 bfd_boolean undefined_signalled = FALSE;
1224
1225 r_type = ELF64_R_TYPE (rel->r_info);
1226
1227 if (r_type == R_MMIX_GNU_VTINHERIT
1228 || r_type == R_MMIX_GNU_VTENTRY)
1229 continue;
1230
1231 r_symndx = ELF64_R_SYM (rel->r_info);
1232
1233 if (info->relocateable)
1234 {
1235 /* This is a relocateable link. We don't have to change
1236 anything, unless the reloc is against a section symbol,
1237 in which case we have to adjust according to where the
1238 section symbol winds up in the output section. */
1239 if (r_symndx < symtab_hdr->sh_info)
1240 {
1241 sym = local_syms + r_symndx;
1242
1243 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1244 {
1245 sec = local_sections [r_symndx];
1246 rel->r_addend += sec->output_offset + sym->st_value;
1247 }
1248 }
1249
1250 continue;
1251 }
1252
1253 /* This is a final link. */
1254 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1255 h = NULL;
1256 sym = NULL;
1257 sec = NULL;
1258
1259 if (r_symndx < symtab_hdr->sh_info)
1260 {
1261 sym = local_syms + r_symndx;
1262 sec = local_sections [r_symndx];
1263 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1264
1265 name = bfd_elf_string_from_elf_section
1266 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1267 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1268 }
1269 else
1270 {
1271 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
1272
1273 while (h->root.type == bfd_link_hash_indirect
1274 || h->root.type == bfd_link_hash_warning)
1275 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1276
1277 name = h->root.root.string;
1278
1279 if (h->root.type == bfd_link_hash_defined
1280 || h->root.type == bfd_link_hash_defweak)
1281 {
1282 sec = h->root.u.def.section;
1283 relocation = (h->root.u.def.value
1284 + sec->output_section->vma
1285 + sec->output_offset);
1286 }
1287 else if (h->root.type == bfd_link_hash_undefweak)
1288 relocation = 0;
1289 else if (info->shared
1290 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1291 relocation = 0;
1292 else
1293 {
1294 /* The test on undefined_signalled is redundant at the
1295 moment, but kept for symmetry. */
1296 if (! undefined_signalled
1297 && ! ((*info->callbacks->undefined_symbol)
1298 (info, h->root.root.string, input_bfd,
1299 input_section, rel->r_offset, TRUE)))
1300 return FALSE;
1301 undefined_signalled = TRUE;
1302 relocation = 0;
1303 }
1304 }
1305
1306 r = mmix_final_link_relocate (howto, input_section,
1307 contents, rel->r_offset,
1308 rel->r_addend, relocation, name, sec);
1309
1310 if (r != bfd_reloc_ok)
1311 {
1312 bfd_boolean check_ok = TRUE;
1313 const char * msg = (const char *) NULL;
1314
1315 switch (r)
1316 {
1317 case bfd_reloc_overflow:
1318 check_ok = info->callbacks->reloc_overflow
1319 (info, name, howto->name, (bfd_vma) 0,
1320 input_bfd, input_section, rel->r_offset);
1321 break;
1322
1323 case bfd_reloc_undefined:
1324 /* We may have sent this message above. */
1325 if (! undefined_signalled)
1326 check_ok = info->callbacks->undefined_symbol
1327 (info, name, input_bfd, input_section, rel->r_offset,
1328 TRUE);
1329 undefined_signalled = TRUE;
1330 break;
1331
1332 case bfd_reloc_outofrange:
1333 msg = _("internal error: out of range error");
1334 break;
1335
1336 case bfd_reloc_notsupported:
1337 msg = _("internal error: unsupported relocation error");
1338 break;
1339
1340 case bfd_reloc_dangerous:
1341 msg = _("internal error: dangerous relocation");
1342 break;
1343
1344 default:
1345 msg = _("internal error: unknown error");
1346 break;
1347 }
1348
1349 if (msg)
1350 check_ok = info->callbacks->warning
1351 (info, msg, name, input_bfd, input_section, rel->r_offset);
1352
1353 if (! check_ok)
1354 return FALSE;
1355 }
1356 }
1357
1358 return TRUE;
1359}
1360
1361
1362/* Perform a single relocation. By default we use the standard BFD
1363 routines. A few relocs we have to do ourselves. */
1364
1365static bfd_reloc_status_type
1366mmix_final_link_relocate (howto, input_section, contents,
1367 r_offset, r_addend, relocation, symname, symsec)
1368 reloc_howto_type *howto;
1369 asection *input_section;
1370 bfd_byte *contents;
1371 bfd_vma r_offset;
1372 bfd_signed_vma r_addend;
1373 bfd_vma relocation;
1374 const char *symname;
1375 asection *symsec;
1376{
1377 bfd_reloc_status_type r = bfd_reloc_ok;
1378 bfd_vma addr
1379 = (input_section->output_section->vma
1380 + input_section->output_offset
1381 + r_offset);
1382 bfd_signed_vma srel
1383 = (bfd_signed_vma) relocation + r_addend;
1384
1385 switch (howto->type)
1386 {
1387 /* All these are PC-relative. */
1388 case R_MMIX_PUSHJ:
1389 case R_MMIX_CBRANCH:
1390 case R_MMIX_ADDR19:
1391 case R_MMIX_GETA:
1392 case R_MMIX_ADDR27:
1393 case R_MMIX_JMP:
1394 contents += r_offset;
1395
1396 srel -= (input_section->output_section->vma
1397 + input_section->output_offset
1398 + r_offset);
1399
1400 r = mmix_elf_perform_relocation (input_section, howto, contents,
1401 addr, srel);
1402 break;
1403
1404 case R_MMIX_BASE_PLUS_OFFSET:
1405 if (symsec == NULL)
1406 return bfd_reloc_undefined;
1407
1408 /* Check that we're not relocating against a register symbol. */
1409 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1410 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1411 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1412 MMIX_REG_SECTION_NAME) == 0)
1413 {
1414 /* Note: This is separated out into two messages in order
1415 to ease the translation into other languages. */
1416 if (symname == NULL || *symname == 0)
1417 (*_bfd_error_handler)
1418 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1419 bfd_get_filename (input_section->owner),
1420 bfd_get_section_name (symsec->owner, symsec));
1421 else
1422 (*_bfd_error_handler)
1423 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1424 bfd_get_filename (input_section->owner), symname,
1425 bfd_get_section_name (symsec->owner, symsec));
1426 return bfd_reloc_overflow;
1427 }
1428 goto do_mmix_reloc;
1429
1430 case R_MMIX_REG_OR_BYTE:
1431 case R_MMIX_REG:
1432 /* For now, we handle these alike. They must refer to an register
1433 symbol, which is either relative to the register section and in
1434 the range 0..255, or is in the register contents section with vma
1435 regno * 8. */
1436
1437 /* FIXME: A better way to check for reg contents section?
1438 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1439 if (symsec == NULL)
1440 return bfd_reloc_undefined;
1441
1442 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1443 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1444 {
1445 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1446 {
1447 /* The bfd_reloc_outofrange return value, though intuitively
1448 a better value, will not get us an error. */
1449 return bfd_reloc_overflow;
1450 }
1451 srel /= 8;
1452 }
1453 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1454 MMIX_REG_SECTION_NAME) == 0)
1455 {
1456 if (srel < 0 || srel > 255)
1457 /* The bfd_reloc_outofrange return value, though intuitively a
1458 better value, will not get us an error. */
1459 return bfd_reloc_overflow;
1460 }
1461 else
1462 {
1463 /* Note: This is separated out into two messages in order
1464 to ease the translation into other languages. */
1465 if (symname == NULL || *symname == 0)
1466 (*_bfd_error_handler)
1467 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1468 bfd_get_filename (input_section->owner),
1469 bfd_get_section_name (symsec->owner, symsec));
1470 else
1471 (*_bfd_error_handler)
1472 (_("%s: register relocation against non-register symbol: %s in %s"),
1473 bfd_get_filename (input_section->owner), symname,
1474 bfd_get_section_name (symsec->owner, symsec));
1475
1476 /* The bfd_reloc_outofrange return value, though intuitively a
1477 better value, will not get us an error. */
1478 return bfd_reloc_overflow;
1479 }
1480 do_mmix_reloc:
1481 contents += r_offset;
1482 r = mmix_elf_perform_relocation (input_section, howto, contents,
1483 addr, srel);
1484 break;
1485
1486 case R_MMIX_LOCAL:
1487 /* This isn't a real relocation, it's just an assertion that the
1488 final relocation value corresponds to a local register. We
1489 ignore the actual relocation; nothing is changed. */
1490 {
1491 asection *regsec
1492 = bfd_get_section_by_name (input_section->output_section->owner,
1493 MMIX_REG_CONTENTS_SECTION_NAME);
1494 bfd_vma first_global;
1495
1496 /* Check that this is an absolute value, or a reference to the
1497 register contents section or the register (symbol) section.
1498 Absolute numbers can get here as undefined section. Undefined
1499 symbols are signalled elsewhere, so there's no conflict in us
1500 accidentally handling it. */
1501 if (!bfd_is_abs_section (symsec)
1502 && !bfd_is_und_section (symsec)
1503 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1504 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1505 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1506 MMIX_REG_SECTION_NAME) != 0)
1507 {
1508 (*_bfd_error_handler)
1509 (_("%s: directive LOCAL valid only with a register or absolute value"),
1510 bfd_get_filename (input_section->owner));
1511
1512 return bfd_reloc_overflow;
1513 }
1514
1515 /* If we don't have a register contents section, then $255 is the
1516 first global register. */
1517 if (regsec == NULL)
1518 first_global = 255;
1519 else
1520 {
1521 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1522 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1523 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1524 {
1525 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1526 /* The bfd_reloc_outofrange return value, though
1527 intuitively a better value, will not get us an error. */
1528 return bfd_reloc_overflow;
1529 srel /= 8;
1530 }
1531 }
1532
1533 if ((bfd_vma) srel >= first_global)
1534 {
1535 /* FIXME: Better error message. */
1536 (*_bfd_error_handler)
1537 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1538 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1539
1540 return bfd_reloc_overflow;
1541 }
1542 }
1543 r = bfd_reloc_ok;
1544 break;
1545
1546 default:
1547 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1548 contents, r_offset,
1549 relocation, r_addend);
1550 }
1551
1552 return r;
1553}
1554
1555
1556/* Return the section that should be marked against GC for a given
1557 relocation. */
1558
1559static asection *
1560mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1561 asection *sec;
1562 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1563 Elf_Internal_Rela *rel;
1564 struct elf_link_hash_entry *h;
1565 Elf_Internal_Sym *sym;
1566{
1567 if (h != NULL)
1568 {
1569 switch (ELF64_R_TYPE (rel->r_info))
1570 {
1571 case R_MMIX_GNU_VTINHERIT:
1572 case R_MMIX_GNU_VTENTRY:
1573 break;
1574
1575 default:
1576 switch (h->root.type)
1577 {
1578 case bfd_link_hash_defined:
1579 case bfd_link_hash_defweak:
1580 return h->root.u.def.section;
1581
1582 case bfd_link_hash_common:
1583 return h->root.u.c.p->section;
1584
1585 default:
1586 break;
1587 }
1588 }
1589 }
1590 else
1591 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1592
1593 return NULL;
1594}
1595
1596/* Update relocation info for a GC-excluded section. We could supposedly
1597 perform the allocation after GC, but there's no suitable hook between
1598 GC (or section merge) and the point when all input sections must be
1599 present. Better to waste some memory and (perhaps) a little time. */
1600
1601static bfd_boolean
1602mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1603 bfd *abfd ATTRIBUTE_UNUSED;
1604 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1605 asection *sec ATTRIBUTE_UNUSED;
1606 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1607{
1608 struct bpo_reloc_section_info *bpodata
1609 = mmix_elf_section_data (sec)->bpo.reloc;
1610 asection *allocated_gregs_section;
1611
1612 /* If no bpodata here, we have nothing to do. */
1613 if (bpodata == NULL)
1614 return TRUE;
1615
1616 allocated_gregs_section = bpodata->bpo_greg_section;
1617
1618 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1619 -= bpodata->n_bpo_relocs_this_section;
1620
1621 return TRUE;
1622}
1623
1624
1625/* Sort register relocs to come before expanding relocs. */
1626
1627static int
1628mmix_elf_sort_relocs (p1, p2)
1629 const PTR p1;
1630 const PTR p2;
1631{
1632 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1633 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1634 int r1_is_reg, r2_is_reg;
1635
1636 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1637 insns. */
1638 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1639 return 1;
1640 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1641 return -1;
1642
1643 r1_is_reg
1644 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1645 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1646 r2_is_reg
1647 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1648 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1649 if (r1_is_reg != r2_is_reg)
1650 return r2_is_reg - r1_is_reg;
1651
1652 /* Neither or both are register relocs. Then sort on full offset. */
1653 if (r1->r_offset > r2->r_offset)
1654 return 1;
1655 else if (r1->r_offset < r2->r_offset)
1656 return -1;
1657 return 0;
1658}
1659
1660/* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1661
1662static bfd_boolean
1663mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1664 bfd *abfd;
1665 struct bfd_link_info *info;
1666 asection *sec;
1667 const Elf_Internal_Rela *relocs;
1668{
1669 bfd *bpo_greg_owner = NULL;
1670 asection *allocated_gregs_section = NULL;
1671 struct bpo_greg_section_info *gregdata = NULL;
1672 struct bpo_reloc_section_info *bpodata = NULL;
1673 const Elf_Internal_Rela *rel;
1674 const Elf_Internal_Rela *rel_end;
1675
1676 if (info->relocateable)
1677 return TRUE;
1678
1679 /* We currently have to abuse this COFF-specific member, since there's
1680 no target-machine-dedicated member. There's no alternative outside
1681 the bfd_link_info struct; we can't specialize a hash-table since
1682 they're different between ELF and mmo. */
1683 bpo_greg_owner = (bfd *) info->base_file;
1684
1685 rel_end = relocs + sec->reloc_count;
1686 for (rel = relocs; rel < rel_end; rel++)
1687 {
1688 switch (ELF64_R_TYPE (rel->r_info))
1689 {
1690 /* This relocation causes a GREG allocation. We need to count
1691 them, and we need to create a section for them, so we need an
1692 object to fake as the owner of that section. We can't use
1693 the ELF dynobj for this, since the ELF bits assume lots of
1694 DSO-related stuff if that member is non-NULL. */
1695 case R_MMIX_BASE_PLUS_OFFSET:
1696 if (bpo_greg_owner == NULL)
1697 {
1698 bpo_greg_owner = abfd;
1699 info->base_file = (PTR) bpo_greg_owner;
1700 }
1701
1702 if (allocated_gregs_section == NULL)
1703 allocated_gregs_section
1704 = bfd_get_section_by_name (bpo_greg_owner,
1705 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1706
1707 if (allocated_gregs_section == NULL)
1708 {
1709 allocated_gregs_section
1710 = bfd_make_section (bpo_greg_owner,
1711 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1712 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1713 treated like any other section, and we'd get errors for
1714 address overlap with the text section. Let's set none of
1715 those flags, as that is what currently happens for usual
1716 GREG allocations, and that works. */
1717 if (allocated_gregs_section == NULL
1718 || !bfd_set_section_flags (bpo_greg_owner,
1719 allocated_gregs_section,
1720 (SEC_HAS_CONTENTS
1721 | SEC_IN_MEMORY
1722 | SEC_LINKER_CREATED))
1723 || !bfd_set_section_alignment (bpo_greg_owner,
1724 allocated_gregs_section,
1725 3))
1726 return FALSE;
1727
1728 gregdata = (struct bpo_greg_section_info *)
1729 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1730 if (gregdata == NULL)
1731 return FALSE;
1732 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1733 = gregdata;
1734 }
1735 else if (gregdata == NULL)
1736 gregdata
1737 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1738
1739 /* Get ourselves some auxiliary info for the BPO-relocs. */
1740 if (bpodata == NULL)
1741 {
1742 /* No use doing a separate iteration pass to find the upper
1743 limit - just use the number of relocs. */
1744 bpodata = (struct bpo_reloc_section_info *)
1745 bfd_alloc (bpo_greg_owner,
1746 sizeof (struct bpo_reloc_section_info)
1747 * (sec->reloc_count + 1));
1748 if (bpodata == NULL)
1749 return FALSE;
1750 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1751 bpodata->first_base_plus_offset_reloc
1752 = bpodata->bpo_index
1753 = gregdata->n_max_bpo_relocs;
1754 bpodata->bpo_greg_section
1755 = allocated_gregs_section;
1756 bpodata->n_bpo_relocs_this_section = 0;
1757 }
1758
1759 bpodata->n_bpo_relocs_this_section++;
1760 gregdata->n_max_bpo_relocs++;
1761
1762 /* We don't get another chance to set this before GC; we've not
1763 set up set up any hook that runs before GC. */
1764 gregdata->n_bpo_relocs
1765 = gregdata->n_max_bpo_relocs;
1766 break;
1767 }
1768 }
1769
1770 return TRUE;
1771}
1772
1773/* Look through the relocs for a section during the first phase. */
1774
1775static bfd_boolean
1776mmix_elf_check_relocs (abfd, info, sec, relocs)
1777 bfd *abfd;
1778 struct bfd_link_info *info;
1779 asection *sec;
1780 const Elf_Internal_Rela *relocs;
1781{
1782 Elf_Internal_Shdr *symtab_hdr;
1783 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1784 const Elf_Internal_Rela *rel;
1785 const Elf_Internal_Rela *rel_end;
1786
1787 if (info->relocateable)
1788 return TRUE;
1789
1790 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1791 sym_hashes = elf_sym_hashes (abfd);
1792 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1793 if (!elf_bad_symtab (abfd))
1794 sym_hashes_end -= symtab_hdr->sh_info;
1795
1796 /* First we sort the relocs so that any register relocs come before
1797 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1798 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1799 mmix_elf_sort_relocs);
1800
1801 /* Do the common part. */
1802 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1803 return FALSE;
1804
1805 rel_end = relocs + sec->reloc_count;
1806 for (rel = relocs; rel < rel_end; rel++)
1807 {
1808 struct elf_link_hash_entry *h;
1809 unsigned long r_symndx;
1810
1811 r_symndx = ELF64_R_SYM (rel->r_info);
1812 if (r_symndx < symtab_hdr->sh_info)
1813 h = NULL;
1814 else
1815 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1816
1817 switch (ELF64_R_TYPE (rel->r_info))
1818 {
1819 /* This relocation describes the C++ object vtable hierarchy.
1820 Reconstruct it for later use during GC. */
1821 case R_MMIX_GNU_VTINHERIT:
1822 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1823 return FALSE;
1824 break;
1825
1826 /* This relocation describes which C++ vtable entries are actually
1827 used. Record for later use during GC. */
1828 case R_MMIX_GNU_VTENTRY:
1829 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1830 return FALSE;
1831 break;
1832 }
1833 }
1834
1835 return TRUE;
1836}
1837
1838/* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
1839 Copied from elf_link_add_object_symbols. */
1840
1841bfd_boolean
1842_bfd_mmix_check_all_relocs (abfd, info)
1843 bfd *abfd;
1844 struct bfd_link_info *info;
1845{
1846 asection *o;
1847
1848 for (o = abfd->sections; o != NULL; o = o->next)
1849 {
1850 Elf_Internal_Rela *internal_relocs;
1851 bfd_boolean ok;
1852
1853 if ((o->flags & SEC_RELOC) == 0
1854 || o->reloc_count == 0
1855 || ((info->strip == strip_all || info->strip == strip_debugger)
1856 && (o->flags & SEC_DEBUGGING) != 0)
1857 || bfd_is_abs_section (o->output_section))
1858 continue;
1859
1860 internal_relocs
1861 = _bfd_elf64_link_read_relocs (abfd, o, (PTR) NULL,
1862 (Elf_Internal_Rela *) NULL,
1863 info->keep_memory);
1864 if (internal_relocs == NULL)
1865 return FALSE;
1866
1867 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
1868
1869 if (! info->keep_memory)
1870 free (internal_relocs);
1871
1872 if (! ok)
1873 return FALSE;
1874 }
1875
1876 return TRUE;
1877}
1878
1879
1880/* Change symbols relative to the reg contents section to instead be to
1881 the register section, and scale them down to correspond to the register
1882 number. */
1883
1884static bfd_boolean
1885mmix_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1886 bfd *abfd ATTRIBUTE_UNUSED;
1887 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1888 const char *name ATTRIBUTE_UNUSED;
1889 Elf_Internal_Sym *sym;
1890 asection *input_sec;
1891{
1892 if (input_sec != NULL
1893 && input_sec->name != NULL
1894 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
1895 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1896 {
1897 sym->st_value /= 8;
1898 sym->st_shndx = SHN_REGISTER;
1899 }
1900
1901 return TRUE;
1902}
1903
1904/* We fake a register section that holds values that are register numbers.
1905 Having a SHN_REGISTER and register section translates better to other
1906 formats (e.g. mmo) than for example a STT_REGISTER attribute.
1907 This section faking is based on a construct in elf32-mips.c. */
1908static asection mmix_elf_reg_section;
1909static asymbol mmix_elf_reg_section_symbol;
1910static asymbol *mmix_elf_reg_section_symbol_ptr;
1911
1912/* Handle the special MIPS section numbers that a symbol may use.
1913 This is used for both the 32-bit and the 64-bit ABI. */
1914
1915void
1916mmix_elf_symbol_processing (abfd, asym)
1917 bfd *abfd ATTRIBUTE_UNUSED;
1918 asymbol *asym;
1919{
1920 elf_symbol_type *elfsym;
1921
1922 elfsym = (elf_symbol_type *) asym;
1923 switch (elfsym->internal_elf_sym.st_shndx)
1924 {
1925 case SHN_REGISTER:
1926 if (mmix_elf_reg_section.name == NULL)
1927 {
1928 /* Initialize the register section. */
1929 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
1930 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
1931 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
1932 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
1933 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
1934 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
1935 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
1936 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
1937 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
1938 }
1939 asym->section = &mmix_elf_reg_section;
1940 break;
1941
1942 default:
1943 break;
1944 }
1945}
1946
1947/* Given a BFD section, try to locate the corresponding ELF section
1948 index. */
1949
1950static bfd_boolean
1951mmix_elf_section_from_bfd_section (abfd, sec, retval)
1952 bfd * abfd ATTRIBUTE_UNUSED;
1953 asection * sec;
1954 int * retval;
1955{
1956 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
1957 *retval = SHN_REGISTER;
1958 else
1959 return FALSE;
1960
1961 return TRUE;
1962}
1963
1964/* Hook called by the linker routine which adds symbols from an object
1965 file. We must handle the special SHN_REGISTER section number here.
1966
1967 We also check that we only have *one* each of the section-start
1968 symbols, since otherwise having two with the same value would cause
1969 them to be "merged", but with the contents serialized. */
1970
1971bfd_boolean
1972mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1973 bfd *abfd;
1974 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1975 const Elf_Internal_Sym *sym;
1976 const char **namep ATTRIBUTE_UNUSED;
1977 flagword *flagsp ATTRIBUTE_UNUSED;
1978 asection **secp;
1979 bfd_vma *valp ATTRIBUTE_UNUSED;
1980{
1981 if (sym->st_shndx == SHN_REGISTER)
1982 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
1983 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
1984 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
1985 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
1986 {
1987 /* See if we have another one. */
1988 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
1989 *namep,
1990 FALSE,
1991 FALSE,
1992 FALSE);
1993
1994 if (h != NULL && h->type != bfd_link_hash_undefined)
1995 {
1996 /* How do we get the asymbol (or really: the filename) from h?
1997 h->u.def.section->owner is NULL. */
1998 ((*_bfd_error_handler)
1999 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2000 bfd_get_filename (abfd), *namep,
2001 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2002 bfd_set_error (bfd_error_bad_value);
2003 return FALSE;
2004 }
2005 }
2006
2007 return TRUE;
2008}
2009
2010/* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2011
2012bfd_boolean
2013mmix_elf_is_local_label_name (abfd, name)
2014 bfd *abfd;
2015 const char *name;
2016{
2017 const char *colpos;
2018 int digits;
2019
2020 /* Also include the default local-label definition. */
2021 if (_bfd_elf_is_local_label_name (abfd, name))
2022 return TRUE;
2023
2024 if (*name != 'L')
2025 return FALSE;
2026
2027 /* If there's no ":", or more than one, it's not a local symbol. */
2028 colpos = strchr (name, ':');
2029 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2030 return FALSE;
2031
2032 /* Check that there are remaining characters and that they are digits. */
2033 if (colpos[1] == 0)
2034 return FALSE;
2035
2036 digits = strspn (colpos + 1, "0123456789");
2037 return digits != 0 && colpos[1 + digits] == 0;
2038}
2039
2040/* We get rid of the register section here. */
2041
2042bfd_boolean
2043mmix_elf_final_link (abfd, info)
2044 bfd *abfd;
2045 struct bfd_link_info *info;
2046{
2047 /* We never output a register section, though we create one for
2048 temporary measures. Check that nobody entered contents into it. */
2049 asection *reg_section;
2050 asection **secpp;
2051
2052 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2053
2054 if (reg_section != NULL)
2055 {
2056 /* FIXME: Pass error state gracefully. */
2057 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2058 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2059
2060 /* Really remove the section. */
2061 for (secpp = &abfd->sections;
2062 *secpp != reg_section;
2063 secpp = &(*secpp)->next)
2064 ;
2065 bfd_section_list_remove (abfd, secpp);
2066 --abfd->section_count;
2067 }
2068
2069 if (! bfd_elf64_bfd_final_link (abfd, info))
2070 return FALSE;
2071
2072 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2073 the regular linker machinery. We do it here, like other targets with
2074 special sections. */
2075 if (info->base_file != NULL)
2076 {
2077 asection *greg_section
2078 = bfd_get_section_by_name ((bfd *) info->base_file,
2079 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2080 if (!bfd_set_section_contents (abfd,
2081 greg_section->output_section,
2082 greg_section->contents,
2083 (file_ptr) greg_section->output_offset,
2084 greg_section->_cooked_size))
2085 return FALSE;
2086 }
2087 return TRUE;
2088}
2089
2090/* Initialize stuff for the linker-generated GREGs to match
2091 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2092
2093bfd_boolean
2094_bfd_mmix_prepare_linker_allocated_gregs (abfd, info)
2095 bfd *abfd ATTRIBUTE_UNUSED;
2096 struct bfd_link_info *info;
2097{
2098 asection *bpo_gregs_section;
2099 bfd *bpo_greg_owner;
2100 struct bpo_greg_section_info *gregdata;
2101 size_t n_gregs;
2102 bfd_vma gregs_size;
2103 size_t i;
2104 size_t *bpo_reloc_indexes;
2105
2106 /* The bpo_greg_owner bfd is supposed to have been set by
2107 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2108 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2109 bpo_greg_owner = (bfd *) info->base_file;
2110 if (bpo_greg_owner == NULL)
2111 return TRUE;
2112
2113 bpo_gregs_section
2114 = bfd_get_section_by_name (bpo_greg_owner,
2115 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2116
2117 if (bpo_gregs_section == NULL)
2118 return TRUE;
2119
2120 /* We use the target-data handle in the ELF section data. */
2121 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2122 if (gregdata == NULL)
2123 return FALSE;
2124
2125 n_gregs = gregdata->n_bpo_relocs;
2126 gregdata->n_allocated_bpo_gregs = n_gregs;
2127
2128 /* When this reaches zero during relaxation, all entries have been
2129 filled in and the size of the linker gregs can be calculated. */
2130 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2131
2132 /* Set the zeroth-order estimate for the GREGs size. */
2133 gregs_size = n_gregs * 8;
2134
2135 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2136 return FALSE;
2137
2138 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2139 time. Note that we must use the max number ever noted for the array,
2140 since the index numbers were created before GC. */
2141 gregdata->reloc_request
2142 = bfd_zalloc (bpo_greg_owner,
2143 sizeof (struct bpo_reloc_request)
2144 * gregdata->n_max_bpo_relocs);
2145
2146 gregdata->bpo_reloc_indexes
2147 = bpo_reloc_indexes
2148 = bfd_alloc (bpo_greg_owner,
2149 gregdata->n_max_bpo_relocs
2150 * sizeof (size_t));
2151 if (bpo_reloc_indexes == NULL)
2152 return FALSE;
2153
2154 /* The default order is an identity mapping. */
2155 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2156 {
2157 bpo_reloc_indexes[i] = i;
2158 gregdata->reloc_request[i].bpo_reloc_no = i;
2159 }
2160
2161 return TRUE;
2162}
2163
2164
2165/* Fill in contents in the linker allocated gregs. Everything is
2166 calculated at this point; we just move the contents into place here. */
2167
2168bfd_boolean
2169_bfd_mmix_finalize_linker_allocated_gregs (abfd, link_info)
2170 bfd *abfd ATTRIBUTE_UNUSED;
2171 struct bfd_link_info *link_info;
2172{
2173 asection *bpo_gregs_section;
2174 bfd *bpo_greg_owner;
2175 struct bpo_greg_section_info *gregdata;
2176 size_t n_gregs;
2177 size_t i, j;
2178 size_t lastreg;
2179 bfd_byte *contents;
2180
2181 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2182 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2183 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2184 bpo_greg_owner = (bfd *) link_info->base_file;
2185 if (bpo_greg_owner == NULL)
2186 return TRUE;
2187
2188 bpo_gregs_section
2189 = bfd_get_section_by_name (bpo_greg_owner,
2190 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2191
2192 /* This can't happen without DSO handling. When DSOs are handled
2193 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2194 section. */
2195 if (bpo_gregs_section == NULL)
2196 return TRUE;
2197
2198 /* We use the target-data handle in the ELF section data. */
2199
2200 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2201 if (gregdata == NULL)
2202 return FALSE;
2203
2204 n_gregs = gregdata->n_allocated_bpo_gregs;
2205
2206 /* We need to have a _raw_size contents even though there's only
2207 _cooked_size worth of data, since the generic relocation machinery
2208 will allocate and copy that much temporarily. */
2209 bpo_gregs_section->contents
2210 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->_raw_size);
2211 if (contents == NULL)
2212 return FALSE;
2213
2214 /* Sanity check: If these numbers mismatch, some relocation has not been
2215 accounted for and the rest of gregdata is probably inconsistent.
2216 It's a bug, but it's more helpful to identify it than segfaulting
2217 below. */
2218 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2219 != gregdata->n_bpo_relocs)
2220 {
2221 (*_bfd_error_handler)
2222 (_("Internal inconsistency: remaining %u != max %u.\n\
2223 Please report this bug."),
2224 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2225 gregdata->n_bpo_relocs);
2226 return FALSE;
2227 }
2228
2229 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2230 if (gregdata->reloc_request[i].regindex != lastreg)
2231 {
2232 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2233 contents + j * 8);
2234 lastreg = gregdata->reloc_request[i].regindex;
2235 j++;
2236 }
2237
2238 return TRUE;
2239}
2240
2241/* Sort valid relocs to come before non-valid relocs, then on increasing
2242 value. */
2243
2244static int
2245bpo_reloc_request_sort_fn (p1, p2)
2246 const PTR p1;
2247 const PTR p2;
2248{
2249 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2250 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2251
2252 /* Primary function is validity; non-valid relocs sorted after valid
2253 ones. */
2254 if (r1->valid != r2->valid)
2255 return r2->valid - r1->valid;
2256
2257 /* Then sort on value. Don't simplify and return just the difference of
2258 the values: the upper bits of the 64-bit value would be truncated on
2259 a host with 32-bit ints. */
2260 if (r1->value != r2->value)
2261 return r1->value > r2->value ? 1 : -1;
2262
2263 /* As a last re-sort, use the relocation number, so we get a stable
2264 sort. The *addresses* aren't stable since items are swapped during
2265 sorting. It depends on the qsort implementation if this actually
2266 happens. */
2267 return r1->bpo_reloc_no > r2->bpo_reloc_no
2268 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2269}
2270
2271/* For debug use only. Dumps the global register allocations resulting
2272 from base-plus-offset relocs. */
2273
2274void
2275mmix_dump_bpo_gregs (link_info, pf)
2276 struct bfd_link_info *link_info;
2277 bfd_error_handler_type pf;
2278{
2279 bfd *bpo_greg_owner;
2280 asection *bpo_gregs_section;
2281 struct bpo_greg_section_info *gregdata;
2282 unsigned int i;
2283
2284 if (link_info == NULL || link_info->base_file == NULL)
2285 return;
2286
2287 bpo_greg_owner = (bfd *) link_info->base_file;
2288
2289 bpo_gregs_section
2290 = bfd_get_section_by_name (bpo_greg_owner,
2291 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2292
2293 if (bpo_gregs_section == NULL)
2294 return;
2295
2296 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2297 if (gregdata == NULL)
2298 return;
2299
2300 if (pf == NULL)
2301 pf = _bfd_error_handler;
2302
2303 /* These format strings are not translated. They are for debug purposes
2304 only and never displayed to an end user. Should they escape, we
2305 surely want them in original. */
2306 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2307 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2308 gregdata->n_max_bpo_relocs,
2309 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2310 gregdata->n_allocated_bpo_gregs);
2311
2312 if (gregdata->reloc_request)
2313 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2314 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2315 i,
2316 (gregdata->bpo_reloc_indexes != NULL
2317 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2318 gregdata->reloc_request[i].bpo_reloc_no,
2319 gregdata->reloc_request[i].valid,
2320
2321 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2322 (unsigned long) gregdata->reloc_request[i].value,
2323 gregdata->reloc_request[i].regindex,
2324 gregdata->reloc_request[i].offset);
2325}
2326
2327/* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2328 when the last such reloc is done, an index-array is sorted according to
2329 the values and iterated over to produce register numbers (indexed by 0
2330 from the first allocated register number) and offsets for use in real
2331 relocation.
2332
2333 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2334
2335static bfd_boolean
2336mmix_elf_relax_section (abfd, sec, link_info, again)
2337 bfd *abfd;
2338 asection *sec;
2339 struct bfd_link_info *link_info;
2340 bfd_boolean *again;
2341{
2342 Elf_Internal_Shdr *symtab_hdr;
2343 Elf_Internal_Rela *internal_relocs;
2344 Elf_Internal_Rela *irel, *irelend;
2345 asection *bpo_gregs_section = NULL;
2346 struct bpo_greg_section_info *gregdata;
2347 struct bpo_reloc_section_info *bpodata
2348 = mmix_elf_section_data (sec)->bpo.reloc;
2349 size_t bpono;
2350 bfd *bpo_greg_owner;
2351 Elf_Internal_Sym *isymbuf = NULL;
2352
2353 /* Assume nothing changes. */
2354 *again = FALSE;
2355
2356 /* If this is the first time we have been called for this section,
2357 initialize the cooked size. */
2358 if (sec->_cooked_size == 0)
2359 sec->_cooked_size = sec->_raw_size;
2360
2361 /* We don't have to do anything for a relocateable link, if
2362 this section does not have relocs, or if this is not a
2363 code section. */
2364 if (link_info->relocateable
2365 || (sec->flags & SEC_RELOC) == 0
2366 || sec->reloc_count == 0
2367 || (sec->flags & SEC_CODE) == 0
2368 || (sec->flags & SEC_LINKER_CREATED) != 0
2369 /* If no R_MMIX_BASE_PLUS_OFFSET relocs, then nothing to do. */
2370 || bpodata == NULL)
2371 return TRUE;
2372
2373 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2374
2375 bpo_greg_owner = (bfd *) link_info->base_file;
2376 bpo_gregs_section = bpodata->bpo_greg_section;
2377 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2378
2379 bpono = bpodata->first_base_plus_offset_reloc;
2380
2381 /* Get a copy of the native relocations. */
2382 internal_relocs
2383 = _bfd_elf64_link_read_relocs (abfd, sec, (PTR) NULL,
2384 (Elf_Internal_Rela *) NULL,
2385 link_info->keep_memory);
2386 if (internal_relocs == NULL)
2387 goto error_return;
2388
2389 /* Walk through them looking for relaxing opportunities. */
2390 irelend = internal_relocs + sec->reloc_count;
2391 for (irel = internal_relocs; irel < irelend; irel++)
2392 {
2393 bfd_vma symval;
2394
2395 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET)
2396 continue;
2397
2398 /* Get the value of the symbol referred to by the reloc. */
2399 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2400 {
2401 /* A local symbol. */
2402 Elf_Internal_Sym *isym;
2403 asection *sym_sec;
2404
2405 /* Read this BFD's local symbols if we haven't already. */
2406 if (isymbuf == NULL)
2407 {
2408 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2409 if (isymbuf == NULL)
2410 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2411 symtab_hdr->sh_info, 0,
2412 NULL, NULL, NULL);
2413 if (isymbuf == 0)
2414 goto error_return;
2415 }
2416
2417 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2418 if (isym->st_shndx == SHN_UNDEF)
2419 sym_sec = bfd_und_section_ptr;
2420 else if (isym->st_shndx == SHN_ABS)
2421 sym_sec = bfd_abs_section_ptr;
2422 else if (isym->st_shndx == SHN_COMMON)
2423 sym_sec = bfd_com_section_ptr;
2424 else
2425 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2426 symval = (isym->st_value
2427 + sym_sec->output_section->vma
2428 + sym_sec->output_offset);
2429 }
2430 else
2431 {
2432 unsigned long indx;
2433 struct elf_link_hash_entry *h;
2434
2435 /* An external symbol. */
2436 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2437 h = elf_sym_hashes (abfd)[indx];
2438 BFD_ASSERT (h != NULL);
2439 if (h->root.type != bfd_link_hash_defined
2440 && h->root.type != bfd_link_hash_defweak)
2441 {
2442 /* This appears to be a reference to an undefined symbol.
2443 Just ignore it--it will be caught by the regular reloc
2444 processing. We need to keep BPO reloc accounting
2445 consistent, though. */
2446 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2447 bpono++;
2448 continue;
2449 }
2450
2451 symval = (h->root.u.def.value
2452 + h->root.u.def.section->output_section->vma
2453 + h->root.u.def.section->output_offset);
2454 }
2455
2456 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2457 = symval + irel->r_addend;
2458 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2459 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2460 }
2461
2462 /* Check if that was the last BPO-reloc. If so, sort the values and
2463 calculate how many registers we need to cover them. Set the size of
2464 the linker gregs, and if the number of registers changed, indicate
2465 that we need to relax some more because we have more work to do. */
2466 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2467 {
2468 size_t i;
2469 bfd_vma prev_base;
2470 size_t regindex;
2471
2472 /* First, reset the remaining relocs for the next round. */
2473 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2474 = gregdata->n_bpo_relocs;
2475
2476 qsort ((PTR) gregdata->reloc_request,
2477 gregdata->n_max_bpo_relocs,
2478 sizeof (struct bpo_reloc_request),
2479 bpo_reloc_request_sort_fn);
2480
2481 /* Recalculate indexes. When we find a change (however unlikely
2482 after the initial iteration), we know we need to relax again,
2483 since items in the GREG-array are sorted by increasing value and
2484 stored in the relaxation phase. */
2485 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2486 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2487 != i)
2488 {
2489 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2490 = i;
2491 *again = TRUE;
2492 }
2493
2494 /* Allocate register numbers (indexing from 0). Stop at the first
2495 non-valid reloc. */
2496 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2497 i < gregdata->n_bpo_relocs;
2498 i++)
2499 {
2500 if (gregdata->reloc_request[i].value > prev_base + 255)
2501 {
2502 regindex++;
2503 prev_base = gregdata->reloc_request[i].value;
2504 }
2505 gregdata->reloc_request[i].regindex = regindex;
2506 gregdata->reloc_request[i].offset
2507 = gregdata->reloc_request[i].value - prev_base;
2508 }
2509
2510 /* If it's not the same as the last time, we need to relax again,
2511 because the size of the section has changed. I'm not sure we
2512 actually need to do any adjustments since the shrinking happens
2513 at the start of this section, but better safe than sorry. */
2514 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2515 {
2516 gregdata->n_allocated_bpo_gregs = regindex + 1;
2517 *again = TRUE;
2518 }
2519
2520 bpo_gregs_section->_cooked_size = (regindex + 1) * 8;
2521 }
2522
2523 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2524 {
2525 if (! link_info->keep_memory)
2526 free (isymbuf);
2527 else
2528 {
2529 /* Cache the symbols for elf_link_input_bfd. */
2530 symtab_hdr->contents = (unsigned char *) isymbuf;
2531 }
2532 }
2533
2534 if (internal_relocs != NULL
2535 && elf_section_data (sec)->relocs != internal_relocs)
2536 free (internal_relocs);
2537
2538 return TRUE;
2539
2540 error_return:
2541 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2542 free (isymbuf);
2543 if (internal_relocs != NULL
2544 && elf_section_data (sec)->relocs != internal_relocs)
2545 free (internal_relocs);
2546 return FALSE;
2547}
2548
2549
2550#define ELF_ARCH bfd_arch_mmix
2551#define ELF_MACHINE_CODE EM_MMIX
2552
2553/* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2554 However, that's too much for something somewhere in the linker part of
2555 BFD; perhaps the start-address has to be a non-zero multiple of this
2556 number, or larger than this number. The symptom is that the linker
2557 complains: "warning: allocated section `.text' not in segment". We
2558 settle for 64k; the page-size used in examples is 8k.
2559 #define ELF_MAXPAGESIZE 0x10000
2560
2561 Unfortunately, this causes excessive padding in the supposedly small
2562 for-education programs that are the expected usage (where people would
2563 inspect output). We stick to 256 bytes just to have *some* default
2564 alignment. */
2565#define ELF_MAXPAGESIZE 0x100
2566
2567#define TARGET_BIG_SYM bfd_elf64_mmix_vec
2568#define TARGET_BIG_NAME "elf64-mmix"
2569
2570#define elf_info_to_howto_rel NULL
2571#define elf_info_to_howto mmix_info_to_howto_rela
2572#define elf_backend_relocate_section mmix_elf_relocate_section
2573#define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2574#define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2575
2576#define elf_backend_link_output_symbol_hook \
2577 mmix_elf_link_output_symbol_hook
2578#define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2579
2580#define elf_backend_check_relocs mmix_elf_check_relocs
2581#define elf_backend_symbol_processing mmix_elf_symbol_processing
2582
2583#define bfd_elf64_bfd_is_local_label_name \
2584 mmix_elf_is_local_label_name
2585
2586#define elf_backend_may_use_rel_p 0
2587#define elf_backend_may_use_rela_p 1
2588#define elf_backend_default_use_rela_p 1
2589
2590#define elf_backend_can_gc_sections 1
2591#define elf_backend_section_from_bfd_section \
2592 mmix_elf_section_from_bfd_section
2593
2594#define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2595#define bfd_elf64_bfd_final_link mmix_elf_final_link
2596#define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2597
2598#include "elf64-target.h"
Note: See TracBrowser for help on using the repository browser.