source: branches/libc-0.6/src/binutils/bfd/elf64-hppa.c

Last change on this file was 610, checked in by bird, 22 years ago

This commit was generated by cvs2svn to compensate for changes in r609,
which included commits to RCS files with non-trunk default branches.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 81.1 KB
Line 
1/* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20#include "alloca-conf.h"
21#include "bfd.h"
22#include "sysdep.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/hppa.h"
26#include "libhppa.h"
27#include "elf64-hppa.h"
28#define ARCH_SIZE 64
29
30#define PLT_ENTRY_SIZE 0x10
31#define DLT_ENTRY_SIZE 0x8
32#define OPD_ENTRY_SIZE 0x20
33
34#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36/* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49struct elf64_hppa_dyn_hash_entry
50{
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108};
109
110struct elf64_hppa_dyn_hash_table
111{
112 struct bfd_hash_table root;
113};
114
115struct elf64_hppa_link_hash_table
116{
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151};
152
153#define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159static bfd_boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 bfd_boolean create, bfd_boolean copy));
170static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
174
175static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
178
179/* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181#include "elf-hppa.h"
182
183static bfd_boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186static bfd_boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
188
189static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192static bfd_boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195static bfd_boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry *, PTR));
200
201static bfd_boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd *, struct bfd_link_info *));
203
204static bfd_boolean elf64_hppa_link_output_symbol_hook
205 PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206 Elf_Internal_Sym *, asection *input_sec));
207
208static bfd_boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
211
212static int elf64_hppa_additional_program_headers
213 PARAMS ((bfd *));
214
215static bfd_boolean elf64_hppa_modify_segment_map
216 PARAMS ((bfd *));
217
218static enum elf_reloc_type_class elf64_hppa_reloc_type_class
219 PARAMS ((const Elf_Internal_Rela *));
220
221static bfd_boolean elf64_hppa_finish_dynamic_sections
222 PARAMS ((bfd *, struct bfd_link_info *));
223
224static bfd_boolean elf64_hppa_check_relocs
225 PARAMS ((bfd *, struct bfd_link_info *,
226 asection *, const Elf_Internal_Rela *));
227
228static bfd_boolean elf64_hppa_dynamic_symbol_p
229 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
230
231static bfd_boolean elf64_hppa_mark_exported_functions
232 PARAMS ((struct elf_link_hash_entry *, PTR));
233
234static bfd_boolean elf64_hppa_finalize_opd
235 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236
237static bfd_boolean elf64_hppa_finalize_dlt
238 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
239
240static bfd_boolean allocate_global_data_dlt
241 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
242
243static bfd_boolean allocate_global_data_plt
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246static bfd_boolean allocate_global_data_stub
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249static bfd_boolean allocate_global_data_opd
250 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
251
252static bfd_boolean get_reloc_section
253 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
254
255static bfd_boolean count_dyn_reloc
256 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
257 int, asection *, int, bfd_vma, bfd_vma));
258
259static bfd_boolean allocate_dynrel_entries
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
262static bfd_boolean elf64_hppa_finalize_dynreloc
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
265static bfd_boolean get_opd
266 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
267
268static bfd_boolean get_plt
269 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
270
271static bfd_boolean get_dlt
272 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
273
274static bfd_boolean get_stub
275 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
276
277static int elf64_hppa_elf_get_symbol_type
278 PARAMS ((Elf_Internal_Sym *, int));
279
280static bfd_boolean
281elf64_hppa_dyn_hash_table_init (ht, abfd, new)
282 struct elf64_hppa_dyn_hash_table *ht;
283 bfd *abfd ATTRIBUTE_UNUSED;
284 new_hash_entry_func new;
285{
286 memset (ht, 0, sizeof (*ht));
287 return bfd_hash_table_init (&ht->root, new);
288}
289
290static struct bfd_hash_entry*
291elf64_hppa_new_dyn_hash_entry (entry, table, string)
292 struct bfd_hash_entry *entry;
293 struct bfd_hash_table *table;
294 const char *string;
295{
296 struct elf64_hppa_dyn_hash_entry *ret;
297 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
298
299 /* Allocate the structure if it has not already been allocated by a
300 subclass. */
301 if (!ret)
302 ret = bfd_hash_allocate (table, sizeof (*ret));
303
304 if (!ret)
305 return 0;
306
307 /* Initialize our local data. All zeros, and definitely easier
308 than setting 8 bit fields. */
309 memset (ret, 0, sizeof (*ret));
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_hppa_dyn_hash_entry *)
313 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
314
315 return &ret->root;
316}
317
318/* Create the derived linker hash table. The PA64 ELF port uses this
319 derived hash table to keep information specific to the PA ElF
320 linker (without using static variables). */
321
322static struct bfd_link_hash_table*
323elf64_hppa_hash_table_create (abfd)
324 bfd *abfd;
325{
326 struct elf64_hppa_link_hash_table *ret;
327
328 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
329 if (!ret)
330 return 0;
331 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
332 _bfd_elf_link_hash_newfunc))
333 {
334 bfd_release (abfd, ret);
335 return 0;
336 }
337
338 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
339 elf64_hppa_new_dyn_hash_entry))
340 return 0;
341 return &ret->root.root;
342}
343
344/* Look up an entry in a PA64 ELF linker hash table. */
345
346static struct elf64_hppa_dyn_hash_entry *
347elf64_hppa_dyn_hash_lookup(table, string, create, copy)
348 struct elf64_hppa_dyn_hash_table *table;
349 const char *string;
350 bfd_boolean create, copy;
351{
352 return ((struct elf64_hppa_dyn_hash_entry *)
353 bfd_hash_lookup (&table->root, string, create, copy));
354}
355
356/* Traverse a PA64 ELF linker hash table. */
357
358static void
359elf64_hppa_dyn_hash_traverse (table, func, info)
360 struct elf64_hppa_dyn_hash_table *table;
361 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
362 PTR info;
363{
364 (bfd_hash_traverse
365 (&table->root,
366 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
367 info));
368}
369
370
371/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
372
373 Additionally we set the default architecture and machine. */
374static bfd_boolean
375elf64_hppa_object_p (abfd)
376 bfd *abfd;
377{
378 Elf_Internal_Ehdr * i_ehdrp;
379 unsigned int flags;
380
381 i_ehdrp = elf_elfheader (abfd);
382 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
383 {
384 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
385 return FALSE;
386 }
387 else
388 {
389 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
390 return FALSE;
391 }
392
393 flags = i_ehdrp->e_flags;
394 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
395 {
396 case EFA_PARISC_1_0:
397 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
398 case EFA_PARISC_1_1:
399 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
400 case EFA_PARISC_2_0:
401 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
402 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
403 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
404 }
405 /* Don't be fussy. */
406 return TRUE;
407}
408
409/* Given section type (hdr->sh_type), return a boolean indicating
410 whether or not the section is an elf64-hppa specific section. */
411static bfd_boolean
412elf64_hppa_section_from_shdr (abfd, hdr, name)
413 bfd *abfd;
414 Elf_Internal_Shdr *hdr;
415 const char *name;
416{
417 asection *newsect;
418
419 switch (hdr->sh_type)
420 {
421 case SHT_PARISC_EXT:
422 if (strcmp (name, ".PARISC.archext") != 0)
423 return FALSE;
424 break;
425 case SHT_PARISC_UNWIND:
426 if (strcmp (name, ".PARISC.unwind") != 0)
427 return FALSE;
428 break;
429 case SHT_PARISC_DOC:
430 case SHT_PARISC_ANNOT:
431 default:
432 return FALSE;
433 }
434
435 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
436 return FALSE;
437 newsect = hdr->bfd_section;
438
439 return TRUE;
440}
441
442/* Construct a string for use in the elf64_hppa_dyn_hash_table. The
443 name describes what was once potentially anonymous memory. We
444 allocate memory as necessary, possibly reusing PBUF/PLEN. */
445
446static const char *
447get_dyn_name (sec, h, rel, pbuf, plen)
448 asection *sec;
449 struct elf_link_hash_entry *h;
450 const Elf_Internal_Rela *rel;
451 char **pbuf;
452 size_t *plen;
453{
454 size_t nlen, tlen;
455 char *buf;
456 size_t len;
457
458 if (h && rel->r_addend == 0)
459 return h->root.root.string;
460
461 if (h)
462 nlen = strlen (h->root.root.string);
463 else
464 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
465 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
466
467 len = *plen;
468 buf = *pbuf;
469 if (len < tlen)
470 {
471 if (buf)
472 free (buf);
473 *pbuf = buf = malloc (tlen);
474 *plen = len = tlen;
475 if (!buf)
476 return NULL;
477 }
478
479 if (h)
480 {
481 memcpy (buf, h->root.root.string, nlen);
482 buf[nlen++] = '+';
483 sprintf_vma (buf + nlen, rel->r_addend);
484 }
485 else
486 {
487 nlen = sprintf (buf, "%x:%lx",
488 sec->id & 0xffffffff,
489 (long) ELF64_R_SYM (rel->r_info));
490 if (rel->r_addend)
491 {
492 buf[nlen++] = '+';
493 sprintf_vma (buf + nlen, rel->r_addend);
494 }
495 }
496
497 return buf;
498}
499
500/* SEC is a section containing relocs for an input BFD when linking; return
501 a suitable section for holding relocs in the output BFD for a link. */
502
503static bfd_boolean
504get_reloc_section (abfd, hppa_info, sec)
505 bfd *abfd;
506 struct elf64_hppa_link_hash_table *hppa_info;
507 asection *sec;
508{
509 const char *srel_name;
510 asection *srel;
511 bfd *dynobj;
512
513 srel_name = (bfd_elf_string_from_elf_section
514 (abfd, elf_elfheader(abfd)->e_shstrndx,
515 elf_section_data(sec)->rel_hdr.sh_name));
516 if (srel_name == NULL)
517 return FALSE;
518
519 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
520 && strcmp (bfd_get_section_name (abfd, sec),
521 srel_name+5) == 0)
522 || (strncmp (srel_name, ".rel", 4) == 0
523 && strcmp (bfd_get_section_name (abfd, sec),
524 srel_name+4) == 0));
525
526 dynobj = hppa_info->root.dynobj;
527 if (!dynobj)
528 hppa_info->root.dynobj = dynobj = abfd;
529
530 srel = bfd_get_section_by_name (dynobj, srel_name);
531 if (srel == NULL)
532 {
533 srel = bfd_make_section (dynobj, srel_name);
534 if (srel == NULL
535 || !bfd_set_section_flags (dynobj, srel,
536 (SEC_ALLOC
537 | SEC_LOAD
538 | SEC_HAS_CONTENTS
539 | SEC_IN_MEMORY
540 | SEC_LINKER_CREATED
541 | SEC_READONLY))
542 || !bfd_set_section_alignment (dynobj, srel, 3))
543 return FALSE;
544 }
545
546 hppa_info->other_rel_sec = srel;
547 return TRUE;
548}
549
550/* Add a new entry to the list of dynamic relocations against DYN_H.
551
552 We use this to keep a record of all the FPTR relocations against a
553 particular symbol so that we can create FPTR relocations in the
554 output file. */
555
556static bfd_boolean
557count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
558 bfd *abfd;
559 struct elf64_hppa_dyn_hash_entry *dyn_h;
560 int type;
561 asection *sec;
562 int sec_symndx;
563 bfd_vma offset;
564 bfd_vma addend;
565{
566 struct elf64_hppa_dyn_reloc_entry *rent;
567
568 rent = (struct elf64_hppa_dyn_reloc_entry *)
569 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
570 if (!rent)
571 return FALSE;
572
573 rent->next = dyn_h->reloc_entries;
574 rent->type = type;
575 rent->sec = sec;
576 rent->sec_symndx = sec_symndx;
577 rent->offset = offset;
578 rent->addend = addend;
579 dyn_h->reloc_entries = rent;
580
581 return TRUE;
582}
583
584/* Scan the RELOCS and record the type of dynamic entries that each
585 referenced symbol needs. */
586
587static bfd_boolean
588elf64_hppa_check_relocs (abfd, info, sec, relocs)
589 bfd *abfd;
590 struct bfd_link_info *info;
591 asection *sec;
592 const Elf_Internal_Rela *relocs;
593{
594 struct elf64_hppa_link_hash_table *hppa_info;
595 const Elf_Internal_Rela *relend;
596 Elf_Internal_Shdr *symtab_hdr;
597 const Elf_Internal_Rela *rel;
598 asection *dlt, *plt, *stubs;
599 char *buf;
600 size_t buf_len;
601 int sec_symndx;
602
603 if (info->relocateable)
604 return TRUE;
605
606 /* If this is the first dynamic object found in the link, create
607 the special sections required for dynamic linking. */
608 if (! elf_hash_table (info)->dynamic_sections_created)
609 {
610 if (! bfd_elf64_link_create_dynamic_sections (abfd, info))
611 return FALSE;
612 }
613
614 hppa_info = elf64_hppa_hash_table (info);
615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
616
617 /* If necessary, build a new table holding section symbols indices
618 for this BFD. */
619
620 if (info->shared && hppa_info->section_syms_bfd != abfd)
621 {
622 unsigned long i;
623 unsigned int highest_shndx;
624 Elf_Internal_Sym *local_syms = NULL;
625 Elf_Internal_Sym *isym, *isymend;
626 bfd_size_type amt;
627
628 /* We're done with the old cache of section index to section symbol
629 index information. Free it.
630
631 ?!? Note we leak the last section_syms array. Presumably we
632 could free it in one of the later routines in this file. */
633 if (hppa_info->section_syms)
634 free (hppa_info->section_syms);
635
636 /* Read this BFD's local symbols. */
637 if (symtab_hdr->sh_info != 0)
638 {
639 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
640 if (local_syms == NULL)
641 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
642 symtab_hdr->sh_info, 0,
643 NULL, NULL, NULL);
644 if (local_syms == NULL)
645 return FALSE;
646 }
647
648 /* Record the highest section index referenced by the local symbols. */
649 highest_shndx = 0;
650 isymend = local_syms + symtab_hdr->sh_info;
651 for (isym = local_syms; isym < isymend; isym++)
652 {
653 if (isym->st_shndx > highest_shndx)
654 highest_shndx = isym->st_shndx;
655 }
656
657 /* Allocate an array to hold the section index to section symbol index
658 mapping. Bump by one since we start counting at zero. */
659 highest_shndx++;
660 amt = highest_shndx;
661 amt *= sizeof (int);
662 hppa_info->section_syms = (int *) bfd_malloc (amt);
663
664 /* Now walk the local symbols again. If we find a section symbol,
665 record the index of the symbol into the section_syms array. */
666 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
667 {
668 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
669 hppa_info->section_syms[isym->st_shndx] = i;
670 }
671
672 /* We are finished with the local symbols. */
673 if (local_syms != NULL
674 && symtab_hdr->contents != (unsigned char *) local_syms)
675 {
676 if (! info->keep_memory)
677 free (local_syms);
678 else
679 {
680 /* Cache the symbols for elf_link_input_bfd. */
681 symtab_hdr->contents = (unsigned char *) local_syms;
682 }
683 }
684
685 /* Record which BFD we built the section_syms mapping for. */
686 hppa_info->section_syms_bfd = abfd;
687 }
688
689 /* Record the symbol index for this input section. We may need it for
690 relocations when building shared libraries. When not building shared
691 libraries this value is never really used, but assign it to zero to
692 prevent out of bounds memory accesses in other routines. */
693 if (info->shared)
694 {
695 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
696
697 /* If we did not find a section symbol for this section, then
698 something went terribly wrong above. */
699 if (sec_symndx == -1)
700 return FALSE;
701
702 sec_symndx = hppa_info->section_syms[sec_symndx];
703 }
704 else
705 sec_symndx = 0;
706
707 dlt = plt = stubs = NULL;
708 buf = NULL;
709 buf_len = 0;
710
711 relend = relocs + sec->reloc_count;
712 for (rel = relocs; rel < relend; ++rel)
713 {
714 enum {
715 NEED_DLT = 1,
716 NEED_PLT = 2,
717 NEED_STUB = 4,
718 NEED_OPD = 8,
719 NEED_DYNREL = 16,
720 };
721
722 struct elf_link_hash_entry *h = NULL;
723 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
724 struct elf64_hppa_dyn_hash_entry *dyn_h;
725 int need_entry;
726 const char *addr_name;
727 bfd_boolean maybe_dynamic;
728 int dynrel_type = R_PARISC_NONE;
729 static reloc_howto_type *howto;
730
731 if (r_symndx >= symtab_hdr->sh_info)
732 {
733 /* We're dealing with a global symbol -- find its hash entry
734 and mark it as being referenced. */
735 long indx = r_symndx - symtab_hdr->sh_info;
736 h = elf_sym_hashes (abfd)[indx];
737 while (h->root.type == bfd_link_hash_indirect
738 || h->root.type == bfd_link_hash_warning)
739 h = (struct elf_link_hash_entry *) h->root.u.i.link;
740
741 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
742 }
743
744 /* We can only get preliminary data on whether a symbol is
745 locally or externally defined, as not all of the input files
746 have yet been processed. Do something with what we know, as
747 this may help reduce memory usage and processing time later. */
748 maybe_dynamic = FALSE;
749 if (h && ((info->shared
750 && (!info->symbolic || info->allow_shlib_undefined) )
751 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
752 || h->root.type == bfd_link_hash_defweak))
753 maybe_dynamic = TRUE;
754
755 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
756 need_entry = 0;
757 switch (howto->type)
758 {
759 /* These are simple indirect references to symbols through the
760 DLT. We need to create a DLT entry for any symbols which
761 appears in a DLTIND relocation. */
762 case R_PARISC_DLTIND21L:
763 case R_PARISC_DLTIND14R:
764 case R_PARISC_DLTIND14F:
765 case R_PARISC_DLTIND14WR:
766 case R_PARISC_DLTIND14DR:
767 need_entry = NEED_DLT;
768 break;
769
770 /* ?!? These need a DLT entry. But I have no idea what to do with
771 the "link time TP value. */
772 case R_PARISC_LTOFF_TP21L:
773 case R_PARISC_LTOFF_TP14R:
774 case R_PARISC_LTOFF_TP14F:
775 case R_PARISC_LTOFF_TP64:
776 case R_PARISC_LTOFF_TP14WR:
777 case R_PARISC_LTOFF_TP14DR:
778 case R_PARISC_LTOFF_TP16F:
779 case R_PARISC_LTOFF_TP16WF:
780 case R_PARISC_LTOFF_TP16DF:
781 need_entry = NEED_DLT;
782 break;
783
784 /* These are function calls. Depending on their precise target we
785 may need to make a stub for them. The stub uses the PLT, so we
786 need to create PLT entries for these symbols too. */
787 case R_PARISC_PCREL12F:
788 case R_PARISC_PCREL17F:
789 case R_PARISC_PCREL22F:
790 case R_PARISC_PCREL32:
791 case R_PARISC_PCREL64:
792 case R_PARISC_PCREL21L:
793 case R_PARISC_PCREL17R:
794 case R_PARISC_PCREL17C:
795 case R_PARISC_PCREL14R:
796 case R_PARISC_PCREL14F:
797 case R_PARISC_PCREL22C:
798 case R_PARISC_PCREL14WR:
799 case R_PARISC_PCREL14DR:
800 case R_PARISC_PCREL16F:
801 case R_PARISC_PCREL16WF:
802 case R_PARISC_PCREL16DF:
803 need_entry = (NEED_PLT | NEED_STUB);
804 break;
805
806 case R_PARISC_PLTOFF21L:
807 case R_PARISC_PLTOFF14R:
808 case R_PARISC_PLTOFF14F:
809 case R_PARISC_PLTOFF14WR:
810 case R_PARISC_PLTOFF14DR:
811 case R_PARISC_PLTOFF16F:
812 case R_PARISC_PLTOFF16WF:
813 case R_PARISC_PLTOFF16DF:
814 need_entry = (NEED_PLT);
815 break;
816
817 case R_PARISC_DIR64:
818 if (info->shared || maybe_dynamic)
819 need_entry = (NEED_DYNREL);
820 dynrel_type = R_PARISC_DIR64;
821 break;
822
823 /* This is an indirect reference through the DLT to get the address
824 of a OPD descriptor. Thus we need to make a DLT entry that points
825 to an OPD entry. */
826 case R_PARISC_LTOFF_FPTR21L:
827 case R_PARISC_LTOFF_FPTR14R:
828 case R_PARISC_LTOFF_FPTR14WR:
829 case R_PARISC_LTOFF_FPTR14DR:
830 case R_PARISC_LTOFF_FPTR32:
831 case R_PARISC_LTOFF_FPTR64:
832 case R_PARISC_LTOFF_FPTR16F:
833 case R_PARISC_LTOFF_FPTR16WF:
834 case R_PARISC_LTOFF_FPTR16DF:
835 if (info->shared || maybe_dynamic)
836 need_entry = (NEED_DLT | NEED_OPD);
837 else
838 need_entry = (NEED_DLT | NEED_OPD);
839 dynrel_type = R_PARISC_FPTR64;
840 break;
841
842 /* This is a simple OPD entry. */
843 case R_PARISC_FPTR64:
844 if (info->shared || maybe_dynamic)
845 need_entry = (NEED_OPD | NEED_DYNREL);
846 else
847 need_entry = (NEED_OPD);
848 dynrel_type = R_PARISC_FPTR64;
849 break;
850
851 /* Add more cases as needed. */
852 }
853
854 if (!need_entry)
855 continue;
856
857 /* Collect a canonical name for this address. */
858 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
859
860 /* Collect the canonical entry data for this address. */
861 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
862 addr_name, TRUE, TRUE);
863 BFD_ASSERT (dyn_h);
864
865 /* Stash away enough information to be able to find this symbol
866 regardless of whether or not it is local or global. */
867 dyn_h->h = h;
868 dyn_h->owner = abfd;
869 dyn_h->sym_indx = r_symndx;
870
871 /* ?!? We may need to do some error checking in here. */
872 /* Create what's needed. */
873 if (need_entry & NEED_DLT)
874 {
875 if (! hppa_info->dlt_sec
876 && ! get_dlt (abfd, info, hppa_info))
877 goto err_out;
878 dyn_h->want_dlt = 1;
879 }
880
881 if (need_entry & NEED_PLT)
882 {
883 if (! hppa_info->plt_sec
884 && ! get_plt (abfd, info, hppa_info))
885 goto err_out;
886 dyn_h->want_plt = 1;
887 }
888
889 if (need_entry & NEED_STUB)
890 {
891 if (! hppa_info->stub_sec
892 && ! get_stub (abfd, info, hppa_info))
893 goto err_out;
894 dyn_h->want_stub = 1;
895 }
896
897 if (need_entry & NEED_OPD)
898 {
899 if (! hppa_info->opd_sec
900 && ! get_opd (abfd, info, hppa_info))
901 goto err_out;
902
903 dyn_h->want_opd = 1;
904
905 /* FPTRs are not allocated by the dynamic linker for PA64, though
906 it is possible that will change in the future. */
907
908 /* This could be a local function that had its address taken, in
909 which case H will be NULL. */
910 if (h)
911 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
912 }
913
914 /* Add a new dynamic relocation to the chain of dynamic
915 relocations for this symbol. */
916 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
917 {
918 if (! hppa_info->other_rel_sec
919 && ! get_reloc_section (abfd, hppa_info, sec))
920 goto err_out;
921
922 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
923 sec_symndx, rel->r_offset, rel->r_addend))
924 goto err_out;
925
926 /* If we are building a shared library and we just recorded
927 a dynamic R_PARISC_FPTR64 relocation, then make sure the
928 section symbol for this section ends up in the dynamic
929 symbol table. */
930 if (info->shared && dynrel_type == R_PARISC_FPTR64
931 && ! (_bfd_elf64_link_record_local_dynamic_symbol
932 (info, abfd, sec_symndx)))
933 return FALSE;
934 }
935 }
936
937 if (buf)
938 free (buf);
939 return TRUE;
940
941 err_out:
942 if (buf)
943 free (buf);
944 return FALSE;
945}
946
947struct elf64_hppa_allocate_data
948{
949 struct bfd_link_info *info;
950 bfd_size_type ofs;
951};
952
953/* Should we do dynamic things to this symbol? */
954
955static bfd_boolean
956elf64_hppa_dynamic_symbol_p (h, info)
957 struct elf_link_hash_entry *h;
958 struct bfd_link_info *info;
959{
960 if (h == NULL)
961 return FALSE;
962
963 while (h->root.type == bfd_link_hash_indirect
964 || h->root.type == bfd_link_hash_warning)
965 h = (struct elf_link_hash_entry *) h->root.u.i.link;
966
967 if (h->dynindx == -1)
968 return FALSE;
969
970 if (h->root.type == bfd_link_hash_undefweak
971 || h->root.type == bfd_link_hash_defweak)
972 return TRUE;
973
974 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
975 return FALSE;
976
977 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
978 || ((h->elf_link_hash_flags
979 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
980 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
981 return TRUE;
982
983 return FALSE;
984}
985
986/* Mark all funtions exported by this file so that we can later allocate
987 entries in .opd for them. */
988
989static bfd_boolean
990elf64_hppa_mark_exported_functions (h, data)
991 struct elf_link_hash_entry *h;
992 PTR data;
993{
994 struct bfd_link_info *info = (struct bfd_link_info *)data;
995 struct elf64_hppa_link_hash_table *hppa_info;
996
997 hppa_info = elf64_hppa_hash_table (info);
998
999 if (h->root.type == bfd_link_hash_warning)
1000 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1001
1002 if (h
1003 && (h->root.type == bfd_link_hash_defined
1004 || h->root.type == bfd_link_hash_defweak)
1005 && h->root.u.def.section->output_section != NULL
1006 && h->type == STT_FUNC)
1007 {
1008 struct elf64_hppa_dyn_hash_entry *dyn_h;
1009
1010 /* Add this symbol to the PA64 linker hash table. */
1011 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1012 h->root.root.string, TRUE, TRUE);
1013 BFD_ASSERT (dyn_h);
1014 dyn_h->h = h;
1015
1016 if (! hppa_info->opd_sec
1017 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1018 return FALSE;
1019
1020 dyn_h->want_opd = 1;
1021 /* Put a flag here for output_symbol_hook. */
1022 dyn_h->st_shndx = -1;
1023 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1024 }
1025
1026 return TRUE;
1027}
1028
1029/* Allocate space for a DLT entry. */
1030
1031static bfd_boolean
1032allocate_global_data_dlt (dyn_h, data)
1033 struct elf64_hppa_dyn_hash_entry *dyn_h;
1034 PTR data;
1035{
1036 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1037
1038 if (dyn_h->want_dlt)
1039 {
1040 struct elf_link_hash_entry *h = dyn_h->h;
1041
1042 if (x->info->shared)
1043 {
1044 /* Possibly add the symbol to the local dynamic symbol
1045 table since we might need to create a dynamic relocation
1046 against it. */
1047 if (! h
1048 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1049 {
1050 bfd *owner;
1051 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1052
1053 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1054 (x->info, owner, dyn_h->sym_indx)))
1055 return FALSE;
1056 }
1057 }
1058
1059 dyn_h->dlt_offset = x->ofs;
1060 x->ofs += DLT_ENTRY_SIZE;
1061 }
1062 return TRUE;
1063}
1064
1065/* Allocate space for a DLT.PLT entry. */
1066
1067static bfd_boolean
1068allocate_global_data_plt (dyn_h, data)
1069 struct elf64_hppa_dyn_hash_entry *dyn_h;
1070 PTR data;
1071{
1072 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1073
1074 if (dyn_h->want_plt
1075 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1076 && !((dyn_h->h->root.type == bfd_link_hash_defined
1077 || dyn_h->h->root.type == bfd_link_hash_defweak)
1078 && dyn_h->h->root.u.def.section->output_section != NULL))
1079 {
1080 dyn_h->plt_offset = x->ofs;
1081 x->ofs += PLT_ENTRY_SIZE;
1082 if (dyn_h->plt_offset < 0x2000)
1083 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1084 }
1085 else
1086 dyn_h->want_plt = 0;
1087
1088 return TRUE;
1089}
1090
1091/* Allocate space for a STUB entry. */
1092
1093static bfd_boolean
1094allocate_global_data_stub (dyn_h, data)
1095 struct elf64_hppa_dyn_hash_entry *dyn_h;
1096 PTR data;
1097{
1098 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1099
1100 if (dyn_h->want_stub
1101 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1102 && !((dyn_h->h->root.type == bfd_link_hash_defined
1103 || dyn_h->h->root.type == bfd_link_hash_defweak)
1104 && dyn_h->h->root.u.def.section->output_section != NULL))
1105 {
1106 dyn_h->stub_offset = x->ofs;
1107 x->ofs += sizeof (plt_stub);
1108 }
1109 else
1110 dyn_h->want_stub = 0;
1111 return TRUE;
1112}
1113
1114/* Allocate space for a FPTR entry. */
1115
1116static bfd_boolean
1117allocate_global_data_opd (dyn_h, data)
1118 struct elf64_hppa_dyn_hash_entry *dyn_h;
1119 PTR data;
1120{
1121 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1122
1123 if (dyn_h->want_opd)
1124 {
1125 struct elf_link_hash_entry *h = dyn_h->h;
1126
1127 if (h)
1128 while (h->root.type == bfd_link_hash_indirect
1129 || h->root.type == bfd_link_hash_warning)
1130 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1131
1132 /* We never need an opd entry for a symbol which is not
1133 defined by this output file. */
1134 if (h && (h->root.type == bfd_link_hash_undefined
1135 || h->root.u.def.section->output_section == NULL))
1136 dyn_h->want_opd = 0;
1137
1138 /* If we are creating a shared library, took the address of a local
1139 function or might export this function from this object file, then
1140 we have to create an opd descriptor. */
1141 else if (x->info->shared
1142 || h == NULL
1143 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1144 || (h->root.type == bfd_link_hash_defined
1145 || h->root.type == bfd_link_hash_defweak))
1146 {
1147 /* If we are creating a shared library, then we will have to
1148 create a runtime relocation for the symbol to properly
1149 initialize the .opd entry. Make sure the symbol gets
1150 added to the dynamic symbol table. */
1151 if (x->info->shared
1152 && (h == NULL || (h->dynindx == -1)))
1153 {
1154 bfd *owner;
1155 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1156
1157 if (!_bfd_elf64_link_record_local_dynamic_symbol
1158 (x->info, owner, dyn_h->sym_indx))
1159 return FALSE;
1160 }
1161
1162 /* This may not be necessary or desirable anymore now that
1163 we have some support for dealing with section symbols
1164 in dynamic relocs. But name munging does make the result
1165 much easier to debug. ie, the EPLT reloc will reference
1166 a symbol like .foobar, instead of .text + offset. */
1167 if (x->info->shared && h)
1168 {
1169 char *new_name;
1170 struct elf_link_hash_entry *nh;
1171
1172 new_name = alloca (strlen (h->root.root.string) + 2);
1173 new_name[0] = '.';
1174 strcpy (new_name + 1, h->root.root.string);
1175
1176 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1177 new_name, TRUE, TRUE, TRUE);
1178
1179 nh->root.type = h->root.type;
1180 nh->root.u.def.value = h->root.u.def.value;
1181 nh->root.u.def.section = h->root.u.def.section;
1182
1183 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1184 return FALSE;
1185
1186 }
1187 dyn_h->opd_offset = x->ofs;
1188 x->ofs += OPD_ENTRY_SIZE;
1189 }
1190
1191 /* Otherwise we do not need an opd entry. */
1192 else
1193 dyn_h->want_opd = 0;
1194 }
1195 return TRUE;
1196}
1197
1198/* HP requires the EI_OSABI field to be filled in. The assignment to
1199 EI_ABIVERSION may not be strictly necessary. */
1200
1201static void
1202elf64_hppa_post_process_headers (abfd, link_info)
1203 bfd * abfd;
1204 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1205{
1206 Elf_Internal_Ehdr * i_ehdrp;
1207
1208 i_ehdrp = elf_elfheader (abfd);
1209
1210 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1211 {
1212 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1213 }
1214 else
1215 {
1216 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1217 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1218 }
1219}
1220
1221/* Create function descriptor section (.opd). This section is called .opd
1222 because it contains "official prodecure descriptors". The "official"
1223 refers to the fact that these descriptors are used when taking the address
1224 of a procedure, thus ensuring a unique address for each procedure. */
1225
1226static bfd_boolean
1227get_opd (abfd, info, hppa_info)
1228 bfd *abfd;
1229 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1230 struct elf64_hppa_link_hash_table *hppa_info;
1231{
1232 asection *opd;
1233 bfd *dynobj;
1234
1235 opd = hppa_info->opd_sec;
1236 if (!opd)
1237 {
1238 dynobj = hppa_info->root.dynobj;
1239 if (!dynobj)
1240 hppa_info->root.dynobj = dynobj = abfd;
1241
1242 opd = bfd_make_section (dynobj, ".opd");
1243 if (!opd
1244 || !bfd_set_section_flags (dynobj, opd,
1245 (SEC_ALLOC
1246 | SEC_LOAD
1247 | SEC_HAS_CONTENTS
1248 | SEC_IN_MEMORY
1249 | SEC_LINKER_CREATED))
1250 || !bfd_set_section_alignment (abfd, opd, 3))
1251 {
1252 BFD_ASSERT (0);
1253 return FALSE;
1254 }
1255
1256 hppa_info->opd_sec = opd;
1257 }
1258
1259 return TRUE;
1260}
1261
1262/* Create the PLT section. */
1263
1264static bfd_boolean
1265get_plt (abfd, info, hppa_info)
1266 bfd *abfd;
1267 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1268 struct elf64_hppa_link_hash_table *hppa_info;
1269{
1270 asection *plt;
1271 bfd *dynobj;
1272
1273 plt = hppa_info->plt_sec;
1274 if (!plt)
1275 {
1276 dynobj = hppa_info->root.dynobj;
1277 if (!dynobj)
1278 hppa_info->root.dynobj = dynobj = abfd;
1279
1280 plt = bfd_make_section (dynobj, ".plt");
1281 if (!plt
1282 || !bfd_set_section_flags (dynobj, plt,
1283 (SEC_ALLOC
1284 | SEC_LOAD
1285 | SEC_HAS_CONTENTS
1286 | SEC_IN_MEMORY
1287 | SEC_LINKER_CREATED))
1288 || !bfd_set_section_alignment (abfd, plt, 3))
1289 {
1290 BFD_ASSERT (0);
1291 return FALSE;
1292 }
1293
1294 hppa_info->plt_sec = plt;
1295 }
1296
1297 return TRUE;
1298}
1299
1300/* Create the DLT section. */
1301
1302static bfd_boolean
1303get_dlt (abfd, info, hppa_info)
1304 bfd *abfd;
1305 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1306 struct elf64_hppa_link_hash_table *hppa_info;
1307{
1308 asection *dlt;
1309 bfd *dynobj;
1310
1311 dlt = hppa_info->dlt_sec;
1312 if (!dlt)
1313 {
1314 dynobj = hppa_info->root.dynobj;
1315 if (!dynobj)
1316 hppa_info->root.dynobj = dynobj = abfd;
1317
1318 dlt = bfd_make_section (dynobj, ".dlt");
1319 if (!dlt
1320 || !bfd_set_section_flags (dynobj, dlt,
1321 (SEC_ALLOC
1322 | SEC_LOAD
1323 | SEC_HAS_CONTENTS
1324 | SEC_IN_MEMORY
1325 | SEC_LINKER_CREATED))
1326 || !bfd_set_section_alignment (abfd, dlt, 3))
1327 {
1328 BFD_ASSERT (0);
1329 return FALSE;
1330 }
1331
1332 hppa_info->dlt_sec = dlt;
1333 }
1334
1335 return TRUE;
1336}
1337
1338/* Create the stubs section. */
1339
1340static bfd_boolean
1341get_stub (abfd, info, hppa_info)
1342 bfd *abfd;
1343 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1344 struct elf64_hppa_link_hash_table *hppa_info;
1345{
1346 asection *stub;
1347 bfd *dynobj;
1348
1349 stub = hppa_info->stub_sec;
1350 if (!stub)
1351 {
1352 dynobj = hppa_info->root.dynobj;
1353 if (!dynobj)
1354 hppa_info->root.dynobj = dynobj = abfd;
1355
1356 stub = bfd_make_section (dynobj, ".stub");
1357 if (!stub
1358 || !bfd_set_section_flags (dynobj, stub,
1359 (SEC_ALLOC
1360 | SEC_LOAD
1361 | SEC_HAS_CONTENTS
1362 | SEC_IN_MEMORY
1363 | SEC_READONLY
1364 | SEC_LINKER_CREATED))
1365 || !bfd_set_section_alignment (abfd, stub, 3))
1366 {
1367 BFD_ASSERT (0);
1368 return FALSE;
1369 }
1370
1371 hppa_info->stub_sec = stub;
1372 }
1373
1374 return TRUE;
1375}
1376
1377/* Create sections necessary for dynamic linking. This is only a rough
1378 cut and will likely change as we learn more about the somewhat
1379 unusual dynamic linking scheme HP uses.
1380
1381 .stub:
1382 Contains code to implement cross-space calls. The first time one
1383 of the stubs is used it will call into the dynamic linker, later
1384 calls will go straight to the target.
1385
1386 The only stub we support right now looks like
1387
1388 ldd OFFSET(%dp),%r1
1389 bve %r0(%r1)
1390 ldd OFFSET+8(%dp),%dp
1391
1392 Other stubs may be needed in the future. We may want the remove
1393 the break/nop instruction. It is only used right now to keep the
1394 offset of a .plt entry and a .stub entry in sync.
1395
1396 .dlt:
1397 This is what most people call the .got. HP used a different name.
1398 Losers.
1399
1400 .rela.dlt:
1401 Relocations for the DLT.
1402
1403 .plt:
1404 Function pointers as address,gp pairs.
1405
1406 .rela.plt:
1407 Should contain dynamic IPLT (and EPLT?) relocations.
1408
1409 .opd:
1410 FPTRS
1411
1412 .rela.opd:
1413 EPLT relocations for symbols exported from shared libraries. */
1414
1415static bfd_boolean
1416elf64_hppa_create_dynamic_sections (abfd, info)
1417 bfd *abfd;
1418 struct bfd_link_info *info;
1419{
1420 asection *s;
1421
1422 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1423 return FALSE;
1424
1425 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1426 return FALSE;
1427
1428 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1429 return FALSE;
1430
1431 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1432 return FALSE;
1433
1434 s = bfd_make_section(abfd, ".rela.dlt");
1435 if (s == NULL
1436 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1437 | SEC_HAS_CONTENTS
1438 | SEC_IN_MEMORY
1439 | SEC_READONLY
1440 | SEC_LINKER_CREATED))
1441 || !bfd_set_section_alignment (abfd, s, 3))
1442 return FALSE;
1443 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1444
1445 s = bfd_make_section(abfd, ".rela.plt");
1446 if (s == NULL
1447 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1448 | SEC_HAS_CONTENTS
1449 | SEC_IN_MEMORY
1450 | SEC_READONLY
1451 | SEC_LINKER_CREATED))
1452 || !bfd_set_section_alignment (abfd, s, 3))
1453 return FALSE;
1454 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1455
1456 s = bfd_make_section(abfd, ".rela.data");
1457 if (s == NULL
1458 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1459 | SEC_HAS_CONTENTS
1460 | SEC_IN_MEMORY
1461 | SEC_READONLY
1462 | SEC_LINKER_CREATED))
1463 || !bfd_set_section_alignment (abfd, s, 3))
1464 return FALSE;
1465 elf64_hppa_hash_table (info)->other_rel_sec = s;
1466
1467 s = bfd_make_section(abfd, ".rela.opd");
1468 if (s == NULL
1469 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1470 | SEC_HAS_CONTENTS
1471 | SEC_IN_MEMORY
1472 | SEC_READONLY
1473 | SEC_LINKER_CREATED))
1474 || !bfd_set_section_alignment (abfd, s, 3))
1475 return FALSE;
1476 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1477
1478 return TRUE;
1479}
1480
1481/* Allocate dynamic relocations for those symbols that turned out
1482 to be dynamic. */
1483
1484static bfd_boolean
1485allocate_dynrel_entries (dyn_h, data)
1486 struct elf64_hppa_dyn_hash_entry *dyn_h;
1487 PTR data;
1488{
1489 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1490 struct elf64_hppa_link_hash_table *hppa_info;
1491 struct elf64_hppa_dyn_reloc_entry *rent;
1492 bfd_boolean dynamic_symbol, shared;
1493
1494 hppa_info = elf64_hppa_hash_table (x->info);
1495 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1496 shared = x->info->shared;
1497
1498 /* We may need to allocate relocations for a non-dynamic symbol
1499 when creating a shared library. */
1500 if (!dynamic_symbol && !shared)
1501 return TRUE;
1502
1503 /* Take care of the normal data relocations. */
1504
1505 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1506 {
1507 /* Allocate one iff we are building a shared library, the relocation
1508 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1509 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1510 continue;
1511
1512 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1513
1514 /* Make sure this symbol gets into the dynamic symbol table if it is
1515 not already recorded. ?!? This should not be in the loop since
1516 the symbol need only be added once. */
1517 if (dyn_h->h == 0
1518 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1519 if (!_bfd_elf64_link_record_local_dynamic_symbol
1520 (x->info, rent->sec->owner, dyn_h->sym_indx))
1521 return FALSE;
1522 }
1523
1524 /* Take care of the GOT and PLT relocations. */
1525
1526 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1527 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1528
1529 /* If we are building a shared library, then every symbol that has an
1530 opd entry will need an EPLT relocation to relocate the symbol's address
1531 and __gp value based on the runtime load address. */
1532 if (shared && dyn_h->want_opd)
1533 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1534
1535 if (dyn_h->want_plt && dynamic_symbol)
1536 {
1537 bfd_size_type t = 0;
1538
1539 /* Dynamic symbols get one IPLT relocation. Local symbols in
1540 shared libraries get two REL relocations. Local symbols in
1541 main applications get nothing. */
1542 if (dynamic_symbol)
1543 t = sizeof (Elf64_External_Rela);
1544 else if (shared)
1545 t = 2 * sizeof (Elf64_External_Rela);
1546
1547 hppa_info->plt_rel_sec->_raw_size += t;
1548 }
1549
1550 return TRUE;
1551}
1552
1553/* Adjust a symbol defined by a dynamic object and referenced by a
1554 regular object. */
1555
1556static bfd_boolean
1557elf64_hppa_adjust_dynamic_symbol (info, h)
1558 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1559 struct elf_link_hash_entry *h;
1560{
1561 /* ??? Undefined symbols with PLT entries should be re-defined
1562 to be the PLT entry. */
1563
1564 /* If this is a weak symbol, and there is a real definition, the
1565 processor independent code will have arranged for us to see the
1566 real definition first, and we can just use the same value. */
1567 if (h->weakdef != NULL)
1568 {
1569 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1570 || h->weakdef->root.type == bfd_link_hash_defweak);
1571 h->root.u.def.section = h->weakdef->root.u.def.section;
1572 h->root.u.def.value = h->weakdef->root.u.def.value;
1573 return TRUE;
1574 }
1575
1576 /* If this is a reference to a symbol defined by a dynamic object which
1577 is not a function, we might allocate the symbol in our .dynbss section
1578 and allocate a COPY dynamic relocation.
1579
1580 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1581 of hackery. */
1582
1583 return TRUE;
1584}
1585
1586/* This function is called via elf_link_hash_traverse to mark millicode
1587 symbols with a dynindx of -1 and to remove the string table reference
1588 from the dynamic symbol table. If the symbol is not a millicode symbol,
1589 elf64_hppa_mark_exported_functions is called. */
1590
1591static bfd_boolean
1592elf64_hppa_mark_milli_and_exported_functions (h, data)
1593 struct elf_link_hash_entry *h;
1594 PTR data;
1595{
1596 struct bfd_link_info *info = (struct bfd_link_info *)data;
1597 struct elf_link_hash_entry *elf = h;
1598
1599 if (elf->root.type == bfd_link_hash_warning)
1600 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1601
1602 if (elf->type == STT_PARISC_MILLI)
1603 {
1604 if (elf->dynindx != -1)
1605 {
1606 elf->dynindx = -1;
1607 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1608 elf->dynstr_index);
1609 }
1610 return TRUE;
1611 }
1612
1613 return elf64_hppa_mark_exported_functions (h, data);
1614}
1615
1616/* Set the final sizes of the dynamic sections and allocate memory for
1617 the contents of our special sections. */
1618
1619static bfd_boolean
1620elf64_hppa_size_dynamic_sections (output_bfd, info)
1621 bfd *output_bfd;
1622 struct bfd_link_info *info;
1623{
1624 bfd *dynobj;
1625 asection *s;
1626 bfd_boolean plt;
1627 bfd_boolean relocs;
1628 bfd_boolean reltext;
1629 struct elf64_hppa_allocate_data data;
1630 struct elf64_hppa_link_hash_table *hppa_info;
1631
1632 hppa_info = elf64_hppa_hash_table (info);
1633
1634 dynobj = elf_hash_table (info)->dynobj;
1635 BFD_ASSERT (dynobj != NULL);
1636
1637 /* Mark each function this program exports so that we will allocate
1638 space in the .opd section for each function's FPTR. If we are
1639 creating dynamic sections, change the dynamic index of millicode
1640 symbols to -1 and remove them from the string table for .dynstr.
1641
1642 We have to traverse the main linker hash table since we have to
1643 find functions which may not have been mentioned in any relocs. */
1644 elf_link_hash_traverse (elf_hash_table (info),
1645 (elf_hash_table (info)->dynamic_sections_created
1646 ? elf64_hppa_mark_milli_and_exported_functions
1647 : elf64_hppa_mark_exported_functions),
1648 info);
1649
1650 if (elf_hash_table (info)->dynamic_sections_created)
1651 {
1652 /* Set the contents of the .interp section to the interpreter. */
1653 if (! info->shared)
1654 {
1655 s = bfd_get_section_by_name (dynobj, ".interp");
1656 BFD_ASSERT (s != NULL);
1657 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1658 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1659 }
1660 }
1661 else
1662 {
1663 /* We may have created entries in the .rela.got section.
1664 However, if we are not creating the dynamic sections, we will
1665 not actually use these entries. Reset the size of .rela.dlt,
1666 which will cause it to get stripped from the output file
1667 below. */
1668 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1669 if (s != NULL)
1670 s->_raw_size = 0;
1671 }
1672
1673 /* Allocate the GOT entries. */
1674
1675 data.info = info;
1676 if (elf64_hppa_hash_table (info)->dlt_sec)
1677 {
1678 data.ofs = 0x0;
1679 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1680 allocate_global_data_dlt, &data);
1681 hppa_info->dlt_sec->_raw_size = data.ofs;
1682
1683 data.ofs = 0x0;
1684 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1685 allocate_global_data_plt, &data);
1686 hppa_info->plt_sec->_raw_size = data.ofs;
1687
1688 data.ofs = 0x0;
1689 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1690 allocate_global_data_stub, &data);
1691 hppa_info->stub_sec->_raw_size = data.ofs;
1692 }
1693
1694 /* Allocate space for entries in the .opd section. */
1695 if (elf64_hppa_hash_table (info)->opd_sec)
1696 {
1697 data.ofs = 0;
1698 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1699 allocate_global_data_opd, &data);
1700 hppa_info->opd_sec->_raw_size = data.ofs;
1701 }
1702
1703 /* Now allocate space for dynamic relocations, if necessary. */
1704 if (hppa_info->root.dynamic_sections_created)
1705 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1706 allocate_dynrel_entries, &data);
1707
1708 /* The sizes of all the sections are set. Allocate memory for them. */
1709 plt = FALSE;
1710 relocs = FALSE;
1711 reltext = FALSE;
1712 for (s = dynobj->sections; s != NULL; s = s->next)
1713 {
1714 const char *name;
1715 bfd_boolean strip;
1716
1717 if ((s->flags & SEC_LINKER_CREATED) == 0)
1718 continue;
1719
1720 /* It's OK to base decisions on the section name, because none
1721 of the dynobj section names depend upon the input files. */
1722 name = bfd_get_section_name (dynobj, s);
1723
1724 strip = 0;
1725
1726 if (strcmp (name, ".plt") == 0)
1727 {
1728 /* Strip this section if we don't need it; see the comment below. */
1729 if (s->_raw_size == 0)
1730 {
1731 strip = TRUE;
1732 }
1733 else
1734 {
1735 /* Remember whether there is a PLT. */
1736 plt = TRUE;
1737 }
1738 }
1739 else if (strcmp (name, ".dlt") == 0)
1740 {
1741 /* Strip this section if we don't need it; see the comment below. */
1742 if (s->_raw_size == 0)
1743 {
1744 strip = TRUE;
1745 }
1746 }
1747 else if (strcmp (name, ".opd") == 0)
1748 {
1749 /* Strip this section if we don't need it; see the comment below. */
1750 if (s->_raw_size == 0)
1751 {
1752 strip = TRUE;
1753 }
1754 }
1755 else if (strncmp (name, ".rela", 5) == 0)
1756 {
1757 /* If we don't need this section, strip it from the output file.
1758 This is mostly to handle .rela.bss and .rela.plt. We must
1759 create both sections in create_dynamic_sections, because they
1760 must be created before the linker maps input sections to output
1761 sections. The linker does that before adjust_dynamic_symbol
1762 is called, and it is that function which decides whether
1763 anything needs to go into these sections. */
1764 if (s->_raw_size == 0)
1765 {
1766 /* If we don't need this section, strip it from the
1767 output file. This is mostly to handle .rela.bss and
1768 .rela.plt. We must create both sections in
1769 create_dynamic_sections, because they must be created
1770 before the linker maps input sections to output
1771 sections. The linker does that before
1772 adjust_dynamic_symbol is called, and it is that
1773 function which decides whether anything needs to go
1774 into these sections. */
1775 strip = TRUE;
1776 }
1777 else
1778 {
1779 asection *target;
1780
1781 /* Remember whether there are any reloc sections other
1782 than .rela.plt. */
1783 if (strcmp (name, ".rela.plt") != 0)
1784 {
1785 const char *outname;
1786
1787 relocs = TRUE;
1788
1789 /* If this relocation section applies to a read only
1790 section, then we probably need a DT_TEXTREL
1791 entry. The entries in the .rela.plt section
1792 really apply to the .got section, which we
1793 created ourselves and so know is not readonly. */
1794 outname = bfd_get_section_name (output_bfd,
1795 s->output_section);
1796 target = bfd_get_section_by_name (output_bfd, outname + 4);
1797 if (target != NULL
1798 && (target->flags & SEC_READONLY) != 0
1799 && (target->flags & SEC_ALLOC) != 0)
1800 reltext = TRUE;
1801 }
1802
1803 /* We use the reloc_count field as a counter if we need
1804 to copy relocs into the output file. */
1805 s->reloc_count = 0;
1806 }
1807 }
1808 else if (strncmp (name, ".dlt", 4) != 0
1809 && strcmp (name, ".stub") != 0
1810 && strcmp (name, ".got") != 0)
1811 {
1812 /* It's not one of our sections, so don't allocate space. */
1813 continue;
1814 }
1815
1816 if (strip)
1817 {
1818 _bfd_strip_section_from_output (info, s);
1819 continue;
1820 }
1821
1822 /* Allocate memory for the section contents if it has not
1823 been allocated already. We use bfd_zalloc here in case
1824 unused entries are not reclaimed before the section's
1825 contents are written out. This should not happen, but this
1826 way if it does, we get a R_PARISC_NONE reloc instead of
1827 garbage. */
1828 if (s->contents == NULL)
1829 {
1830 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1831 if (s->contents == NULL && s->_raw_size != 0)
1832 return FALSE;
1833 }
1834 }
1835
1836 if (elf_hash_table (info)->dynamic_sections_created)
1837 {
1838 /* Always create a DT_PLTGOT. It actually has nothing to do with
1839 the PLT, it is how we communicate the __gp value of a load
1840 module to the dynamic linker. */
1841#define add_dynamic_entry(TAG, VAL) \
1842 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1843
1844 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1845 || !add_dynamic_entry (DT_PLTGOT, 0))
1846 return FALSE;
1847
1848 /* Add some entries to the .dynamic section. We fill in the
1849 values later, in elf64_hppa_finish_dynamic_sections, but we
1850 must add the entries now so that we get the correct size for
1851 the .dynamic section. The DT_DEBUG entry is filled in by the
1852 dynamic linker and used by the debugger. */
1853 if (! info->shared)
1854 {
1855 if (!add_dynamic_entry (DT_DEBUG, 0)
1856 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1857 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1858 return FALSE;
1859 }
1860
1861 /* Force DT_FLAGS to always be set.
1862 Required by HPUX 11.00 patch PHSS_26559. */
1863 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1864 return FALSE;
1865
1866 if (plt)
1867 {
1868 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1869 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1870 || !add_dynamic_entry (DT_JMPREL, 0))
1871 return FALSE;
1872 }
1873
1874 if (relocs)
1875 {
1876 if (!add_dynamic_entry (DT_RELA, 0)
1877 || !add_dynamic_entry (DT_RELASZ, 0)
1878 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1879 return FALSE;
1880 }
1881
1882 if (reltext)
1883 {
1884 if (!add_dynamic_entry (DT_TEXTREL, 0))
1885 return FALSE;
1886 info->flags |= DF_TEXTREL;
1887 }
1888 }
1889#undef add_dynamic_entry
1890
1891 return TRUE;
1892}
1893
1894/* Called after we have output the symbol into the dynamic symbol
1895 table, but before we output the symbol into the normal symbol
1896 table.
1897
1898 For some symbols we had to change their address when outputting
1899 the dynamic symbol table. We undo that change here so that
1900 the symbols have their expected value in the normal symbol
1901 table. Ick. */
1902
1903static bfd_boolean
1904elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1905 bfd *abfd ATTRIBUTE_UNUSED;
1906 struct bfd_link_info *info;
1907 const char *name;
1908 Elf_Internal_Sym *sym;
1909 asection *input_sec ATTRIBUTE_UNUSED;
1910{
1911 struct elf64_hppa_link_hash_table *hppa_info;
1912 struct elf64_hppa_dyn_hash_entry *dyn_h;
1913
1914 /* We may be called with the file symbol or section symbols.
1915 They never need munging, so it is safe to ignore them. */
1916 if (!name)
1917 return TRUE;
1918
1919 /* Get the PA dyn_symbol (if any) associated with NAME. */
1920 hppa_info = elf64_hppa_hash_table (info);
1921 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1922 name, FALSE, FALSE);
1923
1924 /* Function symbols for which we created .opd entries *may* have been
1925 munged by finish_dynamic_symbol and have to be un-munged here.
1926
1927 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1928 into non-dynamic ones, so we initialize st_shndx to -1 in
1929 mark_exported_functions and check to see if it was overwritten
1930 here instead of just checking dyn_h->h->dynindx. */
1931 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1932 {
1933 /* Restore the saved value and section index. */
1934 sym->st_value = dyn_h->st_value;
1935 sym->st_shndx = dyn_h->st_shndx;
1936 }
1937
1938 return TRUE;
1939}
1940
1941/* Finish up dynamic symbol handling. We set the contents of various
1942 dynamic sections here. */
1943
1944static bfd_boolean
1945elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1946 bfd *output_bfd;
1947 struct bfd_link_info *info;
1948 struct elf_link_hash_entry *h;
1949 Elf_Internal_Sym *sym;
1950{
1951 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1952 struct elf64_hppa_link_hash_table *hppa_info;
1953 struct elf64_hppa_dyn_hash_entry *dyn_h;
1954
1955 hppa_info = elf64_hppa_hash_table (info);
1956 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1957 h->root.root.string, FALSE, FALSE);
1958
1959 stub = hppa_info->stub_sec;
1960 splt = hppa_info->plt_sec;
1961 sdlt = hppa_info->dlt_sec;
1962 sopd = hppa_info->opd_sec;
1963 spltrel = hppa_info->plt_rel_sec;
1964 sdltrel = hppa_info->dlt_rel_sec;
1965
1966 /* Incredible. It is actually necessary to NOT use the symbol's real
1967 value when building the dynamic symbol table for a shared library.
1968 At least for symbols that refer to functions.
1969
1970 We will store a new value and section index into the symbol long
1971 enough to output it into the dynamic symbol table, then we restore
1972 the original values (in elf64_hppa_link_output_symbol_hook). */
1973 if (dyn_h && dyn_h->want_opd)
1974 {
1975 BFD_ASSERT (sopd != NULL)
1976
1977 /* Save away the original value and section index so that we
1978 can restore them later. */
1979 dyn_h->st_value = sym->st_value;
1980 dyn_h->st_shndx = sym->st_shndx;
1981
1982 /* For the dynamic symbol table entry, we want the value to be
1983 address of this symbol's entry within the .opd section. */
1984 sym->st_value = (dyn_h->opd_offset
1985 + sopd->output_offset
1986 + sopd->output_section->vma);
1987 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1988 sopd->output_section);
1989 }
1990
1991 /* Initialize a .plt entry if requested. */
1992 if (dyn_h && dyn_h->want_plt
1993 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1994 {
1995 bfd_vma value;
1996 Elf_Internal_Rela rel;
1997 bfd_byte *loc;
1998
1999 BFD_ASSERT (splt != NULL && spltrel != NULL)
2000
2001 /* We do not actually care about the value in the PLT entry
2002 if we are creating a shared library and the symbol is
2003 still undefined, we create a dynamic relocation to fill
2004 in the correct value. */
2005 if (info->shared && h->root.type == bfd_link_hash_undefined)
2006 value = 0;
2007 else
2008 value = (h->root.u.def.value + h->root.u.def.section->vma);
2009
2010 /* Fill in the entry in the procedure linkage table.
2011
2012 The format of a plt entry is
2013 <funcaddr> <__gp>.
2014
2015 plt_offset is the offset within the PLT section at which to
2016 install the PLT entry.
2017
2018 We are modifying the in-memory PLT contents here, so we do not add
2019 in the output_offset of the PLT section. */
2020
2021 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2022 value = _bfd_get_gp_value (splt->output_section->owner);
2023 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2024
2025 /* Create a dynamic IPLT relocation for this entry.
2026
2027 We are creating a relocation in the output file's PLT section,
2028 which is included within the DLT secton. So we do need to include
2029 the PLT's output_offset in the computation of the relocation's
2030 address. */
2031 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2032 + splt->output_section->vma);
2033 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2034 rel.r_addend = 0;
2035
2036 loc = spltrel->contents;
2037 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2038 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2039 }
2040
2041 /* Initialize an external call stub entry if requested. */
2042 if (dyn_h && dyn_h->want_stub
2043 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2044 {
2045 bfd_vma value;
2046 int insn;
2047 unsigned int max_offset;
2048
2049 BFD_ASSERT (stub != NULL)
2050
2051 /* Install the generic stub template.
2052
2053 We are modifying the contents of the stub section, so we do not
2054 need to include the stub section's output_offset here. */
2055 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2056
2057 /* Fix up the first ldd instruction.
2058
2059 We are modifying the contents of the STUB section in memory,
2060 so we do not need to include its output offset in this computation.
2061
2062 Note the plt_offset value is the value of the PLT entry relative to
2063 the start of the PLT section. These instructions will reference
2064 data relative to the value of __gp, which may not necessarily have
2065 the same address as the start of the PLT section.
2066
2067 gp_offset contains the offset of __gp within the PLT section. */
2068 value = dyn_h->plt_offset - hppa_info->gp_offset;
2069
2070 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2071 if (output_bfd->arch_info->mach >= 25)
2072 {
2073 /* Wide mode allows 16 bit offsets. */
2074 max_offset = 32768;
2075 insn &= ~ 0xfff1;
2076 insn |= re_assemble_16 ((int) value);
2077 }
2078 else
2079 {
2080 max_offset = 8192;
2081 insn &= ~ 0x3ff1;
2082 insn |= re_assemble_14 ((int) value);
2083 }
2084
2085 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2086 {
2087 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2088 dyn_h->root.string,
2089 (long) value);
2090 return FALSE;
2091 }
2092
2093 bfd_put_32 (stub->owner, (bfd_vma) insn,
2094 stub->contents + dyn_h->stub_offset);
2095
2096 /* Fix up the second ldd instruction. */
2097 value += 8;
2098 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2099 if (output_bfd->arch_info->mach >= 25)
2100 {
2101 insn &= ~ 0xfff1;
2102 insn |= re_assemble_16 ((int) value);
2103 }
2104 else
2105 {
2106 insn &= ~ 0x3ff1;
2107 insn |= re_assemble_14 ((int) value);
2108 }
2109 bfd_put_32 (stub->owner, (bfd_vma) insn,
2110 stub->contents + dyn_h->stub_offset + 8);
2111 }
2112
2113 return TRUE;
2114}
2115
2116/* The .opd section contains FPTRs for each function this file
2117 exports. Initialize the FPTR entries. */
2118
2119static bfd_boolean
2120elf64_hppa_finalize_opd (dyn_h, data)
2121 struct elf64_hppa_dyn_hash_entry *dyn_h;
2122 PTR data;
2123{
2124 struct bfd_link_info *info = (struct bfd_link_info *)data;
2125 struct elf64_hppa_link_hash_table *hppa_info;
2126 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2127 asection *sopd;
2128 asection *sopdrel;
2129
2130 hppa_info = elf64_hppa_hash_table (info);
2131 sopd = hppa_info->opd_sec;
2132 sopdrel = hppa_info->opd_rel_sec;
2133
2134 if (h && dyn_h->want_opd)
2135 {
2136 bfd_vma value;
2137
2138 /* The first two words of an .opd entry are zero.
2139
2140 We are modifying the contents of the OPD section in memory, so we
2141 do not need to include its output offset in this computation. */
2142 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2143
2144 value = (h->root.u.def.value
2145 + h->root.u.def.section->output_section->vma
2146 + h->root.u.def.section->output_offset);
2147
2148 /* The next word is the address of the function. */
2149 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2150
2151 /* The last word is our local __gp value. */
2152 value = _bfd_get_gp_value (sopd->output_section->owner);
2153 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2154 }
2155
2156 /* If we are generating a shared library, we must generate EPLT relocations
2157 for each entry in the .opd, even for static functions (they may have
2158 had their address taken). */
2159 if (info->shared && dyn_h && dyn_h->want_opd)
2160 {
2161 Elf_Internal_Rela rel;
2162 bfd_byte *loc;
2163 int dynindx;
2164
2165 /* We may need to do a relocation against a local symbol, in
2166 which case we have to look up it's dynamic symbol index off
2167 the local symbol hash table. */
2168 if (h && h->dynindx != -1)
2169 dynindx = h->dynindx;
2170 else
2171 dynindx
2172 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2173 dyn_h->sym_indx);
2174
2175 /* The offset of this relocation is the absolute address of the
2176 .opd entry for this symbol. */
2177 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2178 + sopd->output_section->vma);
2179
2180 /* If H is non-null, then we have an external symbol.
2181
2182 It is imperative that we use a different dynamic symbol for the
2183 EPLT relocation if the symbol has global scope.
2184
2185 In the dynamic symbol table, the function symbol will have a value
2186 which is address of the function's .opd entry.
2187
2188 Thus, we can not use that dynamic symbol for the EPLT relocation
2189 (if we did, the data in the .opd would reference itself rather
2190 than the actual address of the function). Instead we have to use
2191 a new dynamic symbol which has the same value as the original global
2192 function symbol.
2193
2194 We prefix the original symbol with a "." and use the new symbol in
2195 the EPLT relocation. This new symbol has already been recorded in
2196 the symbol table, we just have to look it up and use it.
2197
2198 We do not have such problems with static functions because we do
2199 not make their addresses in the dynamic symbol table point to
2200 the .opd entry. Ultimately this should be safe since a static
2201 function can not be directly referenced outside of its shared
2202 library.
2203
2204 We do have to play similar games for FPTR relocations in shared
2205 libraries, including those for static symbols. See the FPTR
2206 handling in elf64_hppa_finalize_dynreloc. */
2207 if (h)
2208 {
2209 char *new_name;
2210 struct elf_link_hash_entry *nh;
2211
2212 new_name = alloca (strlen (h->root.root.string) + 2);
2213 new_name[0] = '.';
2214 strcpy (new_name + 1, h->root.root.string);
2215
2216 nh = elf_link_hash_lookup (elf_hash_table (info),
2217 new_name, FALSE, FALSE, FALSE);
2218
2219 /* All we really want from the new symbol is its dynamic
2220 symbol index. */
2221 dynindx = nh->dynindx;
2222 }
2223
2224 rel.r_addend = 0;
2225 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2226
2227 loc = sopdrel->contents;
2228 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2229 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2230 }
2231 return TRUE;
2232}
2233
2234/* The .dlt section contains addresses for items referenced through the
2235 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2236 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2237
2238static bfd_boolean
2239elf64_hppa_finalize_dlt (dyn_h, data)
2240 struct elf64_hppa_dyn_hash_entry *dyn_h;
2241 PTR data;
2242{
2243 struct bfd_link_info *info = (struct bfd_link_info *)data;
2244 struct elf64_hppa_link_hash_table *hppa_info;
2245 asection *sdlt, *sdltrel;
2246 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2247
2248 hppa_info = elf64_hppa_hash_table (info);
2249
2250 sdlt = hppa_info->dlt_sec;
2251 sdltrel = hppa_info->dlt_rel_sec;
2252
2253 /* H/DYN_H may refer to a local variable and we know it's
2254 address, so there is no need to create a relocation. Just install
2255 the proper value into the DLT, note this shortcut can not be
2256 skipped when building a shared library. */
2257 if (! info->shared && h && dyn_h->want_dlt)
2258 {
2259 bfd_vma value;
2260
2261 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2262 to point to the FPTR entry in the .opd section.
2263
2264 We include the OPD's output offset in this computation as
2265 we are referring to an absolute address in the resulting
2266 object file. */
2267 if (dyn_h->want_opd)
2268 {
2269 value = (dyn_h->opd_offset
2270 + hppa_info->opd_sec->output_offset
2271 + hppa_info->opd_sec->output_section->vma);
2272 }
2273 else if (h->root.u.def.section)
2274 {
2275 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2276 if (h->root.u.def.section->output_section)
2277 value += h->root.u.def.section->output_section->vma;
2278 else
2279 value += h->root.u.def.section->vma;
2280 }
2281 else
2282 /* We have an undefined function reference. */
2283 value = 0;
2284
2285 /* We do not need to include the output offset of the DLT section
2286 here because we are modifying the in-memory contents. */
2287 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2288 }
2289
2290 /* Create a relocation for the DLT entry assocated with this symbol.
2291 When building a shared library the symbol does not have to be dynamic. */
2292 if (dyn_h->want_dlt
2293 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2294 {
2295 Elf_Internal_Rela rel;
2296 bfd_byte *loc;
2297 int dynindx;
2298
2299 /* We may need to do a relocation against a local symbol, in
2300 which case we have to look up it's dynamic symbol index off
2301 the local symbol hash table. */
2302 if (h && h->dynindx != -1)
2303 dynindx = h->dynindx;
2304 else
2305 dynindx
2306 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2307 dyn_h->sym_indx);
2308
2309 /* Create a dynamic relocation for this entry. Do include the output
2310 offset of the DLT entry since we need an absolute address in the
2311 resulting object file. */
2312 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2313 + sdlt->output_section->vma);
2314 if (h && h->type == STT_FUNC)
2315 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2316 else
2317 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2318 rel.r_addend = 0;
2319
2320 loc = sdltrel->contents;
2321 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2322 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2323 }
2324 return TRUE;
2325}
2326
2327/* Finalize the dynamic relocations. Specifically the FPTR relocations
2328 for dynamic functions used to initialize static data. */
2329
2330static bfd_boolean
2331elf64_hppa_finalize_dynreloc (dyn_h, data)
2332 struct elf64_hppa_dyn_hash_entry *dyn_h;
2333 PTR data;
2334{
2335 struct bfd_link_info *info = (struct bfd_link_info *)data;
2336 struct elf64_hppa_link_hash_table *hppa_info;
2337 struct elf_link_hash_entry *h;
2338 int dynamic_symbol;
2339
2340 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2341
2342 if (!dynamic_symbol && !info->shared)
2343 return TRUE;
2344
2345 if (dyn_h->reloc_entries)
2346 {
2347 struct elf64_hppa_dyn_reloc_entry *rent;
2348 int dynindx;
2349
2350 hppa_info = elf64_hppa_hash_table (info);
2351 h = dyn_h->h;
2352
2353 /* We may need to do a relocation against a local symbol, in
2354 which case we have to look up it's dynamic symbol index off
2355 the local symbol hash table. */
2356 if (h && h->dynindx != -1)
2357 dynindx = h->dynindx;
2358 else
2359 dynindx
2360 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2361 dyn_h->sym_indx);
2362
2363 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2364 {
2365 Elf_Internal_Rela rel;
2366 bfd_byte *loc;
2367
2368 /* Allocate one iff we are building a shared library, the relocation
2369 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2370 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2371 continue;
2372
2373 /* Create a dynamic relocation for this entry.
2374
2375 We need the output offset for the reloc's section because
2376 we are creating an absolute address in the resulting object
2377 file. */
2378 rel.r_offset = (rent->offset + rent->sec->output_offset
2379 + rent->sec->output_section->vma);
2380
2381 /* An FPTR64 relocation implies that we took the address of
2382 a function and that the function has an entry in the .opd
2383 section. We want the FPTR64 relocation to reference the
2384 entry in .opd.
2385
2386 We could munge the symbol value in the dynamic symbol table
2387 (in fact we already do for functions with global scope) to point
2388 to the .opd entry. Then we could use that dynamic symbol in
2389 this relocation.
2390
2391 Or we could do something sensible, not munge the symbol's
2392 address and instead just use a different symbol to reference
2393 the .opd entry. At least that seems sensible until you
2394 realize there's no local dynamic symbols we can use for that
2395 purpose. Thus the hair in the check_relocs routine.
2396
2397 We use a section symbol recorded by check_relocs as the
2398 base symbol for the relocation. The addend is the difference
2399 between the section symbol and the address of the .opd entry. */
2400 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2401 {
2402 bfd_vma value, value2;
2403
2404 /* First compute the address of the opd entry for this symbol. */
2405 value = (dyn_h->opd_offset
2406 + hppa_info->opd_sec->output_section->vma
2407 + hppa_info->opd_sec->output_offset);
2408
2409 /* Compute the value of the start of the section with
2410 the relocation. */
2411 value2 = (rent->sec->output_section->vma
2412 + rent->sec->output_offset);
2413
2414 /* Compute the difference between the start of the section
2415 with the relocation and the opd entry. */
2416 value -= value2;
2417
2418 /* The result becomes the addend of the relocation. */
2419 rel.r_addend = value;
2420
2421 /* The section symbol becomes the symbol for the dynamic
2422 relocation. */
2423 dynindx
2424 = _bfd_elf_link_lookup_local_dynindx (info,
2425 rent->sec->owner,
2426 rent->sec_symndx);
2427 }
2428 else
2429 rel.r_addend = rent->addend;
2430
2431 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2432
2433 loc = hppa_info->other_rel_sec->contents;
2434 loc += (hppa_info->other_rel_sec->reloc_count++
2435 * sizeof (Elf64_External_Rela));
2436 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2437 &rel, loc);
2438 }
2439 }
2440
2441 return TRUE;
2442}
2443
2444/* Used to decide how to sort relocs in an optimal manner for the
2445 dynamic linker, before writing them out. */
2446
2447static enum elf_reloc_type_class
2448elf64_hppa_reloc_type_class (rela)
2449 const Elf_Internal_Rela *rela;
2450{
2451 if (ELF64_R_SYM (rela->r_info) == 0)
2452 return reloc_class_relative;
2453
2454 switch ((int) ELF64_R_TYPE (rela->r_info))
2455 {
2456 case R_PARISC_IPLT:
2457 return reloc_class_plt;
2458 case R_PARISC_COPY:
2459 return reloc_class_copy;
2460 default:
2461 return reloc_class_normal;
2462 }
2463}
2464
2465/* Finish up the dynamic sections. */
2466
2467static bfd_boolean
2468elf64_hppa_finish_dynamic_sections (output_bfd, info)
2469 bfd *output_bfd;
2470 struct bfd_link_info *info;
2471{
2472 bfd *dynobj;
2473 asection *sdyn;
2474 struct elf64_hppa_link_hash_table *hppa_info;
2475
2476 hppa_info = elf64_hppa_hash_table (info);
2477
2478 /* Finalize the contents of the .opd section. */
2479 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2480 elf64_hppa_finalize_opd,
2481 info);
2482
2483 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2484 elf64_hppa_finalize_dynreloc,
2485 info);
2486
2487 /* Finalize the contents of the .dlt section. */
2488 dynobj = elf_hash_table (info)->dynobj;
2489 /* Finalize the contents of the .dlt section. */
2490 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2491 elf64_hppa_finalize_dlt,
2492 info);
2493
2494 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2495
2496 if (elf_hash_table (info)->dynamic_sections_created)
2497 {
2498 Elf64_External_Dyn *dyncon, *dynconend;
2499
2500 BFD_ASSERT (sdyn != NULL);
2501
2502 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2503 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2504 for (; dyncon < dynconend; dyncon++)
2505 {
2506 Elf_Internal_Dyn dyn;
2507 asection *s;
2508
2509 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2510
2511 switch (dyn.d_tag)
2512 {
2513 default:
2514 break;
2515
2516 case DT_HP_LOAD_MAP:
2517 /* Compute the absolute address of 16byte scratchpad area
2518 for the dynamic linker.
2519
2520 By convention the linker script will allocate the scratchpad
2521 area at the start of the .data section. So all we have to
2522 to is find the start of the .data section. */
2523 s = bfd_get_section_by_name (output_bfd, ".data");
2524 dyn.d_un.d_ptr = s->vma;
2525 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2526 break;
2527
2528 case DT_PLTGOT:
2529 /* HP's use PLTGOT to set the GOT register. */
2530 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2531 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2532 break;
2533
2534 case DT_JMPREL:
2535 s = hppa_info->plt_rel_sec;
2536 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2537 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2538 break;
2539
2540 case DT_PLTRELSZ:
2541 s = hppa_info->plt_rel_sec;
2542 dyn.d_un.d_val = s->_raw_size;
2543 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2544 break;
2545
2546 case DT_RELA:
2547 s = hppa_info->other_rel_sec;
2548 if (! s || ! s->_raw_size)
2549 s = hppa_info->dlt_rel_sec;
2550 if (! s || ! s->_raw_size)
2551 s = hppa_info->opd_rel_sec;
2552 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2553 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2554 break;
2555
2556 case DT_RELASZ:
2557 s = hppa_info->other_rel_sec;
2558 dyn.d_un.d_val = s->_raw_size;
2559 s = hppa_info->dlt_rel_sec;
2560 dyn.d_un.d_val += s->_raw_size;
2561 s = hppa_info->opd_rel_sec;
2562 dyn.d_un.d_val += s->_raw_size;
2563 /* There is some question about whether or not the size of
2564 the PLT relocs should be included here. HP's tools do
2565 it, so we'll emulate them. */
2566 s = hppa_info->plt_rel_sec;
2567 dyn.d_un.d_val += s->_raw_size;
2568 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2569 break;
2570
2571 }
2572 }
2573 }
2574
2575 return TRUE;
2576}
2577
2578/* Return the number of additional phdrs we will need.
2579
2580 The generic ELF code only creates PT_PHDRs for executables. The HP
2581 dynamic linker requires PT_PHDRs for dynamic libraries too.
2582
2583 This routine indicates that the backend needs one additional program
2584 header for that case.
2585
2586 Note we do not have access to the link info structure here, so we have
2587 to guess whether or not we are building a shared library based on the
2588 existence of a .interp section. */
2589
2590static int
2591elf64_hppa_additional_program_headers (abfd)
2592 bfd *abfd;
2593{
2594 asection *s;
2595
2596 /* If we are creating a shared library, then we have to create a
2597 PT_PHDR segment. HP's dynamic linker chokes without it. */
2598 s = bfd_get_section_by_name (abfd, ".interp");
2599 if (! s)
2600 return 1;
2601 return 0;
2602}
2603
2604/* Allocate and initialize any program headers required by this
2605 specific backend.
2606
2607 The generic ELF code only creates PT_PHDRs for executables. The HP
2608 dynamic linker requires PT_PHDRs for dynamic libraries too.
2609
2610 This allocates the PT_PHDR and initializes it in a manner suitable
2611 for the HP linker.
2612
2613 Note we do not have access to the link info structure here, so we have
2614 to guess whether or not we are building a shared library based on the
2615 existence of a .interp section. */
2616
2617static bfd_boolean
2618elf64_hppa_modify_segment_map (abfd)
2619 bfd *abfd;
2620{
2621 struct elf_segment_map *m;
2622 asection *s;
2623
2624 s = bfd_get_section_by_name (abfd, ".interp");
2625 if (! s)
2626 {
2627 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2628 if (m->p_type == PT_PHDR)
2629 break;
2630 if (m == NULL)
2631 {
2632 m = ((struct elf_segment_map *)
2633 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2634 if (m == NULL)
2635 return FALSE;
2636
2637 m->p_type = PT_PHDR;
2638 m->p_flags = PF_R | PF_X;
2639 m->p_flags_valid = 1;
2640 m->p_paddr_valid = 1;
2641 m->includes_phdrs = 1;
2642
2643 m->next = elf_tdata (abfd)->segment_map;
2644 elf_tdata (abfd)->segment_map = m;
2645 }
2646 }
2647
2648 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2649 if (m->p_type == PT_LOAD)
2650 {
2651 unsigned int i;
2652
2653 for (i = 0; i < m->count; i++)
2654 {
2655 /* The code "hint" is not really a hint. It is a requirement
2656 for certain versions of the HP dynamic linker. Worse yet,
2657 it must be set even if the shared library does not have
2658 any code in its "text" segment (thus the check for .hash
2659 to catch this situation). */
2660 if (m->sections[i]->flags & SEC_CODE
2661 || (strcmp (m->sections[i]->name, ".hash") == 0))
2662 m->p_flags |= (PF_X | PF_HP_CODE);
2663 }
2664 }
2665
2666 return TRUE;
2667}
2668
2669/* Called when writing out an object file to decide the type of a
2670 symbol. */
2671static int
2672elf64_hppa_elf_get_symbol_type (elf_sym, type)
2673 Elf_Internal_Sym *elf_sym;
2674 int type;
2675{
2676 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2677 return STT_PARISC_MILLI;
2678 else
2679 return type;
2680}
2681
2682/* The hash bucket size is the standard one, namely 4. */
2683
2684const struct elf_size_info hppa64_elf_size_info =
2685{
2686 sizeof (Elf64_External_Ehdr),
2687 sizeof (Elf64_External_Phdr),
2688 sizeof (Elf64_External_Shdr),
2689 sizeof (Elf64_External_Rel),
2690 sizeof (Elf64_External_Rela),
2691 sizeof (Elf64_External_Sym),
2692 sizeof (Elf64_External_Dyn),
2693 sizeof (Elf_External_Note),
2694 4,
2695 1,
2696 64, 8,
2697 ELFCLASS64, EV_CURRENT,
2698 bfd_elf64_write_out_phdrs,
2699 bfd_elf64_write_shdrs_and_ehdr,
2700 bfd_elf64_write_relocs,
2701 bfd_elf64_swap_symbol_in,
2702 bfd_elf64_swap_symbol_out,
2703 bfd_elf64_slurp_reloc_table,
2704 bfd_elf64_slurp_symbol_table,
2705 bfd_elf64_swap_dyn_in,
2706 bfd_elf64_swap_dyn_out,
2707 bfd_elf64_swap_reloc_in,
2708 bfd_elf64_swap_reloc_out,
2709 bfd_elf64_swap_reloca_in,
2710 bfd_elf64_swap_reloca_out
2711};
2712
2713#define TARGET_BIG_SYM bfd_elf64_hppa_vec
2714#define TARGET_BIG_NAME "elf64-hppa"
2715#define ELF_ARCH bfd_arch_hppa
2716#define ELF_MACHINE_CODE EM_PARISC
2717/* This is not strictly correct. The maximum page size for PA2.0 is
2718 64M. But everything still uses 4k. */
2719#define ELF_MAXPAGESIZE 0x1000
2720#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2721#define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2722#define elf_info_to_howto elf_hppa_info_to_howto
2723#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2724
2725#define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2726#define elf_backend_object_p elf64_hppa_object_p
2727#define elf_backend_final_write_processing \
2728 elf_hppa_final_write_processing
2729#define elf_backend_fake_sections elf_hppa_fake_sections
2730#define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2731
2732#define elf_backend_relocate_section elf_hppa_relocate_section
2733
2734#define bfd_elf64_bfd_final_link elf_hppa_final_link
2735
2736#define elf_backend_create_dynamic_sections \
2737 elf64_hppa_create_dynamic_sections
2738#define elf_backend_post_process_headers elf64_hppa_post_process_headers
2739
2740#define elf_backend_adjust_dynamic_symbol \
2741 elf64_hppa_adjust_dynamic_symbol
2742
2743#define elf_backend_size_dynamic_sections \
2744 elf64_hppa_size_dynamic_sections
2745
2746#define elf_backend_finish_dynamic_symbol \
2747 elf64_hppa_finish_dynamic_symbol
2748#define elf_backend_finish_dynamic_sections \
2749 elf64_hppa_finish_dynamic_sections
2750
2751/* Stuff for the BFD linker: */
2752#define bfd_elf64_bfd_link_hash_table_create \
2753 elf64_hppa_hash_table_create
2754
2755#define elf_backend_check_relocs \
2756 elf64_hppa_check_relocs
2757
2758#define elf_backend_size_info \
2759 hppa64_elf_size_info
2760
2761#define elf_backend_additional_program_headers \
2762 elf64_hppa_additional_program_headers
2763
2764#define elf_backend_modify_segment_map \
2765 elf64_hppa_modify_segment_map
2766
2767#define elf_backend_link_output_symbol_hook \
2768 elf64_hppa_link_output_symbol_hook
2769
2770#define elf_backend_want_got_plt 0
2771#define elf_backend_plt_readonly 0
2772#define elf_backend_want_plt_sym 0
2773#define elf_backend_got_header_size 0
2774#define elf_backend_plt_header_size 0
2775#define elf_backend_type_change_ok TRUE
2776#define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2777#define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2778#define elf_backend_rela_normal 1
2779
2780#include "elf64-target.h"
2781
2782#undef TARGET_BIG_SYM
2783#define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2784#undef TARGET_BIG_NAME
2785#define TARGET_BIG_NAME "elf64-hppa-linux"
2786
2787#define INCLUDED_TARGET_FILE 1
2788#include "elf64-target.h"
Note: See TracBrowser for help on using the repository browser.