source: branches/libc-0.6/src/binutils/bfd/coff-mips.c

Last change on this file was 610, checked in by bird, 22 years ago

This commit was generated by cvs2svn to compensate for changes in r609,
which included commits to RCS files with non-trunk default branches.

  • Property cvs2svn:cvs-rev set to 1.1.1.2
  • Property svn:eol-style set to native
  • Property svn:executable set to *
File size: 83.9 KB
Line 
1/* BFD back-end for MIPS Extended-Coff files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002
4 Free Software Foundation, Inc.
5 Original version by Per Bothner.
6 Full support added by Ian Lance Taylor, ian@cygnus.com.
7
8This file is part of BFD, the Binary File Descriptor library.
9
10This program is free software; you can redistribute it and/or modify
11it under the terms of the GNU General Public License as published by
12the Free Software Foundation; either version 2 of the License, or
13(at your option) any later version.
14
15This program is distributed in the hope that it will be useful,
16but WITHOUT ANY WARRANTY; without even the implied warranty of
17MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18GNU General Public License for more details.
19
20You should have received a copy of the GNU General Public License
21along with this program; if not, write to the Free Software
22Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24#include "bfd.h"
25#include "sysdep.h"
26#include "bfdlink.h"
27#include "libbfd.h"
28#include "coff/internal.h"
29#include "coff/sym.h"
30#include "coff/symconst.h"
31#include "coff/ecoff.h"
32#include "coff/mips.h"
33#include "libcoff.h"
34#include "libecoff.h"
35
36
37/* Prototypes for static functions. */
38
39static bfd_boolean mips_ecoff_bad_format_hook
40 PARAMS ((bfd *abfd, PTR filehdr));
41static void mips_ecoff_swap_reloc_in
42 PARAMS ((bfd *, PTR, struct internal_reloc *));
43static void mips_ecoff_swap_reloc_out
44 PARAMS ((bfd *, const struct internal_reloc *, PTR));
45static void mips_adjust_reloc_in
46 PARAMS ((bfd *, const struct internal_reloc *, arelent *));
47static void mips_adjust_reloc_out
48 PARAMS ((bfd *, const arelent *, struct internal_reloc *));
49static bfd_reloc_status_type mips_generic_reloc
50 PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data,
51 asection *section, bfd *output_bfd, char **error));
52static bfd_reloc_status_type mips_refhi_reloc
53 PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data,
54 asection *section, bfd *output_bfd, char **error));
55static bfd_reloc_status_type mips_reflo_reloc
56 PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data,
57 asection *section, bfd *output_bfd, char **error));
58static bfd_reloc_status_type mips_gprel_reloc
59 PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data,
60 asection *section, bfd *output_bfd, char **error));
61static bfd_reloc_status_type mips_relhi_reloc
62 PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data,
63 asection *section, bfd *output_bfd, char **error));
64static bfd_reloc_status_type mips_rello_reloc
65 PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data,
66 asection *section, bfd *output_bfd, char **error));
67static bfd_reloc_status_type mips_switch_reloc
68 PARAMS ((bfd *abfd, arelent *reloc, asymbol *symbol, PTR data,
69 asection *section, bfd *output_bfd, char **error));
70static void mips_relocate_hi
71 PARAMS ((struct internal_reloc *refhi, struct internal_reloc *reflo,
72 bfd *input_bfd, asection *input_section, bfd_byte *contents,
73 size_t adjust, bfd_vma relocation, bfd_boolean pcrel));
74static bfd_boolean mips_relocate_section
75 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, PTR));
76static bfd_boolean mips_read_relocs
77 PARAMS ((bfd *, asection *));
78static bfd_boolean mips_relax_section
79 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
80static bfd_boolean mips_relax_pcrel16
81 PARAMS ((struct bfd_link_info *, bfd *, asection *,
82 struct ecoff_link_hash_entry *, bfd_byte *, bfd_vma));
83static reloc_howto_type *mips_bfd_reloc_type_lookup
84 PARAMS ((bfd *, bfd_reloc_code_real_type));
85
86
87/* ECOFF has COFF sections, but the debugging information is stored in
88 a completely different format. ECOFF targets use some of the
89 swapping routines from coffswap.h, and some of the generic COFF
90 routines in coffgen.c, but, unlike the real COFF targets, do not
91 use coffcode.h itself.
92
93 Get the generic COFF swapping routines, except for the reloc,
94 symbol, and lineno ones. Give them ECOFF names. */
95#define MIPSECOFF
96#define NO_COFF_RELOCS
97#define NO_COFF_SYMBOLS
98#define NO_COFF_LINENOS
99#define coff_swap_filehdr_in mips_ecoff_swap_filehdr_in
100#define coff_swap_filehdr_out mips_ecoff_swap_filehdr_out
101#define coff_swap_aouthdr_in mips_ecoff_swap_aouthdr_in
102#define coff_swap_aouthdr_out mips_ecoff_swap_aouthdr_out
103#define coff_swap_scnhdr_in mips_ecoff_swap_scnhdr_in
104#define coff_swap_scnhdr_out mips_ecoff_swap_scnhdr_out
105#include "coffswap.h"
106
107/* Get the ECOFF swapping routines. */
108#define ECOFF_32
109#include "ecoffswap.h"
110
111
112/* How to process the various relocs types. */
113
114static reloc_howto_type mips_howto_table[] =
115{
116 /* Reloc type 0 is ignored. The reloc reading code ensures that
117 this is a reference to the .abs section, which will cause
118 bfd_perform_relocation to do nothing. */
119 HOWTO (MIPS_R_IGNORE, /* type */
120 0, /* rightshift */
121 0, /* size (0 = byte, 1 = short, 2 = long) */
122 8, /* bitsize */
123 FALSE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_dont, /* complain_on_overflow */
126 0, /* special_function */
127 "IGNORE", /* name */
128 FALSE, /* partial_inplace */
129 0, /* src_mask */
130 0, /* dst_mask */
131 FALSE), /* pcrel_offset */
132
133 /* A 16 bit reference to a symbol, normally from a data section. */
134 HOWTO (MIPS_R_REFHALF, /* type */
135 0, /* rightshift */
136 1, /* size (0 = byte, 1 = short, 2 = long) */
137 16, /* bitsize */
138 FALSE, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_bitfield, /* complain_on_overflow */
141 mips_generic_reloc, /* special_function */
142 "REFHALF", /* name */
143 TRUE, /* partial_inplace */
144 0xffff, /* src_mask */
145 0xffff, /* dst_mask */
146 FALSE), /* pcrel_offset */
147
148 /* A 32 bit reference to a symbol, normally from a data section. */
149 HOWTO (MIPS_R_REFWORD, /* type */
150 0, /* rightshift */
151 2, /* size (0 = byte, 1 = short, 2 = long) */
152 32, /* bitsize */
153 FALSE, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_bitfield, /* complain_on_overflow */
156 mips_generic_reloc, /* special_function */
157 "REFWORD", /* name */
158 TRUE, /* partial_inplace */
159 0xffffffff, /* src_mask */
160 0xffffffff, /* dst_mask */
161 FALSE), /* pcrel_offset */
162
163 /* A 26 bit absolute jump address. */
164 HOWTO (MIPS_R_JMPADDR, /* type */
165 2, /* rightshift */
166 2, /* size (0 = byte, 1 = short, 2 = long) */
167 26, /* bitsize */
168 FALSE, /* pc_relative */
169 0, /* bitpos */
170 complain_overflow_dont, /* complain_on_overflow */
171 /* This needs complex overflow
172 detection, because the upper four
173 bits must match the PC. */
174 mips_generic_reloc, /* special_function */
175 "JMPADDR", /* name */
176 TRUE, /* partial_inplace */
177 0x3ffffff, /* src_mask */
178 0x3ffffff, /* dst_mask */
179 FALSE), /* pcrel_offset */
180
181 /* The high 16 bits of a symbol value. Handled by the function
182 mips_refhi_reloc. */
183 HOWTO (MIPS_R_REFHI, /* type */
184 16, /* rightshift */
185 2, /* size (0 = byte, 1 = short, 2 = long) */
186 16, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield, /* complain_on_overflow */
190 mips_refhi_reloc, /* special_function */
191 "REFHI", /* name */
192 TRUE, /* partial_inplace */
193 0xffff, /* src_mask */
194 0xffff, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* The low 16 bits of a symbol value. */
198 HOWTO (MIPS_R_REFLO, /* type */
199 0, /* rightshift */
200 2, /* size (0 = byte, 1 = short, 2 = long) */
201 16, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_dont, /* complain_on_overflow */
205 mips_reflo_reloc, /* special_function */
206 "REFLO", /* name */
207 TRUE, /* partial_inplace */
208 0xffff, /* src_mask */
209 0xffff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 /* A reference to an offset from the gp register. Handled by the
213 function mips_gprel_reloc. */
214 HOWTO (MIPS_R_GPREL, /* type */
215 0, /* rightshift */
216 2, /* size (0 = byte, 1 = short, 2 = long) */
217 16, /* bitsize */
218 FALSE, /* pc_relative */
219 0, /* bitpos */
220 complain_overflow_signed, /* complain_on_overflow */
221 mips_gprel_reloc, /* special_function */
222 "GPREL", /* name */
223 TRUE, /* partial_inplace */
224 0xffff, /* src_mask */
225 0xffff, /* dst_mask */
226 FALSE), /* pcrel_offset */
227
228 /* A reference to a literal using an offset from the gp register.
229 Handled by the function mips_gprel_reloc. */
230 HOWTO (MIPS_R_LITERAL, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 16, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_signed, /* complain_on_overflow */
237 mips_gprel_reloc, /* special_function */
238 "LITERAL", /* name */
239 TRUE, /* partial_inplace */
240 0xffff, /* src_mask */
241 0xffff, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 EMPTY_HOWTO (8),
245 EMPTY_HOWTO (9),
246 EMPTY_HOWTO (10),
247 EMPTY_HOWTO (11),
248
249 /* This reloc is a Cygnus extension used when generating position
250 independent code for embedded systems. It represents a 16 bit PC
251 relative reloc rightshifted twice as used in the MIPS branch
252 instructions. */
253 HOWTO (MIPS_R_PCREL16, /* type */
254 2, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 16, /* bitsize */
257 TRUE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_signed, /* complain_on_overflow */
260 mips_generic_reloc, /* special_function */
261 "PCREL16", /* name */
262 TRUE, /* partial_inplace */
263 0xffff, /* src_mask */
264 0xffff, /* dst_mask */
265 TRUE), /* pcrel_offset */
266
267 /* This reloc is a Cygnus extension used when generating position
268 independent code for embedded systems. It represents the high 16
269 bits of a PC relative reloc. The next reloc must be
270 MIPS_R_RELLO, and the addend is formed from the addends of the
271 two instructions, just as in MIPS_R_REFHI and MIPS_R_REFLO. The
272 final value is actually PC relative to the location of the
273 MIPS_R_RELLO reloc, not the MIPS_R_RELHI reloc. */
274 HOWTO (MIPS_R_RELHI, /* type */
275 16, /* rightshift */
276 2, /* size (0 = byte, 1 = short, 2 = long) */
277 16, /* bitsize */
278 TRUE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_bitfield, /* complain_on_overflow */
281 mips_relhi_reloc, /* special_function */
282 "RELHI", /* name */
283 TRUE, /* partial_inplace */
284 0xffff, /* src_mask */
285 0xffff, /* dst_mask */
286 TRUE), /* pcrel_offset */
287
288 /* This reloc is a Cygnus extension used when generating position
289 independent code for embedded systems. It represents the low 16
290 bits of a PC relative reloc. */
291 HOWTO (MIPS_R_RELLO, /* type */
292 0, /* rightshift */
293 2, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 TRUE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont, /* complain_on_overflow */
298 mips_rello_reloc, /* special_function */
299 "RELLO", /* name */
300 TRUE, /* partial_inplace */
301 0xffff, /* src_mask */
302 0xffff, /* dst_mask */
303 TRUE), /* pcrel_offset */
304
305 EMPTY_HOWTO (15),
306 EMPTY_HOWTO (16),
307 EMPTY_HOWTO (17),
308 EMPTY_HOWTO (18),
309 EMPTY_HOWTO (19),
310 EMPTY_HOWTO (20),
311 EMPTY_HOWTO (21),
312
313 /* This reloc is a Cygnus extension used when generating position
314 independent code for embedded systems. It represents an entry in
315 a switch table, which is the difference between two symbols in
316 the .text section. The symndx is actually the offset from the
317 reloc address to the subtrahend. See include/coff/mips.h for
318 more details. */
319 HOWTO (MIPS_R_SWITCH, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 TRUE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_dont, /* complain_on_overflow */
326 mips_switch_reloc, /* special_function */
327 "SWITCH", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 TRUE) /* pcrel_offset */
332};
333
334#define MIPS_HOWTO_COUNT \
335 (sizeof mips_howto_table / sizeof mips_howto_table[0])
336
337/* When the linker is doing relaxing, it may change an external PCREL16
338 reloc. This typically represents an instruction like
339 bal foo
340 We change it to
341 .set noreorder
342 bal $L1
343 lui $at,%hi(foo - $L1)
344 $L1:
345 addiu $at,%lo(foo - $L1)
346 addu $at,$at,$31
347 jalr $at
348 PCREL16_EXPANSION_ADJUSTMENT is the number of bytes this changes the
349 instruction by. */
350
351#define PCREL16_EXPANSION_ADJUSTMENT (4 * 4)
352
353
354/* See whether the magic number matches. */
355
356static bfd_boolean
357mips_ecoff_bad_format_hook (abfd, filehdr)
358 bfd *abfd;
359 PTR filehdr;
360{
361 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
362
363 switch (internal_f->f_magic)
364 {
365 case MIPS_MAGIC_1:
366 /* I don't know what endianness this implies. */
367 return TRUE;
368
369 case MIPS_MAGIC_BIG:
370 case MIPS_MAGIC_BIG2:
371 case MIPS_MAGIC_BIG3:
372 return bfd_big_endian (abfd);
373
374 case MIPS_MAGIC_LITTLE:
375 case MIPS_MAGIC_LITTLE2:
376 case MIPS_MAGIC_LITTLE3:
377 return bfd_little_endian (abfd);
378
379 default:
380 return FALSE;
381 }
382}
383
384
385/* Reloc handling. MIPS ECOFF relocs are packed into 8 bytes in
386 external form. They use a bit which indicates whether the symbol
387 is external. */
388
389/* Swap a reloc in. */
390
391static void
392mips_ecoff_swap_reloc_in (abfd, ext_ptr, intern)
393 bfd *abfd;
394 PTR ext_ptr;
395 struct internal_reloc *intern;
396{
397 const RELOC *ext = (RELOC *) ext_ptr;
398
399 intern->r_vaddr = H_GET_32 (abfd, ext->r_vaddr);
400 if (bfd_header_big_endian (abfd))
401 {
402 intern->r_symndx = (((int) ext->r_bits[0]
403 << RELOC_BITS0_SYMNDX_SH_LEFT_BIG)
404 | ((int) ext->r_bits[1]
405 << RELOC_BITS1_SYMNDX_SH_LEFT_BIG)
406 | ((int) ext->r_bits[2]
407 << RELOC_BITS2_SYMNDX_SH_LEFT_BIG));
408 intern->r_type = ((ext->r_bits[3] & RELOC_BITS3_TYPE_BIG)
409 >> RELOC_BITS3_TYPE_SH_BIG);
410 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_BIG) != 0;
411 }
412 else
413 {
414 intern->r_symndx = (((int) ext->r_bits[0]
415 << RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE)
416 | ((int) ext->r_bits[1]
417 << RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE)
418 | ((int) ext->r_bits[2]
419 << RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE));
420 intern->r_type = (((ext->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
421 >> RELOC_BITS3_TYPE_SH_LITTLE)
422 | ((ext->r_bits[3] & RELOC_BITS3_TYPEHI_LITTLE)
423 << RELOC_BITS3_TYPEHI_SH_LITTLE));
424 intern->r_extern = (ext->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) != 0;
425 }
426
427 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
428 MIPS_R_RELLO reloc, r_symndx is actually the offset from the
429 reloc address to the base of the difference (see
430 include/coff/mips.h for more details). We copy symndx into the
431 r_offset field so as not to confuse ecoff_slurp_reloc_table in
432 ecoff.c. In adjust_reloc_in we then copy r_offset into the reloc
433 addend. */
434 if (intern->r_type == MIPS_R_SWITCH
435 || (! intern->r_extern
436 && (intern->r_type == MIPS_R_RELLO
437 || intern->r_type == MIPS_R_RELHI)))
438 {
439 BFD_ASSERT (! intern->r_extern);
440 intern->r_offset = intern->r_symndx;
441 if (intern->r_offset & 0x800000)
442 intern->r_offset -= 0x1000000;
443 intern->r_symndx = RELOC_SECTION_TEXT;
444 }
445}
446
447/* Swap a reloc out. */
448
449static void
450mips_ecoff_swap_reloc_out (abfd, intern, dst)
451 bfd *abfd;
452 const struct internal_reloc *intern;
453 PTR dst;
454{
455 RELOC *ext = (RELOC *) dst;
456 long r_symndx;
457
458 BFD_ASSERT (intern->r_extern
459 || (intern->r_symndx >= 0 && intern->r_symndx <= 12));
460
461 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELLO or
462 MIPS_R_RELHI reloc, we actually want to write the contents of
463 r_offset out as the symbol index. This undoes the change made by
464 mips_ecoff_swap_reloc_in. */
465 if (intern->r_type != MIPS_R_SWITCH
466 && (intern->r_extern
467 || (intern->r_type != MIPS_R_RELHI
468 && intern->r_type != MIPS_R_RELLO)))
469 r_symndx = intern->r_symndx;
470 else
471 {
472 BFD_ASSERT (intern->r_symndx == RELOC_SECTION_TEXT);
473 r_symndx = intern->r_offset & 0xffffff;
474 }
475
476 H_PUT_32 (abfd, intern->r_vaddr, ext->r_vaddr);
477 if (bfd_header_big_endian (abfd))
478 {
479 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_BIG;
480 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_BIG;
481 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_BIG;
482 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_BIG)
483 & RELOC_BITS3_TYPE_BIG)
484 | (intern->r_extern ? RELOC_BITS3_EXTERN_BIG : 0));
485 }
486 else
487 {
488 ext->r_bits[0] = r_symndx >> RELOC_BITS0_SYMNDX_SH_LEFT_LITTLE;
489 ext->r_bits[1] = r_symndx >> RELOC_BITS1_SYMNDX_SH_LEFT_LITTLE;
490 ext->r_bits[2] = r_symndx >> RELOC_BITS2_SYMNDX_SH_LEFT_LITTLE;
491 ext->r_bits[3] = (((intern->r_type << RELOC_BITS3_TYPE_SH_LITTLE)
492 & RELOC_BITS3_TYPE_LITTLE)
493 | ((intern->r_type >> RELOC_BITS3_TYPEHI_SH_LITTLE
494 & RELOC_BITS3_TYPEHI_LITTLE))
495 | (intern->r_extern ? RELOC_BITS3_EXTERN_LITTLE : 0));
496 }
497}
498
499/* Finish canonicalizing a reloc. Part of this is generic to all
500 ECOFF targets, and that part is in ecoff.c. The rest is done in
501 this backend routine. It must fill in the howto field. */
502
503static void
504mips_adjust_reloc_in (abfd, intern, rptr)
505 bfd *abfd;
506 const struct internal_reloc *intern;
507 arelent *rptr;
508{
509 if (intern->r_type > MIPS_R_SWITCH)
510 abort ();
511
512 if (! intern->r_extern
513 && (intern->r_type == MIPS_R_GPREL
514 || intern->r_type == MIPS_R_LITERAL))
515 rptr->addend += ecoff_data (abfd)->gp;
516
517 /* If the type is MIPS_R_IGNORE, make sure this is a reference to
518 the absolute section so that the reloc is ignored. */
519 if (intern->r_type == MIPS_R_IGNORE)
520 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
521
522 /* If this is a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
523 MIPS_R_RELLO reloc, we want the addend field of the BFD relocto
524 hold the value which was originally in the symndx field of the
525 internal MIPS ECOFF reloc. This value was copied into
526 intern->r_offset by mips_swap_reloc_in, and here we copy it into
527 the addend field. */
528 if (intern->r_type == MIPS_R_SWITCH
529 || (! intern->r_extern
530 && (intern->r_type == MIPS_R_RELHI
531 || intern->r_type == MIPS_R_RELLO)))
532 rptr->addend = intern->r_offset;
533
534 rptr->howto = &mips_howto_table[intern->r_type];
535}
536
537/* Make any adjustments needed to a reloc before writing it out. None
538 are needed for MIPS. */
539
540static void
541mips_adjust_reloc_out (abfd, rel, intern)
542 bfd *abfd ATTRIBUTE_UNUSED;
543 const arelent *rel;
544 struct internal_reloc *intern;
545{
546 /* For a MIPS_R_SWITCH reloc, or an internal MIPS_R_RELHI or
547 MIPS_R_RELLO reloc, we must copy rel->addend into
548 intern->r_offset. This will then be written out as the symbol
549 index by mips_ecoff_swap_reloc_out. This operation parallels the
550 action of mips_adjust_reloc_in. */
551 if (intern->r_type == MIPS_R_SWITCH
552 || (! intern->r_extern
553 && (intern->r_type == MIPS_R_RELHI
554 || intern->r_type == MIPS_R_RELLO)))
555 intern->r_offset = rel->addend;
556}
557
558/* ECOFF relocs are either against external symbols, or against
559 sections. If we are producing relocateable output, and the reloc
560 is against an external symbol, and nothing has given us any
561 additional addend, the resulting reloc will also be against the
562 same symbol. In such a case, we don't want to change anything
563 about the way the reloc is handled, since it will all be done at
564 final link time. Rather than put special case code into
565 bfd_perform_relocation, all the reloc types use this howto
566 function. It just short circuits the reloc if producing
567 relocateable output against an external symbol. */
568
569static bfd_reloc_status_type
570mips_generic_reloc (abfd,
571 reloc_entry,
572 symbol,
573 data,
574 input_section,
575 output_bfd,
576 error_message)
577 bfd *abfd ATTRIBUTE_UNUSED;
578 arelent *reloc_entry;
579 asymbol *symbol;
580 PTR data ATTRIBUTE_UNUSED;
581 asection *input_section;
582 bfd *output_bfd;
583 char **error_message ATTRIBUTE_UNUSED;
584{
585 if (output_bfd != (bfd *) NULL
586 && (symbol->flags & BSF_SECTION_SYM) == 0
587 && reloc_entry->addend == 0)
588 {
589 reloc_entry->address += input_section->output_offset;
590 return bfd_reloc_ok;
591 }
592
593 return bfd_reloc_continue;
594}
595
596/* Do a REFHI relocation. This has to be done in combination with a
597 REFLO reloc, because there is a carry from the REFLO to the REFHI.
598 Here we just save the information we need; we do the actual
599 relocation when we see the REFLO. MIPS ECOFF requires that the
600 REFLO immediately follow the REFHI. As a GNU extension, we permit
601 an arbitrary number of HI relocs to be associated with a single LO
602 reloc. This extension permits gcc to output the HI and LO relocs
603 itself. */
604
605struct mips_hi
606{
607 struct mips_hi *next;
608 bfd_byte *addr;
609 bfd_vma addend;
610};
611
612/* FIXME: This should not be a static variable. */
613
614static struct mips_hi *mips_refhi_list;
615
616static bfd_reloc_status_type
617mips_refhi_reloc (abfd,
618 reloc_entry,
619 symbol,
620 data,
621 input_section,
622 output_bfd,
623 error_message)
624 bfd *abfd ATTRIBUTE_UNUSED;
625 arelent *reloc_entry;
626 asymbol *symbol;
627 PTR data;
628 asection *input_section;
629 bfd *output_bfd;
630 char **error_message ATTRIBUTE_UNUSED;
631{
632 bfd_reloc_status_type ret;
633 bfd_vma relocation;
634 struct mips_hi *n;
635
636 /* If we're relocating, and this an external symbol, we don't want
637 to change anything. */
638 if (output_bfd != (bfd *) NULL
639 && (symbol->flags & BSF_SECTION_SYM) == 0
640 && reloc_entry->addend == 0)
641 {
642 reloc_entry->address += input_section->output_offset;
643 return bfd_reloc_ok;
644 }
645
646 ret = bfd_reloc_ok;
647 if (bfd_is_und_section (symbol->section)
648 && output_bfd == (bfd *) NULL)
649 ret = bfd_reloc_undefined;
650
651 if (bfd_is_com_section (symbol->section))
652 relocation = 0;
653 else
654 relocation = symbol->value;
655
656 relocation += symbol->section->output_section->vma;
657 relocation += symbol->section->output_offset;
658 relocation += reloc_entry->addend;
659
660 if (reloc_entry->address > input_section->_cooked_size)
661 return bfd_reloc_outofrange;
662
663 /* Save the information, and let REFLO do the actual relocation. */
664 n = (struct mips_hi *) bfd_malloc ((bfd_size_type) sizeof *n);
665 if (n == NULL)
666 return bfd_reloc_outofrange;
667 n->addr = (bfd_byte *) data + reloc_entry->address;
668 n->addend = relocation;
669 n->next = mips_refhi_list;
670 mips_refhi_list = n;
671
672 if (output_bfd != (bfd *) NULL)
673 reloc_entry->address += input_section->output_offset;
674
675 return ret;
676}
677
678/* Do a REFLO relocation. This is a straightforward 16 bit inplace
679 relocation; this function exists in order to do the REFHI
680 relocation described above. */
681
682static bfd_reloc_status_type
683mips_reflo_reloc (abfd,
684 reloc_entry,
685 symbol,
686 data,
687 input_section,
688 output_bfd,
689 error_message)
690 bfd *abfd;
691 arelent *reloc_entry;
692 asymbol *symbol;
693 PTR data;
694 asection *input_section;
695 bfd *output_bfd;
696 char **error_message;
697{
698 if (mips_refhi_list != NULL)
699 {
700 struct mips_hi *l;
701
702 l = mips_refhi_list;
703 while (l != NULL)
704 {
705 unsigned long insn;
706 unsigned long val;
707 unsigned long vallo;
708 struct mips_hi *next;
709
710 /* Do the REFHI relocation. Note that we actually don't
711 need to know anything about the REFLO itself, except
712 where to find the low 16 bits of the addend needed by the
713 REFHI. */
714 insn = bfd_get_32 (abfd, l->addr);
715 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
716 & 0xffff);
717 val = ((insn & 0xffff) << 16) + vallo;
718 val += l->addend;
719
720 /* The low order 16 bits are always treated as a signed
721 value. Therefore, a negative value in the low order bits
722 requires an adjustment in the high order bits. We need
723 to make this adjustment in two ways: once for the bits we
724 took from the data, and once for the bits we are putting
725 back in to the data. */
726 if ((vallo & 0x8000) != 0)
727 val -= 0x10000;
728 if ((val & 0x8000) != 0)
729 val += 0x10000;
730
731 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
732 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
733
734 next = l->next;
735 free (l);
736 l = next;
737 }
738
739 mips_refhi_list = NULL;
740 }
741
742 /* Now do the REFLO reloc in the usual way. */
743 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
744 input_section, output_bfd, error_message);
745}
746
747/* Do a GPREL relocation. This is a 16 bit value which must become
748 the offset from the gp register. */
749
750static bfd_reloc_status_type
751mips_gprel_reloc (abfd,
752 reloc_entry,
753 symbol,
754 data,
755 input_section,
756 output_bfd,
757 error_message)
758 bfd *abfd;
759 arelent *reloc_entry;
760 asymbol *symbol;
761 PTR data;
762 asection *input_section;
763 bfd *output_bfd;
764 char **error_message;
765{
766 bfd_boolean relocateable;
767 bfd_vma gp;
768 bfd_vma relocation;
769 unsigned long val;
770 unsigned long insn;
771
772 /* If we're relocating, and this is an external symbol with no
773 addend, we don't want to change anything. We will only have an
774 addend if this is a newly created reloc, not read from an ECOFF
775 file. */
776 if (output_bfd != (bfd *) NULL
777 && (symbol->flags & BSF_SECTION_SYM) == 0
778 && reloc_entry->addend == 0)
779 {
780 reloc_entry->address += input_section->output_offset;
781 return bfd_reloc_ok;
782 }
783
784 if (output_bfd != (bfd *) NULL)
785 relocateable = TRUE;
786 else
787 {
788 relocateable = FALSE;
789 output_bfd = symbol->section->output_section->owner;
790 }
791
792 if (bfd_is_und_section (symbol->section) && ! relocateable)
793 return bfd_reloc_undefined;
794
795 /* We have to figure out the gp value, so that we can adjust the
796 symbol value correctly. We look up the symbol _gp in the output
797 BFD. If we can't find it, we're stuck. We cache it in the ECOFF
798 target data. We don't need to adjust the symbol value for an
799 external symbol if we are producing relocateable output. */
800 gp = _bfd_get_gp_value (output_bfd);
801 if (gp == 0
802 && (! relocateable
803 || (symbol->flags & BSF_SECTION_SYM) != 0))
804 {
805 if (relocateable)
806 {
807 /* Make up a value. */
808 gp = symbol->section->output_section->vma + 0x4000;
809 _bfd_set_gp_value (output_bfd, gp);
810 }
811 else
812 {
813 unsigned int count;
814 asymbol **sym;
815 unsigned int i;
816
817 count = bfd_get_symcount (output_bfd);
818 sym = bfd_get_outsymbols (output_bfd);
819
820 if (sym == (asymbol **) NULL)
821 i = count;
822 else
823 {
824 for (i = 0; i < count; i++, sym++)
825 {
826 register const char *name;
827
828 name = bfd_asymbol_name (*sym);
829 if (*name == '_' && strcmp (name, "_gp") == 0)
830 {
831 gp = bfd_asymbol_value (*sym);
832 _bfd_set_gp_value (output_bfd, gp);
833 break;
834 }
835 }
836 }
837
838 if (i >= count)
839 {
840 /* Only get the error once. */
841 gp = 4;
842 _bfd_set_gp_value (output_bfd, gp);
843 *error_message =
844 (char *) _("GP relative relocation when _gp not defined");
845 return bfd_reloc_dangerous;
846 }
847 }
848 }
849
850 if (bfd_is_com_section (symbol->section))
851 relocation = 0;
852 else
853 relocation = symbol->value;
854
855 relocation += symbol->section->output_section->vma;
856 relocation += symbol->section->output_offset;
857
858 if (reloc_entry->address > input_section->_cooked_size)
859 return bfd_reloc_outofrange;
860
861 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
862
863 /* Set val to the offset into the section or symbol. */
864 val = ((insn & 0xffff) + reloc_entry->addend) & 0xffff;
865 if (val & 0x8000)
866 val -= 0x10000;
867
868 /* Adjust val for the final section location and GP value. If we
869 are producing relocateable output, we don't want to do this for
870 an external symbol. */
871 if (! relocateable
872 || (symbol->flags & BSF_SECTION_SYM) != 0)
873 val += relocation - gp;
874
875 insn = (insn &~ (unsigned) 0xffff) | (val & 0xffff);
876 bfd_put_32 (abfd, (bfd_vma) insn, (bfd_byte *) data + reloc_entry->address);
877
878 if (relocateable)
879 reloc_entry->address += input_section->output_offset;
880
881 /* Make sure it fit in 16 bits. */
882 if ((long) val >= 0x8000 || (long) val < -0x8000)
883 return bfd_reloc_overflow;
884
885 return bfd_reloc_ok;
886}
887
888/* Do a RELHI relocation. We do this in conjunction with a RELLO
889 reloc, just as REFHI and REFLO are done together. RELHI and RELLO
890 are Cygnus extensions used when generating position independent
891 code for embedded systems. */
892
893/* FIXME: This should not be a static variable. */
894
895static struct mips_hi *mips_relhi_list;
896
897static bfd_reloc_status_type
898mips_relhi_reloc (abfd,
899 reloc_entry,
900 symbol,
901 data,
902 input_section,
903 output_bfd,
904 error_message)
905 bfd *abfd ATTRIBUTE_UNUSED;
906 arelent *reloc_entry;
907 asymbol *symbol;
908 PTR data;
909 asection *input_section;
910 bfd *output_bfd;
911 char **error_message ATTRIBUTE_UNUSED;
912{
913 bfd_reloc_status_type ret;
914 bfd_vma relocation;
915 struct mips_hi *n;
916
917 /* If this is a reloc against a section symbol, then it is correct
918 in the object file. The only time we want to change this case is
919 when we are relaxing, and that is handled entirely by
920 mips_relocate_section and never calls this function. */
921 if ((symbol->flags & BSF_SECTION_SYM) != 0)
922 {
923 if (output_bfd != (bfd *) NULL)
924 reloc_entry->address += input_section->output_offset;
925 return bfd_reloc_ok;
926 }
927
928 /* This is an external symbol. If we're relocating, we don't want
929 to change anything. */
930 if (output_bfd != (bfd *) NULL)
931 {
932 reloc_entry->address += input_section->output_offset;
933 return bfd_reloc_ok;
934 }
935
936 ret = bfd_reloc_ok;
937 if (bfd_is_und_section (symbol->section)
938 && output_bfd == (bfd *) NULL)
939 ret = bfd_reloc_undefined;
940
941 if (bfd_is_com_section (symbol->section))
942 relocation = 0;
943 else
944 relocation = symbol->value;
945
946 relocation += symbol->section->output_section->vma;
947 relocation += symbol->section->output_offset;
948 relocation += reloc_entry->addend;
949
950 if (reloc_entry->address > input_section->_cooked_size)
951 return bfd_reloc_outofrange;
952
953 /* Save the information, and let RELLO do the actual relocation. */
954 n = (struct mips_hi *) bfd_malloc ((bfd_size_type) sizeof *n);
955 if (n == NULL)
956 return bfd_reloc_outofrange;
957 n->addr = (bfd_byte *) data + reloc_entry->address;
958 n->addend = relocation;
959 n->next = mips_relhi_list;
960 mips_relhi_list = n;
961
962 if (output_bfd != (bfd *) NULL)
963 reloc_entry->address += input_section->output_offset;
964
965 return ret;
966}
967
968/* Do a RELLO relocation. This is a straightforward 16 bit PC
969 relative relocation; this function exists in order to do the RELHI
970 relocation described above. */
971
972static bfd_reloc_status_type
973mips_rello_reloc (abfd,
974 reloc_entry,
975 symbol,
976 data,
977 input_section,
978 output_bfd,
979 error_message)
980 bfd *abfd;
981 arelent *reloc_entry;
982 asymbol *symbol;
983 PTR data;
984 asection *input_section;
985 bfd *output_bfd;
986 char **error_message;
987{
988 if (mips_relhi_list != NULL)
989 {
990 struct mips_hi *l;
991
992 l = mips_relhi_list;
993 while (l != NULL)
994 {
995 unsigned long insn;
996 unsigned long val;
997 unsigned long vallo;
998 struct mips_hi *next;
999
1000 /* Do the RELHI relocation. Note that we actually don't
1001 need to know anything about the RELLO itself, except
1002 where to find the low 16 bits of the addend needed by the
1003 RELHI. */
1004 insn = bfd_get_32 (abfd, l->addr);
1005 vallo = (bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address)
1006 & 0xffff);
1007 val = ((insn & 0xffff) << 16) + vallo;
1008 val += l->addend;
1009
1010 /* If the symbol is defined, make val PC relative. If the
1011 symbol is not defined we don't want to do this, because
1012 we don't want the value in the object file to incorporate
1013 the address of the reloc. */
1014 if (! bfd_is_und_section (bfd_get_section (symbol))
1015 && ! bfd_is_com_section (bfd_get_section (symbol)))
1016 val -= (input_section->output_section->vma
1017 + input_section->output_offset
1018 + reloc_entry->address);
1019
1020 /* The low order 16 bits are always treated as a signed
1021 value. Therefore, a negative value in the low order bits
1022 requires an adjustment in the high order bits. We need
1023 to make this adjustment in two ways: once for the bits we
1024 took from the data, and once for the bits we are putting
1025 back in to the data. */
1026 if ((vallo & 0x8000) != 0)
1027 val -= 0x10000;
1028 if ((val & 0x8000) != 0)
1029 val += 0x10000;
1030
1031 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
1032 bfd_put_32 (abfd, (bfd_vma) insn, l->addr);
1033
1034 next = l->next;
1035 free (l);
1036 l = next;
1037 }
1038
1039 mips_relhi_list = NULL;
1040 }
1041
1042 /* If this is a reloc against a section symbol, then it is correct
1043 in the object file. The only time we want to change this case is
1044 when we are relaxing, and that is handled entirely by
1045 mips_relocate_section and never calls this function. */
1046 if ((symbol->flags & BSF_SECTION_SYM) != 0)
1047 {
1048 if (output_bfd != (bfd *) NULL)
1049 reloc_entry->address += input_section->output_offset;
1050 return bfd_reloc_ok;
1051 }
1052
1053 /* bfd_perform_relocation does not handle pcrel_offset relocations
1054 correctly when generating a relocateable file, so handle them
1055 directly here. */
1056 if (output_bfd != (bfd *) NULL)
1057 {
1058 reloc_entry->address += input_section->output_offset;
1059 return bfd_reloc_ok;
1060 }
1061
1062 /* Now do the RELLO reloc in the usual way. */
1063 return mips_generic_reloc (abfd, reloc_entry, symbol, data,
1064 input_section, output_bfd, error_message);
1065}
1066
1067/* This is the special function for the MIPS_R_SWITCH reloc. This
1068 special reloc is normally correct in the object file, and only
1069 requires special handling when relaxing. We don't want
1070 bfd_perform_relocation to tamper with it at all. */
1071
1072static bfd_reloc_status_type
1073mips_switch_reloc (abfd,
1074 reloc_entry,
1075 symbol,
1076 data,
1077 input_section,
1078 output_bfd,
1079 error_message)
1080 bfd *abfd ATTRIBUTE_UNUSED;
1081 arelent *reloc_entry ATTRIBUTE_UNUSED;
1082 asymbol *symbol ATTRIBUTE_UNUSED;
1083 PTR data ATTRIBUTE_UNUSED;
1084 asection *input_section ATTRIBUTE_UNUSED;
1085 bfd *output_bfd ATTRIBUTE_UNUSED;
1086 char **error_message ATTRIBUTE_UNUSED;
1087{
1088 return bfd_reloc_ok;
1089}
1090
1091/* Get the howto structure for a generic reloc type. */
1092
1093static reloc_howto_type *
1094mips_bfd_reloc_type_lookup (abfd, code)
1095 bfd *abfd ATTRIBUTE_UNUSED;
1096 bfd_reloc_code_real_type code;
1097{
1098 int mips_type;
1099
1100 switch (code)
1101 {
1102 case BFD_RELOC_16:
1103 mips_type = MIPS_R_REFHALF;
1104 break;
1105 case BFD_RELOC_32:
1106 case BFD_RELOC_CTOR:
1107 mips_type = MIPS_R_REFWORD;
1108 break;
1109 case BFD_RELOC_MIPS_JMP:
1110 mips_type = MIPS_R_JMPADDR;
1111 break;
1112 case BFD_RELOC_HI16_S:
1113 mips_type = MIPS_R_REFHI;
1114 break;
1115 case BFD_RELOC_LO16:
1116 mips_type = MIPS_R_REFLO;
1117 break;
1118 case BFD_RELOC_GPREL16:
1119 mips_type = MIPS_R_GPREL;
1120 break;
1121 case BFD_RELOC_MIPS_LITERAL:
1122 mips_type = MIPS_R_LITERAL;
1123 break;
1124 case BFD_RELOC_16_PCREL_S2:
1125 mips_type = MIPS_R_PCREL16;
1126 break;
1127 case BFD_RELOC_PCREL_HI16_S:
1128 mips_type = MIPS_R_RELHI;
1129 break;
1130 case BFD_RELOC_PCREL_LO16:
1131 mips_type = MIPS_R_RELLO;
1132 break;
1133 case BFD_RELOC_GPREL32:
1134 mips_type = MIPS_R_SWITCH;
1135 break;
1136 default:
1137 return (reloc_howto_type *) NULL;
1138 }
1139
1140 return &mips_howto_table[mips_type];
1141}
1142
1143
1144/* A helper routine for mips_relocate_section which handles the REFHI
1145 and RELHI relocations. The REFHI relocation must be followed by a
1146 REFLO relocation (and RELHI by a RELLO), and the addend used is
1147 formed from the addends of both instructions. */
1148
1149static void
1150mips_relocate_hi (refhi, reflo, input_bfd, input_section, contents, adjust,
1151 relocation, pcrel)
1152 struct internal_reloc *refhi;
1153 struct internal_reloc *reflo;
1154 bfd *input_bfd;
1155 asection *input_section;
1156 bfd_byte *contents;
1157 size_t adjust;
1158 bfd_vma relocation;
1159 bfd_boolean pcrel;
1160{
1161 unsigned long insn;
1162 unsigned long val;
1163 unsigned long vallo;
1164
1165 if (refhi == NULL)
1166 return;
1167
1168 insn = bfd_get_32 (input_bfd,
1169 contents + adjust + refhi->r_vaddr - input_section->vma);
1170 if (reflo == NULL)
1171 vallo = 0;
1172 else
1173 vallo = (bfd_get_32 (input_bfd,
1174 contents + adjust + reflo->r_vaddr - input_section->vma)
1175 & 0xffff);
1176
1177 val = ((insn & 0xffff) << 16) + vallo;
1178 val += relocation;
1179
1180 /* The low order 16 bits are always treated as a signed value.
1181 Therefore, a negative value in the low order bits requires an
1182 adjustment in the high order bits. We need to make this
1183 adjustment in two ways: once for the bits we took from the data,
1184 and once for the bits we are putting back in to the data. */
1185 if ((vallo & 0x8000) != 0)
1186 val -= 0x10000;
1187
1188 if (pcrel)
1189 val -= (input_section->output_section->vma
1190 + input_section->output_offset
1191 + (reflo->r_vaddr - input_section->vma + adjust));
1192
1193 if ((val & 0x8000) != 0)
1194 val += 0x10000;
1195
1196 insn = (insn &~ (unsigned) 0xffff) | ((val >> 16) & 0xffff);
1197 bfd_put_32 (input_bfd, (bfd_vma) insn,
1198 contents + adjust + refhi->r_vaddr - input_section->vma);
1199}
1200
1201/* Relocate a section while linking a MIPS ECOFF file. */
1202
1203static bfd_boolean
1204mips_relocate_section (output_bfd, info, input_bfd, input_section,
1205 contents, external_relocs)
1206 bfd *output_bfd;
1207 struct bfd_link_info *info;
1208 bfd *input_bfd;
1209 asection *input_section;
1210 bfd_byte *contents;
1211 PTR external_relocs;
1212{
1213 asection **symndx_to_section;
1214 struct ecoff_link_hash_entry **sym_hashes;
1215 bfd_vma gp;
1216 bfd_boolean gp_undefined;
1217 size_t adjust;
1218 long *offsets;
1219 struct external_reloc *ext_rel;
1220 struct external_reloc *ext_rel_end;
1221 unsigned int i;
1222 bfd_boolean got_lo;
1223 struct internal_reloc lo_int_rel;
1224 bfd_size_type amt;
1225
1226 BFD_ASSERT (input_bfd->xvec->byteorder
1227 == output_bfd->xvec->byteorder);
1228
1229 /* We keep a table mapping the symndx found in an internal reloc to
1230 the appropriate section. This is faster than looking up the
1231 section by name each time. */
1232 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1233 if (symndx_to_section == (asection **) NULL)
1234 {
1235 amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1236 symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1237 if (!symndx_to_section)
1238 return FALSE;
1239
1240 symndx_to_section[RELOC_SECTION_NONE] = NULL;
1241 symndx_to_section[RELOC_SECTION_TEXT] =
1242 bfd_get_section_by_name (input_bfd, ".text");
1243 symndx_to_section[RELOC_SECTION_RDATA] =
1244 bfd_get_section_by_name (input_bfd, ".rdata");
1245 symndx_to_section[RELOC_SECTION_DATA] =
1246 bfd_get_section_by_name (input_bfd, ".data");
1247 symndx_to_section[RELOC_SECTION_SDATA] =
1248 bfd_get_section_by_name (input_bfd, ".sdata");
1249 symndx_to_section[RELOC_SECTION_SBSS] =
1250 bfd_get_section_by_name (input_bfd, ".sbss");
1251 symndx_to_section[RELOC_SECTION_BSS] =
1252 bfd_get_section_by_name (input_bfd, ".bss");
1253 symndx_to_section[RELOC_SECTION_INIT] =
1254 bfd_get_section_by_name (input_bfd, ".init");
1255 symndx_to_section[RELOC_SECTION_LIT8] =
1256 bfd_get_section_by_name (input_bfd, ".lit8");
1257 symndx_to_section[RELOC_SECTION_LIT4] =
1258 bfd_get_section_by_name (input_bfd, ".lit4");
1259 symndx_to_section[RELOC_SECTION_XDATA] = NULL;
1260 symndx_to_section[RELOC_SECTION_PDATA] = NULL;
1261 symndx_to_section[RELOC_SECTION_FINI] =
1262 bfd_get_section_by_name (input_bfd, ".fini");
1263 symndx_to_section[RELOC_SECTION_LITA] = NULL;
1264 symndx_to_section[RELOC_SECTION_ABS] = NULL;
1265
1266 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1267 }
1268
1269 sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1270
1271 gp = _bfd_get_gp_value (output_bfd);
1272 if (gp == 0)
1273 gp_undefined = TRUE;
1274 else
1275 gp_undefined = FALSE;
1276
1277 got_lo = FALSE;
1278
1279 adjust = 0;
1280
1281 if (ecoff_section_data (input_bfd, input_section) == NULL)
1282 offsets = NULL;
1283 else
1284 offsets = ecoff_section_data (input_bfd, input_section)->offsets;
1285
1286 ext_rel = (struct external_reloc *) external_relocs;
1287 ext_rel_end = ext_rel + input_section->reloc_count;
1288 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1289 {
1290 struct internal_reloc int_rel;
1291 bfd_boolean use_lo = FALSE;
1292 bfd_vma addend;
1293 reloc_howto_type *howto;
1294 struct ecoff_link_hash_entry *h = NULL;
1295 asection *s = NULL;
1296 bfd_vma relocation;
1297 bfd_reloc_status_type r;
1298
1299 if (! got_lo)
1300 mips_ecoff_swap_reloc_in (input_bfd, (PTR) ext_rel, &int_rel);
1301 else
1302 {
1303 int_rel = lo_int_rel;
1304 got_lo = FALSE;
1305 }
1306
1307 BFD_ASSERT (int_rel.r_type
1308 < sizeof mips_howto_table / sizeof mips_howto_table[0]);
1309
1310 /* The REFHI and RELHI relocs requires special handling. they
1311 must be followed by a REFLO or RELLO reloc, respectively, and
1312 the addend is formed from both relocs. */
1313 if (int_rel.r_type == MIPS_R_REFHI
1314 || int_rel.r_type == MIPS_R_RELHI)
1315 {
1316 struct external_reloc *lo_ext_rel;
1317
1318 /* As a GNU extension, permit an arbitrary number of REFHI
1319 or RELHI relocs before the REFLO or RELLO reloc. This
1320 permits gcc to emit the HI and LO relocs itself. */
1321 for (lo_ext_rel = ext_rel + 1;
1322 lo_ext_rel < ext_rel_end;
1323 lo_ext_rel++)
1324 {
1325 mips_ecoff_swap_reloc_in (input_bfd, (PTR) lo_ext_rel,
1326 &lo_int_rel);
1327 if (lo_int_rel.r_type != int_rel.r_type)
1328 break;
1329 }
1330
1331 if (lo_ext_rel < ext_rel_end
1332 && (lo_int_rel.r_type
1333 == (int_rel.r_type == MIPS_R_REFHI
1334 ? MIPS_R_REFLO
1335 : MIPS_R_RELLO))
1336 && int_rel.r_extern == lo_int_rel.r_extern
1337 && int_rel.r_symndx == lo_int_rel.r_symndx)
1338 {
1339 use_lo = TRUE;
1340 if (lo_ext_rel == ext_rel + 1)
1341 got_lo = TRUE;
1342 }
1343 }
1344
1345 howto = &mips_howto_table[int_rel.r_type];
1346
1347 /* The SWITCH reloc must be handled specially. This reloc is
1348 marks the location of a difference between two portions of an
1349 object file. The symbol index does not reference a symbol,
1350 but is actually the offset from the reloc to the subtrahend
1351 of the difference. This reloc is correct in the object file,
1352 and needs no further adjustment, unless we are relaxing. If
1353 we are relaxing, we may have to add in an offset. Since no
1354 symbols are involved in this reloc, we handle it completely
1355 here. */
1356 if (int_rel.r_type == MIPS_R_SWITCH)
1357 {
1358 if (offsets != NULL
1359 && offsets[i] != 0)
1360 {
1361 r = _bfd_relocate_contents (howto, input_bfd,
1362 (bfd_vma) offsets[i],
1363 (contents
1364 + adjust
1365 + int_rel.r_vaddr
1366 - input_section->vma));
1367 BFD_ASSERT (r == bfd_reloc_ok);
1368 }
1369
1370 continue;
1371 }
1372
1373 if (int_rel.r_extern)
1374 {
1375 h = sym_hashes[int_rel.r_symndx];
1376 /* If h is NULL, that means that there is a reloc against an
1377 external symbol which we thought was just a debugging
1378 symbol. This should not happen. */
1379 if (h == (struct ecoff_link_hash_entry *) NULL)
1380 abort ();
1381 }
1382 else
1383 {
1384 if (int_rel.r_symndx < 0 || int_rel.r_symndx >= NUM_RELOC_SECTIONS)
1385 s = NULL;
1386 else
1387 s = symndx_to_section[int_rel.r_symndx];
1388
1389 if (s == (asection *) NULL)
1390 abort ();
1391 }
1392
1393 /* The GPREL reloc uses an addend: the difference in the GP
1394 values. */
1395 if (int_rel.r_type != MIPS_R_GPREL
1396 && int_rel.r_type != MIPS_R_LITERAL)
1397 addend = 0;
1398 else
1399 {
1400 if (gp_undefined)
1401 {
1402 if (! ((*info->callbacks->reloc_dangerous)
1403 (info, _("GP relative relocation used when GP not defined"),
1404 input_bfd, input_section,
1405 int_rel.r_vaddr - input_section->vma)))
1406 return FALSE;
1407 /* Only give the error once per link. */
1408 gp = 4;
1409 _bfd_set_gp_value (output_bfd, gp);
1410 gp_undefined = FALSE;
1411 }
1412 if (! int_rel.r_extern)
1413 {
1414 /* This is a relocation against a section. The current
1415 addend in the instruction is the difference between
1416 INPUT_SECTION->vma and the GP value of INPUT_BFD. We
1417 must change this to be the difference between the
1418 final definition (which will end up in RELOCATION)
1419 and the GP value of OUTPUT_BFD (which is in GP). */
1420 addend = ecoff_data (input_bfd)->gp - gp;
1421 }
1422 else if (! info->relocateable
1423 || h->root.type == bfd_link_hash_defined
1424 || h->root.type == bfd_link_hash_defweak)
1425 {
1426 /* This is a relocation against a defined symbol. The
1427 current addend in the instruction is simply the
1428 desired offset into the symbol (normally zero). We
1429 are going to change this into a relocation against a
1430 defined symbol, so we want the instruction to hold
1431 the difference between the final definition of the
1432 symbol (which will end up in RELOCATION) and the GP
1433 value of OUTPUT_BFD (which is in GP). */
1434 addend = - gp;
1435 }
1436 else
1437 {
1438 /* This is a relocation against an undefined or common
1439 symbol. The current addend in the instruction is
1440 simply the desired offset into the symbol (normally
1441 zero). We are generating relocateable output, and we
1442 aren't going to define this symbol, so we just leave
1443 the instruction alone. */
1444 addend = 0;
1445 }
1446 }
1447
1448 /* If we are relaxing, mips_relax_section may have set
1449 offsets[i] to some value. A value of 1 means we must expand
1450 a PC relative branch into a multi-instruction of sequence,
1451 and any other value is an addend. */
1452 if (offsets != NULL
1453 && offsets[i] != 0)
1454 {
1455 BFD_ASSERT (! info->relocateable);
1456 BFD_ASSERT (int_rel.r_type == MIPS_R_PCREL16
1457 || int_rel.r_type == MIPS_R_RELHI
1458 || int_rel.r_type == MIPS_R_RELLO);
1459 if (offsets[i] != 1)
1460 addend += offsets[i];
1461 else
1462 {
1463 bfd_byte *here;
1464
1465 BFD_ASSERT (int_rel.r_extern
1466 && int_rel.r_type == MIPS_R_PCREL16);
1467
1468 /* Move the rest of the instructions up. */
1469 here = (contents
1470 + adjust
1471 + int_rel.r_vaddr
1472 - input_section->vma);
1473 memmove (here + PCREL16_EXPANSION_ADJUSTMENT, here,
1474 (size_t) (input_section->_raw_size
1475 - (int_rel.r_vaddr - input_section->vma)));
1476
1477 /* Generate the new instructions. */
1478 if (! mips_relax_pcrel16 (info, input_bfd, input_section,
1479 h, here,
1480 (input_section->output_section->vma
1481 + input_section->output_offset
1482 + (int_rel.r_vaddr
1483 - input_section->vma)
1484 + adjust)))
1485 return FALSE;
1486
1487 /* We must adjust everything else up a notch. */
1488 adjust += PCREL16_EXPANSION_ADJUSTMENT;
1489
1490 /* mips_relax_pcrel16 handles all the details of this
1491 relocation. */
1492 continue;
1493 }
1494 }
1495
1496 /* If we are relaxing, and this is a reloc against the .text
1497 segment, we may need to adjust it if some branches have been
1498 expanded. The reloc types which are likely to occur in the
1499 .text section are handled efficiently by mips_relax_section,
1500 and thus do not need to be handled here. */
1501 if (ecoff_data (input_bfd)->debug_info.adjust != NULL
1502 && ! int_rel.r_extern
1503 && int_rel.r_symndx == RELOC_SECTION_TEXT
1504 && (strcmp (bfd_get_section_name (input_bfd, input_section),
1505 ".text") != 0
1506 || (int_rel.r_type != MIPS_R_PCREL16
1507 && int_rel.r_type != MIPS_R_SWITCH
1508 && int_rel.r_type != MIPS_R_RELHI
1509 && int_rel.r_type != MIPS_R_RELLO)))
1510 {
1511 bfd_vma adr;
1512 struct ecoff_value_adjust *a;
1513
1514 /* We need to get the addend so that we know whether we need
1515 to adjust the address. */
1516 BFD_ASSERT (int_rel.r_type == MIPS_R_REFWORD);
1517
1518 adr = bfd_get_32 (input_bfd,
1519 (contents
1520 + adjust
1521 + int_rel.r_vaddr
1522 - input_section->vma));
1523
1524 for (a = ecoff_data (input_bfd)->debug_info.adjust;
1525 a != (struct ecoff_value_adjust *) NULL;
1526 a = a->next)
1527 {
1528 if (adr >= a->start && adr < a->end)
1529 addend += a->adjust;
1530 }
1531 }
1532
1533 if (info->relocateable)
1534 {
1535 /* We are generating relocateable output, and must convert
1536 the existing reloc. */
1537 if (int_rel.r_extern)
1538 {
1539 if ((h->root.type == bfd_link_hash_defined
1540 || h->root.type == bfd_link_hash_defweak)
1541 && ! bfd_is_abs_section (h->root.u.def.section))
1542 {
1543 const char *name;
1544
1545 /* This symbol is defined in the output. Convert
1546 the reloc from being against the symbol to being
1547 against the section. */
1548
1549 /* Clear the r_extern bit. */
1550 int_rel.r_extern = 0;
1551
1552 /* Compute a new r_symndx value. */
1553 s = h->root.u.def.section;
1554 name = bfd_get_section_name (output_bfd,
1555 s->output_section);
1556
1557 int_rel.r_symndx = -1;
1558 switch (name[1])
1559 {
1560 case 'b':
1561 if (strcmp (name, ".bss") == 0)
1562 int_rel.r_symndx = RELOC_SECTION_BSS;
1563 break;
1564 case 'd':
1565 if (strcmp (name, ".data") == 0)
1566 int_rel.r_symndx = RELOC_SECTION_DATA;
1567 break;
1568 case 'f':
1569 if (strcmp (name, ".fini") == 0)
1570 int_rel.r_symndx = RELOC_SECTION_FINI;
1571 break;
1572 case 'i':
1573 if (strcmp (name, ".init") == 0)
1574 int_rel.r_symndx = RELOC_SECTION_INIT;
1575 break;
1576 case 'l':
1577 if (strcmp (name, ".lit8") == 0)
1578 int_rel.r_symndx = RELOC_SECTION_LIT8;
1579 else if (strcmp (name, ".lit4") == 0)
1580 int_rel.r_symndx = RELOC_SECTION_LIT4;
1581 break;
1582 case 'r':
1583 if (strcmp (name, ".rdata") == 0)
1584 int_rel.r_symndx = RELOC_SECTION_RDATA;
1585 break;
1586 case 's':
1587 if (strcmp (name, ".sdata") == 0)
1588 int_rel.r_symndx = RELOC_SECTION_SDATA;
1589 else if (strcmp (name, ".sbss") == 0)
1590 int_rel.r_symndx = RELOC_SECTION_SBSS;
1591 break;
1592 case 't':
1593 if (strcmp (name, ".text") == 0)
1594 int_rel.r_symndx = RELOC_SECTION_TEXT;
1595 break;
1596 }
1597
1598 if (int_rel.r_symndx == -1)
1599 abort ();
1600
1601 /* Add the section VMA and the symbol value. */
1602 relocation = (h->root.u.def.value
1603 + s->output_section->vma
1604 + s->output_offset);
1605
1606 /* For a PC relative relocation, the object file
1607 currently holds just the addend. We must adjust
1608 by the address to get the right value. */
1609 if (howto->pc_relative)
1610 {
1611 relocation -= int_rel.r_vaddr - input_section->vma;
1612
1613 /* If we are converting a RELHI or RELLO reloc
1614 from being against an external symbol to
1615 being against a section, we must put a
1616 special value into the r_offset field. This
1617 value is the old addend. The r_offset for
1618 both the RELHI and RELLO relocs are the same,
1619 and we set both when we see RELHI. */
1620 if (int_rel.r_type == MIPS_R_RELHI)
1621 {
1622 long addhi, addlo;
1623
1624 addhi = bfd_get_32 (input_bfd,
1625 (contents
1626 + adjust
1627 + int_rel.r_vaddr
1628 - input_section->vma));
1629 addhi &= 0xffff;
1630 if (addhi & 0x8000)
1631 addhi -= 0x10000;
1632 addhi <<= 16;
1633
1634 if (! use_lo)
1635 addlo = 0;
1636 else
1637 {
1638 addlo = bfd_get_32 (input_bfd,
1639 (contents
1640 + adjust
1641 + lo_int_rel.r_vaddr
1642 - input_section->vma));
1643 addlo &= 0xffff;
1644 if (addlo & 0x8000)
1645 addlo -= 0x10000;
1646
1647 lo_int_rel.r_offset = addhi + addlo;
1648 }
1649
1650 int_rel.r_offset = addhi + addlo;
1651 }
1652 }
1653
1654 h = NULL;
1655 }
1656 else
1657 {
1658 /* Change the symndx value to the right one for the
1659 output BFD. */
1660 int_rel.r_symndx = h->indx;
1661 if (int_rel.r_symndx == -1)
1662 {
1663 /* This symbol is not being written out. */
1664 if (! ((*info->callbacks->unattached_reloc)
1665 (info, h->root.root.string, input_bfd,
1666 input_section,
1667 int_rel.r_vaddr - input_section->vma)))
1668 return FALSE;
1669 int_rel.r_symndx = 0;
1670 }
1671 relocation = 0;
1672 }
1673 }
1674 else
1675 {
1676 /* This is a relocation against a section. Adjust the
1677 value by the amount the section moved. */
1678 relocation = (s->output_section->vma
1679 + s->output_offset
1680 - s->vma);
1681 }
1682
1683 relocation += addend;
1684 addend = 0;
1685
1686 /* Adjust a PC relative relocation by removing the reference
1687 to the original address in the section and including the
1688 reference to the new address. However, external RELHI
1689 and RELLO relocs are PC relative, but don't include any
1690 reference to the address. The addend is merely an
1691 addend. */
1692 if (howto->pc_relative
1693 && (! int_rel.r_extern
1694 || (int_rel.r_type != MIPS_R_RELHI
1695 && int_rel.r_type != MIPS_R_RELLO)))
1696 relocation -= (input_section->output_section->vma
1697 + input_section->output_offset
1698 - input_section->vma);
1699
1700 /* Adjust the contents. */
1701 if (relocation == 0)
1702 r = bfd_reloc_ok;
1703 else
1704 {
1705 if (int_rel.r_type != MIPS_R_REFHI
1706 && int_rel.r_type != MIPS_R_RELHI)
1707 r = _bfd_relocate_contents (howto, input_bfd, relocation,
1708 (contents
1709 + adjust
1710 + int_rel.r_vaddr
1711 - input_section->vma));
1712 else
1713 {
1714 mips_relocate_hi (&int_rel,
1715 use_lo ? &lo_int_rel : NULL,
1716 input_bfd, input_section, contents,
1717 adjust, relocation,
1718 int_rel.r_type == MIPS_R_RELHI);
1719 r = bfd_reloc_ok;
1720 }
1721 }
1722
1723 /* Adjust the reloc address. */
1724 int_rel.r_vaddr += (input_section->output_section->vma
1725 + input_section->output_offset
1726 - input_section->vma);
1727
1728 /* Save the changed reloc information. */
1729 mips_ecoff_swap_reloc_out (input_bfd, &int_rel, (PTR) ext_rel);
1730 }
1731 else
1732 {
1733 /* We are producing a final executable. */
1734 if (int_rel.r_extern)
1735 {
1736 /* This is a reloc against a symbol. */
1737 if (h->root.type == bfd_link_hash_defined
1738 || h->root.type == bfd_link_hash_defweak)
1739 {
1740 asection *hsec;
1741
1742 hsec = h->root.u.def.section;
1743 relocation = (h->root.u.def.value
1744 + hsec->output_section->vma
1745 + hsec->output_offset);
1746 }
1747 else
1748 {
1749 if (! ((*info->callbacks->undefined_symbol)
1750 (info, h->root.root.string, input_bfd,
1751 input_section,
1752 int_rel.r_vaddr - input_section->vma, TRUE)))
1753 return FALSE;
1754 relocation = 0;
1755 }
1756 }
1757 else
1758 {
1759 /* This is a reloc against a section. */
1760 relocation = (s->output_section->vma
1761 + s->output_offset
1762 - s->vma);
1763
1764 /* A PC relative reloc is already correct in the object
1765 file. Make it look like a pcrel_offset relocation by
1766 adding in the start address. */
1767 if (howto->pc_relative)
1768 {
1769 if (int_rel.r_type != MIPS_R_RELHI || ! use_lo)
1770 relocation += int_rel.r_vaddr + adjust;
1771 else
1772 relocation += lo_int_rel.r_vaddr + adjust;
1773 }
1774 }
1775
1776 if (int_rel.r_type != MIPS_R_REFHI
1777 && int_rel.r_type != MIPS_R_RELHI)
1778 r = _bfd_final_link_relocate (howto,
1779 input_bfd,
1780 input_section,
1781 contents,
1782 (int_rel.r_vaddr
1783 - input_section->vma
1784 + adjust),
1785 relocation,
1786 addend);
1787 else
1788 {
1789 mips_relocate_hi (&int_rel,
1790 use_lo ? &lo_int_rel : NULL,
1791 input_bfd, input_section, contents, adjust,
1792 relocation,
1793 int_rel.r_type == MIPS_R_RELHI);
1794 r = bfd_reloc_ok;
1795 }
1796 }
1797
1798 /* MIPS_R_JMPADDR requires peculiar overflow detection. The
1799 instruction provides a 28 bit address (the two lower bits are
1800 implicit zeroes) which is combined with the upper four bits
1801 of the instruction address. */
1802 if (r == bfd_reloc_ok
1803 && int_rel.r_type == MIPS_R_JMPADDR
1804 && (((relocation
1805 + addend
1806 + (int_rel.r_extern ? 0 : s->vma))
1807 & 0xf0000000)
1808 != ((input_section->output_section->vma
1809 + input_section->output_offset
1810 + (int_rel.r_vaddr - input_section->vma)
1811 + adjust)
1812 & 0xf0000000)))
1813 r = bfd_reloc_overflow;
1814
1815 if (r != bfd_reloc_ok)
1816 {
1817 switch (r)
1818 {
1819 default:
1820 case bfd_reloc_outofrange:
1821 abort ();
1822 case bfd_reloc_overflow:
1823 {
1824 const char *name;
1825
1826 if (int_rel.r_extern)
1827 name = h->root.root.string;
1828 else
1829 name = bfd_section_name (input_bfd, s);
1830 if (! ((*info->callbacks->reloc_overflow)
1831 (info, name, howto->name, (bfd_vma) 0,
1832 input_bfd, input_section,
1833 int_rel.r_vaddr - input_section->vma)))
1834 return FALSE;
1835 }
1836 break;
1837 }
1838 }
1839 }
1840
1841 return TRUE;
1842}
1843
1844
1845/* Read in the relocs for a section. */
1846
1847static bfd_boolean
1848mips_read_relocs (abfd, sec)
1849 bfd *abfd;
1850 asection *sec;
1851{
1852 struct ecoff_section_tdata *section_tdata;
1853 bfd_size_type amt;
1854
1855 section_tdata = ecoff_section_data (abfd, sec);
1856 if (section_tdata == (struct ecoff_section_tdata *) NULL)
1857 {
1858 amt = sizeof (struct ecoff_section_tdata);
1859 sec->used_by_bfd = (PTR) bfd_alloc (abfd, amt);
1860 if (sec->used_by_bfd == NULL)
1861 return FALSE;
1862
1863 section_tdata = ecoff_section_data (abfd, sec);
1864 section_tdata->external_relocs = NULL;
1865 section_tdata->contents = NULL;
1866 section_tdata->offsets = NULL;
1867 }
1868
1869 if (section_tdata->external_relocs == NULL)
1870 {
1871 amt = ecoff_backend (abfd)->external_reloc_size;
1872 amt *= sec->reloc_count;
1873 section_tdata->external_relocs = (PTR) bfd_alloc (abfd, amt);
1874 if (section_tdata->external_relocs == NULL && amt != 0)
1875 return FALSE;
1876
1877 if (bfd_seek (abfd, sec->rel_filepos, SEEK_SET) != 0
1878 || bfd_bread (section_tdata->external_relocs, amt, abfd) != amt)
1879 return FALSE;
1880 }
1881
1882 return TRUE;
1883}
1884
1885/* Relax a section when linking a MIPS ECOFF file. This is used for
1886 embedded PIC code, which always uses PC relative branches which
1887 only have an 18 bit range on MIPS. If a branch is not in range, we
1888 generate a long instruction sequence to compensate. Each time we
1889 find a branch to expand, we have to check all the others again to
1890 make sure they are still in range. This is slow, but it only has
1891 to be done when -relax is passed to the linker.
1892
1893 This routine figures out which branches need to expand; the actual
1894 expansion is done in mips_relocate_section when the section
1895 contents are relocated. The information is stored in the offsets
1896 field of the ecoff_section_tdata structure. An offset of 1 means
1897 that the branch must be expanded into a multi-instruction PC
1898 relative branch (such an offset will only occur for a PC relative
1899 branch to an external symbol). Any other offset must be a multiple
1900 of four, and is the amount to change the branch by (such an offset
1901 will only occur for a PC relative branch within the same section).
1902
1903 We do not modify the section relocs or contents themselves so that
1904 if memory usage becomes an issue we can discard them and read them
1905 again. The only information we must save in memory between this
1906 routine and the mips_relocate_section routine is the table of
1907 offsets. */
1908
1909static bfd_boolean
1910mips_relax_section (abfd, sec, info, again)
1911 bfd *abfd;
1912 asection *sec;
1913 struct bfd_link_info *info;
1914 bfd_boolean *again;
1915{
1916 struct ecoff_section_tdata *section_tdata;
1917 bfd_byte *contents = NULL;
1918 long *offsets;
1919 struct external_reloc *ext_rel;
1920 struct external_reloc *ext_rel_end;
1921 unsigned int i;
1922
1923 /* Assume we are not going to need another pass. */
1924 *again = FALSE;
1925
1926 /* If we are not generating an ECOFF file, this is much too
1927 confusing to deal with. */
1928 if (info->hash->creator->flavour != bfd_get_flavour (abfd))
1929 return TRUE;
1930
1931 /* If there are no relocs, there is nothing to do. */
1932 if (sec->reloc_count == 0)
1933 return TRUE;
1934
1935 /* We are only interested in PC relative relocs, and why would there
1936 ever be one from anything but the .text section? */
1937 if (strcmp (bfd_get_section_name (abfd, sec), ".text") != 0)
1938 return TRUE;
1939
1940 /* Read in the relocs, if we haven't already got them. */
1941 section_tdata = ecoff_section_data (abfd, sec);
1942 if (section_tdata == (struct ecoff_section_tdata *) NULL
1943 || section_tdata->external_relocs == NULL)
1944 {
1945 if (! mips_read_relocs (abfd, sec))
1946 goto error_return;
1947 section_tdata = ecoff_section_data (abfd, sec);
1948 }
1949
1950 if (sec->_cooked_size == 0)
1951 {
1952 /* We must initialize _cooked_size only the first time we are
1953 called. */
1954 sec->_cooked_size = sec->_raw_size;
1955 }
1956
1957 contents = section_tdata->contents;
1958 offsets = section_tdata->offsets;
1959
1960 /* Look for any external PC relative relocs. Internal PC relative
1961 relocs are already correct in the object file, so they certainly
1962 can not overflow. */
1963 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
1964 ext_rel_end = ext_rel + sec->reloc_count;
1965 for (i = 0; ext_rel < ext_rel_end; ext_rel++, i++)
1966 {
1967 struct internal_reloc int_rel;
1968 struct ecoff_link_hash_entry *h;
1969 asection *hsec;
1970 bfd_signed_vma relocation;
1971 struct external_reloc *adj_ext_rel;
1972 unsigned int adj_i;
1973 unsigned long ext_count;
1974 struct ecoff_link_hash_entry **adj_h_ptr;
1975 struct ecoff_link_hash_entry **adj_h_ptr_end;
1976 struct ecoff_value_adjust *adjust;
1977 bfd_size_type amt;
1978
1979 /* If we have already expanded this reloc, we certainly don't
1980 need to do it again. */
1981 if (offsets != (long *) NULL && offsets[i] == 1)
1982 continue;
1983
1984 /* Quickly check that this reloc is external PCREL16. */
1985 if (bfd_header_big_endian (abfd))
1986 {
1987 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_BIG) == 0
1988 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_BIG)
1989 >> RELOC_BITS3_TYPE_SH_BIG)
1990 != MIPS_R_PCREL16))
1991 continue;
1992 }
1993 else
1994 {
1995 if ((ext_rel->r_bits[3] & RELOC_BITS3_EXTERN_LITTLE) == 0
1996 || (((ext_rel->r_bits[3] & RELOC_BITS3_TYPE_LITTLE)
1997 >> RELOC_BITS3_TYPE_SH_LITTLE)
1998 != MIPS_R_PCREL16))
1999 continue;
2000 }
2001
2002 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2003
2004 h = ecoff_data (abfd)->sym_hashes[int_rel.r_symndx];
2005 if (h == (struct ecoff_link_hash_entry *) NULL)
2006 abort ();
2007
2008 if (h->root.type != bfd_link_hash_defined
2009 && h->root.type != bfd_link_hash_defweak)
2010 {
2011 /* Just ignore undefined symbols. These will presumably
2012 generate an error later in the link. */
2013 continue;
2014 }
2015
2016 /* Get the value of the symbol. */
2017 hsec = h->root.u.def.section;
2018 relocation = (h->root.u.def.value
2019 + hsec->output_section->vma
2020 + hsec->output_offset);
2021
2022 /* Subtract out the current address. */
2023 relocation -= (sec->output_section->vma
2024 + sec->output_offset
2025 + (int_rel.r_vaddr - sec->vma));
2026
2027 /* The addend is stored in the object file. In the normal case
2028 of ``bal symbol'', the addend will be -4. It will only be
2029 different in the case of ``bal symbol+constant''. To avoid
2030 always reading in the section contents, we don't check the
2031 addend in the object file (we could easily check the contents
2032 if we happen to have already read them in, but I fear that
2033 this could be confusing). This means we will screw up if
2034 there is a branch to a symbol that is in range, but added to
2035 a constant which puts it out of range; in such a case the
2036 link will fail with a reloc overflow error. Since the
2037 compiler will never generate such code, it should be easy
2038 enough to work around it by changing the assembly code in the
2039 source file. */
2040 relocation -= 4;
2041
2042 /* Now RELOCATION is the number we want to put in the object
2043 file. See whether it fits. */
2044 if (relocation >= -0x20000 && relocation < 0x20000)
2045 continue;
2046
2047 /* Now that we know this reloc needs work, which will rarely
2048 happen, go ahead and grab the section contents. */
2049 if (contents == (bfd_byte *) NULL)
2050 {
2051 if (info->keep_memory)
2052 contents = (bfd_byte *) bfd_alloc (abfd, sec->_raw_size);
2053 else
2054 contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
2055 if (contents == (bfd_byte *) NULL)
2056 goto error_return;
2057 if (! bfd_get_section_contents (abfd, sec, (PTR) contents,
2058 (file_ptr) 0, sec->_raw_size))
2059 goto error_return;
2060 if (info->keep_memory)
2061 section_tdata->contents = contents;
2062 }
2063
2064 /* We only support changing the bal instruction. It would be
2065 possible to handle other PC relative branches, but some of
2066 them (the conditional branches) would require a different
2067 length instruction sequence which would complicate both this
2068 routine and mips_relax_pcrel16. It could be written if
2069 somebody felt it were important. Ignoring this reloc will
2070 presumably cause a reloc overflow error later on. */
2071 if (bfd_get_32 (abfd, contents + int_rel.r_vaddr - sec->vma)
2072 != 0x0411ffff) /* bgezal $0,. == bal . */
2073 continue;
2074
2075 /* Bother. We need to expand this reloc, and we will need to
2076 make another relaxation pass since this change may put other
2077 relocs out of range. We need to examine the local branches
2078 and we need to allocate memory to hold the offsets we must
2079 add to them. We also need to adjust the values of all
2080 symbols in the object file following this location. */
2081
2082 sec->_cooked_size += PCREL16_EXPANSION_ADJUSTMENT;
2083 *again = TRUE;
2084
2085 if (offsets == (long *) NULL)
2086 {
2087 bfd_size_type size;
2088
2089 size = (bfd_size_type) sec->reloc_count * sizeof (long);
2090 offsets = (long *) bfd_zalloc (abfd, size);
2091 if (offsets == (long *) NULL)
2092 goto error_return;
2093 section_tdata->offsets = offsets;
2094 }
2095
2096 offsets[i] = 1;
2097
2098 /* Now look for all PC relative references that cross this reloc
2099 and adjust their offsets. */
2100 adj_ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2101 for (adj_i = 0; adj_ext_rel < ext_rel_end; adj_ext_rel++, adj_i++)
2102 {
2103 struct internal_reloc adj_int_rel;
2104 bfd_vma start, stop;
2105 int change;
2106
2107 mips_ecoff_swap_reloc_in (abfd, (PTR) adj_ext_rel, &adj_int_rel);
2108
2109 if (adj_int_rel.r_type == MIPS_R_PCREL16)
2110 {
2111 unsigned long insn;
2112
2113 /* We only care about local references. External ones
2114 will be relocated correctly anyhow. */
2115 if (adj_int_rel.r_extern)
2116 continue;
2117
2118 /* We are only interested in a PC relative reloc within
2119 this section. FIXME: Cross section PC relative
2120 relocs may not be handled correctly; does anybody
2121 care? */
2122 if (adj_int_rel.r_symndx != RELOC_SECTION_TEXT)
2123 continue;
2124
2125 start = adj_int_rel.r_vaddr;
2126
2127 insn = bfd_get_32 (abfd,
2128 contents + adj_int_rel.r_vaddr - sec->vma);
2129
2130 stop = (insn & 0xffff) << 2;
2131 if ((stop & 0x20000) != 0)
2132 stop -= 0x40000;
2133 stop += adj_int_rel.r_vaddr + 4;
2134 }
2135 else if (adj_int_rel.r_type == MIPS_R_RELHI)
2136 {
2137 struct internal_reloc rello;
2138 long addhi, addlo;
2139
2140 /* The next reloc must be MIPS_R_RELLO, and we handle
2141 them together. */
2142 BFD_ASSERT (adj_ext_rel + 1 < ext_rel_end);
2143
2144 mips_ecoff_swap_reloc_in (abfd, (PTR) (adj_ext_rel + 1), &rello);
2145
2146 BFD_ASSERT (rello.r_type == MIPS_R_RELLO);
2147
2148 addhi = bfd_get_32 (abfd,
2149 contents + adj_int_rel.r_vaddr - sec->vma);
2150 addhi &= 0xffff;
2151 if (addhi & 0x8000)
2152 addhi -= 0x10000;
2153 addhi <<= 16;
2154
2155 addlo = bfd_get_32 (abfd, contents + rello.r_vaddr - sec->vma);
2156 addlo &= 0xffff;
2157 if (addlo & 0x8000)
2158 addlo -= 0x10000;
2159
2160 if (adj_int_rel.r_extern)
2161 {
2162 /* The value we want here is
2163 sym - RELLOaddr + addend
2164 which we can express as
2165 sym - (RELLOaddr - addend)
2166 Therefore if we are expanding the area between
2167 RELLOaddr and RELLOaddr - addend we must adjust
2168 the addend. This is admittedly ambiguous, since
2169 we might mean (sym + addend) - RELLOaddr, but in
2170 practice we don't, and there is no way to handle
2171 that case correctly since at this point we have
2172 no idea whether any reloc is being expanded
2173 between sym and sym + addend. */
2174 start = rello.r_vaddr - (addhi + addlo);
2175 stop = rello.r_vaddr;
2176 }
2177 else
2178 {
2179 /* An internal RELHI/RELLO pair represents the
2180 difference between two addresses, $LC0 - foo.
2181 The symndx value is actually the difference
2182 between the reloc address and $LC0. This lets us
2183 compute $LC0, and, by considering the addend,
2184 foo. If the reloc we are expanding falls between
2185 those two relocs, we must adjust the addend. At
2186 this point, the symndx value is actually in the
2187 r_offset field, where it was put by
2188 mips_ecoff_swap_reloc_in. */
2189 start = rello.r_vaddr - adj_int_rel.r_offset;
2190 stop = start + addhi + addlo;
2191 }
2192 }
2193 else if (adj_int_rel.r_type == MIPS_R_SWITCH)
2194 {
2195 /* A MIPS_R_SWITCH reloc represents a word of the form
2196 .word $L3-$LS12
2197 The value in the object file is correct, assuming the
2198 original value of $L3. The symndx value is actually
2199 the difference between the reloc address and $LS12.
2200 This lets us compute the original value of $LS12 as
2201 vaddr - symndx
2202 and the original value of $L3 as
2203 vaddr - symndx + addend
2204 where addend is the value from the object file. At
2205 this point, the symndx value is actually found in the
2206 r_offset field, since it was moved by
2207 mips_ecoff_swap_reloc_in. */
2208 start = adj_int_rel.r_vaddr - adj_int_rel.r_offset;
2209 stop = start + bfd_get_32 (abfd,
2210 (contents
2211 + adj_int_rel.r_vaddr
2212 - sec->vma));
2213 }
2214 else
2215 continue;
2216
2217 /* If the range expressed by this reloc, which is the
2218 distance between START and STOP crosses the reloc we are
2219 expanding, we must adjust the offset. The sign of the
2220 adjustment depends upon the direction in which the range
2221 crosses the reloc being expanded. */
2222 if (start <= int_rel.r_vaddr && stop > int_rel.r_vaddr)
2223 change = PCREL16_EXPANSION_ADJUSTMENT;
2224 else if (start > int_rel.r_vaddr && stop <= int_rel.r_vaddr)
2225 change = - PCREL16_EXPANSION_ADJUSTMENT;
2226 else
2227 change = 0;
2228
2229 offsets[adj_i] += change;
2230
2231 if (adj_int_rel.r_type == MIPS_R_RELHI)
2232 {
2233 adj_ext_rel++;
2234 adj_i++;
2235 offsets[adj_i] += change;
2236 }
2237 }
2238
2239 /* Find all symbols in this section defined by this object file
2240 and adjust their values. Note that we decide whether to
2241 adjust the value based on the value stored in the ECOFF EXTR
2242 structure, because the value stored in the hash table may
2243 have been changed by an earlier expanded reloc and thus may
2244 no longer correctly indicate whether the symbol is before or
2245 after the expanded reloc. */
2246 ext_count = ecoff_data (abfd)->debug_info.symbolic_header.iextMax;
2247 adj_h_ptr = ecoff_data (abfd)->sym_hashes;
2248 adj_h_ptr_end = adj_h_ptr + ext_count;
2249 for (; adj_h_ptr < adj_h_ptr_end; adj_h_ptr++)
2250 {
2251 struct ecoff_link_hash_entry *adj_h;
2252
2253 adj_h = *adj_h_ptr;
2254 if (adj_h != (struct ecoff_link_hash_entry *) NULL
2255 && (adj_h->root.type == bfd_link_hash_defined
2256 || adj_h->root.type == bfd_link_hash_defweak)
2257 && adj_h->root.u.def.section == sec
2258 && adj_h->esym.asym.value > int_rel.r_vaddr)
2259 adj_h->root.u.def.value += PCREL16_EXPANSION_ADJUSTMENT;
2260 }
2261
2262 /* Add an entry to the symbol value adjust list. This is used
2263 by bfd_ecoff_debug_accumulate to adjust the values of
2264 internal symbols and FDR's. */
2265 amt = sizeof (struct ecoff_value_adjust);
2266 adjust = (struct ecoff_value_adjust *) bfd_alloc (abfd, amt);
2267 if (adjust == (struct ecoff_value_adjust *) NULL)
2268 goto error_return;
2269
2270 adjust->start = int_rel.r_vaddr;
2271 adjust->end = sec->vma + sec->_raw_size;
2272 adjust->adjust = PCREL16_EXPANSION_ADJUSTMENT;
2273
2274 adjust->next = ecoff_data (abfd)->debug_info.adjust;
2275 ecoff_data (abfd)->debug_info.adjust = adjust;
2276 }
2277
2278 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2279 free (contents);
2280
2281 return TRUE;
2282
2283 error_return:
2284 if (contents != (bfd_byte *) NULL && ! info->keep_memory)
2285 free (contents);
2286 return FALSE;
2287}
2288
2289/* This routine is called from mips_relocate_section when a PC
2290 relative reloc must be expanded into the five instruction sequence.
2291 It handles all the details of the expansion, including resolving
2292 the reloc. */
2293
2294static bfd_boolean
2295mips_relax_pcrel16 (info, input_bfd, input_section, h, location, address)
2296 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2297 bfd *input_bfd;
2298 asection *input_section ATTRIBUTE_UNUSED;
2299 struct ecoff_link_hash_entry *h;
2300 bfd_byte *location;
2301 bfd_vma address;
2302{
2303 bfd_vma relocation;
2304
2305 /* 0x0411ffff is bgezal $0,. == bal . */
2306 BFD_ASSERT (bfd_get_32 (input_bfd, location) == 0x0411ffff);
2307
2308 /* We need to compute the distance between the symbol and the
2309 current address plus eight. */
2310 relocation = (h->root.u.def.value
2311 + h->root.u.def.section->output_section->vma
2312 + h->root.u.def.section->output_offset);
2313 relocation -= address + 8;
2314
2315 /* If the lower half is negative, increment the upper 16 half. */
2316 if ((relocation & 0x8000) != 0)
2317 relocation += 0x10000;
2318
2319 bfd_put_32 (input_bfd, (bfd_vma) 0x04110001, location); /* bal .+8 */
2320 bfd_put_32 (input_bfd,
2321 0x3c010000 | ((relocation >> 16) & 0xffff), /* lui $at,XX */
2322 location + 4);
2323 bfd_put_32 (input_bfd,
2324 0x24210000 | (relocation & 0xffff), /* addiu $at,$at,XX */
2325 location + 8);
2326 bfd_put_32 (input_bfd,
2327 (bfd_vma) 0x003f0821, location + 12); /* addu $at,$at,$ra */
2328 bfd_put_32 (input_bfd,
2329 (bfd_vma) 0x0020f809, location + 16); /* jalr $at */
2330
2331 return TRUE;
2332}
2333
2334/* Given a .sdata section and a .rel.sdata in-memory section, store
2335 relocation information into the .rel.sdata section which can be
2336 used at runtime to relocate the section. This is called by the
2337 linker when the --embedded-relocs switch is used. This is called
2338 after the add_symbols entry point has been called for all the
2339 objects, and before the final_link entry point is called. This
2340 function presumes that the object was compiled using
2341 -membedded-pic. */
2342
2343bfd_boolean
2344bfd_mips_ecoff_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
2345 bfd *abfd;
2346 struct bfd_link_info *info;
2347 asection *datasec;
2348 asection *relsec;
2349 char **errmsg;
2350{
2351 struct ecoff_link_hash_entry **sym_hashes;
2352 struct ecoff_section_tdata *section_tdata;
2353 struct external_reloc *ext_rel;
2354 struct external_reloc *ext_rel_end;
2355 bfd_byte *p;
2356 bfd_size_type amt;
2357
2358 BFD_ASSERT (! info->relocateable);
2359
2360 *errmsg = NULL;
2361
2362 if (datasec->reloc_count == 0)
2363 return TRUE;
2364
2365 sym_hashes = ecoff_data (abfd)->sym_hashes;
2366
2367 if (! mips_read_relocs (abfd, datasec))
2368 return FALSE;
2369
2370 amt = (bfd_size_type) datasec->reloc_count * 4;
2371 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
2372 if (relsec->contents == NULL)
2373 return FALSE;
2374
2375 p = relsec->contents;
2376
2377 section_tdata = ecoff_section_data (abfd, datasec);
2378 ext_rel = (struct external_reloc *) section_tdata->external_relocs;
2379 ext_rel_end = ext_rel + datasec->reloc_count;
2380 for (; ext_rel < ext_rel_end; ext_rel++, p += 4)
2381 {
2382 struct internal_reloc int_rel;
2383 bfd_boolean text_relative;
2384
2385 mips_ecoff_swap_reloc_in (abfd, (PTR) ext_rel, &int_rel);
2386
2387 /* We are going to write a four byte word into the runtime reloc
2388 section. The word will be the address in the data section
2389 which must be relocated. This must be on a word boundary,
2390 which means the lower two bits must be zero. We use the
2391 least significant bit to indicate how the value in the data
2392 section must be relocated. A 0 means that the value is
2393 relative to the text section, while a 1 indicates that the
2394 value is relative to the data section. Given that we are
2395 assuming the code was compiled using -membedded-pic, there
2396 should not be any other possibilities. */
2397
2398 /* We can only relocate REFWORD relocs at run time. */
2399 if (int_rel.r_type != MIPS_R_REFWORD)
2400 {
2401 *errmsg = _("unsupported reloc type");
2402 bfd_set_error (bfd_error_bad_value);
2403 return FALSE;
2404 }
2405
2406 if (int_rel.r_extern)
2407 {
2408 struct ecoff_link_hash_entry *h;
2409
2410 h = sym_hashes[int_rel.r_symndx];
2411 /* If h is NULL, that means that there is a reloc against an
2412 external symbol which we thought was just a debugging
2413 symbol. This should not happen. */
2414 if (h == (struct ecoff_link_hash_entry *) NULL)
2415 abort ();
2416 if ((h->root.type == bfd_link_hash_defined
2417 || h->root.type == bfd_link_hash_defweak)
2418 && (h->root.u.def.section->flags & SEC_CODE) != 0)
2419 text_relative = TRUE;
2420 else
2421 text_relative = FALSE;
2422 }
2423 else
2424 {
2425 switch (int_rel.r_symndx)
2426 {
2427 case RELOC_SECTION_TEXT:
2428 text_relative = TRUE;
2429 break;
2430 case RELOC_SECTION_SDATA:
2431 case RELOC_SECTION_SBSS:
2432 case RELOC_SECTION_LIT8:
2433 text_relative = FALSE;
2434 break;
2435 default:
2436 /* No other sections should appear in -membedded-pic
2437 code. */
2438 *errmsg = _("reloc against unsupported section");
2439 bfd_set_error (bfd_error_bad_value);
2440 return FALSE;
2441 }
2442 }
2443
2444 if ((int_rel.r_offset & 3) != 0)
2445 {
2446 *errmsg = _("reloc not properly aligned");
2447 bfd_set_error (bfd_error_bad_value);
2448 return FALSE;
2449 }
2450
2451 bfd_put_32 (abfd,
2452 (int_rel.r_vaddr - datasec->vma + datasec->output_offset
2453 + (text_relative ? 0 : 1)),
2454 p);
2455 }
2456
2457 return TRUE;
2458}
2459
2460
2461/* This is the ECOFF backend structure. The backend field of the
2462 target vector points to this. */
2463
2464static const struct ecoff_backend_data mips_ecoff_backend_data =
2465{
2466 /* COFF backend structure. */
2467 {
2468 (void (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR))) bfd_void, /* aux_in */
2469 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_in */
2470 (void (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_in */
2471 (unsigned (*) PARAMS ((bfd *,PTR,int,int,int,int,PTR)))bfd_void,/*aux_out*/
2472 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* sym_out */
2473 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* lineno_out */
2474 (unsigned (*) PARAMS ((bfd *,PTR,PTR))) bfd_void, /* reloc_out */
2475 mips_ecoff_swap_filehdr_out, mips_ecoff_swap_aouthdr_out,
2476 mips_ecoff_swap_scnhdr_out,
2477 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE, FALSE, 4, FALSE, 2,
2478 mips_ecoff_swap_filehdr_in, mips_ecoff_swap_aouthdr_in,
2479 mips_ecoff_swap_scnhdr_in, NULL,
2480 mips_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2481 _bfd_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2482 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2483 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2484 NULL, NULL
2485 },
2486 /* Supported architecture. */
2487 bfd_arch_mips,
2488 /* Initial portion of armap string. */
2489 "__________",
2490 /* The page boundary used to align sections in a demand-paged
2491 executable file. E.g., 0x1000. */
2492 0x1000,
2493 /* TRUE if the .rdata section is part of the text segment, as on the
2494 Alpha. FALSE if .rdata is part of the data segment, as on the
2495 MIPS. */
2496 FALSE,
2497 /* Bitsize of constructor entries. */
2498 32,
2499 /* Reloc to use for constructor entries. */
2500 &mips_howto_table[MIPS_R_REFWORD],
2501 {
2502 /* Symbol table magic number. */
2503 magicSym,
2504 /* Alignment of debugging information. E.g., 4. */
2505 4,
2506 /* Sizes of external symbolic information. */
2507 sizeof (struct hdr_ext),
2508 sizeof (struct dnr_ext),
2509 sizeof (struct pdr_ext),
2510 sizeof (struct sym_ext),
2511 sizeof (struct opt_ext),
2512 sizeof (struct fdr_ext),
2513 sizeof (struct rfd_ext),
2514 sizeof (struct ext_ext),
2515 /* Functions to swap in external symbolic data. */
2516 ecoff_swap_hdr_in,
2517 ecoff_swap_dnr_in,
2518 ecoff_swap_pdr_in,
2519 ecoff_swap_sym_in,
2520 ecoff_swap_opt_in,
2521 ecoff_swap_fdr_in,
2522 ecoff_swap_rfd_in,
2523 ecoff_swap_ext_in,
2524 _bfd_ecoff_swap_tir_in,
2525 _bfd_ecoff_swap_rndx_in,
2526 /* Functions to swap out external symbolic data. */
2527 ecoff_swap_hdr_out,
2528 ecoff_swap_dnr_out,
2529 ecoff_swap_pdr_out,
2530 ecoff_swap_sym_out,
2531 ecoff_swap_opt_out,
2532 ecoff_swap_fdr_out,
2533 ecoff_swap_rfd_out,
2534 ecoff_swap_ext_out,
2535 _bfd_ecoff_swap_tir_out,
2536 _bfd_ecoff_swap_rndx_out,
2537 /* Function to read in symbolic data. */
2538 _bfd_ecoff_slurp_symbolic_info
2539 },
2540 /* External reloc size. */
2541 RELSZ,
2542 /* Reloc swapping functions. */
2543 mips_ecoff_swap_reloc_in,
2544 mips_ecoff_swap_reloc_out,
2545 /* Backend reloc tweaking. */
2546 mips_adjust_reloc_in,
2547 mips_adjust_reloc_out,
2548 /* Relocate section contents while linking. */
2549 mips_relocate_section,
2550 /* Do final adjustments to filehdr and aouthdr. */
2551 NULL,
2552 /* Read an element from an archive at a given file position. */
2553 _bfd_get_elt_at_filepos
2554};
2555
2556/* Looking up a reloc type is MIPS specific. */
2557#define _bfd_ecoff_bfd_reloc_type_lookup mips_bfd_reloc_type_lookup
2558
2559/* Getting relocated section contents is generic. */
2560#define _bfd_ecoff_bfd_get_relocated_section_contents \
2561 bfd_generic_get_relocated_section_contents
2562
2563/* Handling file windows is generic. */
2564#define _bfd_ecoff_get_section_contents_in_window \
2565 _bfd_generic_get_section_contents_in_window
2566
2567/* Relaxing sections is MIPS specific. */
2568#define _bfd_ecoff_bfd_relax_section mips_relax_section
2569
2570/* GC of sections is not done. */
2571#define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2572
2573/* Merging of sections is not done. */
2574#define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2575
2576#define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2577
2578extern const bfd_target ecoff_big_vec;
2579
2580const bfd_target ecoff_little_vec =
2581{
2582 "ecoff-littlemips", /* name */
2583 bfd_target_ecoff_flavour,
2584 BFD_ENDIAN_LITTLE, /* data byte order is little */
2585 BFD_ENDIAN_LITTLE, /* header byte order is little */
2586
2587 (HAS_RELOC | EXEC_P | /* object flags */
2588 HAS_LINENO | HAS_DEBUG |
2589 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2590
2591 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2592 0, /* leading underscore */
2593 ' ', /* ar_pad_char */
2594 15, /* ar_max_namelen */
2595 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2596 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2597 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2598 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2599 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2600 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2601
2602 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2603 _bfd_ecoff_archive_p, _bfd_dummy_target},
2604 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2605 _bfd_generic_mkarchive, bfd_false},
2606 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2607 _bfd_write_archive_contents, bfd_false},
2608
2609 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2610 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2611 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2612 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2613 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2614 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2615 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2616 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2617 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2618
2619 & ecoff_big_vec,
2620
2621 (PTR) &mips_ecoff_backend_data
2622};
2623
2624const bfd_target ecoff_big_vec =
2625{
2626 "ecoff-bigmips", /* name */
2627 bfd_target_ecoff_flavour,
2628 BFD_ENDIAN_BIG, /* data byte order is big */
2629 BFD_ENDIAN_BIG, /* header byte order is big */
2630
2631 (HAS_RELOC | EXEC_P | /* object flags */
2632 HAS_LINENO | HAS_DEBUG |
2633 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2634
2635 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2636 0, /* leading underscore */
2637 ' ', /* ar_pad_char */
2638 15, /* ar_max_namelen */
2639 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2640 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2641 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2642 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2643 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2644 bfd_getb16, bfd_getb_signed_16, bfd_putb16,
2645 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2646 _bfd_ecoff_archive_p, _bfd_dummy_target},
2647 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2648 _bfd_generic_mkarchive, bfd_false},
2649 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2650 _bfd_write_archive_contents, bfd_false},
2651
2652 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2653 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2654 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2655 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2656 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2657 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2658 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2659 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2660 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2661
2662 & ecoff_little_vec,
2663
2664 (PTR) &mips_ecoff_backend_data
2665};
2666
2667const bfd_target ecoff_biglittle_vec =
2668{
2669 "ecoff-biglittlemips", /* name */
2670 bfd_target_ecoff_flavour,
2671 BFD_ENDIAN_LITTLE, /* data byte order is little */
2672 BFD_ENDIAN_BIG, /* header byte order is big */
2673
2674 (HAS_RELOC | EXEC_P | /* object flags */
2675 HAS_LINENO | HAS_DEBUG |
2676 HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED),
2677
2678 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2679 0, /* leading underscore */
2680 ' ', /* ar_pad_char */
2681 15, /* ar_max_namelen */
2682 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2683 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2684 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2685 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
2686 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
2687 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
2688
2689 {_bfd_dummy_target, coff_object_p, /* bfd_check_format */
2690 _bfd_ecoff_archive_p, _bfd_dummy_target},
2691 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */
2692 _bfd_generic_mkarchive, bfd_false},
2693 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */
2694 _bfd_write_archive_contents, bfd_false},
2695
2696 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2697 BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2698 BFD_JUMP_TABLE_CORE (_bfd_nocore),
2699 BFD_JUMP_TABLE_ARCHIVE (_bfd_ecoff),
2700 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2701 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2702 BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2703 BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2704 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2705
2706 NULL,
2707
2708 (PTR) &mips_ecoff_backend_data
2709};
Note: See TracBrowser for help on using the repository browser.