1 | A Layman's Guide to a Subset of ASN.1, BER, and DER
|
---|
2 |
|
---|
3 | An RSA Laboratories Technical Note
|
---|
4 | Burton S. Kaliski Jr.
|
---|
5 | Revised November 1, 1993
|
---|
6 |
|
---|
7 |
|
---|
8 | Supersedes June 3, 1991 version, which was also published as
|
---|
9 | NIST/OSI Implementors' Workshop document SEC-SIG-91-17.
|
---|
10 | PKCS documents are available by electronic mail to
|
---|
11 | <pkcs@rsa.com>.
|
---|
12 |
|
---|
13 | Copyright (C) 1991-1993 RSA Laboratories, a division of RSA
|
---|
14 | Data Security, Inc. License to copy this document is granted
|
---|
15 | provided that it is identified as "RSA Data Security, Inc.
|
---|
16 | Public-Key Cryptography Standards (PKCS)" in all material
|
---|
17 | mentioning or referencing this document.
|
---|
18 | 003-903015-110-000-000
|
---|
19 |
|
---|
20 |
|
---|
21 | Abstract. This note gives a layman's introduction to a
|
---|
22 | subset of OSI's Abstract Syntax Notation One (ASN.1), Basic
|
---|
23 | Encoding Rules (BER), and Distinguished Encoding Rules
|
---|
24 | (DER). The particular purpose of this note is to provide
|
---|
25 | background material sufficient for understanding and
|
---|
26 | implementing the PKCS family of standards.
|
---|
27 |
|
---|
28 |
|
---|
29 | 1. Introduction
|
---|
30 |
|
---|
31 | It is a generally accepted design principle that abstraction
|
---|
32 | is a key to managing software development. With abstraction,
|
---|
33 | a designer can specify a part of a system without concern
|
---|
34 | for how the part is actually implemented or represented.
|
---|
35 | Such a practice leaves the implementation open; it
|
---|
36 | simplifies the specification; and it makes it possible to
|
---|
37 | state "axioms" about the part that can be proved when the
|
---|
38 | part is implemented, and assumed when the part is employed
|
---|
39 | in another, higher-level part. Abstraction is the hallmark
|
---|
40 | of most modern software specifications.
|
---|
41 |
|
---|
42 | One of the most complex systems today, and one that also
|
---|
43 | involves a great deal of abstraction, is Open Systems
|
---|
44 | Interconnection (OSI, described in X.200). OSI is an
|
---|
45 | internationally standardized architecture that governs the
|
---|
46 | interconnection of computers from the physical layer up to
|
---|
47 | the user application layer. Objects at higher layers are
|
---|
48 | defined abstractly and intended to be implemented with
|
---|
49 | objects at lower layers. For instance, a service at one
|
---|
50 | layer may require transfer of certain abstract objects
|
---|
51 | between computers; a lower layer may provide transfer
|
---|
52 | services for strings of ones and zeroes, using encoding
|
---|
53 | rules to transform the abstract objects into such strings.
|
---|
54 | OSI is called an open system because it supports many
|
---|
55 | different implementations of the services at each layer.
|
---|
56 |
|
---|
57 | OSI's method of specifying abstract objects is called ASN.1
|
---|
58 | (Abstract Syntax Notation One, defined in X.208), and one
|
---|
59 | set of rules for representing such objects as strings of
|
---|
60 | ones and zeros is called the BER (Basic Encoding Rules,
|
---|
61 | defined in X.209). ASN.1 is a flexible notation that allows
|
---|
62 | one to define a variety data types, from simple types such
|
---|
63 | as integers and bit strings to structured types such as sets
|
---|
64 | and sequences, as well as complex types defined in terms of
|
---|
65 | others. BER describes how to represent or encode values of
|
---|
66 | each ASN.1 type as a string of eight-bit octets. There is
|
---|
67 | generally more than one way to BER-encode a given value.
|
---|
68 | Another set of rules, called the Distinguished Encoding
|
---|
69 | Rules (DER), which is a subset of BER, gives a unique
|
---|
70 | encoding to each ASN.1 value.
|
---|
71 |
|
---|
72 | The purpose of this note is to describe a subset of ASN.1,
|
---|
73 | BER and DER sufficient to understand and implement one OSI-
|
---|
74 | based application, RSA Data Security, Inc.'s Public-Key
|
---|
75 | Cryptography Standards. The features described include an
|
---|
76 | overview of ASN.1, BER, and DER and an abridged list of
|
---|
77 | ASN.1 types and their BER and DER encodings. Sections 2-4
|
---|
78 | give an overview of ASN.1, BER, and DER, in that order.
|
---|
79 | Section 5 lists some ASN.1 types, giving their notation,
|
---|
80 | specific encoding rules, examples, and comments about their
|
---|
81 | application to PKCS. Section 6 concludes with an example,
|
---|
82 | X.500 distinguished names.
|
---|
83 |
|
---|
84 | Advanced features of ASN.1, such as macros, are not
|
---|
85 | described in this note, as they are not needed to implement
|
---|
86 | PKCS. For information on the other features, and for more
|
---|
87 | detail generally, the reader is referred to CCITT
|
---|
88 | Recommendations X.208 and X.209, which define ASN.1 and BER.
|
---|
89 |
|
---|
90 | Terminology and notation. In this note, an octet is an eight-
|
---|
91 | bit unsigned integer. Bit 8 of the octet is the most
|
---|
92 | significant and bit 1 is the least significant.
|
---|
93 |
|
---|
94 | The following meta-syntax is used for in describing ASN.1
|
---|
95 | notation:
|
---|
96 |
|
---|
97 | BIT monospace denotes literal characters in the type
|
---|
98 | and value notation; in examples, it generally
|
---|
99 | denotes an octet value in hexadecimal
|
---|
100 |
|
---|
101 | n1 bold italics denotes a variable
|
---|
102 |
|
---|
103 | [] bold square brackets indicate that a term is
|
---|
104 | optional
|
---|
105 |
|
---|
106 | {} bold braces group related terms
|
---|
107 |
|
---|
108 | | bold vertical bar delimits alternatives with a
|
---|
109 | group
|
---|
110 |
|
---|
111 | ... bold ellipsis indicates repeated occurrences
|
---|
112 |
|
---|
113 | = bold equals sign expresses terms as subterms
|
---|
114 |
|
---|
115 |
|
---|
116 | 2. Abstract Syntax Notation One
|
---|
117 |
|
---|
118 | Abstract Syntax Notation One, abbreviated ASN.1, is a
|
---|
119 | notation for describing abstract types and values.
|
---|
120 |
|
---|
121 | In ASN.1, a type is a set of values. For some types, there
|
---|
122 | are a finite number of values, and for other types there are
|
---|
123 | an infinite number. A value of a given ASN.1 type is an
|
---|
124 | element of the type's set. ASN.1 has four kinds of type:
|
---|
125 | simple types, which are "atomic" and have no components;
|
---|
126 | structured types, which have components; tagged types, which
|
---|
127 | are derived from other types; and other types, which include
|
---|
128 | the CHOICE type and the ANY type. Types and values can be
|
---|
129 | given names with the ASN.1 assignment operator (::=) , and
|
---|
130 | those names can be used in defining other types and values.
|
---|
131 |
|
---|
132 | Every ASN.1 type other than CHOICE and ANY has a tag, which
|
---|
133 | consists of a class and a nonnegative tag number. ASN.1
|
---|
134 | types are abstractly the same if and only if their tag
|
---|
135 | numbers are the same. In other words, the name of an ASN.1
|
---|
136 | type does not affect its abstract meaning, only the tag
|
---|
137 | does. There are four classes of tag:
|
---|
138 |
|
---|
139 | Universal, for types whose meaning is the same in all
|
---|
140 | applications; these types are only defined in
|
---|
141 | X.208.
|
---|
142 |
|
---|
143 | Application, for types whose meaning is specific to an
|
---|
144 | application, such as X.500 directory services;
|
---|
145 | types in two different applications may have the
|
---|
146 | same application-specific tag and different
|
---|
147 | meanings.
|
---|
148 |
|
---|
149 | Private, for types whose meaning is specific to a given
|
---|
150 | enterprise.
|
---|
151 |
|
---|
152 | Context-specific, for types whose meaning is specific
|
---|
153 | to a given structured type; context-specific tags
|
---|
154 | are used to distinguish between component types
|
---|
155 | with the same underlying tag within the context of
|
---|
156 | a given structured type, and component types in
|
---|
157 | two different structured types may have the same
|
---|
158 | tag and different meanings.
|
---|
159 |
|
---|
160 | The types with universal tags are defined in X.208, which
|
---|
161 | also gives the types' universal tag numbers. Types with
|
---|
162 | other tags are defined in many places, and are always
|
---|
163 | obtained by implicit or explicit tagging (see Section 2.3).
|
---|
164 | Table 1 lists some ASN.1 types and their universal-class
|
---|
165 | tags.
|
---|
166 |
|
---|
167 | Type Tag number Tag number
|
---|
168 | (decimal) (hexadecimal)
|
---|
169 | INTEGER 2 02
|
---|
170 | BIT STRING 3 03
|
---|
171 | OCTET STRING 4 04
|
---|
172 | NULL 5 05
|
---|
173 | OBJECT IDENTIFIER 6 06
|
---|
174 | SEQUENCE and SEQUENCE OF 16 10
|
---|
175 | SET and SET OF 17 11
|
---|
176 | PrintableString 19 13
|
---|
177 | T61String 20 14
|
---|
178 | IA5String 22 16
|
---|
179 | UTCTime 23 17
|
---|
180 |
|
---|
181 | Table 1. Some types and their universal-class tags.
|
---|
182 |
|
---|
183 | ASN.1 types and values are expressed in a flexible,
|
---|
184 | programming-language-like notation, with the following
|
---|
185 | special rules:
|
---|
186 |
|
---|
187 | o Layout is not significant; multiple spaces and
|
---|
188 | line breaks can be considered as a single space.
|
---|
189 |
|
---|
190 | o Comments are delimited by pairs of hyphens (--),
|
---|
191 | or a pair of hyphens and a line break.
|
---|
192 |
|
---|
193 | o Identifiers (names of values and fields) and type
|
---|
194 | references (names of types) consist of upper- and
|
---|
195 | lower-case letters, digits, hyphens, and spaces;
|
---|
196 | identifiers begin with lower-case letters; type
|
---|
197 | references begin with upper-case letters.
|
---|
198 |
|
---|
199 | The following four subsections give an overview of simple
|
---|
200 | types, structured types, implicitly and explicitly tagged
|
---|
201 | types, and other types. Section 5 describes specific types
|
---|
202 | in more detail.
|
---|
203 |
|
---|
204 |
|
---|
205 | 2.1 Simple types
|
---|
206 |
|
---|
207 | Simple types are those not consisting of components; they
|
---|
208 | are the "atomic" types. ASN.1 defines several; the types
|
---|
209 | that are relevant to the PKCS standards are the following:
|
---|
210 |
|
---|
211 | BIT STRING, an arbitrary string of bits (ones and
|
---|
212 | zeroes).
|
---|
213 |
|
---|
214 | IA5String, an arbitrary string of IA5 (ASCII)
|
---|
215 | characters.
|
---|
216 |
|
---|
217 | INTEGER, an arbitrary integer.
|
---|
218 |
|
---|
219 | NULL, a null value.
|
---|
220 |
|
---|
221 | OBJECT IDENTIFIER, an object identifier, which is a
|
---|
222 | sequence of integer components that identify an
|
---|
223 | object such as an algorithm or attribute type.
|
---|
224 |
|
---|
225 | OCTET STRING, an arbitrary string of octets (eight-bit
|
---|
226 | values).
|
---|
227 |
|
---|
228 | PrintableString, an arbitrary string of printable
|
---|
229 | characters.
|
---|
230 |
|
---|
231 | T61String, an arbitrary string of T.61 (eight-bit)
|
---|
232 | characters.
|
---|
233 |
|
---|
234 | UTCTime, a "coordinated universal time" or Greenwich
|
---|
235 | Mean Time (GMT) value.
|
---|
236 |
|
---|
237 | Simple types fall into two categories: string types and non-
|
---|
238 | string types. BIT STRING, IA5String, OCTET STRING,
|
---|
239 | PrintableString, T61String, and UTCTime are string types.
|
---|
240 |
|
---|
241 | String types can be viewed, for the purposes of encoding, as
|
---|
242 | consisting of components, where the components are
|
---|
243 | substrings. This view allows one to encode a value whose
|
---|
244 | length is not known in advance (e.g., an octet string value
|
---|
245 | input from a file stream) with a constructed, indefinite-
|
---|
246 | length encoding (see Section 3).
|
---|
247 |
|
---|
248 | The string types can be given size constraints limiting the
|
---|
249 | length of values.
|
---|
250 |
|
---|
251 |
|
---|
252 | 2.2 Structured types
|
---|
253 |
|
---|
254 | Structured types are those consisting of components. ASN.1
|
---|
255 | defines four, all of which are relevant to the PKCS
|
---|
256 | standards:
|
---|
257 |
|
---|
258 | SEQUENCE, an ordered collection of one or more types.
|
---|
259 |
|
---|
260 | SEQUENCE OF, an ordered collection of zero or more
|
---|
261 | occurrences of a given type.
|
---|
262 |
|
---|
263 | SET, an unordered collection of one or more types.
|
---|
264 |
|
---|
265 | SET OF, an unordered collection of zero or more
|
---|
266 | occurrences of a given type.
|
---|
267 |
|
---|
268 | The structured types can have optional components, possibly
|
---|
269 | with default values.
|
---|
270 |
|
---|
271 |
|
---|
272 | 2.3 Implicitly and explicitly tagged types
|
---|
273 |
|
---|
274 | Tagging is useful to distinguish types within an
|
---|
275 | application; it is also commonly used to distinguish
|
---|
276 | component types within a structured type. For instance,
|
---|
277 | optional components of a SET or SEQUENCE type are typically
|
---|
278 | given distinct context-specific tags to avoid ambiguity.
|
---|
279 |
|
---|
280 | There are two ways to tag a type: implicitly and explicitly.
|
---|
281 |
|
---|
282 | Implicitly tagged types are derived from other types by
|
---|
283 | changing the tag of the underlying type. Implicit tagging is
|
---|
284 | denoted by the ASN.1 keywords [class number] IMPLICIT (see
|
---|
285 | Section 5.1).
|
---|
286 |
|
---|
287 | Explicitly tagged types are derived from other types by
|
---|
288 | adding an outer tag to the underlying type. In effect,
|
---|
289 | explicitly tagged types are structured types consisting of
|
---|
290 | one component, the underlying type. Explicit tagging is
|
---|
291 | denoted by the ASN.1 keywords [class number] EXPLICIT (see
|
---|
292 | Section 5.2).
|
---|
293 |
|
---|
294 | The keyword [class number] alone is the same as explicit
|
---|
295 | tagging, except when the "module" in which the ASN.1 type is
|
---|
296 | defined has implicit tagging by default. ("Modules" are
|
---|
297 | among the advanced features not described in this note.)
|
---|
298 |
|
---|
299 | For purposes of encoding, an implicitly tagged type is
|
---|
300 | considered the same as the underlying type, except that the
|
---|
301 | tag is different. An explicitly tagged type is considered
|
---|
302 | like a structured type with one component, the underlying
|
---|
303 | type. Implicit tags result in shorter encodings, but
|
---|
304 | explicit tags may be necessary to avoid ambiguity if the tag
|
---|
305 | of the underlying type is indeterminate (e.g., the
|
---|
306 | underlying type is CHOICE or ANY).
|
---|
307 |
|
---|
308 |
|
---|
309 | 2.4 Other types
|
---|
310 |
|
---|
311 | Other types in ASN.1 include the CHOICE and ANY types. The
|
---|
312 | CHOICE type denotes a union of one or more alternatives; the
|
---|
313 | ANY type denotes an arbitrary value of an arbitrary type,
|
---|
314 | where the arbitrary type is possibly defined in the
|
---|
315 | registration of an object identifier or integer value.
|
---|
316 |
|
---|
317 |
|
---|
318 | 3. Basic Encoding Rules
|
---|
319 |
|
---|
320 | The Basic Encoding Rules for ASN.1, abbreviated BER, give
|
---|
321 | one or more ways to represent any ASN.1 value as an octet
|
---|
322 | string. (There are certainly other ways to represent ASN.1
|
---|
323 | values, but BER is the standard for interchanging such
|
---|
324 | values in OSI.)
|
---|
325 |
|
---|
326 | There are three methods to encode an ASN.1 value under BER,
|
---|
327 | the choice of which depends on the type of value and whether
|
---|
328 | the length of the value is known. The three methods are
|
---|
329 | primitive, definite-length encoding; constructed, definite-
|
---|
330 | length encoding; and constructed, indefinite-length
|
---|
331 | encoding. Simple non-string types employ the primitive,
|
---|
332 | definite-length method; structured types employ either of
|
---|
333 | the constructed methods; and simple string types employ any
|
---|
334 | of the methods, depending on whether the length of the value
|
---|
335 | is known. Types derived by implicit tagging employ the
|
---|
336 | method of the underlying type and types derived by explicit
|
---|
337 | tagging employ the constructed methods.
|
---|
338 |
|
---|
339 | In each method, the BER encoding has three or four parts:
|
---|
340 |
|
---|
341 | Identifier octets. These identify the class and tag
|
---|
342 | number of the ASN.1 value, and indicate whether
|
---|
343 | the method is primitive or constructed.
|
---|
344 |
|
---|
345 | Length octets. For the definite-length methods, these
|
---|
346 | give the number of contents octets. For the
|
---|
347 | constructed, indefinite-length method, these
|
---|
348 | indicate that the length is indefinite.
|
---|
349 |
|
---|
350 | Contents octets. For the primitive, definite-length
|
---|
351 | method, these give a concrete representation of
|
---|
352 | the value. For the constructed methods, these
|
---|
353 | give the concatenation of the BER encodings of the
|
---|
354 | components of the value.
|
---|
355 |
|
---|
356 | End-of-contents octets. For the constructed, indefinite-
|
---|
357 | length method, these denote the end of the
|
---|
358 | contents. For the other methods, these are absent.
|
---|
359 |
|
---|
360 | The three methods of encoding are described in the following
|
---|
361 | sections.
|
---|
362 |
|
---|
363 |
|
---|
364 | 3.1 Primitive, definite-length method
|
---|
365 |
|
---|
366 | This method applies to simple types and types derived from
|
---|
367 | simple types by implicit tagging. It requires that the
|
---|
368 | length of the value be known in advance. The parts of the
|
---|
369 | BER encoding are as follows:
|
---|
370 |
|
---|
371 | Identifier octets. There are two forms: low tag number (for
|
---|
372 | tag numbers between 0 and 30) and high tag number (for tag
|
---|
373 | numbers 31 and greater).
|
---|
374 |
|
---|
375 | Low-tag-number form. One octet. Bits 8 and 7 specify
|
---|
376 | the class (see Table 2), bit 6 has value "0,"
|
---|
377 | indicating that the encoding is primitive, and
|
---|
378 | bits 5-1 give the tag number.
|
---|
379 |
|
---|
380 | Class Bit Bit
|
---|
381 | 8 7
|
---|
382 | universal 0 0
|
---|
383 | application 0 1
|
---|
384 | context-specific 1 0
|
---|
385 | private 1 1
|
---|
386 |
|
---|
387 | Table 2. Class encoding in identifier octets.
|
---|
388 |
|
---|
389 | High-tag-number form. Two or more octets. First octet
|
---|
390 | is as in low-tag-number form, except that bits 5-1
|
---|
391 | all have value "1." Second and following octets
|
---|
392 | give the tag number, base 128, most significant
|
---|
393 | digit first, with as few digits as possible, and
|
---|
394 | with the bit 8 of each octet except the last set
|
---|
395 | to "1."
|
---|
396 |
|
---|
397 | Length octets. There are two forms: short (for lengths
|
---|
398 | between 0 and 127), and long definite (for lengths between 0
|
---|
399 | and 21008-1).
|
---|
400 |
|
---|
401 | Short form. One octet. Bit 8 has value "0" and bits 7-1
|
---|
402 | give the length.
|
---|
403 |
|
---|
404 | Long form. Two to 127 octets. Bit 8 of first octet has
|
---|
405 | value "1" and bits 7-1 give the number of
|
---|
406 | additional length octets. Second and following
|
---|
407 | octets give the length, base 256, most significant
|
---|
408 | digit first.
|
---|
409 |
|
---|
410 | Contents octets. These give a concrete representation of the
|
---|
411 | value (or the value of the underlying type, if the type is
|
---|
412 | derived by implicit tagging). Details for particular types
|
---|
413 | are given in Section 5.
|
---|
414 |
|
---|
415 |
|
---|
416 | 3.2 Constructed, definite-length method
|
---|
417 |
|
---|
418 | This method applies to simple string types, structured
|
---|
419 | types, types derived simple string types and structured
|
---|
420 | types by implicit tagging, and types derived from anything
|
---|
421 | by explicit tagging. It requires that the length of the
|
---|
422 | value be known in advance. The parts of the BER encoding are
|
---|
423 | as follows:
|
---|
424 |
|
---|
425 | Identifier octets. As described in Section 3.1, except that
|
---|
426 | bit 6 has value "1," indicating that the encoding is
|
---|
427 | constructed.
|
---|
428 |
|
---|
429 | Length octets. As described in Section 3.1.
|
---|
430 |
|
---|
431 | Contents octets. The concatenation of the BER encodings of
|
---|
432 | the components of the value:
|
---|
433 |
|
---|
434 | o For simple string types and types derived from
|
---|
435 | them by implicit tagging, the concatenation of the
|
---|
436 | BER encodings of consecutive substrings of the
|
---|
437 | value (underlying value for implicit tagging).
|
---|
438 |
|
---|
439 | o For structured types and types derived from them
|
---|
440 | by implicit tagging, the concatenation of the BER
|
---|
441 | encodings of components of the value (underlying
|
---|
442 | value for implicit tagging).
|
---|
443 |
|
---|
444 | o For types derived from anything by explicit
|
---|
445 | tagging, the BER encoding of the underlying value.
|
---|
446 |
|
---|
447 | Details for particular types are given in Section 5.
|
---|
448 |
|
---|
449 |
|
---|
450 | 3.3 Constructed, indefinite-length method
|
---|
451 |
|
---|
452 | This method applies to simple string types, structured
|
---|
453 | types, types derived simple string types and structured
|
---|
454 | types by implicit tagging, and types derived from anything
|
---|
455 | by explicit tagging. It does not require that the length of
|
---|
456 | the value be known in advance. The parts of the BER encoding
|
---|
457 | are as follows:
|
---|
458 |
|
---|
459 | Identifier octets. As described in Section 3.2.
|
---|
460 |
|
---|
461 | Length octets. One octet, 80.
|
---|
462 |
|
---|
463 | Contents octets. As described in Section 3.2.
|
---|
464 |
|
---|
465 | End-of-contents octets. Two octets, 00 00.
|
---|
466 |
|
---|
467 | Since the end-of-contents octets appear where an ordinary
|
---|
468 | BER encoding might be expected (e.g., in the contents octets
|
---|
469 | of a sequence value), the 00 and 00 appear as identifier and
|
---|
470 | length octets, respectively. Thus the end-of-contents octets
|
---|
471 | is really the primitive, definite-length encoding of a value
|
---|
472 | with universal class, tag number 0, and length 0.
|
---|
473 |
|
---|
474 |
|
---|
475 | 4. Distinguished Encoding Rules
|
---|
476 |
|
---|
477 | The Distinguished Encoding Rules for ASN.1, abbreviated DER,
|
---|
478 | are a subset of BER, and give exactly one way to represent
|
---|
479 | any ASN.1 value as an octet string. DER is intended for
|
---|
480 | applications in which a unique octet string encoding is
|
---|
481 | needed, as is the case when a digital signature is computed
|
---|
482 | on an ASN.1 value. DER is defined in Section 8.7 of X.509.
|
---|
483 |
|
---|
484 | DER adds the following restrictions to the rules given in
|
---|
485 | Section 3:
|
---|
486 |
|
---|
487 | 1. When the length is between 0 and 127, the short
|
---|
488 | form of length must be used
|
---|
489 |
|
---|
490 | 2. When the length is 128 or greater, the long form
|
---|
491 | of length must be used, and the length must be
|
---|
492 | encoded in the minimum number of octets.
|
---|
493 |
|
---|
494 | 3. For simple string types and implicitly tagged
|
---|
495 | types derived from simple string types, the
|
---|
496 | primitive, definite-length method must be
|
---|
497 | employed.
|
---|
498 |
|
---|
499 | 4. For structured types, implicitly tagged types
|
---|
500 | derived from structured types, and explicitly
|
---|
501 | tagged types derived from anything, the
|
---|
502 | constructed, definite-length method must be
|
---|
503 | employed.
|
---|
504 |
|
---|
505 | Other restrictions are defined for particular types (such as
|
---|
506 | BIT STRING, SEQUENCE, SET, and SET OF), and can be found in
|
---|
507 | Section 5.
|
---|
508 |
|
---|
509 |
|
---|
510 | 5. Notation and encodings for some types
|
---|
511 |
|
---|
512 | This section gives the notation for some ASN.1 types and
|
---|
513 | describes how to encode values of those types under both BER
|
---|
514 | and DER.
|
---|
515 |
|
---|
516 | The types described are those presented in Section 2. They
|
---|
517 | are listed alphabetically here.
|
---|
518 |
|
---|
519 | Each description includes ASN.1 notation, BER encoding, and
|
---|
520 | DER encoding. The focus of the encodings is primarily on the
|
---|
521 | contents octets; the tag and length octets follow Sections 3
|
---|
522 | and 4. The descriptions also explain where each type is used
|
---|
523 | in PKCS and related standards. ASN.1 notation is generally
|
---|
524 | only for types, although for the type OBJECT IDENTIFIER,
|
---|
525 | value notation is given as well.
|
---|
526 |
|
---|
527 |
|
---|
528 | 5.1 Implicitly tagged types
|
---|
529 |
|
---|
530 | An implicitly tagged type is a type derived from another
|
---|
531 | type by changing the tag of the underlying type.
|
---|
532 |
|
---|
533 | Implicit tagging is used for optional SEQUENCE components
|
---|
534 | with underlying type other than ANY throughout PKCS, and for
|
---|
535 | the extendedCertificate alternative of PKCS #7's
|
---|
536 | ExtendedCertificateOrCertificate type.
|
---|
537 |
|
---|
538 | ASN.1 notation:
|
---|
539 |
|
---|
540 | [[class] number] IMPLICIT Type
|
---|
541 |
|
---|
542 | class = UNIVERSAL | APPLICATION | PRIVATE
|
---|
543 |
|
---|
544 | where Type is a type, class is an optional class name, and
|
---|
545 | number is the tag number within the class, a nonnegative
|
---|
546 | integer.
|
---|
547 |
|
---|
548 | In ASN.1 "modules" whose default tagging method is implicit
|
---|
549 | tagging, the notation [[class] number] Type is also
|
---|
550 | acceptable, and the keyword IMPLICIT is implied. (See
|
---|
551 | Section 2.3.) For definitions stated outside a module, the
|
---|
552 | explicit inclusion of the keyword IMPLICIT is preferable to
|
---|
553 | prevent ambiguity.
|
---|
554 |
|
---|
555 | If the class name is absent, then the tag is context-
|
---|
556 | specific. Context-specific tags can only appear in a
|
---|
557 | component of a structured or CHOICE type.
|
---|
558 |
|
---|
559 | Example: PKCS #8's PrivateKeyInfo type has an optional
|
---|
560 | attributes component with an implicit, context-specific tag:
|
---|
561 |
|
---|
562 | PrivateKeyInfo ::= SEQUENCE {
|
---|
563 | version Version,
|
---|
564 | privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
|
---|
565 | privateKey PrivateKey,
|
---|
566 | attributes [0] IMPLICIT Attributes OPTIONAL }
|
---|
567 |
|
---|
568 | Here the underlying type is Attributes, the class is absent
|
---|
569 | (i.e., context-specific), and the tag number within the
|
---|
570 | class is 0.
|
---|
571 |
|
---|
572 | BER encoding. Primitive or constructed, depending on the
|
---|
573 | underlying type. Contents octets are as for the BER encoding
|
---|
574 | of the underlying value.
|
---|
575 |
|
---|
576 | Example: The BER encoding of the attributes component of a
|
---|
577 | PrivateKeyInfo value is as follows:
|
---|
578 |
|
---|
579 | o the identifier octets are 80 if the underlying
|
---|
580 | Attributes value has a primitive BER encoding and
|
---|
581 | a0 if the underlying Attributes value has a
|
---|
582 | constructed BER encoding
|
---|
583 |
|
---|
584 | o the length and contents octets are the same as the
|
---|
585 | length and contents octets of the BER encoding of
|
---|
586 | the underlying Attributes value
|
---|
587 |
|
---|
588 | DER encoding. Primitive or constructed, depending on the
|
---|
589 | underlying type. Contents octets are as for the DER encoding
|
---|
590 | of the underlying value.
|
---|
591 |
|
---|
592 |
|
---|
593 | 5.2 Explicitly tagged types
|
---|
594 |
|
---|
595 | Explicit tagging denotes a type derived from another type by
|
---|
596 | adding an outer tag to the underlying type.
|
---|
597 |
|
---|
598 | Explicit tagging is used for optional SEQUENCE components
|
---|
599 | with underlying type ANY throughout PKCS, and for the
|
---|
600 | version component of X.509's Certificate type.
|
---|
601 |
|
---|
602 | ASN.1 notation:
|
---|
603 |
|
---|
604 | [[class] number] EXPLICIT Type
|
---|
605 |
|
---|
606 | class = UNIVERSAL | APPLICATION | PRIVATE
|
---|
607 |
|
---|
608 | where Type is a type, class is an optional class name, and
|
---|
609 | number is the tag number within the class, a nonnegative
|
---|
610 | integer.
|
---|
611 |
|
---|
612 | If the class name is absent, then the tag is context-
|
---|
613 | specific. Context-specific tags can only appear in a
|
---|
614 | component of a SEQUENCE, SET or CHOICE type.
|
---|
615 |
|
---|
616 | In ASN.1 "modules" whose default tagging method is explicit
|
---|
617 | tagging, the notation [[class] number] Type is also
|
---|
618 | acceptable, and the keyword EXPLICIT is implied. (See
|
---|
619 | Section 2.3.) For definitions stated outside a module, the
|
---|
620 | explicit inclusion of the keyword EXPLICIT is preferable to
|
---|
621 | prevent ambiguity.
|
---|
622 |
|
---|
623 | Example 1: PKCS #7's ContentInfo type has an optional
|
---|
624 | content component with an explicit, context-specific tag:
|
---|
625 |
|
---|
626 | ContentInfo ::= SEQUENCE {
|
---|
627 | contentType ContentType,
|
---|
628 | content
|
---|
629 | [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }
|
---|
630 |
|
---|
631 | Here the underlying type is ANY DEFINED BY contentType, the
|
---|
632 | class is absent (i.e., context-specific), and the tag number
|
---|
633 | within the class is 0.
|
---|
634 |
|
---|
635 | Example 2: X.509's Certificate type has a version component
|
---|
636 | with an explicit, context-specific tag, where the EXPLICIT
|
---|
637 | keyword is omitted:
|
---|
638 |
|
---|
639 | Certificate ::= ...
|
---|
640 | version [0] Version DEFAULT v1988,
|
---|
641 | ...
|
---|
642 |
|
---|
643 | The tag is explicit because the default tagging method for
|
---|
644 | the ASN.1 "module" in X.509 that defines the Certificate
|
---|
645 | type is explicit tagging.
|
---|
646 |
|
---|
647 | BER encoding. Constructed. Contents octets are the BER
|
---|
648 | encoding of the underlying value.
|
---|
649 |
|
---|
650 | Example: the BER encoding of the content component of a
|
---|
651 | ContentInfo value is as follows:
|
---|
652 |
|
---|
653 | o identifier octets are a0
|
---|
654 |
|
---|
655 | o length octets represent the length of the BER
|
---|
656 | encoding of the underlying ANY DEFINED BY
|
---|
657 | contentType value
|
---|
658 |
|
---|
659 | o contents octets are the BER encoding of the
|
---|
660 | underlying ANY DEFINED BY contentType value
|
---|
661 |
|
---|
662 | DER encoding. Constructed. Contents octets are the DER
|
---|
663 | encoding of the underlying value.
|
---|
664 |
|
---|
665 |
|
---|
666 | 5.3 ANY
|
---|
667 |
|
---|
668 | The ANY type denotes an arbitrary value of an arbitrary
|
---|
669 | type, where the arbitrary type is possibly defined in the
|
---|
670 | registration of an object identifier or associated with an
|
---|
671 | integer index.
|
---|
672 |
|
---|
673 | The ANY type is used for content of a particular content
|
---|
674 | type in PKCS #7's ContentInfo type, for parameters of a
|
---|
675 | particular algorithm in X.509's AlgorithmIdentifier type,
|
---|
676 | and for attribute values in X.501's Attribute and
|
---|
677 | AttributeValueAssertion types. The Attribute type is used by
|
---|
678 | PKCS #6, #7, #8, #9 and #10, and the AttributeValueAssertion
|
---|
679 | type is used in X.501 distinguished names.
|
---|
680 |
|
---|
681 | ASN.1 notation:
|
---|
682 |
|
---|
683 | ANY [DEFINED BY identifier]
|
---|
684 |
|
---|
685 | where identifier is an optional identifier.
|
---|
686 |
|
---|
687 | In the ANY form, the actual type is indeterminate.
|
---|
688 |
|
---|
689 | The ANY DEFINED BY identifier form can only appear in a
|
---|
690 | component of a SEQUENCE or SET type for which identifier
|
---|
691 | identifies some other component, and that other component
|
---|
692 | has type INTEGER or OBJECT IDENTIFIER (or a type derived
|
---|
693 | from either of those by tagging). In that form, the actual
|
---|
694 | type is determined by the value of the other component,
|
---|
695 | either in the registration of the object identifier value,
|
---|
696 | or in a table of integer values.
|
---|
697 |
|
---|
698 | Example: X.509's AlgorithmIdentifier type has a component of
|
---|
699 | type ANY:
|
---|
700 |
|
---|
701 | AlgorithmIdentifier ::= SEQUENCE {
|
---|
702 | algorithm OBJECT IDENTIFIER,
|
---|
703 | parameters ANY DEFINED BY algorithm OPTIONAL }
|
---|
704 |
|
---|
705 | Here the actual type of the parameter component depends on
|
---|
706 | the value of the algorithm component. The actual type would
|
---|
707 | be defined in the registration of object identifier values
|
---|
708 | for the algorithm component.
|
---|
709 |
|
---|
710 | BER encoding. Same as the BER encoding of the actual value.
|
---|
711 |
|
---|
712 | Example: The BER encoding of the value of the parameter
|
---|
713 | component is the BER encoding of the value of the actual
|
---|
714 | type as defined in the registration of object identifier
|
---|
715 | values for the algorithm component.
|
---|
716 |
|
---|
717 | DER encoding. Same as the DER encoding of the actual value.
|
---|
718 |
|
---|
719 |
|
---|
720 | 5.4 BIT STRING
|
---|
721 |
|
---|
722 | The BIT STRING type denotes an arbitrary string of bits
|
---|
723 | (ones and zeroes). A BIT STRING value can have any length,
|
---|
724 | including zero. This type is a string type.
|
---|
725 |
|
---|
726 | The BIT STRING type is used for digital signatures on
|
---|
727 | extended certificates in PKCS #6's ExtendedCertificate type,
|
---|
728 | for digital signatures on certificates in X.509's
|
---|
729 | Certificate type, and for public keys in certificates in
|
---|
730 | X.509's SubjectPublicKeyInfo type.
|
---|
731 |
|
---|
732 | ASN.1 notation:
|
---|
733 |
|
---|
734 | BIT STRING
|
---|
735 |
|
---|
736 | Example: X.509's SubjectPublicKeyInfo type has a component
|
---|
737 | of type BIT STRING:
|
---|
738 |
|
---|
739 | SubjectPublicKeyInfo ::= SEQUENCE {
|
---|
740 | algorithm AlgorithmIdentifier,
|
---|
741 | publicKey BIT STRING }
|
---|
742 |
|
---|
743 | BER encoding. Primitive or constructed. In a primitive
|
---|
744 | encoding, the first contents octet gives the number of bits
|
---|
745 | by which the length of the bit string is less than the next
|
---|
746 | multiple of eight (this is called the "number of unused
|
---|
747 | bits"). The second and following contents octets give the
|
---|
748 | value of the bit string, converted to an octet string. The
|
---|
749 | conversion process is as follows:
|
---|
750 |
|
---|
751 | 1. The bit string is padded after the last bit with
|
---|
752 | zero to seven bits of any value to make the length
|
---|
753 | of the bit string a multiple of eight. If the
|
---|
754 | length of the bit string is a multiple of eight
|
---|
755 | already, no padding is done.
|
---|
756 |
|
---|
757 | 2. The padded bit string is divided into octets. The
|
---|
758 | first eight bits of the padded bit string become
|
---|
759 | the first octet, bit 8 to bit 1, and so on through
|
---|
760 | the last eight bits of the padded bit string.
|
---|
761 |
|
---|
762 | In a constructed encoding, the contents octets give the
|
---|
763 | concatenation of the BER encodings of consecutive substrings
|
---|
764 | of the bit string, where each substring except the last has
|
---|
765 | a length that is a multiple of eight bits.
|
---|
766 |
|
---|
767 | Example: The BER encoding of the BIT STRING value
|
---|
768 | "011011100101110111" can be any of the following, among
|
---|
769 | others, depending on the choice of padding bits, the form of
|
---|
770 | length octets, and whether the encoding is primitive or
|
---|
771 | constructed:
|
---|
772 |
|
---|
773 | 03 04 06 6e 5d c0 DER encoding
|
---|
774 |
|
---|
775 | 03 04 06 6e 5d e0 padded with "100000"
|
---|
776 |
|
---|
777 | 03 81 04 06 6e 5d c0 long form of length octets
|
---|
778 |
|
---|
779 | 23 09 constructed encoding: "0110111001011101" + "11"
|
---|
780 | 03 03 00 6e 5d
|
---|
781 | 03 02 06 c0
|
---|
782 |
|
---|
783 | DER encoding. Primitive. The contents octects are as for a
|
---|
784 | primitive BER encoding, except that the bit string is padded
|
---|
785 | with zero-valued bits.
|
---|
786 |
|
---|
787 | Example: The DER encoding of the BIT STRING value
|
---|
788 | "011011100101110111" is
|
---|
789 |
|
---|
790 | 03 04 06 6e 5d c0
|
---|
791 |
|
---|
792 |
|
---|
793 | 5.5 CHOICE
|
---|
794 |
|
---|
795 | The CHOICE type denotes a union of one or more alternatives.
|
---|
796 |
|
---|
797 | The CHOICE type is used to represent the union of an
|
---|
798 | extended certificate and an X.509 certificate in PKCS #7's
|
---|
799 | ExtendedCertificateOrCertificate type.
|
---|
800 |
|
---|
801 | ASN.1 notation:
|
---|
802 |
|
---|
803 | CHOICE {
|
---|
804 | [identifier1] Type1,
|
---|
805 | ...,
|
---|
806 | [identifiern] Typen }
|
---|
807 |
|
---|
808 | where identifier1 , ..., identifiern are optional, distinct
|
---|
809 | identifiers for the alternatives, and Type1, ..., Typen are
|
---|
810 | the types of the alternatives. The identifiers are primarily
|
---|
811 | for documentation; they do not affect values of the type or
|
---|
812 | their encodings in any way.
|
---|
813 |
|
---|
814 | The types must have distinct tags. This requirement is
|
---|
815 | typically satisfied with explicit or implicit tagging on
|
---|
816 | some of the alternatives.
|
---|
817 |
|
---|
818 | Example: PKCS #7's ExtendedCertificateOrCertificate type is
|
---|
819 | a CHOICE type:
|
---|
820 |
|
---|
821 | ExtendedCertificateOrCertificate ::= CHOICE {
|
---|
822 | certificate Certificate, -- X.509
|
---|
823 | extendedCertificate [0] IMPLICIT ExtendedCertificate
|
---|
824 | }
|
---|
825 |
|
---|
826 | Here the identifiers for the alternatives are certificate
|
---|
827 | and extendedCertificate, and the types of the alternatives
|
---|
828 | are Certificate and [0] IMPLICIT ExtendedCertificate.
|
---|
829 |
|
---|
830 | BER encoding. Same as the BER encoding of the chosen
|
---|
831 | alternative. The fact that the alternatives have distinct
|
---|
832 | tags makes it possible to distinguish between their BER
|
---|
833 | encodings.
|
---|
834 |
|
---|
835 | Example: The identifier octets for the BER encoding are 30
|
---|
836 | if the chosen alternative is certificate, and a0 if the
|
---|
837 | chosen alternative is extendedCertificate.
|
---|
838 |
|
---|
839 | DER encoding. Same as the DER encoding of the chosen
|
---|
840 | alternative.
|
---|
841 |
|
---|
842 |
|
---|
843 | 5.6 IA5String
|
---|
844 |
|
---|
845 | The IA5String type denotes an arbtrary string of IA5
|
---|
846 | characters. IA5 stands for International Alphabet 5, which
|
---|
847 | is the same as ASCII. The character set includes non-
|
---|
848 | printing control characters. An IA5String value can have any
|
---|
849 | length, including zero. This type is a string type.
|
---|
850 |
|
---|
851 | The IA5String type is used in PKCS #9's electronic-mail
|
---|
852 | address, unstructured-name, and unstructured-address
|
---|
853 | attributes.
|
---|
854 |
|
---|
855 | ASN.1 notation:
|
---|
856 |
|
---|
857 | IA5String
|
---|
858 |
|
---|
859 | BER encoding. Primitive or constructed. In a primitive
|
---|
860 | encoding, the contents octets give the characters in the IA5
|
---|
861 | string, encoded in ASCII. In a constructed encoding, the
|
---|
862 | contents octets give the concatenation of the BER encodings
|
---|
863 | of consecutive substrings of the IA5 string.
|
---|
864 |
|
---|
865 | Example: The BER encoding of the IA5String value
|
---|
866 | "test1@rsa.com" can be any of the following, among others,
|
---|
867 | depending on the form of length octets and whether the
|
---|
868 | encoding is primitive or constructed:
|
---|
869 |
|
---|
870 | 16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d DER encoding
|
---|
871 |
|
---|
872 | 16 81 0d long form of length octets
|
---|
873 | 74 65 73 74 31 40 72 73 61 2e 63 6f 6d
|
---|
874 |
|
---|
875 | 36 13 constructed encoding: "test1" + "@" + "rsa.com"
|
---|
876 | 16 05 74 65 73 74 31
|
---|
877 | 16 01 40
|
---|
878 | 16 07 72 73 61 2e 63 6f 6d
|
---|
879 |
|
---|
880 | DER encoding. Primitive. Contents octets are as for a
|
---|
881 | primitive BER encoding.
|
---|
882 |
|
---|
883 | Example: The DER encoding of the IA5String value
|
---|
884 | "test1@rsa.com" is
|
---|
885 |
|
---|
886 | 16 0d 74 65 73 74 31 40 72 73 61 2e 63 6f 6d
|
---|
887 |
|
---|
888 |
|
---|
889 | 5.7 INTEGER
|
---|
890 |
|
---|
891 | The INTEGER type denotes an arbitrary integer. INTEGER
|
---|
892 | values can be positive, negative, or zero, and can have any
|
---|
893 | magnitude.
|
---|
894 |
|
---|
895 | The INTEGER type is used for version numbers throughout
|
---|
896 | PKCS, cryptographic values such as modulus, exponent, and
|
---|
897 | primes in PKCS #1's RSAPublicKey and RSAPrivateKey types and
|
---|
898 | PKCS #3's DHParameter type, a message-digest iteration count
|
---|
899 | in PKCS #5's PBEParameter type, and version numbers and
|
---|
900 | serial numbers in X.509's Certificate type.
|
---|
901 |
|
---|
902 | ASN.1 notation:
|
---|
903 |
|
---|
904 | INTEGER [{ identifier1(value1) ... identifiern(valuen) }]
|
---|
905 |
|
---|
906 | where identifier1, ..., identifiern are optional distinct
|
---|
907 | identifiers and value1, ..., valuen are optional integer
|
---|
908 | values. The identifiers, when present, are associated with
|
---|
909 | values of the type.
|
---|
910 |
|
---|
911 | Example: X.509's Version type is an INTEGER type with
|
---|
912 | identified values:
|
---|
913 |
|
---|
914 | Version ::= INTEGER { v1988(0) }
|
---|
915 |
|
---|
916 | The identifier v1988 is associated with the value 0. X.509's
|
---|
917 | Certificate type uses the identifier v1988 to give a default
|
---|
918 | value of 0 for the version component:
|
---|
919 |
|
---|
920 | Certificate ::= ...
|
---|
921 | version Version DEFAULT v1988,
|
---|
922 | ...
|
---|
923 |
|
---|
924 | BER encoding. Primitive. Contents octets give the value of
|
---|
925 | the integer, base 256, in two's complement form, most
|
---|
926 | significant digit first, with the minimum number of octets.
|
---|
927 | The value 0 is encoded as a single 00 octet.
|
---|
928 |
|
---|
929 | Some example BER encodings (which also happen to be DER
|
---|
930 | encodings) are given in Table 3.
|
---|
931 |
|
---|
932 | Integer BER encoding
|
---|
933 | value
|
---|
934 | 0 02 01 00
|
---|
935 | 127 02 01 7F
|
---|
936 | 128 02 02 00 80
|
---|
937 | 256 02 02 01 00
|
---|
938 | -128 02 01 80
|
---|
939 | -129 02 02 FF 7F
|
---|
940 |
|
---|
941 | Table 3. Example BER encodings of INTEGER values.
|
---|
942 |
|
---|
943 | DER encoding. Primitive. Contents octets are as for a
|
---|
944 | primitive BER encoding.
|
---|
945 |
|
---|
946 |
|
---|
947 | 5.8 NULL
|
---|
948 |
|
---|
949 | The NULL type denotes a null value.
|
---|
950 |
|
---|
951 | The NULL type is used for algorithm parameters in several
|
---|
952 | places in PKCS.
|
---|
953 |
|
---|
954 | ASN.1 notation:
|
---|
955 |
|
---|
956 | NULL
|
---|
957 |
|
---|
958 | BER encoding. Primitive. Contents octets are empty.
|
---|
959 |
|
---|
960 | Example: The BER encoding of a NULL value can be either of
|
---|
961 | the following, as well as others, depending on the form of
|
---|
962 | the length octets:
|
---|
963 |
|
---|
964 | 05 00
|
---|
965 |
|
---|
966 | 05 81 00
|
---|
967 |
|
---|
968 | DER encoding. Primitive. Contents octets are empty; the DER
|
---|
969 | encoding of a NULL value is always 05 00.
|
---|
970 |
|
---|
971 |
|
---|
972 | 5.9 OBJECT IDENTIFIER
|
---|
973 |
|
---|
974 | The OBJECT IDENTIFIER type denotes an object identifier, a
|
---|
975 | sequence of integer components that identifies an object
|
---|
976 | such as an algorithm, an attribute type, or perhaps a
|
---|
977 | registration authority that defines other object
|
---|
978 | identifiers. An OBJECT IDENTIFIER value can have any number
|
---|
979 | of components, and components can generally have any
|
---|
980 | nonnegative value. This type is a non-string type.
|
---|
981 |
|
---|
982 | OBJECT IDENTIFIER values are given meanings by registration
|
---|
983 | authorities. Each registration authority is responsible for
|
---|
984 | all sequences of components beginning with a given sequence.
|
---|
985 | A registration authority typically delegates responsibility
|
---|
986 | for subsets of the sequences in its domain to other
|
---|
987 | registration authorities, or for particular types of object.
|
---|
988 | There are always at least two components.
|
---|
989 |
|
---|
990 | The OBJECT IDENTIFIER type is used to identify content in
|
---|
991 | PKCS #7's ContentInfo type, to identify algorithms in
|
---|
992 | X.509's AlgorithmIdentifier type, and to identify attributes
|
---|
993 | in X.501's Attribute and AttributeValueAssertion types. The
|
---|
994 | Attribute type is used by PKCS #6, #7, #8, #9, and #10, and
|
---|
995 | the AttributeValueAssertion type is used in X.501
|
---|
996 | distinguished names. OBJECT IDENTIFIER values are defined
|
---|
997 | throughout PKCS.
|
---|
998 |
|
---|
999 | ASN.1 notation:
|
---|
1000 |
|
---|
1001 | OBJECT IDENTIFIER
|
---|
1002 |
|
---|
1003 | The ASN.1 notation for values of the OBJECT IDENTIFIER type
|
---|
1004 | is
|
---|
1005 |
|
---|
1006 | { [identifier] component1 ... componentn }
|
---|
1007 |
|
---|
1008 | componenti = identifieri | identifieri (valuei) | valuei
|
---|
1009 |
|
---|
1010 | where identifier, identifier1, ..., identifiern are
|
---|
1011 | identifiers, and value1, ..., valuen are optional integer
|
---|
1012 | values.
|
---|
1013 |
|
---|
1014 | The form without identifier is the "complete" value with all
|
---|
1015 | its components; the form with identifier abbreviates the
|
---|
1016 | beginning components with another object identifier value.
|
---|
1017 | The identifiers identifier1, ..., identifiern are intended
|
---|
1018 | primarily for documentation, but they must correspond to the
|
---|
1019 | integer value when both are present. These identifiers can
|
---|
1020 | appear without integer values only if they are among a small
|
---|
1021 | set of identifiers defined in X.208.
|
---|
1022 |
|
---|
1023 | Example: The following values both refer to the object
|
---|
1024 | identifier assigned to RSA Data Security, Inc.:
|
---|
1025 |
|
---|
1026 | { iso(1) member-body(2) 840 113549 }
|
---|
1027 | { 1 2 840 113549 }
|
---|
1028 |
|
---|
1029 | (In this example, which gives ASN.1 value notation, the
|
---|
1030 | object identifier values are decimal, not hexadecimal.)
|
---|
1031 | Table 4 gives some other object identifier values and their
|
---|
1032 | meanings.
|
---|
1033 |
|
---|
1034 | Object identifier value Meaning
|
---|
1035 | { 1 2 } ISO member bodies
|
---|
1036 | { 1 2 840 } US (ANSI)
|
---|
1037 | { 1 2 840 113549 } RSA Data Security, Inc.
|
---|
1038 | { 1 2 840 113549 1 } RSA Data Security, Inc. PKCS
|
---|
1039 | { 2 5 } directory services (X.500)
|
---|
1040 | { 2 5 8 } directory services-algorithms
|
---|
1041 |
|
---|
1042 | Table 4. Some object identifier values and their meanings.
|
---|
1043 |
|
---|
1044 | BER encoding. Primitive. Contents octets are as follows,
|
---|
1045 | where value1, ..., valuen denote the integer values of the
|
---|
1046 | components in the complete object identifier:
|
---|
1047 |
|
---|
1048 | 1. The first octet has value 40 * value1 + value2.
|
---|
1049 | (This is unambiguous, since value1 is limited to
|
---|
1050 | values 0, 1, and 2; value2 is limited to the range
|
---|
1051 | 0 to 39 when value1 is 0 or 1; and, according to
|
---|
1052 | X.208, n is always at least 2.)
|
---|
1053 |
|
---|
1054 | 2. The following octets, if any, encode value3, ...,
|
---|
1055 | valuen. Each value is encoded base 128, most
|
---|
1056 | significant digit first, with as few digits as
|
---|
1057 | possible, and the most significant bit of each
|
---|
1058 | octet except the last in the value's encoding set
|
---|
1059 | to "1."
|
---|
1060 |
|
---|
1061 | Example: The first octet of the BER encoding of RSA Data
|
---|
1062 | Security, Inc.'s object identifier is 40 * 1 + 2 = 42 =
|
---|
1063 | 2a16. The encoding of 840 = 6 * 128 + 4816 is 86 48 and the
|
---|
1064 | encoding of 113549 = 6 * 1282 + 7716 * 128 + d16 is 86 f7
|
---|
1065 | 0d. This leads to the following BER encoding:
|
---|
1066 |
|
---|
1067 | 06 06 2a 86 48 86 f7 0d
|
---|
1068 |
|
---|
1069 | DER encoding. Primitive. Contents octets are as for a
|
---|
1070 | primitive BER encoding.
|
---|
1071 |
|
---|
1072 |
|
---|
1073 | 5.10 OCTET STRING
|
---|
1074 |
|
---|
1075 | The OCTET STRING type denotes an arbitrary string of octets
|
---|
1076 | (eight-bit values). An OCTET STRING value can have any
|
---|
1077 | length, including zero. This type is a string type.
|
---|
1078 |
|
---|
1079 | The OCTET STRING type is used for salt values in PKCS #5's
|
---|
1080 | PBEParameter type, for message digests, encrypted message
|
---|
1081 | digests, and encrypted content in PKCS #7, and for private
|
---|
1082 | keys and encrypted private keys in PKCS #8.
|
---|
1083 |
|
---|
1084 | ASN.1 notation:
|
---|
1085 |
|
---|
1086 | OCTET STRING [SIZE ({size | size1..size2})]
|
---|
1087 |
|
---|
1088 | where size, size1, and size2 are optional size constraints.
|
---|
1089 | In the OCTET STRING SIZE (size) form, the octet string must
|
---|
1090 | have size octets. In the OCTET STRING SIZE (size1..size2)
|
---|
1091 | form, the octet string must have between size1 and size2
|
---|
1092 | octets. In the OCTET STRING form, the octet string can have
|
---|
1093 | any size.
|
---|
1094 |
|
---|
1095 | Example: PKCS #5's PBEParameter type has a component of type
|
---|
1096 | OCTET STRING:
|
---|
1097 |
|
---|
1098 | PBEParameter ::= SEQUENCE {
|
---|
1099 | salt OCTET STRING SIZE(8),
|
---|
1100 | iterationCount INTEGER }
|
---|
1101 |
|
---|
1102 | Here the size of the salt component is always eight octets.
|
---|
1103 |
|
---|
1104 | BER encoding. Primitive or constructed. In a primitive
|
---|
1105 | encoding, the contents octets give the value of the octet
|
---|
1106 | string, first octet to last octet. In a constructed
|
---|
1107 | encoding, the contents octets give the concatenation of the
|
---|
1108 | BER encodings of substrings of the OCTET STRING value.
|
---|
1109 |
|
---|
1110 | Example: The BER encoding of the OCTET STRING value 01 23 45
|
---|
1111 | 67 89 ab cd ef can be any of the following, among others,
|
---|
1112 | depending on the form of length octets and whether the
|
---|
1113 | encoding is primitive or constructed:
|
---|
1114 |
|
---|
1115 | 04 08 01 23 45 67 89 ab cd ef DER encoding
|
---|
1116 |
|
---|
1117 | 04 81 08 01 23 45 67 89 ab cd ef long form of length octets
|
---|
1118 |
|
---|
1119 | 24 0c constructed encoding: 01 ... 67 + 89 ... ef
|
---|
1120 | 04 04 01 23 45 67
|
---|
1121 | 04 04 89 ab cd ef
|
---|
1122 |
|
---|
1123 | DER encoding. Primitive. Contents octets are as for a
|
---|
1124 | primitive BER encoding.
|
---|
1125 |
|
---|
1126 | Example: The BER encoding of the OCTET STRING value 01 23 45
|
---|
1127 | 67 89 ab cd ef is
|
---|
1128 |
|
---|
1129 | 04 08 01 23 45 67 89 ab cd ef
|
---|
1130 |
|
---|
1131 |
|
---|
1132 | 5.11 PrintableString
|
---|
1133 |
|
---|
1134 | The PrintableString type denotes an arbitrary string of
|
---|
1135 | printable characters from the following character set:
|
---|
1136 |
|
---|
1137 | A, B, ..., Z
|
---|
1138 | a, b, ..., z
|
---|
1139 | 0, 1, ..., 9
|
---|
1140 | (space) ' ( ) + , - . / : = ?
|
---|
1141 |
|
---|
1142 | This type is a string type.
|
---|
1143 |
|
---|
1144 | The PrintableString type is used in PKCS #9's challenge-
|
---|
1145 | password and unstructuerd-address attributes, and in several
|
---|
1146 | X.521 distinguished names attributes.
|
---|
1147 |
|
---|
1148 | ASN.1 notation:
|
---|
1149 |
|
---|
1150 | PrintableString
|
---|
1151 |
|
---|
1152 | BER encoding. Primitive or constructed. In a primitive
|
---|
1153 | encoding, the contents octets give the characters in the
|
---|
1154 | printable string, encoded in ASCII. In a constructed
|
---|
1155 | encoding, the contents octets give the concatenation of the
|
---|
1156 | BER encodings of consecutive substrings of the string.
|
---|
1157 |
|
---|
1158 | Example: The BER encoding of the PrintableString value "Test
|
---|
1159 | User 1" can be any of the following, among others, depending
|
---|
1160 | on the form of length octets and whether the encoding is
|
---|
1161 | primitive or constructed:
|
---|
1162 |
|
---|
1163 | 13 0b 54 65 73 74 20 55 73 65 72 20 31 DER encoding
|
---|
1164 |
|
---|
1165 | 13 81 0b long form of length octets
|
---|
1166 | 54 65 73 74 20 55 73 65 72 20 31
|
---|
1167 |
|
---|
1168 | 33 0f constructed encoding: "Test " + "User 1"
|
---|
1169 | 13 05 54 65 73 74 20
|
---|
1170 | 13 06 55 73 65 72 20 31
|
---|
1171 |
|
---|
1172 | DER encoding. Primitive. Contents octets are as for a
|
---|
1173 | primitive BER encoding.
|
---|
1174 |
|
---|
1175 | Example: The DER encoding of the PrintableString value "Test
|
---|
1176 | User 1" is
|
---|
1177 |
|
---|
1178 | 13 0b 54 65 73 74 20 55 73 65 72 20 31
|
---|
1179 |
|
---|
1180 |
|
---|
1181 | 5.12 SEQUENCE
|
---|
1182 |
|
---|
1183 | The SEQUENCE type denotes an ordered collection of one or
|
---|
1184 | more types.
|
---|
1185 |
|
---|
1186 | The SEQUENCE type is used throughout PKCS and related
|
---|
1187 | standards.
|
---|
1188 |
|
---|
1189 | ASN.1 notation:
|
---|
1190 |
|
---|
1191 | SEQUENCE {
|
---|
1192 | [identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
|
---|
1193 | ...,
|
---|
1194 | [identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}
|
---|
1195 |
|
---|
1196 | where identifier1 , ..., identifiern are optional, distinct
|
---|
1197 | identifiers for the components, Type1, ..., Typen are the
|
---|
1198 | types of the components, and value1, ..., valuen are optional
|
---|
1199 | default values for the components. The identifiers are
|
---|
1200 | primarily for documentation; they do not affect values of
|
---|
1201 | the type or their encodings in any way.
|
---|
1202 |
|
---|
1203 | The OPTIONAL qualifier indicates that the value of a
|
---|
1204 | component is optional and need not be present in the
|
---|
1205 | sequence. The DEFAULT qualifier also indicates that the
|
---|
1206 | value of a component is optional, and assigns a default
|
---|
1207 | value to the component when the component is absent.
|
---|
1208 |
|
---|
1209 | The types of any consecutive series of components with the
|
---|
1210 | OPTIONAL or DEFAULT qualifier, as well as of any component
|
---|
1211 | immediately following that series, must have distinct tags.
|
---|
1212 | This requirement is typically satisfied with explicit or
|
---|
1213 | implicit tagging on some of the components.
|
---|
1214 |
|
---|
1215 | Example: X.509's Validity type is a SEQUENCE type with two
|
---|
1216 | components:
|
---|
1217 |
|
---|
1218 | Validity ::= SEQUENCE {
|
---|
1219 | start UTCTime,
|
---|
1220 | end UTCTime }
|
---|
1221 |
|
---|
1222 | Here the identifiers for the components are start and end,
|
---|
1223 | and the types of the components are both UTCTime.
|
---|
1224 |
|
---|
1225 | BER encoding. Constructed. Contents octets are the
|
---|
1226 | concatenation of the BER encodings of the values of the
|
---|
1227 | components of the sequence, in order of definition, with the
|
---|
1228 | following rules for components with the OPTIONAL and DEFAULT
|
---|
1229 | qualifiers:
|
---|
1230 |
|
---|
1231 | o if the value of a component with the OPTIONAL or
|
---|
1232 | DEFAULT qualifier is absent from the sequence,
|
---|
1233 | then the encoding of that component is not
|
---|
1234 | included in the contents octets
|
---|
1235 |
|
---|
1236 | o if the value of a component with the DEFAULT
|
---|
1237 | qualifier is the default value, then the encoding
|
---|
1238 | of that component may or may not be included in
|
---|
1239 | the contents octets
|
---|
1240 |
|
---|
1241 | DER encoding. Constructed. Contents octets are the same as
|
---|
1242 | the BER encoding, except that if the value of a component
|
---|
1243 | with the DEFAULT qualifier is the default value, the
|
---|
1244 | encoding of that component is not included in the contents
|
---|
1245 | octets.
|
---|
1246 |
|
---|
1247 |
|
---|
1248 | 5.13 SEQUENCE OF
|
---|
1249 |
|
---|
1250 | The SEQUENCE OF type denotes an ordered collection of zero
|
---|
1251 | or more occurrences of a given type.
|
---|
1252 |
|
---|
1253 | The SEQUENCE OF type is used in X.501 distinguished names.
|
---|
1254 |
|
---|
1255 | ASN.1 notation:
|
---|
1256 |
|
---|
1257 | SEQUENCE OF Type
|
---|
1258 |
|
---|
1259 | where Type is a type.
|
---|
1260 |
|
---|
1261 | Example: X.501's RDNSequence type consists of zero or more
|
---|
1262 | occurences of the RelativeDistinguishedName type, most
|
---|
1263 | significant occurrence first:
|
---|
1264 |
|
---|
1265 | RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
|
---|
1266 |
|
---|
1267 | BER encoding. Constructed. Contents octets are the
|
---|
1268 | concatenation of the BER encodings of the values of the
|
---|
1269 | occurrences in the collection, in order of occurence.
|
---|
1270 |
|
---|
1271 | DER encoding. Constructed. Contents octets are the
|
---|
1272 | concatenation of the DER encodings of the values of the
|
---|
1273 | occurrences in the collection, in order of occurence.
|
---|
1274 |
|
---|
1275 |
|
---|
1276 | 5.14 SET
|
---|
1277 |
|
---|
1278 | The SET type denotes an unordered collection of one or more
|
---|
1279 | types.
|
---|
1280 |
|
---|
1281 | The SET type is not used in PKCS.
|
---|
1282 |
|
---|
1283 | ASN.1 notation:
|
---|
1284 |
|
---|
1285 | SET {
|
---|
1286 | [identifier1] Type1 [{OPTIONAL | DEFAULT value1}],
|
---|
1287 | ...,
|
---|
1288 | [identifiern] Typen [{OPTIONAL | DEFAULT valuen}]}
|
---|
1289 |
|
---|
1290 | where identifier1, ..., identifiern are optional, distinct
|
---|
1291 | identifiers for the components, Type1, ..., Typen are the
|
---|
1292 | types of the components, and value1, ..., valuen are
|
---|
1293 | optional default values for the components. The identifiers
|
---|
1294 | are primarily for documentation; they do not affect values
|
---|
1295 | of the type or their encodings in any way.
|
---|
1296 |
|
---|
1297 | The OPTIONAL qualifier indicates that the value of a
|
---|
1298 | component is optional and need not be present in the set.
|
---|
1299 | The DEFAULT qualifier also indicates that the value of a
|
---|
1300 | component is optional, and assigns a default value to the
|
---|
1301 | component when the component is absent.
|
---|
1302 |
|
---|
1303 | The types must have distinct tags. This requirement is
|
---|
1304 | typically satisfied with explicit or implicit tagging on
|
---|
1305 | some of the components.
|
---|
1306 |
|
---|
1307 | BER encoding. Constructed. Contents octets are the
|
---|
1308 | concatenation of the BER encodings of the values of the
|
---|
1309 | components of the set, in any order, with the following
|
---|
1310 | rules for components with the OPTIONAL and DEFAULT
|
---|
1311 | qualifiers:
|
---|
1312 |
|
---|
1313 | o if the value of a component with the OPTIONAL or
|
---|
1314 | DEFAULT qualifier is absent from the set, then the
|
---|
1315 | encoding of that component is not included in the
|
---|
1316 | contents octets
|
---|
1317 |
|
---|
1318 | o if the value of a component with the DEFAULT
|
---|
1319 | qualifier is the default value, then the encoding
|
---|
1320 | of that component may or may not be included in
|
---|
1321 | the contents octets
|
---|
1322 |
|
---|
1323 | DER encoding. Constructed. Contents octets are the same as
|
---|
1324 | for the BER encoding, except that:
|
---|
1325 |
|
---|
1326 | 1. If the value of a component with the DEFAULT
|
---|
1327 | qualifier is the default value, the encoding of
|
---|
1328 | that component is not included.
|
---|
1329 |
|
---|
1330 | 2. There is an order to the components, namely
|
---|
1331 | ascending order by tag.
|
---|
1332 |
|
---|
1333 |
|
---|
1334 | 5.15 SET OF
|
---|
1335 |
|
---|
1336 | The SET OF type denotes an unordered collection of zero or
|
---|
1337 | more occurrences of a given type.
|
---|
1338 |
|
---|
1339 | The SET OF type is used for sets of attributes in PKCS #6,
|
---|
1340 | #7, #8, #9 and #10, for sets of message-digest algorithm
|
---|
1341 | identifiers, signer information, and recipient information
|
---|
1342 | in PKCS #7, and in X.501 distinguished names.
|
---|
1343 |
|
---|
1344 | ASN.1 notation:
|
---|
1345 |
|
---|
1346 | SET OF Type
|
---|
1347 |
|
---|
1348 | where Type is a type.
|
---|
1349 |
|
---|
1350 | Example: X.501's RelativeDistinguishedName type consists of
|
---|
1351 | zero or more occurrences of the AttributeValueAssertion
|
---|
1352 | type, where the order is unimportant:
|
---|
1353 |
|
---|
1354 | RelativeDistinguishedName ::=
|
---|
1355 | SET OF AttributeValueAssertion
|
---|
1356 |
|
---|
1357 | BER encoding. Constructed. Contents octets are the
|
---|
1358 | concatenation of the BER encodings of the values of the
|
---|
1359 | occurrences in the collection, in any order.
|
---|
1360 |
|
---|
1361 | DER encoding. Constructed. Contents octets are the same as
|
---|
1362 | for the BER encoding, except that there is an order, namely
|
---|
1363 | ascending lexicographic order of BER encoding. Lexicographic
|
---|
1364 | comparison of two different BER encodings is done as
|
---|
1365 | follows: Logically pad the shorter BER encoding after the
|
---|
1366 | last octet with dummy octets that are smaller in value than
|
---|
1367 | any normal octet. Scan the BER encodings from left to right
|
---|
1368 | until a difference is found. The smaller-valued BER encoding
|
---|
1369 | is the one with the smaller-valued octet at the point of
|
---|
1370 | difference.
|
---|
1371 |
|
---|
1372 |
|
---|
1373 | 5.16 T61String
|
---|
1374 |
|
---|
1375 | The T61String type denotes an arbtrary string of T.61
|
---|
1376 | characters. T.61 is an eight-bit extension to the ASCII
|
---|
1377 | character set. Special "escape" sequences specify the
|
---|
1378 | interpretation of subsequent character values as, for
|
---|
1379 | example, Japanese; the initial interpretation is Latin. The
|
---|
1380 | character set includes non-printing control characters. The
|
---|
1381 | T61String type allows only the Latin and Japanese character
|
---|
1382 | interepretations, and implementors' agreements for directory
|
---|
1383 | names exclude control characters [NIST92]. A T61String value
|
---|
1384 | can have any length, including zero. This type is a string
|
---|
1385 | type.
|
---|
1386 |
|
---|
1387 | The T61String type is used in PKCS #9's unstructured-address
|
---|
1388 | and challenge-password attributes, and in several X.521
|
---|
1389 | attributes.
|
---|
1390 |
|
---|
1391 | ASN.1 notation:
|
---|
1392 |
|
---|
1393 | T61String
|
---|
1394 |
|
---|
1395 | BER encoding. Primitive or constructed. In a primitive
|
---|
1396 | encoding, the contents octets give the characters in the
|
---|
1397 | T.61 string, encoded in ASCII. In a constructed encoding,
|
---|
1398 | the contents octets give the concatenation of the BER
|
---|
1399 | encodings of consecutive substrings of the T.61 string.
|
---|
1400 |
|
---|
1401 | Example: The BER encoding of the T61String value "cl'es
|
---|
1402 | publiques" (French for "public keys") can be any of the
|
---|
1403 | following, among others, depending on the form of length
|
---|
1404 | octets and whether the encoding is primitive or constructed:
|
---|
1405 |
|
---|
1406 | 14 0f DER encoding
|
---|
1407 | 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73
|
---|
1408 |
|
---|
1409 | 14 81 0f long form of length octets
|
---|
1410 | 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73
|
---|
1411 |
|
---|
1412 | 34 15 constructed encoding: "cl'es" + " " + "publiques"
|
---|
1413 | 14 05 63 6c c2 65 73
|
---|
1414 | 14 01 20
|
---|
1415 | 14 09 70 75 62 6c 69 71 75 65 73
|
---|
1416 |
|
---|
1417 | The eight-bit character c2 is a T.61 prefix that adds an
|
---|
1418 | acute accent (') to the next character.
|
---|
1419 |
|
---|
1420 | DER encoding. Primitive. Contents octets are as for a
|
---|
1421 | primitive BER encoding.
|
---|
1422 |
|
---|
1423 | Example: The DER encoding of the T61String value "cl'es
|
---|
1424 | publiques" is
|
---|
1425 |
|
---|
1426 | 14 0f 63 6c c2 65 73 20 70 75 62 6c 69 71 75 65 73
|
---|
1427 |
|
---|
1428 |
|
---|
1429 | 5.17 UTCTime
|
---|
1430 |
|
---|
1431 | The UTCTime type denotes a "coordinated universal time" or
|
---|
1432 | Greenwich Mean Time (GMT) value. A UTCTime value includes
|
---|
1433 | the local time precise to either minutes or seconds, and an
|
---|
1434 | offset from GMT in hours and minutes. It takes any of the
|
---|
1435 | following forms:
|
---|
1436 |
|
---|
1437 | YYMMDDhhmmZ
|
---|
1438 | YYMMDDhhmm+hh'mm'
|
---|
1439 | YYMMDDhhmm-hh'mm'
|
---|
1440 | YYMMDDhhmmssZ
|
---|
1441 | YYMMDDhhmmss+hh'mm'
|
---|
1442 | YYMMDDhhmmss-hh'mm'
|
---|
1443 |
|
---|
1444 | where:
|
---|
1445 |
|
---|
1446 | YY is the least significant two digits of the year
|
---|
1447 |
|
---|
1448 | MM is the month (01 to 12)
|
---|
1449 |
|
---|
1450 | DD is the day (01 to 31)
|
---|
1451 |
|
---|
1452 | hh is the hour (00 to 23)
|
---|
1453 |
|
---|
1454 | mm are the minutes (00 to 59)
|
---|
1455 |
|
---|
1456 | ss are the seconds (00 to 59)
|
---|
1457 |
|
---|
1458 | Z indicates that local time is GMT, + indicates that
|
---|
1459 | local time is later than GMT, and - indicates that
|
---|
1460 | local time is earlier than GMT
|
---|
1461 |
|
---|
1462 | hh' is the absolute value of the offset from GMT in
|
---|
1463 | hours
|
---|
1464 |
|
---|
1465 | mm' is the absolute value of the offset from GMT in
|
---|
1466 | minutes
|
---|
1467 |
|
---|
1468 | This type is a string type.
|
---|
1469 |
|
---|
1470 | The UTCTime type is used for signing times in PKCS #9's
|
---|
1471 | signing-time attribute and for certificate validity periods
|
---|
1472 | in X.509's Validity type.
|
---|
1473 |
|
---|
1474 | ASN.1 notation:
|
---|
1475 |
|
---|
1476 | UTCTime
|
---|
1477 |
|
---|
1478 | BER encoding. Primitive or constructed. In a primitive
|
---|
1479 | encoding, the contents octets give the characters in the
|
---|
1480 | string, encoded in ASCII. In a constructed encoding, the
|
---|
1481 | contents octets give the concatenation of the BER encodings
|
---|
1482 | of consecutive substrings of the string. (The constructed
|
---|
1483 | encoding is not particularly interesting, since UTCTime
|
---|
1484 | values are so short, but the constructed encoding is
|
---|
1485 | permitted.)
|
---|
1486 |
|
---|
1487 | Example: The time this sentence was originally written was
|
---|
1488 | 4:45:40 p.m. Pacific Daylight Time on May 6, 1991, which can
|
---|
1489 | be represented with either of the following UTCTime values,
|
---|
1490 | among others:
|
---|
1491 |
|
---|
1492 | "910506164540-0700"
|
---|
1493 |
|
---|
1494 | "910506234540Z"
|
---|
1495 |
|
---|
1496 | These values have the following BER encodings, among others:
|
---|
1497 |
|
---|
1498 | 17 0d 39 31 30 35 30 36 32 33 34 35 34 30 5a
|
---|
1499 |
|
---|
1500 | 17 11 39 31 30 35 30 36 31 36 34 35 34 30 2D 30 37 30
|
---|
1501 | 30
|
---|
1502 |
|
---|
1503 | DER encoding. Primitive. Contents octets are as for a
|
---|
1504 | primitive BER encoding.
|
---|
1505 |
|
---|
1506 |
|
---|
1507 | 6. An example
|
---|
1508 |
|
---|
1509 | This section gives an example of ASN.1 notation and DER
|
---|
1510 | encoding: the X.501 type Name.
|
---|
1511 |
|
---|
1512 |
|
---|
1513 | 6.1 Abstract notation
|
---|
1514 |
|
---|
1515 | This section gives the ASN.1 notation for the X.501 type
|
---|
1516 | Name.
|
---|
1517 |
|
---|
1518 | Name ::= CHOICE {
|
---|
1519 | RDNSequence }
|
---|
1520 |
|
---|
1521 | RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
|
---|
1522 |
|
---|
1523 | RelativeDistinguishedName ::=
|
---|
1524 | SET OF AttributeValueAssertion
|
---|
1525 |
|
---|
1526 | AttributeValueAssertion ::= SEQUENCE {
|
---|
1527 | AttributeType,
|
---|
1528 | AttributeValue }
|
---|
1529 |
|
---|
1530 | AttributeType ::= OBJECT IDENTIFIER
|
---|
1531 |
|
---|
1532 | AttributeValue ::= ANY
|
---|
1533 |
|
---|
1534 | The Name type identifies an object in an X.500 directory.
|
---|
1535 | Name is a CHOICE type consisting of one alternative:
|
---|
1536 | RDNSequence. (Future revisions of X.500 may have other
|
---|
1537 | alternatives.)
|
---|
1538 |
|
---|
1539 | The RDNSequence type gives a path through an X.500 directory
|
---|
1540 | tree starting at the root. RDNSequence is a SEQUENCE OF type
|
---|
1541 | consisting of zero or more occurences of
|
---|
1542 | RelativeDistinguishedName.
|
---|
1543 |
|
---|
1544 | The RelativeDistinguishedName type gives a unique name to an
|
---|
1545 | object relative to the object superior to it in the
|
---|
1546 | directory tree. RelativeDistinguishedName is a SET OF type
|
---|
1547 | consisting of zero or more occurrences of
|
---|
1548 | AttributeValueAssertion.
|
---|
1549 |
|
---|
1550 | The AttributeValueAssertion type assigns a value to some
|
---|
1551 | attribute of a relative distinguished name, such as country
|
---|
1552 | name or common name. AttributeValueAssertion is a SEQUENCE
|
---|
1553 | type consisting of two components, an AttributeType type and
|
---|
1554 | an AttributeValue type.
|
---|
1555 |
|
---|
1556 | The AttributeType type identifies an attribute by object
|
---|
1557 | identifier. The AttributeValue type gives an arbitrary
|
---|
1558 | attribute value. The actual type of the attribute value is
|
---|
1559 | determined by the attribute type.
|
---|
1560 |
|
---|
1561 |
|
---|
1562 | 6.2 DER encoding
|
---|
1563 |
|
---|
1564 | This section gives an example of a DER encoding of a value
|
---|
1565 | of type Name, working from the bottom up.
|
---|
1566 |
|
---|
1567 | The name is that of the Test User 1 from the PKCS examples
|
---|
1568 | [Kal93]. The name is represented by the following path:
|
---|
1569 |
|
---|
1570 | (root)
|
---|
1571 | |
|
---|
1572 | countryName = "US"
|
---|
1573 | |
|
---|
1574 | organizationName = "Example Organization"
|
---|
1575 | |
|
---|
1576 | commonName = "Test User 1"
|
---|
1577 |
|
---|
1578 | Each level corresponds to one RelativeDistinguishedName
|
---|
1579 | value, each of which happens for this name to consist of one
|
---|
1580 | AttributeValueAssertion value. The AttributeType value is
|
---|
1581 | before the equals sign, and the AttributeValue value (a
|
---|
1582 | printable string for the given attribute types) is after the
|
---|
1583 | equals sign.
|
---|
1584 |
|
---|
1585 | The countryName, organizationName, and commonUnitName are
|
---|
1586 | attribute types defined in X.520 as:
|
---|
1587 |
|
---|
1588 | attributeType OBJECT IDENTIFIER ::=
|
---|
1589 | { joint-iso-ccitt(2) ds(5) 4 }
|
---|
1590 |
|
---|
1591 | countryName OBJECT IDENTIFIER ::= { attributeType 6 }
|
---|
1592 | organizationName OBJECT IDENTIFIER ::=
|
---|
1593 | { attributeType 10 }
|
---|
1594 | commonUnitName OBJECT IDENTIFIER ::=
|
---|
1595 | { attributeType 3 }
|
---|
1596 |
|
---|
1597 |
|
---|
1598 | 6.2.1 AttributeType
|
---|
1599 |
|
---|
1600 | The three AttributeType values are OCTET STRING values, so
|
---|
1601 | their DER encoding follows the primitive, definite-length
|
---|
1602 | method:
|
---|
1603 |
|
---|
1604 | 06 03 55 04 06 countryName
|
---|
1605 |
|
---|
1606 | 06 03 55 04 0a organizationName
|
---|
1607 |
|
---|
1608 | 06 03 55 04 03 commonName
|
---|
1609 |
|
---|
1610 | The identifier octets follow the low-tag form, since the tag
|
---|
1611 | is 6 for OBJECT IDENTIFIER. Bits 8 and 7 have value "0,"
|
---|
1612 | indicating universal class, and bit 6 has value "0,"
|
---|
1613 | indicating that the encoding is primitive. The length octets
|
---|
1614 | follow the short form. The contents octets are the
|
---|
1615 | concatenation of three octet strings derived from
|
---|
1616 | subidentifiers (in decimal): 40 * 2 + 5 = 85 = 5516; 4; and
|
---|
1617 | 6, 10, or 3.
|
---|
1618 |
|
---|
1619 |
|
---|
1620 | 6.2.2 AttributeValue
|
---|
1621 |
|
---|
1622 | The three AttributeValue values are PrintableString values,
|
---|
1623 | so their encodings follow the primitive, definite-length
|
---|
1624 | method:
|
---|
1625 |
|
---|
1626 | 13 02 55 53 "US"
|
---|
1627 |
|
---|
1628 | 13 14 "Example Organization"
|
---|
1629 | 45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
|
---|
1630 | 74 69 6f 6e
|
---|
1631 |
|
---|
1632 | 13 0b "Test User 1"
|
---|
1633 | 54 65 73 74 20 55 73 65 72 20 31
|
---|
1634 |
|
---|
1635 | The identifier octets follow the low-tag-number form, since
|
---|
1636 | the tag for PrintableString, 19 (decimal), is between 0 and
|
---|
1637 | 30. Bits 8 and 7 have value "0" since PrintableString is in
|
---|
1638 | the universal class. Bit 6 has value "0" since the encoding
|
---|
1639 | is primitive. The length octets follow the short form, and
|
---|
1640 | the contents octets are the ASCII representation of the
|
---|
1641 | attribute value.
|
---|
1642 |
|
---|
1643 |
|
---|
1644 | 6.2.3 AttributeValueAssertion
|
---|
1645 |
|
---|
1646 | The three AttributeValueAssertion values are SEQUENCE
|
---|
1647 | values, so their DER encodings follow the constructed,
|
---|
1648 | definite-length method:
|
---|
1649 |
|
---|
1650 | 30 09 countryName = "US"
|
---|
1651 | 06 03 55 04 06
|
---|
1652 | 13 02 55 53
|
---|
1653 |
|
---|
1654 | 30 1b organizationName = "Example Organizaiton"
|
---|
1655 | 06 03 55 04 0a
|
---|
1656 | 13 14 ... 6f 6e
|
---|
1657 |
|
---|
1658 | 30 12 commonName = "Test User 1"
|
---|
1659 | 06 03 55 04 0b
|
---|
1660 | 13 0b ... 20 31
|
---|
1661 |
|
---|
1662 | The identifier octets follow the low-tag-number form, since
|
---|
1663 | the tag for SEQUENCE, 16 (decimal), is between 0 and 30.
|
---|
1664 | Bits 8 and 7 have value "0" since SEQUENCE is in the
|
---|
1665 | universal class. Bit 6 has value "1" since the encoding is
|
---|
1666 | constructed. The length octets follow the short form, and
|
---|
1667 | the contents octets are the concatenation of the DER
|
---|
1668 | encodings of the attributeType and attributeValue
|
---|
1669 | components.
|
---|
1670 |
|
---|
1671 |
|
---|
1672 | 6.2.4 RelativeDistinguishedName
|
---|
1673 |
|
---|
1674 | The three RelativeDistinguishedName values are SET OF
|
---|
1675 | values, so their DER encodings follow the constructed,
|
---|
1676 | definite-length method:
|
---|
1677 |
|
---|
1678 | 31 0b
|
---|
1679 | 30 09 ... 55 53
|
---|
1680 |
|
---|
1681 | 31 1d
|
---|
1682 | 30 1b ... 6f 6e
|
---|
1683 |
|
---|
1684 | 31 14
|
---|
1685 | 30 12 ... 20 31
|
---|
1686 |
|
---|
1687 | The identifier octets follow the low-tag-number form, since
|
---|
1688 | the tag for SET OF, 17 (decimal), is between 0 and 30. Bits
|
---|
1689 | 8 and 7 have value "0" since SET OF is in the universal
|
---|
1690 | class Bit 6 has value "1" since the encoding is constructed.
|
---|
1691 | The lengths octets follow the short form, and the contents
|
---|
1692 | octets are the DER encodings of the respective
|
---|
1693 | AttributeValueAssertion values, since there is only one
|
---|
1694 | value in each set.
|
---|
1695 |
|
---|
1696 |
|
---|
1697 | 6.2.5 RDNSequence
|
---|
1698 |
|
---|
1699 | The RDNSequence value is a SEQUENCE OF value, so its DER
|
---|
1700 | encoding follows the constructed, definite-length method:
|
---|
1701 |
|
---|
1702 | 30 42
|
---|
1703 | 31 0b ... 55 53
|
---|
1704 | 31 1d ... 6f 6e
|
---|
1705 | 31 14 ... 20 31
|
---|
1706 |
|
---|
1707 | The identifier octets follow the low-tag-number form, since
|
---|
1708 | the tag for SEQUENCE OF, 16 (decimal), is between 0 and 30.
|
---|
1709 | Bits 8 and 7 have value "0" since SEQUENCE OF is in the
|
---|
1710 | universal class. Bit 6 has value "1" since the encoding is
|
---|
1711 | constructed. The lengths octets follow the short form, and
|
---|
1712 | the contents octets are the concatenation of the DER
|
---|
1713 | encodings of the three RelativeDistinguishedName values, in
|
---|
1714 | order of occurrence.
|
---|
1715 |
|
---|
1716 |
|
---|
1717 | 6.2.6 Name
|
---|
1718 |
|
---|
1719 | The Name value is a CHOICE value, so its DER encoding is the
|
---|
1720 | same as that of the RDNSequence value:
|
---|
1721 |
|
---|
1722 | 30 42
|
---|
1723 | 31 0b
|
---|
1724 | 30 09
|
---|
1725 | 06 03 55 04 06 attributeType = countryName
|
---|
1726 | 13 02 55 53 attributeValue = "US"
|
---|
1727 | 31 1d
|
---|
1728 | 30 1b
|
---|
1729 | 06 03 55 04 0a attributeType = organizationName
|
---|
1730 | 13 14 attributeValue = "Example Organization"
|
---|
1731 | 45 78 61 6d 70 6c 65 20 4f 72 67 61 6e 69 7a 61
|
---|
1732 | 74 69 6f 6e
|
---|
1733 |
|
---|
1734 | 31 14
|
---|
1735 | 30 12
|
---|
1736 | 06 03 55 04 03 attributeType = commonName
|
---|
1737 | 13 0b attributeValue = "Test User 1"
|
---|
1738 | 54 65 73 74 20 55 73 65 72 20 31
|
---|
1739 |
|
---|
1740 |
|
---|
1741 | References
|
---|
1742 |
|
---|
1743 | PKCS #1 RSA Laboratories. PKCS #1: RSA Encryption
|
---|
1744 | Standard. Version 1.5, November 1993.
|
---|
1745 |
|
---|
1746 | PKCS #3 RSA Laboratories. PKCS #3: Diffie-Hellman Key-
|
---|
1747 | Agreement Standard. Version 1.4, November 1993.
|
---|
1748 |
|
---|
1749 | PKCS #5 RSA Laboratories. PKCS #5: Password-Based
|
---|
1750 | Encryption Standard. Version 1.5, November 1993.
|
---|
1751 |
|
---|
1752 | PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate
|
---|
1753 | Syntax Standard. Version 1.5, November 1993.
|
---|
1754 |
|
---|
1755 | PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message
|
---|
1756 | Syntax Standard. Version 1.5, November 1993.
|
---|
1757 |
|
---|
1758 | PKCS #8 RSA Laboratories. PKCS #8: Private-Key Information
|
---|
1759 | Syntax Standard. Version 1.2, November 1993.
|
---|
1760 |
|
---|
1761 | PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute
|
---|
1762 | Types. Version 1.1, November 1993.
|
---|
1763 |
|
---|
1764 | PKCS #10 RSA Laboratories. PKCS #10: Certification Request
|
---|
1765 | Syntax Standard. Version 1.0, November 1993.
|
---|
1766 |
|
---|
1767 | X.200 CCITT. Recommendation X.200: Reference Model of
|
---|
1768 | Open Systems Interconnection for CCITT
|
---|
1769 | Applications. 1984.
|
---|
1770 |
|
---|
1771 | X.208 CCITT. Recommendation X.208: Specification of
|
---|
1772 | Abstract Syntax Notation One (ASN.1). 1988.
|
---|
1773 |
|
---|
1774 | X.209 CCITT. Recommendation X.209: Specification of
|
---|
1775 | Basic Encoding Rules for Abstract Syntax Notation
|
---|
1776 | One (ASN.1). 1988.
|
---|
1777 |
|
---|
1778 | X.500 CCITT. Recommendation X.500: The
|
---|
1779 | Directory--Overview of Concepts, Models and
|
---|
1780 | Services. 1988.
|
---|
1781 |
|
---|
1782 | X.501 CCITT. Recommendation X.501: The Directory--
|
---|
1783 | Models. 1988.
|
---|
1784 |
|
---|
1785 | X.509 CCITT. Recommendation X.509: The Directory--
|
---|
1786 | Authentication Framework. 1988.
|
---|
1787 |
|
---|
1788 | X.520 CCITT. Recommendation X.520: The Directory--
|
---|
1789 | Selected Attribute Types. 1988.
|
---|
1790 |
|
---|
1791 | [Kal93] Burton S. Kaliski Jr. Some Examples of the PKCS
|
---|
1792 | Standards. RSA Laboratories, November 1993.
|
---|
1793 |
|
---|
1794 | [NIST92] NIST. Special Publication 500-202: Stable
|
---|
1795 | Implementation Agreements for Open Systems
|
---|
1796 | Interconnection Protocols. Part 11 (Directory
|
---|
1797 | Services Protocols). December 1992.
|
---|
1798 |
|
---|
1799 |
|
---|
1800 | Revision history
|
---|
1801 |
|
---|
1802 |
|
---|
1803 | June 3, 1991 version
|
---|
1804 |
|
---|
1805 | The June 3, 1991 version is part of the initial public
|
---|
1806 | release of PKCS. It was published as NIST/OSI Implementors'
|
---|
1807 | Workshop document SEC-SIG-91-17.
|
---|
1808 |
|
---|
1809 |
|
---|
1810 | November 1, 1993 version
|
---|
1811 |
|
---|
1812 | The November 1, 1993 version incorporates several editorial
|
---|
1813 | changes, including the addition of a revision history. It is
|
---|
1814 | updated to be consistent with the following versions of the
|
---|
1815 | PKCS documents:
|
---|
1816 |
|
---|
1817 | PKCS #1: RSA Encryption Standard. Version 1.5, November
|
---|
1818 | 1993.
|
---|
1819 |
|
---|
1820 | PKCS #3: Diffie-Hellman Key-Agreement Standard. Version
|
---|
1821 | 1.4, November 1993.
|
---|
1822 |
|
---|
1823 | PKCS #5: Password-Based Encryption Standard. Version
|
---|
1824 | 1.5, November 1993.
|
---|
1825 |
|
---|
1826 | PKCS #6: Extended-Certificate Syntax Standard. Version
|
---|
1827 | 1.5, November 1993.
|
---|
1828 |
|
---|
1829 | PKCS #7: Cryptographic Message Syntax Standard. Version
|
---|
1830 | 1.5, November 1993.
|
---|
1831 |
|
---|
1832 | PKCS #8: Private-Key Information Syntax Standard.
|
---|
1833 | Version 1.2, November 1993.
|
---|
1834 |
|
---|
1835 | PKCS #9: Selected Attribute Types. Version 1.1,
|
---|
1836 | November 1993.
|
---|
1837 |
|
---|
1838 | PKCS #10: Certification Request Syntax Standard.
|
---|
1839 | Version 1.0, November 1993.
|
---|
1840 |
|
---|
1841 | The following substantive changes were made:
|
---|
1842 |
|
---|
1843 | Section 5: Description of T61String type is added.
|
---|
1844 |
|
---|
1845 | Section 6: Names are changed, consistent with other
|
---|
1846 | PKCS examples.
|
---|
1847 |
|
---|
1848 |
|
---|
1849 | Author's address
|
---|
1850 |
|
---|
1851 | Burton S. Kaliski Jr., Ph.D.
|
---|
1852 | Chief Scientist
|
---|
1853 | RSA Laboratories (415) 595-7703
|
---|
1854 | 100 Marine Parkway (415) 595-4126 (fax)
|
---|
1855 | Redwood City, CA 94065 USA burt@rsa.com
|
---|