| 1 | /* Copyright (C) 1991, 1993, 1996, 1997 Free Software Foundation, Inc.
|
|---|
| 2 | Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
|
|---|
| 3 | with help from Dan Sahlin (dan@sics.se) and
|
|---|
| 4 | commentary by Jim Blandy (jimb@ai.mit.edu);
|
|---|
| 5 | adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
|
|---|
| 6 | and implemented by Roland McGrath (roland@ai.mit.edu).
|
|---|
| 7 |
|
|---|
| 8 | NOTE: The canonical source of this file is maintained with the GNU C Library.
|
|---|
| 9 | Bugs can be reported to bug-glibc@gnu.org.
|
|---|
| 10 |
|
|---|
| 11 | This program is free software; you can redistribute it and/or modify it
|
|---|
| 12 | under the terms of the GNU General Public License as published by the
|
|---|
| 13 | Free Software Foundation; either version 2, or (at your option) any
|
|---|
| 14 | later version.
|
|---|
| 15 |
|
|---|
| 16 | This program is distributed in the hope that it will be useful,
|
|---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 19 | GNU General Public License for more details.
|
|---|
| 20 |
|
|---|
| 21 | You should have received a copy of the GNU General Public License
|
|---|
| 22 | along with this program; if not, write to the Free Software
|
|---|
| 23 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
|---|
| 24 | USA. */
|
|---|
| 25 |
|
|---|
| 26 | #ifdef HAVE_CONFIG_H
|
|---|
| 27 | #include <config.h>
|
|---|
| 28 | #endif
|
|---|
| 29 |
|
|---|
| 30 | #undef __ptr_t
|
|---|
| 31 | #if defined (__cplusplus) || (defined (__STDC__) && __STDC__)
|
|---|
| 32 | # define __ptr_t void *
|
|---|
| 33 | #else /* Not C++ or ANSI C. */
|
|---|
| 34 | # define __ptr_t char *
|
|---|
| 35 | #endif /* C++ or ANSI C. */
|
|---|
| 36 |
|
|---|
| 37 | #if defined (_LIBC)
|
|---|
| 38 | # include <string.h>
|
|---|
| 39 | #endif
|
|---|
| 40 |
|
|---|
| 41 | #if defined (HAVE_LIMITS_H) || defined (_LIBC)
|
|---|
| 42 | # include <limits.h>
|
|---|
| 43 | #endif
|
|---|
| 44 |
|
|---|
| 45 | #define LONG_MAX_32_BITS 2147483647
|
|---|
| 46 |
|
|---|
| 47 | #ifndef LONG_MAX
|
|---|
| 48 | #define LONG_MAX LONG_MAX_32_BITS
|
|---|
| 49 | #endif
|
|---|
| 50 |
|
|---|
| 51 | #include <sys/types.h>
|
|---|
| 52 |
|
|---|
| 53 | #undef memchr
|
|---|
| 54 |
|
|---|
| 55 |
|
|---|
| 56 | /* Search no more than N bytes of S for C. */
|
|---|
| 57 | __ptr_t
|
|---|
| 58 | memchr (s, c, n)
|
|---|
| 59 | const __ptr_t s;
|
|---|
| 60 | int c;
|
|---|
| 61 | size_t n;
|
|---|
| 62 | {
|
|---|
| 63 | const unsigned char *char_ptr;
|
|---|
| 64 | const unsigned long int *longword_ptr;
|
|---|
| 65 | unsigned long int longword, magic_bits, charmask;
|
|---|
| 66 |
|
|---|
| 67 | c = (unsigned char) c;
|
|---|
| 68 |
|
|---|
| 69 | /* Handle the first few characters by reading one character at a time.
|
|---|
| 70 | Do this until CHAR_PTR is aligned on a longword boundary. */
|
|---|
| 71 | for (char_ptr = (const unsigned char *) s;
|
|---|
| 72 | n > 0 && ((unsigned long int) char_ptr
|
|---|
| 73 | & (sizeof (longword) - 1)) != 0;
|
|---|
| 74 | --n, ++char_ptr)
|
|---|
| 75 | if (*char_ptr == c)
|
|---|
| 76 | return (__ptr_t) char_ptr;
|
|---|
| 77 |
|
|---|
| 78 | /* All these elucidatory comments refer to 4-byte longwords,
|
|---|
| 79 | but the theory applies equally well to 8-byte longwords. */
|
|---|
| 80 |
|
|---|
| 81 | longword_ptr = (unsigned long int *) char_ptr;
|
|---|
| 82 |
|
|---|
| 83 | /* Bits 31, 24, 16, and 8 of this number are zero. Call these bits
|
|---|
| 84 | the "holes." Note that there is a hole just to the left of
|
|---|
| 85 | each byte, with an extra at the end:
|
|---|
| 86 |
|
|---|
| 87 | bits: 01111110 11111110 11111110 11111111
|
|---|
| 88 | bytes: AAAAAAAA BBBBBBBB CCCCCCCC DDDDDDDD
|
|---|
| 89 |
|
|---|
| 90 | The 1-bits make sure that carries propagate to the next 0-bit.
|
|---|
| 91 | The 0-bits provide holes for carries to fall into. */
|
|---|
| 92 |
|
|---|
| 93 | if (sizeof (longword) != 4 && sizeof (longword) != 8)
|
|---|
| 94 | abort ();
|
|---|
| 95 |
|
|---|
| 96 | #if LONG_MAX <= LONG_MAX_32_BITS
|
|---|
| 97 | magic_bits = 0x7efefeff;
|
|---|
| 98 | #else
|
|---|
| 99 | magic_bits = ((unsigned long int) 0x7efefefe << 32) | 0xfefefeff;
|
|---|
| 100 | #endif
|
|---|
| 101 |
|
|---|
| 102 | /* Set up a longword, each of whose bytes is C. */
|
|---|
| 103 | charmask = c | (c << 8);
|
|---|
| 104 | charmask |= charmask << 16;
|
|---|
| 105 | #if LONG_MAX > LONG_MAX_32_BITS
|
|---|
| 106 | charmask |= charmask << 32;
|
|---|
| 107 | #endif
|
|---|
| 108 |
|
|---|
| 109 | /* Instead of the traditional loop which tests each character,
|
|---|
| 110 | we will test a longword at a time. The tricky part is testing
|
|---|
| 111 | if *any of the four* bytes in the longword in question are zero. */
|
|---|
| 112 | while (n >= sizeof (longword))
|
|---|
| 113 | {
|
|---|
| 114 | /* We tentatively exit the loop if adding MAGIC_BITS to
|
|---|
| 115 | LONGWORD fails to change any of the hole bits of LONGWORD.
|
|---|
| 116 |
|
|---|
| 117 | 1) Is this safe? Will it catch all the zero bytes?
|
|---|
| 118 | Suppose there is a byte with all zeros. Any carry bits
|
|---|
| 119 | propagating from its left will fall into the hole at its
|
|---|
| 120 | least significant bit and stop. Since there will be no
|
|---|
| 121 | carry from its most significant bit, the LSB of the
|
|---|
| 122 | byte to the left will be unchanged, and the zero will be
|
|---|
| 123 | detected.
|
|---|
| 124 |
|
|---|
| 125 | 2) Is this worthwhile? Will it ignore everything except
|
|---|
| 126 | zero bytes? Suppose every byte of LONGWORD has a bit set
|
|---|
| 127 | somewhere. There will be a carry into bit 8. If bit 8
|
|---|
| 128 | is set, this will carry into bit 16. If bit 8 is clear,
|
|---|
| 129 | one of bits 9-15 must be set, so there will be a carry
|
|---|
| 130 | into bit 16. Similarly, there will be a carry into bit
|
|---|
| 131 | 24. If one of bits 24-30 is set, there will be a carry
|
|---|
| 132 | into bit 31, so all of the hole bits will be changed.
|
|---|
| 133 |
|
|---|
| 134 | The one misfire occurs when bits 24-30 are clear and bit
|
|---|
| 135 | 31 is set; in this case, the hole at bit 31 is not
|
|---|
| 136 | changed. If we had access to the processor carry flag,
|
|---|
| 137 | we could close this loophole by putting the fourth hole
|
|---|
| 138 | at bit 32!
|
|---|
| 139 |
|
|---|
| 140 | So it ignores everything except 128's, when they're aligned
|
|---|
| 141 | properly.
|
|---|
| 142 |
|
|---|
| 143 | 3) But wait! Aren't we looking for C, not zero?
|
|---|
| 144 | Good point. So what we do is XOR LONGWORD with a longword,
|
|---|
| 145 | each of whose bytes is C. This turns each byte that is C
|
|---|
| 146 | into a zero. */
|
|---|
| 147 |
|
|---|
| 148 | longword = *longword_ptr++ ^ charmask;
|
|---|
| 149 |
|
|---|
| 150 | /* Add MAGIC_BITS to LONGWORD. */
|
|---|
| 151 | if ((((longword + magic_bits)
|
|---|
| 152 |
|
|---|
| 153 | /* Set those bits that were unchanged by the addition. */
|
|---|
| 154 | ^ ~longword)
|
|---|
| 155 |
|
|---|
| 156 | /* Look at only the hole bits. If any of the hole bits
|
|---|
| 157 | are unchanged, most likely one of the bytes was a
|
|---|
| 158 | zero. */
|
|---|
| 159 | & ~magic_bits) != 0)
|
|---|
| 160 | {
|
|---|
| 161 | /* Which of the bytes was C? If none of them were, it was
|
|---|
| 162 | a misfire; continue the search. */
|
|---|
| 163 |
|
|---|
| 164 | const unsigned char *cp = (const unsigned char *) (longword_ptr - 1);
|
|---|
| 165 |
|
|---|
| 166 | if (cp[0] == c)
|
|---|
| 167 | return (__ptr_t) cp;
|
|---|
| 168 | if (cp[1] == c)
|
|---|
| 169 | return (__ptr_t) &cp[1];
|
|---|
| 170 | if (cp[2] == c)
|
|---|
| 171 | return (__ptr_t) &cp[2];
|
|---|
| 172 | if (cp[3] == c)
|
|---|
| 173 | return (__ptr_t) &cp[3];
|
|---|
| 174 | #if LONG_MAX > 2147483647
|
|---|
| 175 | if (cp[4] == c)
|
|---|
| 176 | return (__ptr_t) &cp[4];
|
|---|
| 177 | if (cp[5] == c)
|
|---|
| 178 | return (__ptr_t) &cp[5];
|
|---|
| 179 | if (cp[6] == c)
|
|---|
| 180 | return (__ptr_t) &cp[6];
|
|---|
| 181 | if (cp[7] == c)
|
|---|
| 182 | return (__ptr_t) &cp[7];
|
|---|
| 183 | #endif
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 | n -= sizeof (longword);
|
|---|
| 187 | }
|
|---|
| 188 |
|
|---|
| 189 | char_ptr = (const unsigned char *) longword_ptr;
|
|---|
| 190 |
|
|---|
| 191 | while (n-- > 0)
|
|---|
| 192 | {
|
|---|
| 193 | if (*char_ptr == c)
|
|---|
| 194 | return (__ptr_t) char_ptr;
|
|---|
| 195 | else
|
|---|
| 196 | ++char_ptr;
|
|---|
| 197 | }
|
|---|
| 198 |
|
|---|
| 199 | return 0;
|
|---|
| 200 | }
|
|---|