| 1 | /* Byte-wise substring search, using the Two-Way algorithm.
|
|---|
| 2 | Copyright (C) 2008-2021 Free Software Foundation, Inc.
|
|---|
| 3 | This file is part of the GNU C Library.
|
|---|
| 4 | Written by Eric Blake <ebb9@byu.net>, 2008.
|
|---|
| 5 |
|
|---|
| 6 | This file is free software: you can redistribute it and/or modify
|
|---|
| 7 | it under the terms of the GNU Lesser General Public License as
|
|---|
| 8 | published by the Free Software Foundation; either version 2.1 of the
|
|---|
| 9 | License, or (at your option) any later version.
|
|---|
| 10 |
|
|---|
| 11 | This file is distributed in the hope that it will be useful,
|
|---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 14 | GNU Lesser General Public License for more details.
|
|---|
| 15 |
|
|---|
| 16 | You should have received a copy of the GNU Lesser General Public License
|
|---|
| 17 | along with this program. If not, see <https://www.gnu.org/licenses/>. */
|
|---|
| 18 |
|
|---|
| 19 | /* Before including this file, you need to include <config.h> and
|
|---|
| 20 | <string.h>, and define:
|
|---|
| 21 | RETURN_TYPE A macro that expands to the return type.
|
|---|
| 22 | AVAILABLE(h, h_l, j, n_l)
|
|---|
| 23 | A macro that returns nonzero if there are
|
|---|
| 24 | at least N_L bytes left starting at H[J].
|
|---|
| 25 | H is 'unsigned char *', H_L, J, and N_L
|
|---|
| 26 | are 'size_t'; H_L is an lvalue. For
|
|---|
| 27 | NUL-terminated searches, H_L can be
|
|---|
| 28 | modified each iteration to avoid having
|
|---|
| 29 | to compute the end of H up front.
|
|---|
| 30 |
|
|---|
| 31 | For case-insensitivity, you may optionally define:
|
|---|
| 32 | CMP_FUNC(p1, p2, l) A macro that returns 0 iff the first L
|
|---|
| 33 | characters of P1 and P2 are equal.
|
|---|
| 34 | CANON_ELEMENT(c) A macro that canonicalizes an element right after
|
|---|
| 35 | it has been fetched from one of the two strings.
|
|---|
| 36 | The argument is an 'unsigned char'; the result
|
|---|
| 37 | must be an 'unsigned char' as well.
|
|---|
| 38 |
|
|---|
| 39 | This file undefines the macros documented above, and defines
|
|---|
| 40 | LONG_NEEDLE_THRESHOLD.
|
|---|
| 41 | */
|
|---|
| 42 |
|
|---|
| 43 | #include <limits.h>
|
|---|
| 44 | #include <stdint.h>
|
|---|
| 45 |
|
|---|
| 46 | /* We use the Two-Way string matching algorithm (also known as
|
|---|
| 47 | Chrochemore-Perrin), which guarantees linear complexity with
|
|---|
| 48 | constant space. Additionally, for long needles, we also use a bad
|
|---|
| 49 | character shift table similar to the Boyer-Moore algorithm to
|
|---|
| 50 | achieve improved (potentially sub-linear) performance.
|
|---|
| 51 |
|
|---|
| 52 | See https://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260,
|
|---|
| 53 | https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm,
|
|---|
| 54 | https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.6641&rep=rep1&type=pdf
|
|---|
| 55 | */
|
|---|
| 56 |
|
|---|
| 57 | /* Point at which computing a bad-byte shift table is likely to be
|
|---|
| 58 | worthwhile. Small needles should not compute a table, since it
|
|---|
| 59 | adds (1 << CHAR_BIT) + NEEDLE_LEN computations of preparation for a
|
|---|
| 60 | speedup no greater than a factor of NEEDLE_LEN. The larger the
|
|---|
| 61 | needle, the better the potential performance gain. On the other
|
|---|
| 62 | hand, on non-POSIX systems with CHAR_BIT larger than eight, the
|
|---|
| 63 | memory required for the table is prohibitive. */
|
|---|
| 64 | #if CHAR_BIT < 10
|
|---|
| 65 | # define LONG_NEEDLE_THRESHOLD 32U
|
|---|
| 66 | #else
|
|---|
| 67 | # define LONG_NEEDLE_THRESHOLD SIZE_MAX
|
|---|
| 68 | #endif
|
|---|
| 69 |
|
|---|
| 70 | #ifndef MAX
|
|---|
| 71 | # define MAX(a, b) ((a < b) ? (b) : (a))
|
|---|
| 72 | #endif
|
|---|
| 73 |
|
|---|
| 74 | #ifndef CANON_ELEMENT
|
|---|
| 75 | # define CANON_ELEMENT(c) c
|
|---|
| 76 | #endif
|
|---|
| 77 | #ifndef CMP_FUNC
|
|---|
| 78 | # define CMP_FUNC memcmp
|
|---|
| 79 | #endif
|
|---|
| 80 |
|
|---|
| 81 | /* Perform a critical factorization of NEEDLE, of length NEEDLE_LEN.
|
|---|
| 82 | Return the index of the first byte in the right half, and set
|
|---|
| 83 | *PERIOD to the global period of the right half.
|
|---|
| 84 |
|
|---|
| 85 | The global period of a string is the smallest index (possibly its
|
|---|
| 86 | length) at which all remaining bytes in the string are repetitions
|
|---|
| 87 | of the prefix (the last repetition may be a subset of the prefix).
|
|---|
| 88 |
|
|---|
| 89 | When NEEDLE is factored into two halves, a local period is the
|
|---|
| 90 | length of the smallest word that shares a suffix with the left half
|
|---|
| 91 | and shares a prefix with the right half. All factorizations of a
|
|---|
| 92 | non-empty NEEDLE have a local period of at least 1 and no greater
|
|---|
| 93 | than NEEDLE_LEN.
|
|---|
| 94 |
|
|---|
| 95 | A critical factorization has the property that the local period
|
|---|
| 96 | equals the global period. All strings have at least one critical
|
|---|
| 97 | factorization with the left half smaller than the global period.
|
|---|
| 98 | And while some strings have more than one critical factorization,
|
|---|
| 99 | it is provable that with an ordered alphabet, at least one of the
|
|---|
| 100 | critical factorizations corresponds to a maximal suffix.
|
|---|
| 101 |
|
|---|
| 102 | Given an ordered alphabet, a critical factorization can be computed
|
|---|
| 103 | in linear time, with 2 * NEEDLE_LEN comparisons, by computing the
|
|---|
| 104 | shorter of two ordered maximal suffixes. The ordered maximal
|
|---|
| 105 | suffixes are determined by lexicographic comparison while tracking
|
|---|
| 106 | periodicity. */
|
|---|
| 107 | static size_t
|
|---|
| 108 | critical_factorization (const unsigned char *needle, size_t needle_len,
|
|---|
| 109 | size_t *period)
|
|---|
| 110 | {
|
|---|
| 111 | /* Index of last byte of left half, or SIZE_MAX. */
|
|---|
| 112 | size_t max_suffix, max_suffix_rev;
|
|---|
| 113 | size_t j; /* Index into NEEDLE for current candidate suffix. */
|
|---|
| 114 | size_t k; /* Offset into current period. */
|
|---|
| 115 | size_t p; /* Intermediate period. */
|
|---|
| 116 | unsigned char a, b; /* Current comparison bytes. */
|
|---|
| 117 |
|
|---|
| 118 | /* Special case NEEDLE_LEN of 1 or 2 (all callers already filtered
|
|---|
| 119 | out 0-length needles. */
|
|---|
| 120 | if (needle_len < 3)
|
|---|
| 121 | {
|
|---|
| 122 | *period = 1;
|
|---|
| 123 | return needle_len - 1;
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | /* Invariants:
|
|---|
| 127 | 0 <= j < NEEDLE_LEN - 1
|
|---|
| 128 | -1 <= max_suffix{,_rev} < j (treating SIZE_MAX as if it were signed)
|
|---|
| 129 | min(max_suffix, max_suffix_rev) < global period of NEEDLE
|
|---|
| 130 | 1 <= p <= global period of NEEDLE
|
|---|
| 131 | p == global period of the substring NEEDLE[max_suffix{,_rev}+1...j]
|
|---|
| 132 | 1 <= k <= p
|
|---|
| 133 | */
|
|---|
| 134 |
|
|---|
| 135 | /* Perform lexicographic search. */
|
|---|
| 136 | max_suffix = SIZE_MAX;
|
|---|
| 137 | j = 0;
|
|---|
| 138 | k = p = 1;
|
|---|
| 139 | while (j + k < needle_len)
|
|---|
| 140 | {
|
|---|
| 141 | a = CANON_ELEMENT (needle[j + k]);
|
|---|
| 142 | b = CANON_ELEMENT (needle[max_suffix + k]);
|
|---|
| 143 | if (a < b)
|
|---|
| 144 | {
|
|---|
| 145 | /* Suffix is smaller, period is entire prefix so far. */
|
|---|
| 146 | j += k;
|
|---|
| 147 | k = 1;
|
|---|
| 148 | p = j - max_suffix;
|
|---|
| 149 | }
|
|---|
| 150 | else if (a == b)
|
|---|
| 151 | {
|
|---|
| 152 | /* Advance through repetition of the current period. */
|
|---|
| 153 | if (k != p)
|
|---|
| 154 | ++k;
|
|---|
| 155 | else
|
|---|
| 156 | {
|
|---|
| 157 | j += p;
|
|---|
| 158 | k = 1;
|
|---|
| 159 | }
|
|---|
| 160 | }
|
|---|
| 161 | else /* b < a */
|
|---|
| 162 | {
|
|---|
| 163 | /* Suffix is larger, start over from current location. */
|
|---|
| 164 | max_suffix = j++;
|
|---|
| 165 | k = p = 1;
|
|---|
| 166 | }
|
|---|
| 167 | }
|
|---|
| 168 | *period = p;
|
|---|
| 169 |
|
|---|
| 170 | /* Perform reverse lexicographic search. */
|
|---|
| 171 | max_suffix_rev = SIZE_MAX;
|
|---|
| 172 | j = 0;
|
|---|
| 173 | k = p = 1;
|
|---|
| 174 | while (j + k < needle_len)
|
|---|
| 175 | {
|
|---|
| 176 | a = CANON_ELEMENT (needle[j + k]);
|
|---|
| 177 | b = CANON_ELEMENT (needle[max_suffix_rev + k]);
|
|---|
| 178 | if (b < a)
|
|---|
| 179 | {
|
|---|
| 180 | /* Suffix is smaller, period is entire prefix so far. */
|
|---|
| 181 | j += k;
|
|---|
| 182 | k = 1;
|
|---|
| 183 | p = j - max_suffix_rev;
|
|---|
| 184 | }
|
|---|
| 185 | else if (a == b)
|
|---|
| 186 | {
|
|---|
| 187 | /* Advance through repetition of the current period. */
|
|---|
| 188 | if (k != p)
|
|---|
| 189 | ++k;
|
|---|
| 190 | else
|
|---|
| 191 | {
|
|---|
| 192 | j += p;
|
|---|
| 193 | k = 1;
|
|---|
| 194 | }
|
|---|
| 195 | }
|
|---|
| 196 | else /* a < b */
|
|---|
| 197 | {
|
|---|
| 198 | /* Suffix is larger, start over from current location. */
|
|---|
| 199 | max_suffix_rev = j++;
|
|---|
| 200 | k = p = 1;
|
|---|
| 201 | }
|
|---|
| 202 | }
|
|---|
| 203 |
|
|---|
| 204 | /* Choose the shorter suffix. Return the index of the first byte of
|
|---|
| 205 | the right half, rather than the last byte of the left half.
|
|---|
| 206 |
|
|---|
| 207 | For some examples, 'banana' has two critical factorizations, both
|
|---|
| 208 | exposed by the two lexicographic extreme suffixes of 'anana' and
|
|---|
| 209 | 'nana', where both suffixes have a period of 2. On the other
|
|---|
| 210 | hand, with 'aab' and 'bba', both strings have a single critical
|
|---|
| 211 | factorization of the last byte, with the suffix having a period
|
|---|
| 212 | of 1. While the maximal lexicographic suffix of 'aab' is 'b',
|
|---|
| 213 | the maximal lexicographic suffix of 'bba' is 'ba', which is not a
|
|---|
| 214 | critical factorization. Conversely, the maximal reverse
|
|---|
| 215 | lexicographic suffix of 'a' works for 'bba', but not 'ab' for
|
|---|
| 216 | 'aab'. The shorter suffix of the two will always be a critical
|
|---|
| 217 | factorization. */
|
|---|
| 218 | if (max_suffix_rev + 1 < max_suffix + 1)
|
|---|
| 219 | return max_suffix + 1;
|
|---|
| 220 | *period = p;
|
|---|
| 221 | return max_suffix_rev + 1;
|
|---|
| 222 | }
|
|---|
| 223 |
|
|---|
| 224 | /* Return the first location of non-empty NEEDLE within HAYSTACK, or
|
|---|
| 225 | NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
|
|---|
| 226 | method is optimized for NEEDLE_LEN < LONG_NEEDLE_THRESHOLD.
|
|---|
| 227 | Performance is guaranteed to be linear, with an initialization cost
|
|---|
| 228 | of 2 * NEEDLE_LEN comparisons.
|
|---|
| 229 |
|
|---|
| 230 | If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
|
|---|
| 231 | most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching.
|
|---|
| 232 | If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
|
|---|
| 233 | HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching. */
|
|---|
| 234 | static RETURN_TYPE
|
|---|
| 235 | two_way_short_needle (const unsigned char *haystack, size_t haystack_len,
|
|---|
| 236 | const unsigned char *needle, size_t needle_len)
|
|---|
| 237 | {
|
|---|
| 238 | size_t i; /* Index into current byte of NEEDLE. */
|
|---|
| 239 | size_t j; /* Index into current window of HAYSTACK. */
|
|---|
| 240 | size_t period; /* The period of the right half of needle. */
|
|---|
| 241 | size_t suffix; /* The index of the right half of needle. */
|
|---|
| 242 |
|
|---|
| 243 | /* Factor the needle into two halves, such that the left half is
|
|---|
| 244 | smaller than the global period, and the right half is
|
|---|
| 245 | periodic (with a period as large as NEEDLE_LEN - suffix). */
|
|---|
| 246 | suffix = critical_factorization (needle, needle_len, &period);
|
|---|
| 247 |
|
|---|
| 248 | /* Perform the search. Each iteration compares the right half
|
|---|
| 249 | first. */
|
|---|
| 250 | if (CMP_FUNC (needle, needle + period, suffix) == 0)
|
|---|
| 251 | {
|
|---|
| 252 | /* Entire needle is periodic; a mismatch in the left half can
|
|---|
| 253 | only advance by the period, so use memory to avoid rescanning
|
|---|
| 254 | known occurrences of the period in the right half. */
|
|---|
| 255 | size_t memory = 0;
|
|---|
| 256 | j = 0;
|
|---|
| 257 | while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
|---|
| 258 | {
|
|---|
| 259 | /* Scan for matches in right half. */
|
|---|
| 260 | i = MAX (suffix, memory);
|
|---|
| 261 | while (i < needle_len && (CANON_ELEMENT (needle[i])
|
|---|
| 262 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 263 | ++i;
|
|---|
| 264 | if (needle_len <= i)
|
|---|
| 265 | {
|
|---|
| 266 | /* Scan for matches in left half. */
|
|---|
| 267 | i = suffix - 1;
|
|---|
| 268 | while (memory < i + 1 && (CANON_ELEMENT (needle[i])
|
|---|
| 269 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 270 | --i;
|
|---|
| 271 | if (i + 1 < memory + 1)
|
|---|
| 272 | return (RETURN_TYPE) (haystack + j);
|
|---|
| 273 | /* No match, so remember how many repetitions of period
|
|---|
| 274 | on the right half were scanned. */
|
|---|
| 275 | j += period;
|
|---|
| 276 | memory = needle_len - period;
|
|---|
| 277 | }
|
|---|
| 278 | else
|
|---|
| 279 | {
|
|---|
| 280 | j += i - suffix + 1;
|
|---|
| 281 | memory = 0;
|
|---|
| 282 | }
|
|---|
| 283 | }
|
|---|
| 284 | }
|
|---|
| 285 | else
|
|---|
| 286 | {
|
|---|
| 287 | /* The two halves of needle are distinct; no extra memory is
|
|---|
| 288 | required, and any mismatch results in a maximal shift. */
|
|---|
| 289 | period = MAX (suffix, needle_len - suffix) + 1;
|
|---|
| 290 | j = 0;
|
|---|
| 291 | while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
|---|
| 292 | {
|
|---|
| 293 | /* Scan for matches in right half. */
|
|---|
| 294 | i = suffix;
|
|---|
| 295 | while (i < needle_len && (CANON_ELEMENT (needle[i])
|
|---|
| 296 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 297 | ++i;
|
|---|
| 298 | if (needle_len <= i)
|
|---|
| 299 | {
|
|---|
| 300 | /* Scan for matches in left half. */
|
|---|
| 301 | i = suffix - 1;
|
|---|
| 302 | while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
|
|---|
| 303 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 304 | --i;
|
|---|
| 305 | if (i == SIZE_MAX)
|
|---|
| 306 | return (RETURN_TYPE) (haystack + j);
|
|---|
| 307 | j += period;
|
|---|
| 308 | }
|
|---|
| 309 | else
|
|---|
| 310 | j += i - suffix + 1;
|
|---|
| 311 | }
|
|---|
| 312 | }
|
|---|
| 313 | return NULL;
|
|---|
| 314 | }
|
|---|
| 315 |
|
|---|
| 316 | /* Return the first location of non-empty NEEDLE within HAYSTACK, or
|
|---|
| 317 | NULL. HAYSTACK_LEN is the minimum known length of HAYSTACK. This
|
|---|
| 318 | method is optimized for LONG_NEEDLE_THRESHOLD <= NEEDLE_LEN.
|
|---|
| 319 | Performance is guaranteed to be linear, with an initialization cost
|
|---|
| 320 | of 3 * NEEDLE_LEN + (1 << CHAR_BIT) operations.
|
|---|
| 321 |
|
|---|
| 322 | If AVAILABLE does not modify HAYSTACK_LEN (as in memmem), then at
|
|---|
| 323 | most 2 * HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching,
|
|---|
| 324 | and sublinear performance O(HAYSTACK_LEN / NEEDLE_LEN) is possible.
|
|---|
| 325 | If AVAILABLE modifies HAYSTACK_LEN (as in strstr), then at most 3 *
|
|---|
| 326 | HAYSTACK_LEN - NEEDLE_LEN comparisons occur in searching, and
|
|---|
| 327 | sublinear performance is not possible. */
|
|---|
| 328 | static RETURN_TYPE
|
|---|
| 329 | two_way_long_needle (const unsigned char *haystack, size_t haystack_len,
|
|---|
| 330 | const unsigned char *needle, size_t needle_len)
|
|---|
| 331 | {
|
|---|
| 332 | size_t i; /* Index into current byte of NEEDLE. */
|
|---|
| 333 | size_t j; /* Index into current window of HAYSTACK. */
|
|---|
| 334 | size_t period; /* The period of the right half of needle. */
|
|---|
| 335 | size_t suffix; /* The index of the right half of needle. */
|
|---|
| 336 | size_t shift_table[1U << CHAR_BIT]; /* See below. */
|
|---|
| 337 |
|
|---|
| 338 | /* Factor the needle into two halves, such that the left half is
|
|---|
| 339 | smaller than the global period, and the right half is
|
|---|
| 340 | periodic (with a period as large as NEEDLE_LEN - suffix). */
|
|---|
| 341 | suffix = critical_factorization (needle, needle_len, &period);
|
|---|
| 342 |
|
|---|
| 343 | /* Populate shift_table. For each possible byte value c,
|
|---|
| 344 | shift_table[c] is the distance from the last occurrence of c to
|
|---|
| 345 | the end of NEEDLE, or NEEDLE_LEN if c is absent from the NEEDLE.
|
|---|
| 346 | shift_table[NEEDLE[NEEDLE_LEN - 1]] contains the only 0. */
|
|---|
| 347 | for (i = 0; i < 1U << CHAR_BIT; i++)
|
|---|
| 348 | shift_table[i] = needle_len;
|
|---|
| 349 | for (i = 0; i < needle_len; i++)
|
|---|
| 350 | shift_table[CANON_ELEMENT (needle[i])] = needle_len - i - 1;
|
|---|
| 351 |
|
|---|
| 352 | /* Perform the search. Each iteration compares the right half
|
|---|
| 353 | first. */
|
|---|
| 354 | if (CMP_FUNC (needle, needle + period, suffix) == 0)
|
|---|
| 355 | {
|
|---|
| 356 | /* Entire needle is periodic; a mismatch in the left half can
|
|---|
| 357 | only advance by the period, so use memory to avoid rescanning
|
|---|
| 358 | known occurrences of the period in the right half. */
|
|---|
| 359 | size_t memory = 0;
|
|---|
| 360 | size_t shift;
|
|---|
| 361 | j = 0;
|
|---|
| 362 | while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
|---|
| 363 | {
|
|---|
| 364 | /* Check the last byte first; if it does not match, then
|
|---|
| 365 | shift to the next possible match location. */
|
|---|
| 366 | shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
|
|---|
| 367 | if (0 < shift)
|
|---|
| 368 | {
|
|---|
| 369 | if (memory && shift < period)
|
|---|
| 370 | {
|
|---|
| 371 | /* Since needle is periodic, but the last period has
|
|---|
| 372 | a byte out of place, there can be no match until
|
|---|
| 373 | after the mismatch. */
|
|---|
| 374 | shift = needle_len - period;
|
|---|
| 375 | }
|
|---|
| 376 | memory = 0;
|
|---|
| 377 | j += shift;
|
|---|
| 378 | continue;
|
|---|
| 379 | }
|
|---|
| 380 | /* Scan for matches in right half. The last byte has
|
|---|
| 381 | already been matched, by virtue of the shift table. */
|
|---|
| 382 | i = MAX (suffix, memory);
|
|---|
| 383 | while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
|
|---|
| 384 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 385 | ++i;
|
|---|
| 386 | if (needle_len - 1 <= i)
|
|---|
| 387 | {
|
|---|
| 388 | /* Scan for matches in left half. */
|
|---|
| 389 | i = suffix - 1;
|
|---|
| 390 | while (memory < i + 1 && (CANON_ELEMENT (needle[i])
|
|---|
| 391 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 392 | --i;
|
|---|
| 393 | if (i + 1 < memory + 1)
|
|---|
| 394 | return (RETURN_TYPE) (haystack + j);
|
|---|
| 395 | /* No match, so remember how many repetitions of period
|
|---|
| 396 | on the right half were scanned. */
|
|---|
| 397 | j += period;
|
|---|
| 398 | memory = needle_len - period;
|
|---|
| 399 | }
|
|---|
| 400 | else
|
|---|
| 401 | {
|
|---|
| 402 | j += i - suffix + 1;
|
|---|
| 403 | memory = 0;
|
|---|
| 404 | }
|
|---|
| 405 | }
|
|---|
| 406 | }
|
|---|
| 407 | else
|
|---|
| 408 | {
|
|---|
| 409 | /* The two halves of needle are distinct; no extra memory is
|
|---|
| 410 | required, and any mismatch results in a maximal shift. */
|
|---|
| 411 | size_t shift;
|
|---|
| 412 | period = MAX (suffix, needle_len - suffix) + 1;
|
|---|
| 413 | j = 0;
|
|---|
| 414 | while (AVAILABLE (haystack, haystack_len, j, needle_len))
|
|---|
| 415 | {
|
|---|
| 416 | /* Check the last byte first; if it does not match, then
|
|---|
| 417 | shift to the next possible match location. */
|
|---|
| 418 | shift = shift_table[CANON_ELEMENT (haystack[j + needle_len - 1])];
|
|---|
| 419 | if (0 < shift)
|
|---|
| 420 | {
|
|---|
| 421 | j += shift;
|
|---|
| 422 | continue;
|
|---|
| 423 | }
|
|---|
| 424 | /* Scan for matches in right half. The last byte has
|
|---|
| 425 | already been matched, by virtue of the shift table. */
|
|---|
| 426 | i = suffix;
|
|---|
| 427 | while (i < needle_len - 1 && (CANON_ELEMENT (needle[i])
|
|---|
| 428 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 429 | ++i;
|
|---|
| 430 | if (needle_len - 1 <= i)
|
|---|
| 431 | {
|
|---|
| 432 | /* Scan for matches in left half. */
|
|---|
| 433 | i = suffix - 1;
|
|---|
| 434 | while (i != SIZE_MAX && (CANON_ELEMENT (needle[i])
|
|---|
| 435 | == CANON_ELEMENT (haystack[i + j])))
|
|---|
| 436 | --i;
|
|---|
| 437 | if (i == SIZE_MAX)
|
|---|
| 438 | return (RETURN_TYPE) (haystack + j);
|
|---|
| 439 | j += period;
|
|---|
| 440 | }
|
|---|
| 441 | else
|
|---|
| 442 | j += i - suffix + 1;
|
|---|
| 443 | }
|
|---|
| 444 | }
|
|---|
| 445 | return NULL;
|
|---|
| 446 | }
|
|---|
| 447 |
|
|---|
| 448 | #undef AVAILABLE
|
|---|
| 449 | #undef CANON_ELEMENT
|
|---|
| 450 | #undef CMP_FUNC
|
|---|
| 451 | #undef MAX
|
|---|
| 452 | #undef RETURN_TYPE
|
|---|