[3529] | 1 | /* dfa.c - deterministic extended regexp routines for GNU
|
---|
| 2 | Copyright (C) 1988, 1998, 2000, 2002, 2004-2005, 2007-2021 Free Software
|
---|
| 3 | Foundation, Inc.
|
---|
| 4 |
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation; either version 3, or (at your option)
|
---|
| 8 | any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | You should have received a copy of the GNU General Public License
|
---|
| 16 | along with this program; if not, write to the Free Software
|
---|
| 17 | Foundation, Inc.,
|
---|
| 18 | 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA */
|
---|
| 19 |
|
---|
| 20 | /* Written June, 1988 by Mike Haertel
|
---|
| 21 | Modified July, 1988 by Arthur David Olson to assist BMG speedups */
|
---|
| 22 |
|
---|
| 23 | #include <config.h>
|
---|
| 24 |
|
---|
| 25 | #include "dfa.h"
|
---|
| 26 |
|
---|
| 27 | #include "flexmember.h"
|
---|
| 28 | #include "idx.h"
|
---|
| 29 | #include "verify.h"
|
---|
| 30 |
|
---|
| 31 | #include <assert.h>
|
---|
| 32 | #include <ctype.h>
|
---|
| 33 | #include <stdint.h>
|
---|
| 34 | #include <stdio.h>
|
---|
| 35 | #include <stdlib.h>
|
---|
| 36 | #include <limits.h>
|
---|
| 37 | #include <string.h>
|
---|
| 38 |
|
---|
| 39 | /* Pacify gcc -Wanalyzer-null-dereference in areas where GCC
|
---|
| 40 | understandably cannot deduce that the input comes from a
|
---|
| 41 | well-formed regular expression. There's little point to the
|
---|
| 42 | runtime overhead of 'assert' instead of 'assume_nonnull' when the
|
---|
| 43 | MMU will check anyway. */
|
---|
| 44 | #define assume_nonnull(x) assume ((x) != NULL)
|
---|
| 45 |
|
---|
| 46 | static bool
|
---|
| 47 | streq (char const *a, char const *b)
|
---|
| 48 | {
|
---|
| 49 | return strcmp (a, b) == 0;
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | static bool
|
---|
| 53 | isasciidigit (char c)
|
---|
| 54 | {
|
---|
| 55 | return '0' <= c && c <= '9';
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | #include "gettext.h"
|
---|
| 59 | #define _(str) gettext (str)
|
---|
| 60 |
|
---|
| 61 | #include <wchar.h>
|
---|
| 62 |
|
---|
| 63 | #include "xalloc.h"
|
---|
| 64 | #include "localeinfo.h"
|
---|
| 65 |
|
---|
| 66 | #ifndef FALLTHROUGH
|
---|
| 67 | # if 201710L < __STDC_VERSION__
|
---|
| 68 | # define FALLTHROUGH [[__fallthrough__]]
|
---|
| 69 | # elif (__GNUC__ >= 7) || (__clang_major__ >= 10)
|
---|
| 70 | # define FALLTHROUGH __attribute__ ((__fallthrough__))
|
---|
| 71 | # else
|
---|
| 72 | # define FALLTHROUGH ((void) 0)
|
---|
| 73 | # endif
|
---|
| 74 | #endif
|
---|
| 75 |
|
---|
| 76 | #ifndef MIN
|
---|
| 77 | # define MIN(a,b) ((a) < (b) ? (a) : (b))
|
---|
| 78 | #endif
|
---|
| 79 |
|
---|
| 80 | /* HPUX defines these as macros in sys/param.h. */
|
---|
| 81 | #ifdef setbit
|
---|
| 82 | # undef setbit
|
---|
| 83 | #endif
|
---|
| 84 | #ifdef clrbit
|
---|
| 85 | # undef clrbit
|
---|
| 86 | #endif
|
---|
| 87 |
|
---|
| 88 | /* For code that does not use Gnulibâs isblank module. */
|
---|
| 89 | #if !defined isblank && !defined HAVE_ISBLANK && !defined GNULIB_ISBLANK
|
---|
| 90 | # define isblank dfa_isblank
|
---|
| 91 | static int
|
---|
| 92 | isblank (int c)
|
---|
| 93 | {
|
---|
| 94 | return c == ' ' || c == '\t';
|
---|
| 95 | }
|
---|
| 96 | #endif
|
---|
| 97 |
|
---|
| 98 | /* First integer value that is greater than any character code. */
|
---|
| 99 | enum { NOTCHAR = 1 << CHAR_BIT };
|
---|
| 100 |
|
---|
| 101 | #ifdef UINT_LEAST64_MAX
|
---|
| 102 |
|
---|
| 103 | /* Number of bits used in a charclass word. */
|
---|
| 104 | enum { CHARCLASS_WORD_BITS = 64 };
|
---|
| 105 |
|
---|
| 106 | /* This represents part of a character class. It must be unsigned and
|
---|
| 107 | at least CHARCLASS_WORD_BITS wide. Any excess bits are zero. */
|
---|
| 108 | typedef uint_least64_t charclass_word;
|
---|
| 109 |
|
---|
| 110 | /* Part of a charclass initializer that represents 64 bits' worth of a
|
---|
| 111 | charclass, where LO and HI are the low and high-order 32 bits of
|
---|
| 112 | the 64-bit quantity. */
|
---|
| 113 | # define CHARCLASS_PAIR(lo, hi) (((charclass_word) (hi) << 32) + (lo))
|
---|
| 114 |
|
---|
| 115 | #else
|
---|
| 116 | /* Fallbacks for pre-C99 hosts that lack 64-bit integers. */
|
---|
| 117 | enum { CHARCLASS_WORD_BITS = 32 };
|
---|
| 118 | typedef unsigned long charclass_word;
|
---|
| 119 | # define CHARCLASS_PAIR(lo, hi) lo, hi
|
---|
| 120 | #endif
|
---|
| 121 |
|
---|
| 122 | /* An initializer for a charclass whose 32-bit words are A through H. */
|
---|
| 123 | #define CHARCLASS_INIT(a, b, c, d, e, f, g, h) \
|
---|
| 124 | {{ \
|
---|
| 125 | CHARCLASS_PAIR (a, b), CHARCLASS_PAIR (c, d), \
|
---|
| 126 | CHARCLASS_PAIR (e, f), CHARCLASS_PAIR (g, h) \
|
---|
| 127 | }}
|
---|
| 128 |
|
---|
| 129 | /* The maximum useful value of a charclass_word; all used bits are 1. */
|
---|
| 130 | static charclass_word const CHARCLASS_WORD_MASK
|
---|
| 131 | = ((charclass_word) 1 << (CHARCLASS_WORD_BITS - 1) << 1) - 1;
|
---|
| 132 |
|
---|
| 133 | /* Number of words required to hold a bit for every character. */
|
---|
| 134 | enum
|
---|
| 135 | {
|
---|
| 136 | CHARCLASS_WORDS = (NOTCHAR + CHARCLASS_WORD_BITS - 1) / CHARCLASS_WORD_BITS
|
---|
| 137 | };
|
---|
| 138 |
|
---|
| 139 | /* Sets of unsigned characters are stored as bit vectors in arrays of ints. */
|
---|
| 140 | typedef struct { charclass_word w[CHARCLASS_WORDS]; } charclass;
|
---|
| 141 |
|
---|
| 142 | /* Convert a possibly-signed character to an unsigned character. This is
|
---|
| 143 | a bit safer than casting to unsigned char, since it catches some type
|
---|
| 144 | errors that the cast doesn't. */
|
---|
| 145 | static unsigned char
|
---|
| 146 | to_uchar (char ch)
|
---|
| 147 | {
|
---|
| 148 | return ch;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | /* Contexts tell us whether a character is a newline or a word constituent.
|
---|
| 152 | Word-constituent characters are those that satisfy iswalnum, plus '_'.
|
---|
| 153 | Each character has a single CTX_* value; bitmasks of CTX_* values denote
|
---|
| 154 | a particular character class.
|
---|
| 155 |
|
---|
| 156 | A state also stores a context value, which is a bitmask of CTX_* values.
|
---|
| 157 | A state's context represents a set of characters that the state's
|
---|
| 158 | predecessors must match. For example, a state whose context does not
|
---|
| 159 | include CTX_LETTER will never have transitions where the previous
|
---|
| 160 | character is a word constituent. A state whose context is CTX_ANY
|
---|
| 161 | might have transitions from any character. */
|
---|
| 162 |
|
---|
| 163 | enum
|
---|
| 164 | {
|
---|
| 165 | CTX_NONE = 1,
|
---|
| 166 | CTX_LETTER = 2,
|
---|
| 167 | CTX_NEWLINE = 4,
|
---|
| 168 | CTX_ANY = 7
|
---|
| 169 | };
|
---|
| 170 |
|
---|
| 171 | /* Sometimes characters can only be matched depending on the surrounding
|
---|
| 172 | context. Such context decisions depend on what the previous character
|
---|
| 173 | was, and the value of the current (lookahead) character. Context
|
---|
| 174 | dependent constraints are encoded as 9-bit integers. Each bit that
|
---|
| 175 | is set indicates that the constraint succeeds in the corresponding
|
---|
| 176 | context.
|
---|
| 177 |
|
---|
| 178 | bit 6-8 - valid contexts when next character is CTX_NEWLINE
|
---|
| 179 | bit 3-5 - valid contexts when next character is CTX_LETTER
|
---|
| 180 | bit 0-2 - valid contexts when next character is CTX_NONE
|
---|
| 181 |
|
---|
| 182 | succeeds_in_context determines whether a given constraint
|
---|
| 183 | succeeds in a particular context. Prev is a bitmask of possible
|
---|
| 184 | context values for the previous character, curr is the (single-bit)
|
---|
| 185 | context value for the lookahead character. */
|
---|
| 186 | static int
|
---|
| 187 | newline_constraint (int constraint)
|
---|
| 188 | {
|
---|
| 189 | return (constraint >> 6) & 7;
|
---|
| 190 | }
|
---|
| 191 | static int
|
---|
| 192 | letter_constraint (int constraint)
|
---|
| 193 | {
|
---|
| 194 | return (constraint >> 3) & 7;
|
---|
| 195 | }
|
---|
| 196 | static int
|
---|
| 197 | other_constraint (int constraint)
|
---|
| 198 | {
|
---|
| 199 | return constraint & 7;
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | static bool
|
---|
| 203 | succeeds_in_context (int constraint, int prev, int curr)
|
---|
| 204 | {
|
---|
| 205 | return !! (((curr & CTX_NONE ? other_constraint (constraint) : 0) \
|
---|
| 206 | | (curr & CTX_LETTER ? letter_constraint (constraint) : 0) \
|
---|
| 207 | | (curr & CTX_NEWLINE ? newline_constraint (constraint) : 0)) \
|
---|
| 208 | & prev);
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | /* The following describe what a constraint depends on. */
|
---|
| 212 | static bool
|
---|
| 213 | prev_newline_dependent (int constraint)
|
---|
| 214 | {
|
---|
| 215 | return ((constraint ^ constraint >> 2) & 0111) != 0;
|
---|
| 216 | }
|
---|
| 217 | static bool
|
---|
| 218 | prev_letter_dependent (int constraint)
|
---|
| 219 | {
|
---|
| 220 | return ((constraint ^ constraint >> 1) & 0111) != 0;
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | /* Tokens that match the empty string subject to some constraint actually
|
---|
| 224 | work by applying that constraint to determine what may follow them,
|
---|
| 225 | taking into account what has gone before. The following values are
|
---|
| 226 | the constraints corresponding to the special tokens previously defined. */
|
---|
| 227 | enum
|
---|
| 228 | {
|
---|
| 229 | NO_CONSTRAINT = 0777,
|
---|
| 230 | BEGLINE_CONSTRAINT = 0444,
|
---|
| 231 | ENDLINE_CONSTRAINT = 0700,
|
---|
| 232 | BEGWORD_CONSTRAINT = 0050,
|
---|
| 233 | ENDWORD_CONSTRAINT = 0202,
|
---|
| 234 | LIMWORD_CONSTRAINT = 0252,
|
---|
| 235 | NOTLIMWORD_CONSTRAINT = 0525
|
---|
| 236 | };
|
---|
| 237 |
|
---|
| 238 | /* The regexp is parsed into an array of tokens in postfix form. Some tokens
|
---|
| 239 | are operators and others are terminal symbols. Most (but not all) of these
|
---|
| 240 | codes are returned by the lexical analyzer. */
|
---|
| 241 |
|
---|
| 242 | typedef ptrdiff_t token;
|
---|
| 243 | static token const TOKEN_MAX = PTRDIFF_MAX;
|
---|
| 244 |
|
---|
| 245 | /* States are indexed by state_num values. These are normally
|
---|
| 246 | nonnegative but -1 is used as a special value. */
|
---|
| 247 | typedef ptrdiff_t state_num;
|
---|
| 248 |
|
---|
| 249 | /* Predefined token values. */
|
---|
| 250 | enum
|
---|
| 251 | {
|
---|
| 252 | END = -1, /* END is a terminal symbol that matches the
|
---|
| 253 | end of input; any value of END or less in
|
---|
| 254 | the parse tree is such a symbol. Accepting
|
---|
| 255 | states of the DFA are those that would have
|
---|
| 256 | a transition on END. This is -1, not some
|
---|
| 257 | more-negative value, to tweak the speed of
|
---|
| 258 | comparisons to END. */
|
---|
| 259 |
|
---|
| 260 | /* Ordinary character values are terminal symbols that match themselves. */
|
---|
| 261 |
|
---|
| 262 | /* CSET must come last in the following list of special tokens. Otherwise,
|
---|
| 263 | the list order matters only for performance. Related special tokens
|
---|
| 264 | should have nearby values so that code like (t == ANYCHAR || t == MBCSET
|
---|
| 265 | || CSET <= t) can be done with a single machine-level comparison. */
|
---|
| 266 |
|
---|
| 267 | EMPTY = NOTCHAR, /* EMPTY is a terminal symbol that matches
|
---|
| 268 | the empty string. */
|
---|
| 269 |
|
---|
| 270 | QMARK, /* QMARK is an operator of one argument that
|
---|
| 271 | matches zero or one occurrences of its
|
---|
| 272 | argument. */
|
---|
| 273 |
|
---|
| 274 | STAR, /* STAR is an operator of one argument that
|
---|
| 275 | matches the Kleene closure (zero or more
|
---|
| 276 | occurrences) of its argument. */
|
---|
| 277 |
|
---|
| 278 | PLUS, /* PLUS is an operator of one argument that
|
---|
| 279 | matches the positive closure (one or more
|
---|
| 280 | occurrences) of its argument. */
|
---|
| 281 |
|
---|
| 282 | REPMN, /* REPMN is a lexical token corresponding
|
---|
| 283 | to the {m,n} construct. REPMN never
|
---|
| 284 | appears in the compiled token vector. */
|
---|
| 285 |
|
---|
| 286 | CAT, /* CAT is an operator of two arguments that
|
---|
| 287 | matches the concatenation of its
|
---|
| 288 | arguments. CAT is never returned by the
|
---|
| 289 | lexical analyzer. */
|
---|
| 290 |
|
---|
| 291 | OR, /* OR is an operator of two arguments that
|
---|
| 292 | matches either of its arguments. */
|
---|
| 293 |
|
---|
| 294 | LPAREN, /* LPAREN never appears in the parse tree,
|
---|
| 295 | it is only a lexeme. */
|
---|
| 296 |
|
---|
| 297 | RPAREN, /* RPAREN never appears in the parse tree. */
|
---|
| 298 |
|
---|
[3532] | 299 | #if defined(KMK_GREP) && defined(KBUILD_OS_WINDOWS)
|
---|
| 300 | # define WCHAR DFA_WCHAR
|
---|
| 301 | #endif
|
---|
[3529] | 302 | WCHAR, /* Only returned by lex. wctok contains
|
---|
| 303 | the wide character representation. */
|
---|
| 304 |
|
---|
| 305 | ANYCHAR, /* ANYCHAR is a terminal symbol that matches
|
---|
| 306 | a valid multibyte (or single byte) character.
|
---|
| 307 | It is used only if MB_CUR_MAX > 1. */
|
---|
| 308 |
|
---|
| 309 | BEG, /* BEG is an initial symbol that matches the
|
---|
| 310 | beginning of input. */
|
---|
| 311 |
|
---|
| 312 | BEGLINE, /* BEGLINE is a terminal symbol that matches
|
---|
| 313 | the empty string at the beginning of a
|
---|
| 314 | line. */
|
---|
| 315 |
|
---|
| 316 | ENDLINE, /* ENDLINE is a terminal symbol that matches
|
---|
| 317 | the empty string at the end of a line. */
|
---|
| 318 |
|
---|
| 319 | BEGWORD, /* BEGWORD is a terminal symbol that matches
|
---|
| 320 | the empty string at the beginning of a
|
---|
| 321 | word. */
|
---|
| 322 |
|
---|
| 323 | ENDWORD, /* ENDWORD is a terminal symbol that matches
|
---|
| 324 | the empty string at the end of a word. */
|
---|
| 325 |
|
---|
| 326 | LIMWORD, /* LIMWORD is a terminal symbol that matches
|
---|
| 327 | the empty string at the beginning or the
|
---|
| 328 | end of a word. */
|
---|
| 329 |
|
---|
| 330 | NOTLIMWORD, /* NOTLIMWORD is a terminal symbol that
|
---|
| 331 | matches the empty string not at
|
---|
| 332 | the beginning or end of a word. */
|
---|
| 333 |
|
---|
| 334 | BACKREF, /* BACKREF is generated by \<digit>
|
---|
| 335 | or by any other construct that
|
---|
| 336 | is not completely handled. If the scanner
|
---|
| 337 | detects a transition on backref, it returns
|
---|
| 338 | a kind of "semi-success" indicating that
|
---|
| 339 | the match will have to be verified with
|
---|
| 340 | a backtracking matcher. */
|
---|
| 341 |
|
---|
| 342 | MBCSET, /* MBCSET is similar to CSET, but for
|
---|
| 343 | multibyte characters. */
|
---|
| 344 |
|
---|
| 345 | CSET /* CSET and (and any value greater) is a
|
---|
| 346 | terminal symbol that matches any of a
|
---|
| 347 | class of characters. */
|
---|
| 348 | };
|
---|
| 349 |
|
---|
| 350 |
|
---|
| 351 | /* States of the recognizer correspond to sets of positions in the parse
|
---|
| 352 | tree, together with the constraints under which they may be matched.
|
---|
| 353 | So a position is encoded as an index into the parse tree together with
|
---|
| 354 | a constraint. */
|
---|
| 355 | typedef struct
|
---|
| 356 | {
|
---|
| 357 | idx_t index; /* Index into the parse array. */
|
---|
| 358 | unsigned int constraint; /* Constraint for matching this position. */
|
---|
| 359 | } position;
|
---|
| 360 |
|
---|
| 361 | /* Sets of positions are stored as arrays. */
|
---|
| 362 | typedef struct
|
---|
| 363 | {
|
---|
| 364 | position *elems; /* Elements of this position set. */
|
---|
| 365 | idx_t nelem; /* Number of elements in this set. */
|
---|
| 366 | idx_t alloc; /* Number of elements allocated in ELEMS. */
|
---|
| 367 | } position_set;
|
---|
| 368 |
|
---|
| 369 | /* A state of the dfa consists of a set of positions, some flags,
|
---|
| 370 | and the token value of the lowest-numbered position of the state that
|
---|
| 371 | contains an END token. */
|
---|
| 372 | typedef struct
|
---|
| 373 | {
|
---|
| 374 | size_t hash; /* Hash of the positions of this state. */
|
---|
| 375 | position_set elems; /* Positions this state could match. */
|
---|
| 376 | unsigned char context; /* Context from previous state. */
|
---|
| 377 | unsigned short constraint; /* Constraint for this state to accept. */
|
---|
| 378 | position_set mbps; /* Positions which can match multibyte
|
---|
| 379 | characters or the follows, e.g., period.
|
---|
| 380 | Used only if MB_CUR_MAX > 1. */
|
---|
| 381 | state_num mb_trindex; /* Index of this state in MB_TRANS, or
|
---|
| 382 | negative if the state does not have
|
---|
| 383 | ANYCHAR. */
|
---|
| 384 | } dfa_state;
|
---|
| 385 |
|
---|
| 386 | /* Maximum for any transition table count. This should be at least 3,
|
---|
| 387 | for the initial state setup. */
|
---|
| 388 | enum { MAX_TRCOUNT = 1024 };
|
---|
| 389 |
|
---|
| 390 | /* A bracket operator.
|
---|
| 391 | e.g., [a-c], [[:alpha:]], etc. */
|
---|
| 392 | struct mb_char_classes
|
---|
| 393 | {
|
---|
| 394 | ptrdiff_t cset;
|
---|
| 395 | bool invert;
|
---|
| 396 | wchar_t *chars; /* Normal characters. */
|
---|
| 397 | idx_t nchars;
|
---|
| 398 | idx_t nchars_alloc;
|
---|
| 399 | };
|
---|
| 400 |
|
---|
| 401 | struct regex_syntax
|
---|
| 402 | {
|
---|
| 403 | /* Syntax bits controlling the behavior of the lexical analyzer. */
|
---|
| 404 | reg_syntax_t syntax_bits;
|
---|
| 405 | bool syntax_bits_set;
|
---|
| 406 |
|
---|
| 407 | /* Flag for case-folding letters into sets. */
|
---|
| 408 | bool case_fold;
|
---|
| 409 |
|
---|
| 410 | /* True if ^ and $ match only the start and end of data, and do not match
|
---|
| 411 | end-of-line within data. */
|
---|
| 412 | bool anchor;
|
---|
| 413 |
|
---|
| 414 | /* End-of-line byte in data. */
|
---|
| 415 | unsigned char eolbyte;
|
---|
| 416 |
|
---|
| 417 | /* Cache of char-context values. */
|
---|
| 418 | char sbit[NOTCHAR];
|
---|
| 419 |
|
---|
| 420 | /* If never_trail[B], the byte B cannot be a non-initial byte in a
|
---|
| 421 | multibyte character. */
|
---|
| 422 | bool never_trail[NOTCHAR];
|
---|
| 423 |
|
---|
| 424 | /* Set of characters considered letters. */
|
---|
| 425 | charclass letters;
|
---|
| 426 |
|
---|
| 427 | /* Set of characters that are newline. */
|
---|
| 428 | charclass newline;
|
---|
| 429 | };
|
---|
| 430 |
|
---|
| 431 | /* Lexical analyzer. All the dross that deals with the obnoxious
|
---|
| 432 | GNU Regex syntax bits is located here. The poor, suffering
|
---|
| 433 | reader is referred to the GNU Regex documentation for the
|
---|
| 434 | meaning of the @#%!@#%^!@ syntax bits. */
|
---|
| 435 | struct lexer_state
|
---|
| 436 | {
|
---|
| 437 | char const *ptr; /* Pointer to next input character. */
|
---|
| 438 | idx_t left; /* Number of characters remaining. */
|
---|
| 439 | token lasttok; /* Previous token returned; initially END. */
|
---|
| 440 | idx_t parens; /* Count of outstanding left parens. */
|
---|
| 441 | int minrep, maxrep; /* Repeat counts for {m,n}. */
|
---|
| 442 |
|
---|
| 443 | /* Wide character representation of the current multibyte character,
|
---|
| 444 | or WEOF if there was an encoding error. Used only if
|
---|
| 445 | MB_CUR_MAX > 1. */
|
---|
| 446 | wint_t wctok;
|
---|
| 447 |
|
---|
| 448 | /* The most recently analyzed multibyte bracket expression. */
|
---|
| 449 | struct mb_char_classes brack;
|
---|
| 450 |
|
---|
| 451 | /* We're separated from beginning or (, | only by zero-width characters. */
|
---|
| 452 | bool laststart;
|
---|
| 453 | };
|
---|
| 454 |
|
---|
| 455 | /* Recursive descent parser for regular expressions. */
|
---|
| 456 |
|
---|
| 457 | struct parser_state
|
---|
| 458 | {
|
---|
| 459 | token tok; /* Lookahead token. */
|
---|
| 460 | idx_t depth; /* Current depth of a hypothetical stack
|
---|
| 461 | holding deferred productions. This is
|
---|
| 462 | used to determine the depth that will be
|
---|
| 463 | required of the real stack later on in
|
---|
| 464 | dfaanalyze. */
|
---|
| 465 | };
|
---|
| 466 |
|
---|
| 467 | /* A compiled regular expression. */
|
---|
| 468 | struct dfa
|
---|
| 469 | {
|
---|
| 470 | /* Fields filled by the scanner. */
|
---|
| 471 | charclass *charclasses; /* Array of character sets for CSET tokens. */
|
---|
| 472 | idx_t cindex; /* Index for adding new charclasses. */
|
---|
| 473 | idx_t calloc; /* Number of charclasses allocated. */
|
---|
| 474 | ptrdiff_t canychar; /* Index of anychar class, or -1. */
|
---|
| 475 |
|
---|
| 476 | /* Scanner state */
|
---|
| 477 | struct lexer_state lex;
|
---|
| 478 |
|
---|
| 479 | /* Parser state */
|
---|
| 480 | struct parser_state parse;
|
---|
| 481 |
|
---|
| 482 | /* Fields filled by the parser. */
|
---|
| 483 | token *tokens; /* Postfix parse array. */
|
---|
| 484 | idx_t tindex; /* Index for adding new tokens. */
|
---|
| 485 | idx_t talloc; /* Number of tokens currently allocated. */
|
---|
| 486 | idx_t depth; /* Depth required of an evaluation stack
|
---|
| 487 | used for depth-first traversal of the
|
---|
| 488 | parse tree. */
|
---|
| 489 | idx_t nleaves; /* Number of non-EMPTY leaves
|
---|
| 490 | in the parse tree. */
|
---|
| 491 | idx_t nregexps; /* Count of parallel regexps being built
|
---|
| 492 | with dfaparse. */
|
---|
| 493 | bool fast; /* The DFA is fast. */
|
---|
| 494 | bool epsilon; /* Does a token match only the empty string? */
|
---|
| 495 | token utf8_anychar_classes[9]; /* To lower ANYCHAR in UTF-8 locales. */
|
---|
| 496 | mbstate_t mbs; /* Multibyte conversion state. */
|
---|
| 497 |
|
---|
| 498 | /* The following are valid only if MB_CUR_MAX > 1. */
|
---|
| 499 |
|
---|
| 500 | /* The value of multibyte_prop[i] is defined by following rule.
|
---|
| 501 | if tokens[i] < NOTCHAR
|
---|
| 502 | bit 0 : tokens[i] is the first byte of a character, including
|
---|
| 503 | single-byte characters.
|
---|
| 504 | bit 1 : tokens[i] is the last byte of a character, including
|
---|
| 505 | single-byte characters.
|
---|
| 506 |
|
---|
| 507 | e.g.
|
---|
| 508 | tokens
|
---|
| 509 | = 'single_byte_a', 'multi_byte_A', single_byte_b'
|
---|
| 510 | = 'sb_a', 'mb_A(1st byte)', 'mb_A(2nd byte)', 'mb_A(3rd byte)', 'sb_b'
|
---|
| 511 | multibyte_prop
|
---|
| 512 | = 3 , 1 , 0 , 2 , 3
|
---|
| 513 | */
|
---|
| 514 | char *multibyte_prop;
|
---|
| 515 |
|
---|
| 516 | /* Fields filled by the superset. */
|
---|
| 517 | struct dfa *superset; /* Hint of the dfa. */
|
---|
| 518 |
|
---|
| 519 | /* Fields filled by the state builder. */
|
---|
| 520 | dfa_state *states; /* States of the dfa. */
|
---|
| 521 | state_num sindex; /* Index for adding new states. */
|
---|
| 522 | idx_t salloc; /* Number of states currently allocated. */
|
---|
| 523 |
|
---|
| 524 | /* Fields filled by the parse tree->NFA conversion. */
|
---|
| 525 | position_set *follows; /* Array of follow sets, indexed by position
|
---|
| 526 | index. The follow of a position is the set
|
---|
| 527 | of positions containing characters that
|
---|
| 528 | could conceivably follow a character
|
---|
| 529 | matching the given position in a string
|
---|
| 530 | matching the regexp. Allocated to the
|
---|
| 531 | maximum possible position index. */
|
---|
| 532 | bool searchflag; /* We are supposed to build a searching
|
---|
| 533 | as opposed to an exact matcher. A searching
|
---|
| 534 | matcher finds the first and shortest string
|
---|
| 535 | matching a regexp anywhere in the buffer,
|
---|
| 536 | whereas an exact matcher finds the longest
|
---|
| 537 | string matching, but anchored to the
|
---|
| 538 | beginning of the buffer. */
|
---|
| 539 |
|
---|
| 540 | /* Fields filled by dfaanalyze. */
|
---|
| 541 | int *constraints; /* Array of union of accepting constraints
|
---|
| 542 | in the follow of a position. */
|
---|
| 543 | int *separates; /* Array of contexts on follow of a
|
---|
| 544 | position. */
|
---|
| 545 |
|
---|
| 546 | /* Fields filled by dfaexec. */
|
---|
| 547 | state_num tralloc; /* Number of transition tables that have
|
---|
| 548 | slots so far, not counting trans[-1] and
|
---|
| 549 | trans[-2]. */
|
---|
| 550 | int trcount; /* Number of transition tables that have
|
---|
| 551 | been built, other than for initial
|
---|
| 552 | states. */
|
---|
| 553 | int min_trcount; /* Number of initial states. Equivalently,
|
---|
| 554 | the minimum state number for which trcount
|
---|
| 555 | counts transitions. */
|
---|
| 556 | state_num **trans; /* Transition tables for states that can
|
---|
| 557 | never accept. If the transitions for a
|
---|
| 558 | state have not yet been computed, or the
|
---|
| 559 | state could possibly accept, its entry in
|
---|
| 560 | this table is NULL. This points to two
|
---|
| 561 | past the start of the allocated array,
|
---|
| 562 | and trans[-1] and trans[-2] are always
|
---|
| 563 | NULL. */
|
---|
| 564 | state_num **fails; /* Transition tables after failing to accept
|
---|
| 565 | on a state that potentially could do so.
|
---|
| 566 | If trans[i] is non-null, fails[i] must
|
---|
| 567 | be null. */
|
---|
| 568 | char *success; /* Table of acceptance conditions used in
|
---|
| 569 | dfaexec and computed in build_state. */
|
---|
| 570 | state_num *newlines; /* Transitions on newlines. The entry for a
|
---|
| 571 | newline in any transition table is always
|
---|
| 572 | -1 so we can count lines without wasting
|
---|
| 573 | too many cycles. The transition for a
|
---|
| 574 | newline is stored separately and handled
|
---|
| 575 | as a special case. Newline is also used
|
---|
| 576 | as a sentinel at the end of the buffer. */
|
---|
| 577 | state_num initstate_notbol; /* Initial state for CTX_LETTER and CTX_NONE
|
---|
| 578 | context in multibyte locales, in which we
|
---|
| 579 | do not distinguish between their contexts,
|
---|
| 580 | as not supported word. */
|
---|
| 581 | position_set mb_follows; /* Follow set added by ANYCHAR on demand. */
|
---|
| 582 | state_num **mb_trans; /* Transition tables for states with
|
---|
| 583 | ANYCHAR. */
|
---|
| 584 | state_num mb_trcount; /* Number of transition tables for states with
|
---|
| 585 | ANYCHAR that have actually been built. */
|
---|
| 586 |
|
---|
| 587 | /* Syntax configuration. This is near the end so that dfacopysyntax
|
---|
| 588 | can memset up to here. */
|
---|
| 589 | struct regex_syntax syntax;
|
---|
| 590 |
|
---|
| 591 | /* Information derived from the locale. This is at the end so that
|
---|
| 592 | a quick memset need not clear it specially. */
|
---|
| 593 |
|
---|
| 594 | /* dfaexec implementation. */
|
---|
| 595 | char *(*dfaexec) (struct dfa *, char const *, char *,
|
---|
| 596 | bool, ptrdiff_t *, bool *);
|
---|
| 597 |
|
---|
| 598 | /* Other cached information derived from the locale. */
|
---|
| 599 | struct localeinfo localeinfo;
|
---|
| 600 | };
|
---|
| 601 |
|
---|
| 602 | /* User access to dfa internals. */
|
---|
| 603 |
|
---|
| 604 | /* S could possibly be an accepting state of R. */
|
---|
| 605 | static bool
|
---|
| 606 | accepting (state_num s, struct dfa const *r)
|
---|
| 607 | {
|
---|
| 608 | return r->states[s].constraint != 0;
|
---|
| 609 | }
|
---|
| 610 |
|
---|
| 611 | /* STATE accepts in the specified context. */
|
---|
| 612 | static bool
|
---|
| 613 | accepts_in_context (int prev, int curr, state_num state, struct dfa const *dfa)
|
---|
| 614 | {
|
---|
| 615 | return succeeds_in_context (dfa->states[state].constraint, prev, curr);
|
---|
| 616 | }
|
---|
| 617 |
|
---|
| 618 | static void regexp (struct dfa *dfa);
|
---|
| 619 |
|
---|
| 620 | /* Store into *PWC the result of converting the leading bytes of the
|
---|
| 621 | multibyte buffer S of length N bytes, using D->localeinfo.sbctowc
|
---|
| 622 | and updating the conversion state in *D. On conversion error,
|
---|
| 623 | convert just a single byte, to WEOF. Return the number of bytes
|
---|
| 624 | converted.
|
---|
| 625 |
|
---|
| 626 | This differs from mbrtowc (PWC, S, N, &D->mbs) as follows:
|
---|
| 627 |
|
---|
| 628 | * PWC points to wint_t, not to wchar_t.
|
---|
| 629 | * The last arg is a dfa *D instead of merely a multibyte conversion
|
---|
| 630 | state D->mbs.
|
---|
| 631 | * N is idx_t not size_t, and must be at least 1.
|
---|
| 632 | * S[N - 1] must be a sentinel byte.
|
---|
| 633 | * Shift encodings are not supported.
|
---|
| 634 | * The return value is always in the range 1..N.
|
---|
| 635 | * D->mbs is always valid afterwards.
|
---|
| 636 | * *PWC is always set to something. */
|
---|
| 637 | static int
|
---|
| 638 | mbs_to_wchar (wint_t *pwc, char const *s, idx_t n, struct dfa *d)
|
---|
| 639 | {
|
---|
| 640 | unsigned char uc = s[0];
|
---|
| 641 | wint_t wc = d->localeinfo.sbctowc[uc];
|
---|
| 642 |
|
---|
| 643 | if (wc == WEOF)
|
---|
| 644 | {
|
---|
| 645 | wchar_t wch;
|
---|
| 646 | size_t nbytes = mbrtowc (&wch, s, n, &d->mbs);
|
---|
| 647 | if (0 < nbytes && nbytes < (size_t) -2)
|
---|
| 648 | {
|
---|
| 649 | *pwc = wch;
|
---|
| 650 | return nbytes;
|
---|
| 651 | }
|
---|
| 652 | memset (&d->mbs, 0, sizeof d->mbs);
|
---|
| 653 | }
|
---|
| 654 |
|
---|
| 655 | *pwc = wc;
|
---|
| 656 | return 1;
|
---|
| 657 | }
|
---|
| 658 |
|
---|
| 659 | #ifdef DEBUG
|
---|
| 660 |
|
---|
| 661 | static void
|
---|
| 662 | prtok (token t)
|
---|
| 663 | {
|
---|
| 664 | if (t <= END)
|
---|
| 665 | fprintf (stderr, "END");
|
---|
| 666 | else if (0 <= t && t < NOTCHAR)
|
---|
| 667 | {
|
---|
| 668 | unsigned int ch = t;
|
---|
| 669 | fprintf (stderr, "0x%02x", ch);
|
---|
| 670 | }
|
---|
| 671 | else
|
---|
| 672 | {
|
---|
| 673 | char const *s;
|
---|
| 674 | switch (t)
|
---|
| 675 | {
|
---|
| 676 | case BEG:
|
---|
| 677 | s = "BEG";
|
---|
| 678 | break;
|
---|
| 679 | case EMPTY:
|
---|
| 680 | s = "EMPTY";
|
---|
| 681 | break;
|
---|
| 682 | case BACKREF:
|
---|
| 683 | s = "BACKREF";
|
---|
| 684 | break;
|
---|
| 685 | case BEGLINE:
|
---|
| 686 | s = "BEGLINE";
|
---|
| 687 | break;
|
---|
| 688 | case ENDLINE:
|
---|
| 689 | s = "ENDLINE";
|
---|
| 690 | break;
|
---|
| 691 | case BEGWORD:
|
---|
| 692 | s = "BEGWORD";
|
---|
| 693 | break;
|
---|
| 694 | case ENDWORD:
|
---|
| 695 | s = "ENDWORD";
|
---|
| 696 | break;
|
---|
| 697 | case LIMWORD:
|
---|
| 698 | s = "LIMWORD";
|
---|
| 699 | break;
|
---|
| 700 | case NOTLIMWORD:
|
---|
| 701 | s = "NOTLIMWORD";
|
---|
| 702 | break;
|
---|
| 703 | case QMARK:
|
---|
| 704 | s = "QMARK";
|
---|
| 705 | break;
|
---|
| 706 | case STAR:
|
---|
| 707 | s = "STAR";
|
---|
| 708 | break;
|
---|
| 709 | case PLUS:
|
---|
| 710 | s = "PLUS";
|
---|
| 711 | break;
|
---|
| 712 | case CAT:
|
---|
| 713 | s = "CAT";
|
---|
| 714 | break;
|
---|
| 715 | case OR:
|
---|
| 716 | s = "OR";
|
---|
| 717 | break;
|
---|
| 718 | case LPAREN:
|
---|
| 719 | s = "LPAREN";
|
---|
| 720 | break;
|
---|
| 721 | case RPAREN:
|
---|
| 722 | s = "RPAREN";
|
---|
| 723 | break;
|
---|
| 724 | case ANYCHAR:
|
---|
| 725 | s = "ANYCHAR";
|
---|
| 726 | break;
|
---|
| 727 | case MBCSET:
|
---|
| 728 | s = "MBCSET";
|
---|
| 729 | break;
|
---|
| 730 | default:
|
---|
| 731 | s = "CSET";
|
---|
| 732 | break;
|
---|
| 733 | }
|
---|
| 734 | fprintf (stderr, "%s", s);
|
---|
| 735 | }
|
---|
| 736 | }
|
---|
| 737 | #endif /* DEBUG */
|
---|
| 738 |
|
---|
| 739 | /* Stuff pertaining to charclasses. */
|
---|
| 740 |
|
---|
| 741 | static bool
|
---|
| 742 | tstbit (unsigned int b, charclass const *c)
|
---|
| 743 | {
|
---|
| 744 | return c->w[b / CHARCLASS_WORD_BITS] >> b % CHARCLASS_WORD_BITS & 1;
|
---|
| 745 | }
|
---|
| 746 |
|
---|
| 747 | static void
|
---|
| 748 | setbit (unsigned int b, charclass *c)
|
---|
| 749 | {
|
---|
| 750 | charclass_word one = 1;
|
---|
| 751 | c->w[b / CHARCLASS_WORD_BITS] |= one << b % CHARCLASS_WORD_BITS;
|
---|
| 752 | }
|
---|
| 753 |
|
---|
| 754 | static void
|
---|
| 755 | clrbit (unsigned int b, charclass *c)
|
---|
| 756 | {
|
---|
| 757 | charclass_word one = 1;
|
---|
| 758 | c->w[b / CHARCLASS_WORD_BITS] &= ~(one << b % CHARCLASS_WORD_BITS);
|
---|
| 759 | }
|
---|
| 760 |
|
---|
| 761 | static void
|
---|
| 762 | zeroset (charclass *s)
|
---|
| 763 | {
|
---|
| 764 | memset (s, 0, sizeof *s);
|
---|
| 765 | }
|
---|
| 766 |
|
---|
| 767 | static void
|
---|
| 768 | fillset (charclass *s)
|
---|
| 769 | {
|
---|
| 770 | for (int i = 0; i < CHARCLASS_WORDS; i++)
|
---|
| 771 | s->w[i] = CHARCLASS_WORD_MASK;
|
---|
| 772 | }
|
---|
| 773 |
|
---|
| 774 | static void
|
---|
| 775 | notset (charclass *s)
|
---|
| 776 | {
|
---|
| 777 | for (int i = 0; i < CHARCLASS_WORDS; ++i)
|
---|
| 778 | s->w[i] = CHARCLASS_WORD_MASK & ~s->w[i];
|
---|
| 779 | }
|
---|
| 780 |
|
---|
| 781 | static bool
|
---|
| 782 | equal (charclass const *s1, charclass const *s2)
|
---|
| 783 | {
|
---|
| 784 | charclass_word w = 0;
|
---|
| 785 | for (int i = 0; i < CHARCLASS_WORDS; i++)
|
---|
| 786 | w |= s1->w[i] ^ s2->w[i];
|
---|
| 787 | return w == 0;
|
---|
| 788 | }
|
---|
| 789 |
|
---|
| 790 | static bool
|
---|
| 791 | emptyset (charclass const *s)
|
---|
| 792 | {
|
---|
| 793 | charclass_word w = 0;
|
---|
| 794 | for (int i = 0; i < CHARCLASS_WORDS; i++)
|
---|
| 795 | w |= s->w[i];
|
---|
| 796 | return w == 0;
|
---|
| 797 | }
|
---|
| 798 |
|
---|
| 799 | /* Ensure that the array addressed by PA holds at least I + 1 items.
|
---|
| 800 | Either return PA, or reallocate the array and return its new address.
|
---|
| 801 | Although PA may be null, the returned value is never null.
|
---|
| 802 |
|
---|
| 803 | The array holds *NITEMS items, where 0 <= I <= *NITEMS; *NITEMS
|
---|
| 804 | is updated on reallocation. If PA is null, *NITEMS must be zero.
|
---|
| 805 | Do not allocate more than NITEMS_MAX items total; -1 means no limit.
|
---|
| 806 | ITEM_SIZE is the size of one item; it must be positive.
|
---|
| 807 | Avoid O(N**2) behavior on arrays growing linearly. */
|
---|
| 808 | static void *
|
---|
| 809 | maybe_realloc (void *pa, idx_t i, idx_t *nitems,
|
---|
| 810 | ptrdiff_t nitems_max, idx_t item_size)
|
---|
| 811 | {
|
---|
| 812 | if (i < *nitems)
|
---|
| 813 | return pa;
|
---|
| 814 | return xpalloc (pa, nitems, 1, nitems_max, item_size);
|
---|
| 815 | }
|
---|
| 816 |
|
---|
| 817 | /* In DFA D, find the index of charclass S, or allocate a new one. */
|
---|
| 818 | static idx_t
|
---|
| 819 | charclass_index (struct dfa *d, charclass const *s)
|
---|
| 820 | {
|
---|
| 821 | idx_t i;
|
---|
| 822 |
|
---|
| 823 | for (i = 0; i < d->cindex; ++i)
|
---|
| 824 | if (equal (s, &d->charclasses[i]))
|
---|
| 825 | return i;
|
---|
| 826 | d->charclasses = maybe_realloc (d->charclasses, d->cindex, &d->calloc,
|
---|
| 827 | TOKEN_MAX - CSET, sizeof *d->charclasses);
|
---|
| 828 | ++d->cindex;
|
---|
| 829 | d->charclasses[i] = *s;
|
---|
| 830 | return i;
|
---|
| 831 | }
|
---|
| 832 |
|
---|
| 833 | static bool
|
---|
| 834 | unibyte_word_constituent (struct dfa const *dfa, unsigned char c)
|
---|
| 835 | {
|
---|
| 836 | return dfa->localeinfo.sbctowc[c] != WEOF && (isalnum (c) || (c) == '_');
|
---|
| 837 | }
|
---|
| 838 |
|
---|
| 839 | static int
|
---|
| 840 | char_context (struct dfa const *dfa, unsigned char c)
|
---|
| 841 | {
|
---|
| 842 | if (c == dfa->syntax.eolbyte && !dfa->syntax.anchor)
|
---|
| 843 | return CTX_NEWLINE;
|
---|
| 844 | if (unibyte_word_constituent (dfa, c))
|
---|
| 845 | return CTX_LETTER;
|
---|
| 846 | return CTX_NONE;
|
---|
| 847 | }
|
---|
| 848 |
|
---|
| 849 | /* Set a bit in the charclass for the given wchar_t. Do nothing if WC
|
---|
| 850 | is represented by a multi-byte sequence. Even for MB_CUR_MAX == 1,
|
---|
| 851 | this may happen when folding case in weird Turkish locales where
|
---|
| 852 | dotless i/dotted I are not included in the chosen character set.
|
---|
| 853 | Return whether a bit was set in the charclass. */
|
---|
| 854 | static bool
|
---|
| 855 | setbit_wc (wint_t wc, charclass *c)
|
---|
| 856 | {
|
---|
| 857 | int b = wctob (wc);
|
---|
| 858 | if (b < 0)
|
---|
| 859 | return false;
|
---|
| 860 |
|
---|
| 861 | setbit (b, c);
|
---|
| 862 | return true;
|
---|
| 863 | }
|
---|
| 864 |
|
---|
| 865 | /* Set a bit for B and its case variants in the charclass C.
|
---|
| 866 | MB_CUR_MAX must be 1. */
|
---|
| 867 | static void
|
---|
| 868 | setbit_case_fold_c (int b, charclass *c)
|
---|
| 869 | {
|
---|
| 870 | int ub = toupper (b);
|
---|
| 871 | for (int i = 0; i < NOTCHAR; i++)
|
---|
| 872 | if (toupper (i) == ub)
|
---|
| 873 | setbit (i, c);
|
---|
| 874 | }
|
---|
| 875 |
|
---|
| 876 | /* Fetch the next lexical input character from the pattern. There
|
---|
| 877 | must at least one byte of pattern input. Set DFA->lex.wctok to the
|
---|
| 878 | value of the character or to WEOF depending on whether the input is
|
---|
| 879 | a valid multibyte character (possibly of length 1). Then return
|
---|
| 880 | the next input byte value, except return EOF if the input is a
|
---|
| 881 | multibyte character of length greater than 1. */
|
---|
| 882 | static int
|
---|
| 883 | fetch_wc (struct dfa *dfa)
|
---|
| 884 | {
|
---|
| 885 | int nbytes = mbs_to_wchar (&dfa->lex.wctok, dfa->lex.ptr, dfa->lex.left,
|
---|
| 886 | dfa);
|
---|
| 887 | int c = nbytes == 1 ? to_uchar (dfa->lex.ptr[0]) : EOF;
|
---|
| 888 | dfa->lex.ptr += nbytes;
|
---|
| 889 | dfa->lex.left -= nbytes;
|
---|
| 890 | return c;
|
---|
| 891 | }
|
---|
| 892 |
|
---|
| 893 | /* If there is no more input, report an error about unbalanced brackets.
|
---|
| 894 | Otherwise, behave as with fetch_wc (DFA). */
|
---|
| 895 | static int
|
---|
| 896 | bracket_fetch_wc (struct dfa *dfa)
|
---|
| 897 | {
|
---|
| 898 | if (! dfa->lex.left)
|
---|
| 899 | dfaerror (_("unbalanced ["));
|
---|
| 900 | return fetch_wc (dfa);
|
---|
| 901 | }
|
---|
| 902 |
|
---|
| 903 | typedef int predicate (int);
|
---|
| 904 |
|
---|
| 905 | /* The following list maps the names of the Posix named character classes
|
---|
| 906 | to predicate functions that determine whether a given character is in
|
---|
| 907 | the class. The leading [ has already been eaten by the lexical
|
---|
| 908 | analyzer. */
|
---|
| 909 | struct dfa_ctype
|
---|
| 910 | {
|
---|
| 911 | const char *name;
|
---|
| 912 | predicate *func;
|
---|
| 913 | bool single_byte_only;
|
---|
| 914 | };
|
---|
| 915 |
|
---|
| 916 | static const struct dfa_ctype prednames[] = {
|
---|
| 917 | {"alpha", isalpha, false},
|
---|
| 918 | {"upper", isupper, false},
|
---|
| 919 | {"lower", islower, false},
|
---|
| 920 | {"digit", isdigit, true},
|
---|
| 921 | {"xdigit", isxdigit, false},
|
---|
| 922 | {"space", isspace, false},
|
---|
| 923 | {"punct", ispunct, false},
|
---|
| 924 | {"alnum", isalnum, false},
|
---|
| 925 | {"print", isprint, false},
|
---|
| 926 | {"graph", isgraph, false},
|
---|
| 927 | {"cntrl", iscntrl, false},
|
---|
| 928 | {"blank", isblank, false},
|
---|
| 929 | {NULL, NULL, false}
|
---|
| 930 | };
|
---|
| 931 |
|
---|
| 932 | static const struct dfa_ctype *_GL_ATTRIBUTE_PURE
|
---|
| 933 | find_pred (const char *str)
|
---|
| 934 | {
|
---|
| 935 | for (int i = 0; prednames[i].name; i++)
|
---|
| 936 | if (streq (str, prednames[i].name))
|
---|
| 937 | return &prednames[i];
|
---|
| 938 | return NULL;
|
---|
| 939 | }
|
---|
| 940 |
|
---|
| 941 | /* Parse a bracket expression, which possibly includes multibyte
|
---|
| 942 | characters. */
|
---|
| 943 | static token
|
---|
| 944 | parse_bracket_exp (struct dfa *dfa)
|
---|
| 945 | {
|
---|
| 946 | /* This is a bracket expression that dfaexec is known to
|
---|
| 947 | process correctly. */
|
---|
| 948 | bool known_bracket_exp = true;
|
---|
| 949 |
|
---|
| 950 | /* Used to warn about [:space:].
|
---|
| 951 | Bit 0 = first character is a colon.
|
---|
| 952 | Bit 1 = last character is a colon.
|
---|
| 953 | Bit 2 = includes any other character but a colon.
|
---|
| 954 | Bit 3 = includes ranges, char/equiv classes or collation elements. */
|
---|
| 955 | int colon_warning_state;
|
---|
| 956 |
|
---|
| 957 | dfa->lex.brack.nchars = 0;
|
---|
| 958 | charclass ccl;
|
---|
| 959 | zeroset (&ccl);
|
---|
| 960 | int c = bracket_fetch_wc (dfa);
|
---|
| 961 | bool invert = c == '^';
|
---|
| 962 | if (invert)
|
---|
| 963 | {
|
---|
| 964 | c = bracket_fetch_wc (dfa);
|
---|
| 965 | known_bracket_exp = dfa->localeinfo.simple;
|
---|
| 966 | }
|
---|
| 967 | wint_t wc = dfa->lex.wctok;
|
---|
| 968 | int c1;
|
---|
| 969 | wint_t wc1;
|
---|
| 970 | colon_warning_state = (c == ':');
|
---|
| 971 | do
|
---|
| 972 | {
|
---|
| 973 | c1 = NOTCHAR; /* Mark c1 as not initialized. */
|
---|
| 974 | colon_warning_state &= ~2;
|
---|
| 975 |
|
---|
| 976 | /* Note that if we're looking at some other [:...:] construct,
|
---|
| 977 | we just treat it as a bunch of ordinary characters. We can do
|
---|
| 978 | this because we assume regex has checked for syntax errors before
|
---|
| 979 | dfa is ever called. */
|
---|
| 980 | if (c == '[')
|
---|
| 981 | {
|
---|
| 982 | c1 = bracket_fetch_wc (dfa);
|
---|
| 983 | wc1 = dfa->lex.wctok;
|
---|
| 984 |
|
---|
| 985 | if ((c1 == ':' && (dfa->syntax.syntax_bits & RE_CHAR_CLASSES))
|
---|
| 986 | || c1 == '.' || c1 == '=')
|
---|
| 987 | {
|
---|
| 988 | enum { MAX_BRACKET_STRING_LEN = 32 };
|
---|
| 989 | char str[MAX_BRACKET_STRING_LEN + 1];
|
---|
| 990 | int len = 0;
|
---|
| 991 | for (;;)
|
---|
| 992 | {
|
---|
| 993 | c = bracket_fetch_wc (dfa);
|
---|
| 994 | if (dfa->lex.left == 0
|
---|
| 995 | || (c == c1 && dfa->lex.ptr[0] == ']'))
|
---|
| 996 | break;
|
---|
| 997 | if (len < MAX_BRACKET_STRING_LEN)
|
---|
| 998 | str[len++] = c;
|
---|
| 999 | else
|
---|
| 1000 | /* This is in any case an invalid class name. */
|
---|
| 1001 | str[0] = '\0';
|
---|
| 1002 | }
|
---|
| 1003 | str[len] = '\0';
|
---|
| 1004 |
|
---|
| 1005 | /* Fetch bracket. */
|
---|
| 1006 | c = bracket_fetch_wc (dfa);
|
---|
| 1007 | wc = dfa->lex.wctok;
|
---|
| 1008 | if (c1 == ':')
|
---|
| 1009 | /* Build character class. POSIX allows character
|
---|
| 1010 | classes to match multicharacter collating elements,
|
---|
| 1011 | but the regex code does not support that, so do not
|
---|
| 1012 | worry about that possibility. */
|
---|
| 1013 | {
|
---|
| 1014 | char const *class
|
---|
| 1015 | = (dfa->syntax.case_fold && (streq (str, "upper")
|
---|
| 1016 | || streq (str, "lower"))
|
---|
| 1017 | ? "alpha" : str);
|
---|
| 1018 | const struct dfa_ctype *pred = find_pred (class);
|
---|
| 1019 | if (!pred)
|
---|
| 1020 | dfaerror (_("invalid character class"));
|
---|
| 1021 |
|
---|
| 1022 | if (dfa->localeinfo.multibyte && !pred->single_byte_only)
|
---|
| 1023 | known_bracket_exp = false;
|
---|
| 1024 | else
|
---|
| 1025 | for (int c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
| 1026 | if (pred->func (c2))
|
---|
| 1027 | setbit (c2, &ccl);
|
---|
| 1028 | }
|
---|
| 1029 | else
|
---|
| 1030 | known_bracket_exp = false;
|
---|
| 1031 |
|
---|
| 1032 | colon_warning_state |= 8;
|
---|
| 1033 |
|
---|
| 1034 | /* Fetch new lookahead character. */
|
---|
| 1035 | c1 = bracket_fetch_wc (dfa);
|
---|
| 1036 | wc1 = dfa->lex.wctok;
|
---|
| 1037 | continue;
|
---|
| 1038 | }
|
---|
| 1039 |
|
---|
| 1040 | /* We treat '[' as a normal character here. c/c1/wc/wc1
|
---|
| 1041 | are already set up. */
|
---|
| 1042 | }
|
---|
| 1043 |
|
---|
| 1044 | if (c == '\\'
|
---|
| 1045 | && (dfa->syntax.syntax_bits & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
| 1046 | {
|
---|
| 1047 | c = bracket_fetch_wc (dfa);
|
---|
| 1048 | wc = dfa->lex.wctok;
|
---|
| 1049 | }
|
---|
| 1050 |
|
---|
| 1051 | if (c1 == NOTCHAR)
|
---|
| 1052 | {
|
---|
| 1053 | c1 = bracket_fetch_wc (dfa);
|
---|
| 1054 | wc1 = dfa->lex.wctok;
|
---|
| 1055 | }
|
---|
| 1056 |
|
---|
| 1057 | if (c1 == '-')
|
---|
| 1058 | /* build range characters. */
|
---|
| 1059 | {
|
---|
| 1060 | int c2 = bracket_fetch_wc (dfa);
|
---|
| 1061 | wint_t wc2 = dfa->lex.wctok;
|
---|
| 1062 |
|
---|
| 1063 | /* A bracket expression like [a-[.aa.]] matches an unknown set.
|
---|
| 1064 | Treat it like [-a[.aa.]] while parsing it, and
|
---|
| 1065 | remember that the set is unknown. */
|
---|
| 1066 | if (c2 == '[' && dfa->lex.ptr[0] == '.')
|
---|
| 1067 | {
|
---|
| 1068 | known_bracket_exp = false;
|
---|
| 1069 | c2 = ']';
|
---|
| 1070 | }
|
---|
| 1071 |
|
---|
| 1072 | if (c2 == ']')
|
---|
| 1073 | {
|
---|
| 1074 | /* In the case [x-], the - is an ordinary hyphen,
|
---|
| 1075 | which is left in c1, the lookahead character. */
|
---|
| 1076 | dfa->lex.ptr--;
|
---|
| 1077 | dfa->lex.left++;
|
---|
| 1078 | }
|
---|
| 1079 | else
|
---|
| 1080 | {
|
---|
| 1081 | if (c2 == '\\' && (dfa->syntax.syntax_bits
|
---|
| 1082 | & RE_BACKSLASH_ESCAPE_IN_LISTS))
|
---|
| 1083 | {
|
---|
| 1084 | c2 = bracket_fetch_wc (dfa);
|
---|
| 1085 | wc2 = dfa->lex.wctok;
|
---|
| 1086 | }
|
---|
| 1087 |
|
---|
| 1088 | colon_warning_state |= 8;
|
---|
| 1089 | c1 = bracket_fetch_wc (dfa);
|
---|
| 1090 | wc1 = dfa->lex.wctok;
|
---|
| 1091 |
|
---|
| 1092 | /* Treat [x-y] as a range if x != y. */
|
---|
| 1093 | if (wc != wc2 || wc == WEOF)
|
---|
| 1094 | {
|
---|
| 1095 | if (dfa->localeinfo.simple
|
---|
| 1096 | || (isasciidigit (c) & isasciidigit (c2)))
|
---|
| 1097 | {
|
---|
| 1098 | for (int ci = c; ci <= c2; ci++)
|
---|
| 1099 | if (dfa->syntax.case_fold && isalpha (ci))
|
---|
| 1100 | setbit_case_fold_c (ci, &ccl);
|
---|
| 1101 | else
|
---|
| 1102 | setbit (ci, &ccl);
|
---|
| 1103 | }
|
---|
| 1104 | else
|
---|
| 1105 | known_bracket_exp = false;
|
---|
| 1106 |
|
---|
| 1107 | continue;
|
---|
| 1108 | }
|
---|
| 1109 | }
|
---|
| 1110 | }
|
---|
| 1111 |
|
---|
| 1112 | colon_warning_state |= (c == ':') ? 2 : 4;
|
---|
| 1113 |
|
---|
| 1114 | if (!dfa->localeinfo.multibyte)
|
---|
| 1115 | {
|
---|
| 1116 | if (dfa->syntax.case_fold && isalpha (c))
|
---|
| 1117 | setbit_case_fold_c (c, &ccl);
|
---|
| 1118 | else
|
---|
| 1119 | setbit (c, &ccl);
|
---|
| 1120 | continue;
|
---|
| 1121 | }
|
---|
| 1122 |
|
---|
| 1123 | if (wc == WEOF)
|
---|
| 1124 | known_bracket_exp = false;
|
---|
| 1125 | else
|
---|
| 1126 | {
|
---|
| 1127 | wchar_t folded[CASE_FOLDED_BUFSIZE + 1];
|
---|
| 1128 | int n = (dfa->syntax.case_fold
|
---|
| 1129 | ? case_folded_counterparts (wc, folded + 1) + 1
|
---|
| 1130 | : 1);
|
---|
| 1131 | folded[0] = wc;
|
---|
| 1132 | for (int i = 0; i < n; i++)
|
---|
| 1133 | if (!setbit_wc (folded[i], &ccl))
|
---|
| 1134 | {
|
---|
| 1135 | dfa->lex.brack.chars
|
---|
| 1136 | = maybe_realloc (dfa->lex.brack.chars, dfa->lex.brack.nchars,
|
---|
| 1137 | &dfa->lex.brack.nchars_alloc, -1,
|
---|
| 1138 | sizeof *dfa->lex.brack.chars);
|
---|
| 1139 | dfa->lex.brack.chars[dfa->lex.brack.nchars++] = folded[i];
|
---|
| 1140 | }
|
---|
| 1141 | }
|
---|
| 1142 | }
|
---|
| 1143 | while ((wc = wc1, (c = c1) != ']'));
|
---|
| 1144 |
|
---|
| 1145 | if (colon_warning_state == 7)
|
---|
| 1146 | dfawarn (_("character class syntax is [[:space:]], not [:space:]"));
|
---|
| 1147 |
|
---|
| 1148 | if (! known_bracket_exp)
|
---|
| 1149 | return BACKREF;
|
---|
| 1150 |
|
---|
| 1151 | if (dfa->localeinfo.multibyte && (invert || dfa->lex.brack.nchars != 0))
|
---|
| 1152 | {
|
---|
| 1153 | dfa->lex.brack.invert = invert;
|
---|
| 1154 | dfa->lex.brack.cset = emptyset (&ccl) ? -1 : charclass_index (dfa, &ccl);
|
---|
| 1155 | return MBCSET;
|
---|
| 1156 | }
|
---|
| 1157 |
|
---|
| 1158 | if (invert)
|
---|
| 1159 | {
|
---|
| 1160 | notset (&ccl);
|
---|
| 1161 | if (dfa->syntax.syntax_bits & RE_HAT_LISTS_NOT_NEWLINE)
|
---|
| 1162 | clrbit ('\n', &ccl);
|
---|
| 1163 | }
|
---|
| 1164 |
|
---|
| 1165 | return CSET + charclass_index (dfa, &ccl);
|
---|
| 1166 | }
|
---|
| 1167 |
|
---|
| 1168 | struct lexptr
|
---|
| 1169 | {
|
---|
| 1170 | char const *ptr;
|
---|
| 1171 | idx_t left;
|
---|
| 1172 | };
|
---|
| 1173 |
|
---|
| 1174 | static void
|
---|
| 1175 | push_lex_state (struct dfa *dfa, struct lexptr *ls, char const *s)
|
---|
| 1176 | {
|
---|
| 1177 | ls->ptr = dfa->lex.ptr;
|
---|
| 1178 | ls->left = dfa->lex.left;
|
---|
| 1179 | dfa->lex.ptr = s;
|
---|
| 1180 | dfa->lex.left = strlen (s);
|
---|
| 1181 | }
|
---|
| 1182 |
|
---|
| 1183 | static void
|
---|
| 1184 | pop_lex_state (struct dfa *dfa, struct lexptr const *ls)
|
---|
| 1185 | {
|
---|
| 1186 | dfa->lex.ptr = ls->ptr;
|
---|
| 1187 | dfa->lex.left = ls->left;
|
---|
| 1188 | }
|
---|
| 1189 |
|
---|
| 1190 | static token
|
---|
| 1191 | lex (struct dfa *dfa)
|
---|
| 1192 | {
|
---|
| 1193 | bool backslash = false;
|
---|
| 1194 |
|
---|
| 1195 | /* Basic plan: We fetch a character. If it's a backslash,
|
---|
| 1196 | we set the backslash flag and go through the loop again.
|
---|
| 1197 | On the plus side, this avoids having a duplicate of the
|
---|
| 1198 | main switch inside the backslash case. On the minus side,
|
---|
| 1199 | it means that just about every case begins with
|
---|
| 1200 | "if (backslash) ...". */
|
---|
| 1201 | for (int i = 0; i < 2; ++i)
|
---|
| 1202 | {
|
---|
| 1203 | if (! dfa->lex.left)
|
---|
| 1204 | return dfa->lex.lasttok = END;
|
---|
| 1205 | int c = fetch_wc (dfa);
|
---|
| 1206 |
|
---|
| 1207 | switch (c)
|
---|
| 1208 | {
|
---|
| 1209 | case '\\':
|
---|
| 1210 | if (backslash)
|
---|
| 1211 | goto normal_char;
|
---|
| 1212 | if (dfa->lex.left == 0)
|
---|
| 1213 | dfaerror (_("unfinished \\ escape"));
|
---|
| 1214 | backslash = true;
|
---|
| 1215 | break;
|
---|
| 1216 |
|
---|
| 1217 | case '^':
|
---|
| 1218 | if (backslash)
|
---|
| 1219 | goto normal_char;
|
---|
| 1220 | if (dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|
---|
| 1221 | || dfa->lex.lasttok == END || dfa->lex.lasttok == LPAREN
|
---|
| 1222 | || dfa->lex.lasttok == OR)
|
---|
| 1223 | return dfa->lex.lasttok = BEGLINE;
|
---|
| 1224 | goto normal_char;
|
---|
| 1225 |
|
---|
| 1226 | case '$':
|
---|
| 1227 | if (backslash)
|
---|
| 1228 | goto normal_char;
|
---|
[3658] | 1229 | /* kmk: cl v19.29.30139/amd64 messes this function up when optimizing
|
---|
| 1230 | for speed, workaround is to optimize it for size instead. The
|
---|
| 1231 | symptom is that the following SED expression fail to match:
|
---|
| 1232 | s/^[0-9a-fA-F]\{1,\} \(00[0-9a-fA-F]*\) ABS *notype *External *| \([^.]\{1,\}\)\.\(.*$\)/ 1=\1 2=\2 3=\3/
|
---|
| 1233 |
|
---|
| 1234 | Seems the exact problem is that it gets the indexing here wrong:
|
---|
| 1235 | dfa->lex.ptr[!(dfa->syntax.syntax_bits & RE_NO_BK_PARENS) & (dfa->lex.ptr[0] == '\\')]
|
---|
| 1236 | It forgets to do the ` dfa->lex.ptr[0] == '\\' ` part and instead
|
---|
| 1237 | ANDs with a register initialized to zero. Rewriting the
|
---|
| 1238 | expressions using the tinary operator works around the problem,
|
---|
| 1239 | although the resulting code is a lot bulkier.
|
---|
| 1240 | */
|
---|
[3529] | 1241 | if (dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_ANCHORS
|
---|
| 1242 | || dfa->lex.left == 0
|
---|
[3658] | 1243 | #ifdef _MSC_VER /* see above */
|
---|
| 1244 | || (!(dfa->syntax.syntax_bits & RE_NO_BK_PARENS)
|
---|
| 1245 | ? dfa->lex.left > 1 && dfa->lex.ptr[dfa->lex.ptr[0] == '\\'] == ')'
|
---|
| 1246 | : dfa->lex.left > 0 && dfa->lex.ptr[0] == ')')
|
---|
| 1247 | #else
|
---|
[3529] | 1248 | || ((dfa->lex.left
|
---|
| 1249 | > !(dfa->syntax.syntax_bits & RE_NO_BK_PARENS))
|
---|
| 1250 | && (dfa->lex.ptr[!(dfa->syntax.syntax_bits & RE_NO_BK_PARENS)
|
---|
| 1251 | & (dfa->lex.ptr[0] == '\\')]
|
---|
| 1252 | == ')'))
|
---|
[3658] | 1253 | #endif
|
---|
| 1254 | #ifdef _MSC_VER /* see above */
|
---|
| 1255 | || (!(dfa->syntax.syntax_bits & RE_NO_BK_VBAR)
|
---|
| 1256 | ? dfa->lex.left > 1 && dfa->lex.ptr[dfa->lex.ptr[0] == '\\'] == '|'
|
---|
| 1257 | : dfa->lex.left > 0 && dfa->lex.ptr[0] == '|')
|
---|
| 1258 | #else
|
---|
[3529] | 1259 | || ((dfa->lex.left
|
---|
| 1260 | > !(dfa->syntax.syntax_bits & RE_NO_BK_VBAR))
|
---|
| 1261 | && (dfa->lex.ptr[!(dfa->syntax.syntax_bits & RE_NO_BK_VBAR)
|
---|
| 1262 | & (dfa->lex.ptr[0] == '\\')]
|
---|
| 1263 | == '|'))
|
---|
[3658] | 1264 | #endif
|
---|
[3529] | 1265 | || ((dfa->syntax.syntax_bits & RE_NEWLINE_ALT)
|
---|
| 1266 | && dfa->lex.left > 0 && dfa->lex.ptr[0] == '\n'))
|
---|
| 1267 | return dfa->lex.lasttok = ENDLINE;
|
---|
| 1268 | goto normal_char;
|
---|
| 1269 |
|
---|
| 1270 | case '1':
|
---|
| 1271 | case '2':
|
---|
| 1272 | case '3':
|
---|
| 1273 | case '4':
|
---|
| 1274 | case '5':
|
---|
| 1275 | case '6':
|
---|
| 1276 | case '7':
|
---|
| 1277 | case '8':
|
---|
| 1278 | case '9':
|
---|
| 1279 | if (backslash && !(dfa->syntax.syntax_bits & RE_NO_BK_REFS))
|
---|
| 1280 | {
|
---|
| 1281 | dfa->lex.laststart = false;
|
---|
| 1282 | return dfa->lex.lasttok = BACKREF;
|
---|
| 1283 | }
|
---|
| 1284 | goto normal_char;
|
---|
| 1285 |
|
---|
| 1286 | case '`':
|
---|
| 1287 | if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1288 | {
|
---|
| 1289 | /* FIXME: should be beginning of string */
|
---|
| 1290 | return dfa->lex.lasttok = BEGLINE;
|
---|
| 1291 | }
|
---|
| 1292 | goto normal_char;
|
---|
| 1293 |
|
---|
| 1294 | case '\'':
|
---|
| 1295 | if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1296 | {
|
---|
| 1297 | /* FIXME: should be end of string */
|
---|
| 1298 | return dfa->lex.lasttok = ENDLINE;
|
---|
| 1299 | }
|
---|
| 1300 | goto normal_char;
|
---|
| 1301 |
|
---|
| 1302 | case '<':
|
---|
| 1303 | if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1304 | return dfa->lex.lasttok = BEGWORD;
|
---|
| 1305 | goto normal_char;
|
---|
| 1306 |
|
---|
| 1307 | case '>':
|
---|
| 1308 | if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1309 | return dfa->lex.lasttok = ENDWORD;
|
---|
| 1310 | goto normal_char;
|
---|
| 1311 |
|
---|
| 1312 | case 'b':
|
---|
| 1313 | if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1314 | return dfa->lex.lasttok = LIMWORD;
|
---|
| 1315 | goto normal_char;
|
---|
| 1316 |
|
---|
| 1317 | case 'B':
|
---|
| 1318 | if (backslash && !(dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1319 | return dfa->lex.lasttok = NOTLIMWORD;
|
---|
| 1320 | goto normal_char;
|
---|
| 1321 |
|
---|
| 1322 | case '?':
|
---|
| 1323 | if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
|
---|
| 1324 | goto normal_char;
|
---|
| 1325 | if (backslash != ((dfa->syntax.syntax_bits & RE_BK_PLUS_QM) != 0))
|
---|
| 1326 | goto normal_char;
|
---|
| 1327 | if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
|
---|
| 1328 | && dfa->lex.laststart)
|
---|
| 1329 | goto normal_char;
|
---|
| 1330 | return dfa->lex.lasttok = QMARK;
|
---|
| 1331 |
|
---|
| 1332 | case '*':
|
---|
| 1333 | if (backslash)
|
---|
| 1334 | goto normal_char;
|
---|
| 1335 | if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
|
---|
| 1336 | && dfa->lex.laststart)
|
---|
| 1337 | goto normal_char;
|
---|
| 1338 | return dfa->lex.lasttok = STAR;
|
---|
| 1339 |
|
---|
| 1340 | case '+':
|
---|
| 1341 | if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
|
---|
| 1342 | goto normal_char;
|
---|
| 1343 | if (backslash != ((dfa->syntax.syntax_bits & RE_BK_PLUS_QM) != 0))
|
---|
| 1344 | goto normal_char;
|
---|
| 1345 | if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
|
---|
| 1346 | && dfa->lex.laststart)
|
---|
| 1347 | goto normal_char;
|
---|
| 1348 | return dfa->lex.lasttok = PLUS;
|
---|
| 1349 |
|
---|
| 1350 | case '{':
|
---|
| 1351 | if (!(dfa->syntax.syntax_bits & RE_INTERVALS))
|
---|
| 1352 | goto normal_char;
|
---|
| 1353 | if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_BRACES) == 0))
|
---|
| 1354 | goto normal_char;
|
---|
| 1355 | if (!(dfa->syntax.syntax_bits & RE_CONTEXT_INDEP_OPS)
|
---|
| 1356 | && dfa->lex.laststart)
|
---|
| 1357 | goto normal_char;
|
---|
| 1358 |
|
---|
| 1359 | /* Cases:
|
---|
| 1360 | {M} - exact count
|
---|
| 1361 | {M,} - minimum count, maximum is infinity
|
---|
| 1362 | {,N} - 0 through N
|
---|
| 1363 | {,} - 0 to infinity (same as '*')
|
---|
| 1364 | {M,N} - M through N */
|
---|
| 1365 | {
|
---|
| 1366 | char const *p = dfa->lex.ptr;
|
---|
| 1367 | char const *lim = p + dfa->lex.left;
|
---|
| 1368 | dfa->lex.minrep = dfa->lex.maxrep = -1;
|
---|
| 1369 | for (; p != lim && isasciidigit (*p); p++)
|
---|
| 1370 | dfa->lex.minrep = (dfa->lex.minrep < 0
|
---|
| 1371 | ? *p - '0'
|
---|
| 1372 | : MIN (RE_DUP_MAX + 1,
|
---|
| 1373 | dfa->lex.minrep * 10 + *p - '0'));
|
---|
| 1374 | if (p != lim)
|
---|
| 1375 | {
|
---|
| 1376 | if (*p != ',')
|
---|
| 1377 | dfa->lex.maxrep = dfa->lex.minrep;
|
---|
| 1378 | else
|
---|
| 1379 | {
|
---|
| 1380 | if (dfa->lex.minrep < 0)
|
---|
| 1381 | dfa->lex.minrep = 0;
|
---|
| 1382 | while (++p != lim && isasciidigit (*p))
|
---|
| 1383 | dfa->lex.maxrep
|
---|
| 1384 | = (dfa->lex.maxrep < 0
|
---|
| 1385 | ? *p - '0'
|
---|
| 1386 | : MIN (RE_DUP_MAX + 1,
|
---|
| 1387 | dfa->lex.maxrep * 10 + *p - '0'));
|
---|
| 1388 | }
|
---|
| 1389 | }
|
---|
| 1390 | if (! ((! backslash || (p != lim && *p++ == '\\'))
|
---|
| 1391 | && p != lim && *p++ == '}'
|
---|
| 1392 | && 0 <= dfa->lex.minrep
|
---|
| 1393 | && (dfa->lex.maxrep < 0
|
---|
| 1394 | || dfa->lex.minrep <= dfa->lex.maxrep)))
|
---|
| 1395 | {
|
---|
| 1396 | if (dfa->syntax.syntax_bits & RE_INVALID_INTERVAL_ORD)
|
---|
| 1397 | goto normal_char;
|
---|
| 1398 | dfaerror (_("invalid content of \\{\\}"));
|
---|
| 1399 | }
|
---|
| 1400 | if (RE_DUP_MAX < dfa->lex.maxrep)
|
---|
| 1401 | dfaerror (_("regular expression too big"));
|
---|
| 1402 | dfa->lex.ptr = p;
|
---|
| 1403 | dfa->lex.left = lim - p;
|
---|
| 1404 | }
|
---|
| 1405 | dfa->lex.laststart = false;
|
---|
| 1406 | return dfa->lex.lasttok = REPMN;
|
---|
| 1407 |
|
---|
| 1408 | case '|':
|
---|
| 1409 | if (dfa->syntax.syntax_bits & RE_LIMITED_OPS)
|
---|
| 1410 | goto normal_char;
|
---|
| 1411 | if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_VBAR) == 0))
|
---|
| 1412 | goto normal_char;
|
---|
| 1413 | dfa->lex.laststart = true;
|
---|
| 1414 | return dfa->lex.lasttok = OR;
|
---|
| 1415 |
|
---|
| 1416 | case '\n':
|
---|
| 1417 | if (dfa->syntax.syntax_bits & RE_LIMITED_OPS
|
---|
| 1418 | || backslash || !(dfa->syntax.syntax_bits & RE_NEWLINE_ALT))
|
---|
| 1419 | goto normal_char;
|
---|
| 1420 | dfa->lex.laststart = true;
|
---|
| 1421 | return dfa->lex.lasttok = OR;
|
---|
| 1422 |
|
---|
| 1423 | case '(':
|
---|
| 1424 | if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_PARENS) == 0))
|
---|
| 1425 | goto normal_char;
|
---|
| 1426 | dfa->lex.parens++;
|
---|
| 1427 | dfa->lex.laststart = true;
|
---|
| 1428 | return dfa->lex.lasttok = LPAREN;
|
---|
| 1429 |
|
---|
| 1430 | case ')':
|
---|
| 1431 | if (backslash != ((dfa->syntax.syntax_bits & RE_NO_BK_PARENS) == 0))
|
---|
| 1432 | goto normal_char;
|
---|
| 1433 | if (dfa->lex.parens == 0
|
---|
| 1434 | && dfa->syntax.syntax_bits & RE_UNMATCHED_RIGHT_PAREN_ORD)
|
---|
| 1435 | goto normal_char;
|
---|
| 1436 | dfa->lex.parens--;
|
---|
| 1437 | dfa->lex.laststart = false;
|
---|
| 1438 | return dfa->lex.lasttok = RPAREN;
|
---|
| 1439 |
|
---|
| 1440 | case '.':
|
---|
| 1441 | if (backslash)
|
---|
| 1442 | goto normal_char;
|
---|
| 1443 | if (dfa->canychar < 0)
|
---|
| 1444 | {
|
---|
| 1445 | charclass ccl;
|
---|
| 1446 | fillset (&ccl);
|
---|
| 1447 | if (!(dfa->syntax.syntax_bits & RE_DOT_NEWLINE))
|
---|
| 1448 | clrbit ('\n', &ccl);
|
---|
| 1449 | if (dfa->syntax.syntax_bits & RE_DOT_NOT_NULL)
|
---|
| 1450 | clrbit ('\0', &ccl);
|
---|
| 1451 | if (dfa->localeinfo.multibyte)
|
---|
| 1452 | for (int c2 = 0; c2 < NOTCHAR; c2++)
|
---|
| 1453 | if (dfa->localeinfo.sbctowc[c2] == WEOF)
|
---|
| 1454 | clrbit (c2, &ccl);
|
---|
| 1455 | dfa->canychar = charclass_index (dfa, &ccl);
|
---|
| 1456 | }
|
---|
| 1457 | dfa->lex.laststart = false;
|
---|
| 1458 | return dfa->lex.lasttok = (dfa->localeinfo.multibyte
|
---|
| 1459 | ? ANYCHAR
|
---|
| 1460 | : CSET + dfa->canychar);
|
---|
| 1461 |
|
---|
| 1462 | case 's':
|
---|
| 1463 | case 'S':
|
---|
| 1464 | if (!backslash || (dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1465 | goto normal_char;
|
---|
| 1466 | if (!dfa->localeinfo.multibyte)
|
---|
| 1467 | {
|
---|
| 1468 | charclass ccl;
|
---|
| 1469 | zeroset (&ccl);
|
---|
| 1470 | for (int c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
| 1471 | if (isspace (c2))
|
---|
| 1472 | setbit (c2, &ccl);
|
---|
| 1473 | if (c == 'S')
|
---|
| 1474 | notset (&ccl);
|
---|
| 1475 | dfa->lex.laststart = false;
|
---|
| 1476 | return dfa->lex.lasttok = CSET + charclass_index (dfa, &ccl);
|
---|
| 1477 | }
|
---|
| 1478 |
|
---|
| 1479 | /* FIXME: see if optimizing this, as is done with ANYCHAR and
|
---|
| 1480 | add_utf8_anychar, makes sense. */
|
---|
| 1481 |
|
---|
| 1482 | /* \s and \S are documented to be equivalent to [[:space:]] and
|
---|
| 1483 | [^[:space:]] respectively, so tell the lexer to process those
|
---|
| 1484 | strings, each minus its "already processed" '['. */
|
---|
| 1485 | {
|
---|
| 1486 | struct lexptr ls;
|
---|
| 1487 | push_lex_state (dfa, &ls, &"^[:space:]]"[c == 's']);
|
---|
| 1488 | dfa->lex.lasttok = parse_bracket_exp (dfa);
|
---|
| 1489 | pop_lex_state (dfa, &ls);
|
---|
| 1490 | }
|
---|
| 1491 |
|
---|
| 1492 | dfa->lex.laststart = false;
|
---|
| 1493 | return dfa->lex.lasttok;
|
---|
| 1494 |
|
---|
| 1495 | case 'w':
|
---|
| 1496 | case 'W':
|
---|
| 1497 | if (!backslash || (dfa->syntax.syntax_bits & RE_NO_GNU_OPS))
|
---|
| 1498 | goto normal_char;
|
---|
| 1499 |
|
---|
| 1500 | if (!dfa->localeinfo.multibyte)
|
---|
| 1501 | {
|
---|
| 1502 | charclass ccl;
|
---|
| 1503 | zeroset (&ccl);
|
---|
| 1504 | for (int c2 = 0; c2 < NOTCHAR; ++c2)
|
---|
| 1505 | if (dfa->syntax.sbit[c2] == CTX_LETTER)
|
---|
| 1506 | setbit (c2, &ccl);
|
---|
| 1507 | if (c == 'W')
|
---|
| 1508 | notset (&ccl);
|
---|
| 1509 | dfa->lex.laststart = false;
|
---|
| 1510 | return dfa->lex.lasttok = CSET + charclass_index (dfa, &ccl);
|
---|
| 1511 | }
|
---|
| 1512 |
|
---|
| 1513 | /* FIXME: see if optimizing this, as is done with ANYCHAR and
|
---|
| 1514 | add_utf8_anychar, makes sense. */
|
---|
| 1515 |
|
---|
| 1516 | /* \w and \W are documented to be equivalent to [_[:alnum:]] and
|
---|
| 1517 | [^_[:alnum:]] respectively, so tell the lexer to process those
|
---|
| 1518 | strings, each minus its "already processed" '['. */
|
---|
| 1519 | {
|
---|
| 1520 | struct lexptr ls;
|
---|
| 1521 | push_lex_state (dfa, &ls, &"^_[:alnum:]]"[c == 'w']);
|
---|
| 1522 | dfa->lex.lasttok = parse_bracket_exp (dfa);
|
---|
| 1523 | pop_lex_state (dfa, &ls);
|
---|
| 1524 | }
|
---|
| 1525 |
|
---|
| 1526 | dfa->lex.laststart = false;
|
---|
| 1527 | return dfa->lex.lasttok;
|
---|
| 1528 |
|
---|
| 1529 | case '[':
|
---|
| 1530 | if (backslash)
|
---|
| 1531 | goto normal_char;
|
---|
| 1532 | dfa->lex.laststart = false;
|
---|
| 1533 | return dfa->lex.lasttok = parse_bracket_exp (dfa);
|
---|
| 1534 |
|
---|
| 1535 | default:
|
---|
| 1536 | normal_char:
|
---|
| 1537 | dfa->lex.laststart = false;
|
---|
| 1538 | /* For multibyte character sets, folding is done in atom. Always
|
---|
| 1539 | return WCHAR. */
|
---|
| 1540 | if (dfa->localeinfo.multibyte)
|
---|
| 1541 | return dfa->lex.lasttok = WCHAR;
|
---|
| 1542 |
|
---|
| 1543 | if (dfa->syntax.case_fold && isalpha (c))
|
---|
| 1544 | {
|
---|
| 1545 | charclass ccl;
|
---|
| 1546 | zeroset (&ccl);
|
---|
| 1547 | setbit_case_fold_c (c, &ccl);
|
---|
| 1548 | return dfa->lex.lasttok = CSET + charclass_index (dfa, &ccl);
|
---|
| 1549 | }
|
---|
| 1550 |
|
---|
| 1551 | return dfa->lex.lasttok = c;
|
---|
| 1552 | }
|
---|
| 1553 | }
|
---|
| 1554 |
|
---|
| 1555 | /* The above loop should consume at most a backslash
|
---|
| 1556 | and some other character. */
|
---|
| 1557 | abort ();
|
---|
| 1558 | return END; /* keeps pedantic compilers happy. */
|
---|
| 1559 | }
|
---|
| 1560 |
|
---|
| 1561 | static void
|
---|
| 1562 | addtok_mb (struct dfa *dfa, token t, char mbprop)
|
---|
| 1563 | {
|
---|
| 1564 | if (dfa->talloc == dfa->tindex)
|
---|
| 1565 | {
|
---|
| 1566 | dfa->tokens = xpalloc (dfa->tokens, &dfa->talloc, 1, -1,
|
---|
| 1567 | sizeof *dfa->tokens);
|
---|
| 1568 | if (dfa->localeinfo.multibyte)
|
---|
| 1569 | dfa->multibyte_prop = xreallocarray (dfa->multibyte_prop, dfa->talloc,
|
---|
| 1570 | sizeof *dfa->multibyte_prop);
|
---|
| 1571 | }
|
---|
| 1572 | if (dfa->localeinfo.multibyte)
|
---|
| 1573 | dfa->multibyte_prop[dfa->tindex] = mbprop;
|
---|
| 1574 | dfa->tokens[dfa->tindex++] = t;
|
---|
| 1575 |
|
---|
| 1576 | switch (t)
|
---|
| 1577 | {
|
---|
| 1578 | case QMARK:
|
---|
| 1579 | case STAR:
|
---|
| 1580 | case PLUS:
|
---|
| 1581 | break;
|
---|
| 1582 |
|
---|
| 1583 | case CAT:
|
---|
| 1584 | case OR:
|
---|
| 1585 | dfa->parse.depth--;
|
---|
| 1586 | break;
|
---|
| 1587 |
|
---|
| 1588 | case EMPTY:
|
---|
| 1589 | dfa->epsilon = true;
|
---|
| 1590 | goto increment_depth;
|
---|
| 1591 |
|
---|
| 1592 | case BACKREF:
|
---|
| 1593 | dfa->fast = false;
|
---|
| 1594 | goto increment_nleaves;
|
---|
| 1595 |
|
---|
| 1596 | case BEGLINE:
|
---|
| 1597 | case ENDLINE:
|
---|
| 1598 | case BEGWORD:
|
---|
| 1599 | case ENDWORD:
|
---|
| 1600 | case LIMWORD:
|
---|
| 1601 | case NOTLIMWORD:
|
---|
| 1602 | dfa->epsilon = true;
|
---|
| 1603 | FALLTHROUGH;
|
---|
| 1604 | default:
|
---|
| 1605 | increment_nleaves:
|
---|
| 1606 | dfa->nleaves++;
|
---|
| 1607 | increment_depth:
|
---|
| 1608 | dfa->parse.depth++;
|
---|
| 1609 | if (dfa->depth < dfa->parse.depth)
|
---|
| 1610 | dfa->depth = dfa->parse.depth;
|
---|
| 1611 | break;
|
---|
| 1612 | }
|
---|
| 1613 | }
|
---|
| 1614 |
|
---|
| 1615 | static void addtok_wc (struct dfa *dfa, wint_t wc);
|
---|
| 1616 |
|
---|
| 1617 | /* Add the given token to the parse tree, maintaining the depth count and
|
---|
| 1618 | updating the maximum depth if necessary. */
|
---|
| 1619 | static void
|
---|
| 1620 | addtok (struct dfa *dfa, token t)
|
---|
| 1621 | {
|
---|
| 1622 | if (dfa->localeinfo.multibyte && t == MBCSET)
|
---|
| 1623 | {
|
---|
| 1624 | bool need_or = false;
|
---|
| 1625 |
|
---|
| 1626 | /* Extract wide characters into alternations for better performance.
|
---|
| 1627 | This does not require UTF-8. */
|
---|
| 1628 | for (idx_t i = 0; i < dfa->lex.brack.nchars; i++)
|
---|
| 1629 | {
|
---|
| 1630 | addtok_wc (dfa, dfa->lex.brack.chars[i]);
|
---|
| 1631 | if (need_or)
|
---|
| 1632 | addtok (dfa, OR);
|
---|
| 1633 | need_or = true;
|
---|
| 1634 | }
|
---|
| 1635 | dfa->lex.brack.nchars = 0;
|
---|
| 1636 |
|
---|
| 1637 | /* Wide characters have been handled above, so it is possible
|
---|
| 1638 | that the set is empty now. Do nothing in that case. */
|
---|
| 1639 | if (dfa->lex.brack.cset != -1)
|
---|
| 1640 | {
|
---|
| 1641 | addtok (dfa, CSET + dfa->lex.brack.cset);
|
---|
| 1642 | if (need_or)
|
---|
| 1643 | addtok (dfa, OR);
|
---|
| 1644 | }
|
---|
| 1645 | }
|
---|
| 1646 | else
|
---|
| 1647 | {
|
---|
| 1648 | addtok_mb (dfa, t, 3);
|
---|
| 1649 | }
|
---|
| 1650 | }
|
---|
| 1651 |
|
---|
| 1652 | /* We treat a multibyte character as a single atom, so that DFA
|
---|
| 1653 | can treat a multibyte character as a single expression.
|
---|
| 1654 |
|
---|
| 1655 | e.g., we construct the following tree from "<mb1><mb2>".
|
---|
| 1656 | <mb1(1st-byte)><mb1(2nd-byte)><CAT><mb1(3rd-byte)><CAT>
|
---|
| 1657 | <mb2(1st-byte)><mb2(2nd-byte)><CAT><mb2(3rd-byte)><CAT><CAT> */
|
---|
| 1658 | static void
|
---|
| 1659 | addtok_wc (struct dfa *dfa, wint_t wc)
|
---|
| 1660 | {
|
---|
| 1661 | unsigned char buf[MB_LEN_MAX];
|
---|
| 1662 | mbstate_t s = { 0 };
|
---|
| 1663 | size_t stored_bytes = wcrtomb ((char *) buf, wc, &s);
|
---|
| 1664 | int buflen;
|
---|
| 1665 |
|
---|
| 1666 | if (stored_bytes != (size_t) -1)
|
---|
| 1667 | buflen = stored_bytes;
|
---|
| 1668 | else
|
---|
| 1669 | {
|
---|
| 1670 | /* This is merely stop-gap. buf[0] is undefined, yet skipping
|
---|
| 1671 | the addtok_mb call altogether can corrupt the heap. */
|
---|
| 1672 | buflen = 1;
|
---|
| 1673 | buf[0] = 0;
|
---|
| 1674 | }
|
---|
| 1675 |
|
---|
| 1676 | addtok_mb (dfa, buf[0], buflen == 1 ? 3 : 1);
|
---|
| 1677 | for (int i = 1; i < buflen; i++)
|
---|
| 1678 | {
|
---|
| 1679 | addtok_mb (dfa, buf[i], i == buflen - 1 ? 2 : 0);
|
---|
| 1680 | addtok (dfa, CAT);
|
---|
| 1681 | }
|
---|
| 1682 | }
|
---|
| 1683 |
|
---|
| 1684 | static void
|
---|
| 1685 | add_utf8_anychar (struct dfa *dfa)
|
---|
| 1686 | {
|
---|
| 1687 | /* Since the Unicode Standard Version 4.0.0 (2003), a well-formed
|
---|
| 1688 | UTF-8 byte sequence has been defined as follows:
|
---|
| 1689 |
|
---|
| 1690 | ([\x00-\x7f]
|
---|
| 1691 | |[\xc2-\xdf][\x80-\xbf]
|
---|
| 1692 | |[\xe0][\xa0-\xbf][\x80-\xbf]
|
---|
| 1693 | |[\xe1-\xec\xee-\xef][\x80-\xbf][\x80-\xbf]
|
---|
| 1694 | |[\xed][\x80-\x9f][\x80-\xbf]
|
---|
| 1695 | |[\xf0][\x90-\xbf][\x80-\xbf][\x80-\xbf])
|
---|
| 1696 | |[\xf1-\xf3][\x80-\xbf][\x80-\xbf][\x80-\xbf]
|
---|
| 1697 | |[\xf4][\x80-\x8f][\x80-\xbf][\x80-\xbf])
|
---|
| 1698 |
|
---|
| 1699 | which I'll write more concisely "A|BC|DEC|FCC|GHC|IJCC|KCCC|LMCC",
|
---|
| 1700 | where A = [\x00-\x7f], B = [\xc2-\xdf], C = [\x80-\xbf],
|
---|
| 1701 | D = [\xe0], E = [\xa0-\xbf], F = [\xe1-\xec\xee-\xef], G = [\xed],
|
---|
| 1702 | H = [\x80-\x9f], I = [\xf0],
|
---|
| 1703 | J = [\x90-\xbf], K = [\xf1-\xf3], L = [\xf4], M = [\x80-\x8f].
|
---|
| 1704 |
|
---|
| 1705 | This can be refactored to "A|(B|DE|GH|(F|IJ|LM|KC)C)C". */
|
---|
| 1706 |
|
---|
| 1707 | /* Mnemonics for classes containing two or more bytes. */
|
---|
| 1708 | enum { A, B, C, E, F, H, J, K, M };
|
---|
| 1709 |
|
---|
| 1710 | /* Mnemonics for single-byte tokens. */
|
---|
| 1711 | enum { D_token = 0xe0, G_token = 0xed, I_token = 0xf0, L_token = 0xf4 };
|
---|
| 1712 |
|
---|
| 1713 | static charclass const utf8_classes[] = {
|
---|
| 1714 | /* A. 00-7f: 1-byte sequence. */
|
---|
| 1715 | CHARCLASS_INIT (0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0, 0, 0, 0),
|
---|
| 1716 |
|
---|
| 1717 | /* B. c2-df: 1st byte of a 2-byte sequence. */
|
---|
| 1718 | CHARCLASS_INIT (0, 0, 0, 0, 0, 0, 0xfffffffc, 0),
|
---|
| 1719 |
|
---|
| 1720 | /* C. 80-bf: non-leading bytes. */
|
---|
| 1721 | CHARCLASS_INIT (0, 0, 0, 0, 0xffffffff, 0xffffffff, 0, 0),
|
---|
| 1722 |
|
---|
| 1723 | /* D. e0 (just a token). */
|
---|
| 1724 |
|
---|
| 1725 | /* E. a0-bf: 2nd byte of a "DEC" sequence. */
|
---|
| 1726 | CHARCLASS_INIT (0, 0, 0, 0, 0, 0xffffffff, 0, 0),
|
---|
| 1727 |
|
---|
| 1728 | /* F. e1-ec + ee-ef: 1st byte of an "FCC" sequence. */
|
---|
| 1729 | CHARCLASS_INIT (0, 0, 0, 0, 0, 0, 0, 0xdffe),
|
---|
| 1730 |
|
---|
| 1731 | /* G. ed (just a token). */
|
---|
| 1732 |
|
---|
| 1733 | /* H. 80-9f: 2nd byte of a "GHC" sequence. */
|
---|
| 1734 | CHARCLASS_INIT (0, 0, 0, 0, 0xffff, 0, 0, 0),
|
---|
| 1735 |
|
---|
| 1736 | /* I. f0 (just a token). */
|
---|
| 1737 |
|
---|
| 1738 | /* J. 90-bf: 2nd byte of an "IJCC" sequence. */
|
---|
| 1739 | CHARCLASS_INIT (0, 0, 0, 0, 0xffff0000, 0xffffffff, 0, 0),
|
---|
| 1740 |
|
---|
| 1741 | /* K. f1-f3: 1st byte of a "KCCC" sequence. */
|
---|
| 1742 | CHARCLASS_INIT (0, 0, 0, 0, 0, 0, 0, 0xe0000),
|
---|
| 1743 |
|
---|
| 1744 | /* L. f4 (just a token). */
|
---|
| 1745 |
|
---|
| 1746 | /* M. 80-8f: 2nd byte of a "LMCC" sequence. */
|
---|
| 1747 | CHARCLASS_INIT (0, 0, 0, 0, 0xff, 0, 0, 0),
|
---|
| 1748 | };
|
---|
| 1749 |
|
---|
| 1750 | /* Define the character classes that are needed below. */
|
---|
| 1751 | if (dfa->utf8_anychar_classes[0] == 0)
|
---|
| 1752 | {
|
---|
| 1753 | charclass c = utf8_classes[0];
|
---|
| 1754 | if (! (dfa->syntax.syntax_bits & RE_DOT_NEWLINE))
|
---|
| 1755 | clrbit ('\n', &c);
|
---|
| 1756 | if (dfa->syntax.syntax_bits & RE_DOT_NOT_NULL)
|
---|
| 1757 | clrbit ('\0', &c);
|
---|
| 1758 | dfa->utf8_anychar_classes[0] = CSET + charclass_index (dfa, &c);
|
---|
| 1759 |
|
---|
| 1760 | for (int i = 1; i < sizeof utf8_classes / sizeof *utf8_classes; i++)
|
---|
| 1761 | dfa->utf8_anychar_classes[i]
|
---|
| 1762 | = CSET + charclass_index (dfa, &utf8_classes[i]);
|
---|
| 1763 | }
|
---|
| 1764 |
|
---|
| 1765 | /* Implement the "A|(B|DE|GH|(F|IJ|LM|KC)C)C" pattern mentioned above.
|
---|
| 1766 | The token buffer is in reverse Polish order, so we get
|
---|
| 1767 | "A B D E CAT OR G H CAT OR F I J CAT OR L M CAT OR K
|
---|
| 1768 | C CAT OR C CAT OR C CAT OR". */
|
---|
| 1769 | addtok (dfa, dfa->utf8_anychar_classes[A]);
|
---|
| 1770 | addtok (dfa, dfa->utf8_anychar_classes[B]);
|
---|
| 1771 | addtok (dfa, D_token);
|
---|
| 1772 | addtok (dfa, dfa->utf8_anychar_classes[E]);
|
---|
| 1773 | addtok (dfa, CAT);
|
---|
| 1774 | addtok (dfa, OR);
|
---|
| 1775 | addtok (dfa, G_token);
|
---|
| 1776 | addtok (dfa, dfa->utf8_anychar_classes[H]);
|
---|
| 1777 | addtok (dfa, CAT);
|
---|
| 1778 | addtok (dfa, OR);
|
---|
| 1779 | addtok (dfa, dfa->utf8_anychar_classes[F]);
|
---|
| 1780 | addtok (dfa, I_token);
|
---|
| 1781 | addtok (dfa, dfa->utf8_anychar_classes[J]);
|
---|
| 1782 | addtok (dfa, CAT);
|
---|
| 1783 | addtok (dfa, OR);
|
---|
| 1784 | addtok (dfa, L_token);
|
---|
| 1785 | addtok (dfa, dfa->utf8_anychar_classes[M]);
|
---|
| 1786 | addtok (dfa, CAT);
|
---|
| 1787 | addtok (dfa, OR);
|
---|
| 1788 | addtok (dfa, dfa->utf8_anychar_classes[K]);
|
---|
| 1789 | for (int i = 0; i < 3; i++)
|
---|
| 1790 | {
|
---|
| 1791 | addtok (dfa, dfa->utf8_anychar_classes[C]);
|
---|
| 1792 | addtok (dfa, CAT);
|
---|
| 1793 | addtok (dfa, OR);
|
---|
| 1794 | }
|
---|
| 1795 | }
|
---|
| 1796 |
|
---|
| 1797 | /* The grammar understood by the parser is as follows.
|
---|
| 1798 |
|
---|
| 1799 | regexp:
|
---|
| 1800 | regexp OR branch
|
---|
| 1801 | branch
|
---|
| 1802 |
|
---|
| 1803 | branch:
|
---|
| 1804 | branch closure
|
---|
| 1805 | closure
|
---|
| 1806 |
|
---|
| 1807 | closure:
|
---|
| 1808 | closure QMARK
|
---|
| 1809 | closure STAR
|
---|
| 1810 | closure PLUS
|
---|
| 1811 | closure REPMN
|
---|
| 1812 | atom
|
---|
| 1813 |
|
---|
| 1814 | atom:
|
---|
| 1815 | <normal character>
|
---|
| 1816 | <multibyte character>
|
---|
| 1817 | ANYCHAR
|
---|
| 1818 | MBCSET
|
---|
| 1819 | CSET
|
---|
| 1820 | BACKREF
|
---|
| 1821 | BEGLINE
|
---|
| 1822 | ENDLINE
|
---|
| 1823 | BEGWORD
|
---|
| 1824 | ENDWORD
|
---|
| 1825 | LIMWORD
|
---|
| 1826 | NOTLIMWORD
|
---|
| 1827 | LPAREN regexp RPAREN
|
---|
| 1828 | <empty>
|
---|
| 1829 |
|
---|
| 1830 | The parser builds a parse tree in postfix form in an array of tokens. */
|
---|
| 1831 |
|
---|
| 1832 | static void
|
---|
| 1833 | atom (struct dfa *dfa)
|
---|
| 1834 | {
|
---|
| 1835 | if ((0 <= dfa->parse.tok && dfa->parse.tok < NOTCHAR)
|
---|
| 1836 | || dfa->parse.tok >= CSET
|
---|
| 1837 | || dfa->parse.tok == BEG || dfa->parse.tok == BACKREF
|
---|
| 1838 | || dfa->parse.tok == BEGLINE || dfa->parse.tok == ENDLINE
|
---|
| 1839 | || dfa->parse.tok == BEGWORD || dfa->parse.tok == ENDWORD
|
---|
| 1840 | || dfa->parse.tok == LIMWORD || dfa->parse.tok == NOTLIMWORD
|
---|
| 1841 | || dfa->parse.tok == ANYCHAR || dfa->parse.tok == MBCSET)
|
---|
| 1842 | {
|
---|
| 1843 | if (dfa->parse.tok == ANYCHAR && dfa->localeinfo.using_utf8)
|
---|
| 1844 | {
|
---|
| 1845 | /* For UTF-8 expand the period to a series of CSETs that define a
|
---|
| 1846 | valid UTF-8 character. This avoids using the slow multibyte
|
---|
| 1847 | path. I'm pretty sure it would be both profitable and correct to
|
---|
| 1848 | do it for any encoding; however, the optimization must be done
|
---|
| 1849 | manually as it is done above in add_utf8_anychar. So, let's
|
---|
| 1850 | start with UTF-8: it is the most used, and the structure of the
|
---|
| 1851 | encoding makes the correctness more obvious. */
|
---|
| 1852 | add_utf8_anychar (dfa);
|
---|
| 1853 | }
|
---|
| 1854 | else
|
---|
| 1855 | addtok (dfa, dfa->parse.tok);
|
---|
| 1856 | dfa->parse.tok = lex (dfa);
|
---|
| 1857 | }
|
---|
| 1858 | else if (dfa->parse.tok == WCHAR)
|
---|
| 1859 | {
|
---|
| 1860 | if (dfa->lex.wctok == WEOF)
|
---|
| 1861 | addtok (dfa, BACKREF);
|
---|
| 1862 | else
|
---|
| 1863 | {
|
---|
| 1864 | addtok_wc (dfa, dfa->lex.wctok);
|
---|
| 1865 |
|
---|
| 1866 | if (dfa->syntax.case_fold)
|
---|
| 1867 | {
|
---|
| 1868 | wchar_t folded[CASE_FOLDED_BUFSIZE];
|
---|
| 1869 | int n = case_folded_counterparts (dfa->lex.wctok, folded);
|
---|
| 1870 | for (int i = 0; i < n; i++)
|
---|
| 1871 | {
|
---|
| 1872 | addtok_wc (dfa, folded[i]);
|
---|
| 1873 | addtok (dfa, OR);
|
---|
| 1874 | }
|
---|
| 1875 | }
|
---|
| 1876 | }
|
---|
| 1877 |
|
---|
| 1878 | dfa->parse.tok = lex (dfa);
|
---|
| 1879 | }
|
---|
| 1880 | else if (dfa->parse.tok == LPAREN)
|
---|
| 1881 | {
|
---|
| 1882 | dfa->parse.tok = lex (dfa);
|
---|
| 1883 | regexp (dfa);
|
---|
| 1884 | if (dfa->parse.tok != RPAREN)
|
---|
| 1885 | dfaerror (_("unbalanced ("));
|
---|
| 1886 | dfa->parse.tok = lex (dfa);
|
---|
| 1887 | }
|
---|
| 1888 | else
|
---|
| 1889 | addtok (dfa, EMPTY);
|
---|
| 1890 | }
|
---|
| 1891 |
|
---|
| 1892 | /* Return the number of tokens in the given subexpression. */
|
---|
| 1893 | static idx_t _GL_ATTRIBUTE_PURE
|
---|
| 1894 | nsubtoks (struct dfa const *dfa, idx_t tindex)
|
---|
| 1895 | {
|
---|
| 1896 | switch (dfa->tokens[tindex - 1])
|
---|
| 1897 | {
|
---|
| 1898 | default:
|
---|
| 1899 | return 1;
|
---|
| 1900 | case QMARK:
|
---|
| 1901 | case STAR:
|
---|
| 1902 | case PLUS:
|
---|
| 1903 | return 1 + nsubtoks (dfa, tindex - 1);
|
---|
| 1904 | case CAT:
|
---|
| 1905 | case OR:
|
---|
| 1906 | {
|
---|
| 1907 | idx_t ntoks1 = nsubtoks (dfa, tindex - 1);
|
---|
| 1908 | return 1 + ntoks1 + nsubtoks (dfa, tindex - 1 - ntoks1);
|
---|
| 1909 | }
|
---|
| 1910 | }
|
---|
| 1911 | }
|
---|
| 1912 |
|
---|
| 1913 | /* Copy the given subexpression to the top of the tree. */
|
---|
| 1914 | static void
|
---|
| 1915 | copytoks (struct dfa *dfa, idx_t tindex, idx_t ntokens)
|
---|
| 1916 | {
|
---|
| 1917 | if (dfa->localeinfo.multibyte)
|
---|
| 1918 | for (idx_t i = 0; i < ntokens; i++)
|
---|
| 1919 | addtok_mb (dfa, dfa->tokens[tindex + i],
|
---|
| 1920 | dfa->multibyte_prop[tindex + i]);
|
---|
| 1921 | else
|
---|
| 1922 | for (idx_t i = 0; i < ntokens; i++)
|
---|
| 1923 | addtok_mb (dfa, dfa->tokens[tindex + i], 3);
|
---|
| 1924 | }
|
---|
| 1925 |
|
---|
| 1926 | static void
|
---|
| 1927 | closure (struct dfa *dfa)
|
---|
| 1928 | {
|
---|
| 1929 | atom (dfa);
|
---|
| 1930 | while (dfa->parse.tok == QMARK || dfa->parse.tok == STAR
|
---|
| 1931 | || dfa->parse.tok == PLUS || dfa->parse.tok == REPMN)
|
---|
| 1932 | if (dfa->parse.tok == REPMN && (dfa->lex.minrep || dfa->lex.maxrep))
|
---|
| 1933 | {
|
---|
| 1934 | idx_t ntokens = nsubtoks (dfa, dfa->tindex);
|
---|
| 1935 | idx_t tindex = dfa->tindex - ntokens;
|
---|
| 1936 | if (dfa->lex.maxrep < 0)
|
---|
| 1937 | addtok (dfa, PLUS);
|
---|
| 1938 | if (dfa->lex.minrep == 0)
|
---|
| 1939 | addtok (dfa, QMARK);
|
---|
| 1940 | int i;
|
---|
| 1941 | for (i = 1; i < dfa->lex.minrep; i++)
|
---|
| 1942 | {
|
---|
| 1943 | copytoks (dfa, tindex, ntokens);
|
---|
| 1944 | addtok (dfa, CAT);
|
---|
| 1945 | }
|
---|
| 1946 | for (; i < dfa->lex.maxrep; i++)
|
---|
| 1947 | {
|
---|
| 1948 | copytoks (dfa, tindex, ntokens);
|
---|
| 1949 | addtok (dfa, QMARK);
|
---|
| 1950 | addtok (dfa, CAT);
|
---|
| 1951 | }
|
---|
| 1952 | dfa->parse.tok = lex (dfa);
|
---|
| 1953 | }
|
---|
| 1954 | else if (dfa->parse.tok == REPMN)
|
---|
| 1955 | {
|
---|
| 1956 | dfa->tindex -= nsubtoks (dfa, dfa->tindex);
|
---|
| 1957 | dfa->parse.tok = lex (dfa);
|
---|
| 1958 | closure (dfa);
|
---|
| 1959 | }
|
---|
| 1960 | else
|
---|
| 1961 | {
|
---|
| 1962 | addtok (dfa, dfa->parse.tok);
|
---|
| 1963 | dfa->parse.tok = lex (dfa);
|
---|
| 1964 | }
|
---|
| 1965 | }
|
---|
| 1966 |
|
---|
| 1967 | static void
|
---|
| 1968 | branch (struct dfa* dfa)
|
---|
| 1969 | {
|
---|
| 1970 | closure (dfa);
|
---|
| 1971 | while (dfa->parse.tok != RPAREN && dfa->parse.tok != OR
|
---|
| 1972 | && dfa->parse.tok >= 0)
|
---|
| 1973 | {
|
---|
| 1974 | closure (dfa);
|
---|
| 1975 | addtok (dfa, CAT);
|
---|
| 1976 | }
|
---|
| 1977 | }
|
---|
| 1978 |
|
---|
| 1979 | static void
|
---|
| 1980 | regexp (struct dfa *dfa)
|
---|
| 1981 | {
|
---|
| 1982 | branch (dfa);
|
---|
| 1983 | while (dfa->parse.tok == OR)
|
---|
| 1984 | {
|
---|
| 1985 | dfa->parse.tok = lex (dfa);
|
---|
| 1986 | branch (dfa);
|
---|
| 1987 | addtok (dfa, OR);
|
---|
| 1988 | }
|
---|
| 1989 | }
|
---|
| 1990 |
|
---|
| 1991 | /* Parse a string S of length LEN into D. S can include NUL characters.
|
---|
| 1992 | This is the main entry point for the parser. */
|
---|
| 1993 | void
|
---|
| 1994 | dfaparse (char const *s, idx_t len, struct dfa *d)
|
---|
| 1995 | {
|
---|
| 1996 | d->lex.ptr = s;
|
---|
| 1997 | d->lex.left = len;
|
---|
| 1998 | d->lex.lasttok = END;
|
---|
| 1999 | d->lex.laststart = true;
|
---|
| 2000 |
|
---|
| 2001 | if (!d->syntax.syntax_bits_set)
|
---|
| 2002 | dfaerror (_("no syntax specified"));
|
---|
| 2003 |
|
---|
| 2004 | if (!d->nregexps)
|
---|
| 2005 | addtok (d, BEG);
|
---|
| 2006 |
|
---|
| 2007 | d->parse.tok = lex (d);
|
---|
| 2008 | d->parse.depth = d->depth;
|
---|
| 2009 |
|
---|
| 2010 | regexp (d);
|
---|
| 2011 |
|
---|
| 2012 | if (d->parse.tok != END)
|
---|
| 2013 | dfaerror (_("unbalanced )"));
|
---|
| 2014 |
|
---|
| 2015 | addtok (d, END - d->nregexps);
|
---|
| 2016 | addtok (d, CAT);
|
---|
| 2017 |
|
---|
| 2018 | if (d->nregexps)
|
---|
| 2019 | addtok (d, OR);
|
---|
| 2020 |
|
---|
| 2021 | ++d->nregexps;
|
---|
| 2022 | }
|
---|
| 2023 |
|
---|
| 2024 | /* Some primitives for operating on sets of positions. */
|
---|
| 2025 |
|
---|
| 2026 | /* Copy one set to another. */
|
---|
| 2027 | static void
|
---|
| 2028 | copy (position_set const *src, position_set *dst)
|
---|
| 2029 | {
|
---|
| 2030 | if (dst->alloc < src->nelem)
|
---|
| 2031 | {
|
---|
| 2032 | free (dst->elems);
|
---|
| 2033 | dst->elems = xpalloc (NULL, &dst->alloc, src->nelem - dst->alloc, -1,
|
---|
| 2034 | sizeof *dst->elems);
|
---|
| 2035 | }
|
---|
| 2036 | dst->nelem = src->nelem;
|
---|
| 2037 | if (src->nelem != 0)
|
---|
| 2038 | memcpy (dst->elems, src->elems, src->nelem * sizeof *dst->elems);
|
---|
| 2039 | }
|
---|
| 2040 |
|
---|
| 2041 | static void
|
---|
| 2042 | alloc_position_set (position_set *s, idx_t size)
|
---|
| 2043 | {
|
---|
| 2044 | s->elems = xnmalloc (size, sizeof *s->elems);
|
---|
| 2045 | s->alloc = size;
|
---|
| 2046 | s->nelem = 0;
|
---|
| 2047 | }
|
---|
| 2048 |
|
---|
| 2049 | /* Insert position P in set S. S is maintained in sorted order on
|
---|
| 2050 | decreasing index. If there is already an entry in S with P.index
|
---|
| 2051 | then merge (logically-OR) P's constraints into the one in S.
|
---|
| 2052 | S->elems must point to an array large enough to hold the resulting set. */
|
---|
| 2053 | static void
|
---|
| 2054 | insert (position p, position_set *s)
|
---|
| 2055 | {
|
---|
| 2056 | idx_t count = s->nelem;
|
---|
| 2057 | idx_t lo = 0, hi = count;
|
---|
| 2058 | while (lo < hi)
|
---|
| 2059 | {
|
---|
| 2060 | idx_t mid = (lo + hi) >> 1;
|
---|
| 2061 | if (s->elems[mid].index < p.index)
|
---|
| 2062 | lo = mid + 1;
|
---|
| 2063 | else if (s->elems[mid].index == p.index)
|
---|
| 2064 | {
|
---|
| 2065 | s->elems[mid].constraint |= p.constraint;
|
---|
| 2066 | return;
|
---|
| 2067 | }
|
---|
| 2068 | else
|
---|
| 2069 | hi = mid;
|
---|
| 2070 | }
|
---|
| 2071 |
|
---|
| 2072 | s->elems = maybe_realloc (s->elems, count, &s->alloc, -1, sizeof *s->elems);
|
---|
| 2073 | for (idx_t i = count; i > lo; i--)
|
---|
| 2074 | s->elems[i] = s->elems[i - 1];
|
---|
| 2075 | s->elems[lo] = p;
|
---|
| 2076 | ++s->nelem;
|
---|
| 2077 | }
|
---|
| 2078 |
|
---|
| 2079 | static void
|
---|
| 2080 | append (position p, position_set *s)
|
---|
| 2081 | {
|
---|
| 2082 | idx_t count = s->nelem;
|
---|
| 2083 | s->elems = maybe_realloc (s->elems, count, &s->alloc, -1, sizeof *s->elems);
|
---|
| 2084 | s->elems[s->nelem++] = p;
|
---|
| 2085 | }
|
---|
| 2086 |
|
---|
| 2087 | /* Merge S1 and S2 (with the additional constraint C2) into M. The
|
---|
| 2088 | result is as if the positions of S1, and of S2 with the additional
|
---|
| 2089 | constraint C2, were inserted into an initially empty set. */
|
---|
| 2090 | static void
|
---|
| 2091 | merge_constrained (position_set const *s1, position_set const *s2,
|
---|
| 2092 | unsigned int c2, position_set *m)
|
---|
| 2093 | {
|
---|
| 2094 | idx_t i = 0, j = 0;
|
---|
| 2095 |
|
---|
| 2096 | if (m->alloc - s1->nelem < s2->nelem)
|
---|
| 2097 | {
|
---|
| 2098 | free (m->elems);
|
---|
| 2099 | m->alloc = s1->nelem;
|
---|
| 2100 | m->elems = xpalloc (NULL, &m->alloc, s2->nelem, -1, sizeof *m->elems);
|
---|
| 2101 | }
|
---|
| 2102 | m->nelem = 0;
|
---|
| 2103 | while (i < s1->nelem || j < s2->nelem)
|
---|
| 2104 | if (! (j < s2->nelem)
|
---|
| 2105 | || (i < s1->nelem && s1->elems[i].index <= s2->elems[j].index))
|
---|
| 2106 | {
|
---|
| 2107 | unsigned int c = ((i < s1->nelem && j < s2->nelem
|
---|
| 2108 | && s1->elems[i].index == s2->elems[j].index)
|
---|
| 2109 | ? s2->elems[j++].constraint & c2
|
---|
| 2110 | : 0);
|
---|
| 2111 | m->elems[m->nelem].index = s1->elems[i].index;
|
---|
| 2112 | m->elems[m->nelem++].constraint = s1->elems[i++].constraint | c;
|
---|
| 2113 | }
|
---|
| 2114 | else
|
---|
| 2115 | {
|
---|
| 2116 | if (s2->elems[j].constraint & c2)
|
---|
| 2117 | {
|
---|
| 2118 | m->elems[m->nelem].index = s2->elems[j].index;
|
---|
| 2119 | m->elems[m->nelem++].constraint = s2->elems[j].constraint & c2;
|
---|
| 2120 | }
|
---|
| 2121 | j++;
|
---|
| 2122 | }
|
---|
| 2123 | }
|
---|
| 2124 |
|
---|
| 2125 | /* Merge two sets of positions into a third. The result is exactly as if
|
---|
| 2126 | the positions of both sets were inserted into an initially empty set. */
|
---|
| 2127 | static void
|
---|
| 2128 | merge (position_set const *s1, position_set const *s2, position_set *m)
|
---|
| 2129 | {
|
---|
| 2130 | merge_constrained (s1, s2, -1, m);
|
---|
| 2131 | }
|
---|
| 2132 |
|
---|
| 2133 | /* Merge into DST all the elements of SRC, possibly destroying
|
---|
| 2134 | the contents of the temporary M. */
|
---|
| 2135 | static void
|
---|
| 2136 | merge2 (position_set *dst, position_set const *src, position_set *m)
|
---|
| 2137 | {
|
---|
| 2138 | if (src->nelem < 4)
|
---|
| 2139 | {
|
---|
| 2140 | for (idx_t i = 0; i < src->nelem; i++)
|
---|
| 2141 | insert (src->elems[i], dst);
|
---|
| 2142 | }
|
---|
| 2143 | else
|
---|
| 2144 | {
|
---|
| 2145 | merge (src, dst, m);
|
---|
| 2146 | copy (m, dst);
|
---|
| 2147 | }
|
---|
| 2148 | }
|
---|
| 2149 |
|
---|
| 2150 | /* Delete a position from a set. Return the nonzero constraint of the
|
---|
| 2151 | deleted position, or zero if there was no such position. */
|
---|
| 2152 | static unsigned int
|
---|
| 2153 | delete (idx_t del, position_set *s)
|
---|
| 2154 | {
|
---|
| 2155 | idx_t count = s->nelem;
|
---|
| 2156 | idx_t lo = 0, hi = count;
|
---|
| 2157 | while (lo < hi)
|
---|
| 2158 | {
|
---|
| 2159 | idx_t mid = (lo + hi) >> 1;
|
---|
| 2160 | if (s->elems[mid].index < del)
|
---|
| 2161 | lo = mid + 1;
|
---|
| 2162 | else if (s->elems[mid].index == del)
|
---|
| 2163 | {
|
---|
| 2164 | unsigned int c = s->elems[mid].constraint;
|
---|
| 2165 | idx_t i;
|
---|
| 2166 | for (i = mid; i + 1 < count; i++)
|
---|
| 2167 | s->elems[i] = s->elems[i + 1];
|
---|
| 2168 | s->nelem = i;
|
---|
| 2169 | return c;
|
---|
| 2170 | }
|
---|
| 2171 | else
|
---|
| 2172 | hi = mid;
|
---|
| 2173 | }
|
---|
| 2174 | return 0;
|
---|
| 2175 | }
|
---|
| 2176 |
|
---|
| 2177 | /* Replace a position with the followed set. */
|
---|
| 2178 | static void
|
---|
| 2179 | replace (position_set *dst, idx_t del, position_set *add,
|
---|
| 2180 | unsigned int constraint, position_set *tmp)
|
---|
| 2181 | {
|
---|
| 2182 | unsigned int c = delete (del, dst) & constraint;
|
---|
| 2183 |
|
---|
| 2184 | if (c)
|
---|
| 2185 | {
|
---|
| 2186 | copy (dst, tmp);
|
---|
| 2187 | merge_constrained (tmp, add, c, dst);
|
---|
| 2188 | }
|
---|
| 2189 | }
|
---|
| 2190 |
|
---|
| 2191 | /* Find the index of the state corresponding to the given position set with
|
---|
| 2192 | the given preceding context, or create a new state if there is no such
|
---|
| 2193 | state. Context tells whether we got here on a newline or letter. */
|
---|
| 2194 | static state_num
|
---|
| 2195 | state_index (struct dfa *d, position_set const *s, int context)
|
---|
| 2196 | {
|
---|
| 2197 | size_t hash = 0;
|
---|
| 2198 | int constraint = 0;
|
---|
| 2199 | state_num i;
|
---|
| 2200 |
|
---|
| 2201 | for (i = 0; i < s->nelem; ++i)
|
---|
| 2202 | {
|
---|
| 2203 | idx_t ind = s->elems[i].index;
|
---|
| 2204 | hash ^= ind + s->elems[i].constraint;
|
---|
| 2205 | }
|
---|
| 2206 |
|
---|
| 2207 | /* Try to find a state that exactly matches the proposed one. */
|
---|
| 2208 | for (i = 0; i < d->sindex; ++i)
|
---|
| 2209 | {
|
---|
| 2210 | if (hash != d->states[i].hash || s->nelem != d->states[i].elems.nelem
|
---|
| 2211 | || context != d->states[i].context)
|
---|
| 2212 | continue;
|
---|
| 2213 | state_num j;
|
---|
| 2214 | for (j = 0; j < s->nelem; ++j)
|
---|
| 2215 | if (s->elems[j].constraint != d->states[i].elems.elems[j].constraint
|
---|
| 2216 | || s->elems[j].index != d->states[i].elems.elems[j].index)
|
---|
| 2217 | break;
|
---|
| 2218 | if (j == s->nelem)
|
---|
| 2219 | return i;
|
---|
| 2220 | }
|
---|
| 2221 |
|
---|
| 2222 | #ifdef DEBUG
|
---|
| 2223 | fprintf (stderr, "new state %td\n nextpos:", i);
|
---|
| 2224 | for (state_num j = 0; j < s->nelem; j++)
|
---|
| 2225 | {
|
---|
| 2226 | fprintf (stderr, " %td:", s->elems[j].index);
|
---|
| 2227 | prtok (d->tokens[s->elems[j].index]);
|
---|
| 2228 | }
|
---|
| 2229 | fprintf (stderr, "\n context:");
|
---|
| 2230 | if (context ^ CTX_ANY)
|
---|
| 2231 | {
|
---|
| 2232 | if (context & CTX_NONE)
|
---|
| 2233 | fprintf (stderr, " CTX_NONE");
|
---|
| 2234 | if (context & CTX_LETTER)
|
---|
| 2235 | fprintf (stderr, " CTX_LETTER");
|
---|
| 2236 | if (context & CTX_NEWLINE)
|
---|
| 2237 | fprintf (stderr, " CTX_NEWLINE");
|
---|
| 2238 | }
|
---|
| 2239 | else
|
---|
| 2240 | fprintf (stderr, " CTX_ANY");
|
---|
| 2241 | fprintf (stderr, "\n");
|
---|
| 2242 | #endif
|
---|
| 2243 |
|
---|
| 2244 | for (state_num j = 0; j < s->nelem; j++)
|
---|
| 2245 | {
|
---|
| 2246 | int c = d->constraints[s->elems[j].index];
|
---|
| 2247 |
|
---|
| 2248 | if (c != 0)
|
---|
| 2249 | {
|
---|
| 2250 | if (succeeds_in_context (c, context, CTX_ANY))
|
---|
| 2251 | constraint |= c;
|
---|
| 2252 | }
|
---|
| 2253 | else if (d->tokens[s->elems[j].index] == BACKREF)
|
---|
| 2254 | constraint = NO_CONSTRAINT;
|
---|
| 2255 | }
|
---|
| 2256 |
|
---|
| 2257 |
|
---|
| 2258 | /* Create a new state. */
|
---|
| 2259 | d->states = maybe_realloc (d->states, d->sindex, &d->salloc, -1,
|
---|
| 2260 | sizeof *d->states);
|
---|
| 2261 | d->states[i].hash = hash;
|
---|
| 2262 | alloc_position_set (&d->states[i].elems, s->nelem);
|
---|
| 2263 | copy (s, &d->states[i].elems);
|
---|
| 2264 | d->states[i].context = context;
|
---|
| 2265 | d->states[i].constraint = constraint;
|
---|
| 2266 | d->states[i].mbps.nelem = 0;
|
---|
| 2267 | d->states[i].mbps.elems = NULL;
|
---|
| 2268 | d->states[i].mb_trindex = -1;
|
---|
| 2269 |
|
---|
| 2270 | ++d->sindex;
|
---|
| 2271 |
|
---|
| 2272 | return i;
|
---|
| 2273 | }
|
---|
| 2274 |
|
---|
| 2275 | /* Find the epsilon closure of D's set of positions. If any position of the set
|
---|
| 2276 | contains a symbol that matches the empty string in some context, replace
|
---|
| 2277 | that position with the elements of its follow labeled with an appropriate
|
---|
| 2278 | constraint. Repeat exhaustively until no funny positions are left.
|
---|
| 2279 | S->elems must be large enough to hold the result. BACKWARD is D's
|
---|
| 2280 | backward set; use and update it too. */
|
---|
| 2281 | static void
|
---|
| 2282 | epsclosure (struct dfa const *d, position_set *backward)
|
---|
| 2283 | {
|
---|
| 2284 | position_set tmp;
|
---|
| 2285 | alloc_position_set (&tmp, d->nleaves);
|
---|
| 2286 | for (idx_t i = 0; i < d->tindex; i++)
|
---|
| 2287 | if (0 < d->follows[i].nelem)
|
---|
| 2288 | {
|
---|
| 2289 | unsigned int constraint;
|
---|
| 2290 | switch (d->tokens[i])
|
---|
| 2291 | {
|
---|
| 2292 | default:
|
---|
| 2293 | continue;
|
---|
| 2294 |
|
---|
| 2295 | case BEGLINE:
|
---|
| 2296 | constraint = BEGLINE_CONSTRAINT;
|
---|
| 2297 | break;
|
---|
| 2298 | case ENDLINE:
|
---|
| 2299 | constraint = ENDLINE_CONSTRAINT;
|
---|
| 2300 | break;
|
---|
| 2301 | case BEGWORD:
|
---|
| 2302 | constraint = BEGWORD_CONSTRAINT;
|
---|
| 2303 | break;
|
---|
| 2304 | case ENDWORD:
|
---|
| 2305 | constraint = ENDWORD_CONSTRAINT;
|
---|
| 2306 | break;
|
---|
| 2307 | case LIMWORD:
|
---|
| 2308 | constraint = LIMWORD_CONSTRAINT;
|
---|
| 2309 | break;
|
---|
| 2310 | case NOTLIMWORD:
|
---|
| 2311 | constraint = NOTLIMWORD_CONSTRAINT;
|
---|
| 2312 | break;
|
---|
| 2313 | case EMPTY:
|
---|
| 2314 | constraint = NO_CONSTRAINT;
|
---|
| 2315 | break;
|
---|
| 2316 | }
|
---|
| 2317 |
|
---|
| 2318 | delete (i, &d->follows[i]);
|
---|
| 2319 |
|
---|
| 2320 | for (idx_t j = 0; j < backward[i].nelem; j++)
|
---|
| 2321 | replace (&d->follows[backward[i].elems[j].index], i, &d->follows[i],
|
---|
| 2322 | constraint, &tmp);
|
---|
| 2323 | for (idx_t j = 0; j < d->follows[i].nelem; j++)
|
---|
| 2324 | replace (&backward[d->follows[i].elems[j].index], i, &backward[i],
|
---|
| 2325 | NO_CONSTRAINT, &tmp);
|
---|
| 2326 | }
|
---|
| 2327 | free (tmp.elems);
|
---|
| 2328 | }
|
---|
| 2329 |
|
---|
| 2330 | /* Returns the set of contexts for which there is at least one
|
---|
| 2331 | character included in C. */
|
---|
| 2332 |
|
---|
| 2333 | static int
|
---|
| 2334 | charclass_context (struct dfa const *dfa, charclass const *c)
|
---|
| 2335 | {
|
---|
| 2336 | int context = 0;
|
---|
| 2337 |
|
---|
| 2338 | for (int j = 0; j < CHARCLASS_WORDS; j++)
|
---|
| 2339 | {
|
---|
| 2340 | if (c->w[j] & dfa->syntax.newline.w[j])
|
---|
| 2341 | context |= CTX_NEWLINE;
|
---|
| 2342 | if (c->w[j] & dfa->syntax.letters.w[j])
|
---|
| 2343 | context |= CTX_LETTER;
|
---|
| 2344 | if (c->w[j] & ~(dfa->syntax.letters.w[j] | dfa->syntax.newline.w[j]))
|
---|
| 2345 | context |= CTX_NONE;
|
---|
| 2346 | }
|
---|
| 2347 |
|
---|
| 2348 | return context;
|
---|
| 2349 | }
|
---|
| 2350 |
|
---|
| 2351 | /* Returns the contexts on which the position set S depends. Each context
|
---|
| 2352 | in the set of returned contexts (let's call it SC) may have a different
|
---|
| 2353 | follow set than other contexts in SC, and also different from the
|
---|
| 2354 | follow set of the complement set (sc ^ CTX_ANY). However, all contexts
|
---|
| 2355 | in the complement set will have the same follow set. */
|
---|
| 2356 |
|
---|
| 2357 | static int _GL_ATTRIBUTE_PURE
|
---|
| 2358 | state_separate_contexts (struct dfa *d, position_set const *s)
|
---|
| 2359 | {
|
---|
| 2360 | int separate_contexts = 0;
|
---|
| 2361 |
|
---|
| 2362 | for (idx_t j = 0; j < s->nelem; j++)
|
---|
| 2363 | separate_contexts |= d->separates[s->elems[j].index];
|
---|
| 2364 |
|
---|
| 2365 | return separate_contexts;
|
---|
| 2366 | }
|
---|
| 2367 |
|
---|
| 2368 | enum
|
---|
| 2369 | {
|
---|
| 2370 | /* Single token is repeated. It is distinguished from non-repeated. */
|
---|
| 2371 | OPT_REPEAT = (1 << 0),
|
---|
| 2372 |
|
---|
| 2373 | /* Multiple tokens are repeated. This flag is on at head of tokens. The
|
---|
| 2374 | node is not merged. */
|
---|
| 2375 | OPT_LPAREN = (1 << 1),
|
---|
| 2376 |
|
---|
| 2377 | /* Multiple branches are joined. The node is not merged. */
|
---|
| 2378 | OPT_RPAREN = (1 << 2),
|
---|
| 2379 |
|
---|
| 2380 | /* The node is walked. If the node is found in walking again, OPT_RPAREN
|
---|
| 2381 | flag is turned on. */
|
---|
| 2382 | OPT_WALKED = (1 << 3),
|
---|
| 2383 |
|
---|
| 2384 | /* The node is queued. The node is not queued again. */
|
---|
| 2385 | OPT_QUEUED = (1 << 4)
|
---|
| 2386 | };
|
---|
| 2387 |
|
---|
| 2388 | static void
|
---|
| 2389 | merge_nfa_state (struct dfa *d, idx_t tindex, char *flags,
|
---|
| 2390 | position_set *merged)
|
---|
| 2391 | {
|
---|
| 2392 | position_set *follows = d->follows;
|
---|
| 2393 | idx_t nelem = 0;
|
---|
| 2394 |
|
---|
| 2395 | for (idx_t i = 0; i < follows[tindex].nelem; i++)
|
---|
| 2396 | {
|
---|
| 2397 | idx_t sindex = follows[tindex].elems[i].index;
|
---|
| 2398 |
|
---|
| 2399 | /* Skip the node as pruned in future. */
|
---|
| 2400 | unsigned int iconstraint = follows[tindex].elems[i].constraint;
|
---|
| 2401 | if (iconstraint == 0)
|
---|
| 2402 | continue;
|
---|
| 2403 |
|
---|
| 2404 | if (d->tokens[follows[tindex].elems[i].index] <= END)
|
---|
| 2405 | {
|
---|
| 2406 | d->constraints[tindex] |= follows[tindex].elems[i].constraint;
|
---|
| 2407 | continue;
|
---|
| 2408 | }
|
---|
| 2409 |
|
---|
| 2410 | if (sindex != tindex && !(flags[sindex] & (OPT_LPAREN | OPT_RPAREN)))
|
---|
| 2411 | {
|
---|
| 2412 | idx_t j;
|
---|
| 2413 |
|
---|
| 2414 | for (j = 0; j < nelem; j++)
|
---|
| 2415 | {
|
---|
| 2416 | idx_t dindex = follows[tindex].elems[j].index;
|
---|
| 2417 |
|
---|
| 2418 | if (dindex == tindex)
|
---|
| 2419 | continue;
|
---|
| 2420 |
|
---|
| 2421 | if (follows[tindex].elems[j].constraint != iconstraint)
|
---|
| 2422 | continue;
|
---|
| 2423 |
|
---|
| 2424 | if (flags[dindex] & (OPT_LPAREN | OPT_RPAREN))
|
---|
| 2425 | continue;
|
---|
| 2426 |
|
---|
| 2427 | if (d->tokens[sindex] != d->tokens[dindex])
|
---|
| 2428 | continue;
|
---|
| 2429 |
|
---|
| 2430 | if ((flags[sindex] ^ flags[dindex]) & OPT_REPEAT)
|
---|
| 2431 | continue;
|
---|
| 2432 |
|
---|
| 2433 | if (flags[sindex] & OPT_REPEAT)
|
---|
| 2434 | delete (sindex, &follows[sindex]);
|
---|
| 2435 |
|
---|
| 2436 | merge2 (&follows[dindex], &follows[sindex], merged);
|
---|
| 2437 |
|
---|
| 2438 | break;
|
---|
| 2439 | }
|
---|
| 2440 |
|
---|
| 2441 | if (j < nelem)
|
---|
| 2442 | continue;
|
---|
| 2443 | }
|
---|
| 2444 |
|
---|
| 2445 | follows[tindex].elems[nelem++] = follows[tindex].elems[i];
|
---|
| 2446 | flags[sindex] |= OPT_QUEUED;
|
---|
| 2447 | }
|
---|
| 2448 |
|
---|
| 2449 | follows[tindex].nelem = nelem;
|
---|
| 2450 | }
|
---|
| 2451 |
|
---|
| 2452 | static int
|
---|
| 2453 | compare (const void *a, const void *b)
|
---|
| 2454 | {
|
---|
| 2455 | position const *p = a, *q = b;
|
---|
| 2456 | return (p->index > q->index) - (p->index < q->index);
|
---|
| 2457 | }
|
---|
| 2458 |
|
---|
| 2459 | static void
|
---|
| 2460 | reorder_tokens (struct dfa *d)
|
---|
| 2461 | {
|
---|
| 2462 | idx_t nleaves = 0;
|
---|
| 2463 | ptrdiff_t *map = xnmalloc (d->tindex, sizeof *map);
|
---|
| 2464 | map[0] = nleaves++;
|
---|
| 2465 | for (idx_t i = 1; i < d->tindex; i++)
|
---|
| 2466 | map[i] = -1;
|
---|
| 2467 |
|
---|
| 2468 | token *tokens = xnmalloc (d->nleaves, sizeof *tokens);
|
---|
| 2469 | position_set *follows = xnmalloc (d->nleaves, sizeof *follows);
|
---|
| 2470 | int *constraints = xnmalloc (d->nleaves, sizeof *constraints);
|
---|
| 2471 | char *multibyte_prop = (d->localeinfo.multibyte
|
---|
| 2472 | ? xnmalloc (d->nleaves, sizeof *multibyte_prop)
|
---|
| 2473 | : NULL);
|
---|
| 2474 |
|
---|
| 2475 | for (idx_t i = 0; i < d->tindex; i++)
|
---|
| 2476 | {
|
---|
| 2477 | if (map[i] < 0)
|
---|
| 2478 | {
|
---|
| 2479 | free (d->follows[i].elems);
|
---|
| 2480 | d->follows[i].elems = NULL;
|
---|
| 2481 | d->follows[i].nelem = 0;
|
---|
| 2482 | continue;
|
---|
| 2483 | }
|
---|
| 2484 |
|
---|
| 2485 | tokens[map[i]] = d->tokens[i];
|
---|
| 2486 | follows[map[i]] = d->follows[i];
|
---|
| 2487 | constraints[map[i]] = d->constraints[i];
|
---|
| 2488 |
|
---|
| 2489 | if (multibyte_prop != NULL)
|
---|
| 2490 | multibyte_prop[map[i]] = d->multibyte_prop[i];
|
---|
| 2491 |
|
---|
| 2492 | for (idx_t j = 0; j < d->follows[i].nelem; j++)
|
---|
| 2493 | {
|
---|
| 2494 | if (map[d->follows[i].elems[j].index] == -1)
|
---|
| 2495 | map[d->follows[i].elems[j].index] = nleaves++;
|
---|
| 2496 |
|
---|
| 2497 | d->follows[i].elems[j].index = map[d->follows[i].elems[j].index];
|
---|
| 2498 | }
|
---|
| 2499 |
|
---|
| 2500 | qsort (d->follows[i].elems, d->follows[i].nelem,
|
---|
| 2501 | sizeof *d->follows[i].elems, compare);
|
---|
| 2502 | }
|
---|
| 2503 |
|
---|
| 2504 | for (idx_t i = 0; i < nleaves; i++)
|
---|
| 2505 | {
|
---|
| 2506 | d->tokens[i] = tokens[i];
|
---|
| 2507 | d->follows[i] = follows[i];
|
---|
| 2508 | d->constraints[i] = constraints[i];
|
---|
| 2509 |
|
---|
| 2510 | if (multibyte_prop != NULL)
|
---|
| 2511 | d->multibyte_prop[i] = multibyte_prop[i];
|
---|
| 2512 | }
|
---|
| 2513 |
|
---|
| 2514 | d->tindex = d->nleaves = nleaves;
|
---|
| 2515 |
|
---|
| 2516 | free (tokens);
|
---|
| 2517 | free (follows);
|
---|
| 2518 | free (constraints);
|
---|
| 2519 | free (multibyte_prop);
|
---|
| 2520 | free (map);
|
---|
| 2521 | }
|
---|
| 2522 |
|
---|
| 2523 | static void
|
---|
| 2524 | dfaoptimize (struct dfa *d)
|
---|
| 2525 | {
|
---|
| 2526 | char *flags = xizalloc (d->tindex);
|
---|
| 2527 |
|
---|
| 2528 | for (idx_t i = 0; i < d->tindex; i++)
|
---|
| 2529 | {
|
---|
| 2530 | for (idx_t j = 0; j < d->follows[i].nelem; j++)
|
---|
| 2531 | {
|
---|
| 2532 | if (d->follows[i].elems[j].index == i)
|
---|
| 2533 | flags[d->follows[i].elems[j].index] |= OPT_REPEAT;
|
---|
| 2534 | else if (d->follows[i].elems[j].index < i)
|
---|
| 2535 | flags[d->follows[i].elems[j].index] |= OPT_LPAREN;
|
---|
| 2536 | else if (flags[d->follows[i].elems[j].index] &= OPT_WALKED)
|
---|
| 2537 | flags[d->follows[i].elems[j].index] |= OPT_RPAREN;
|
---|
| 2538 | else
|
---|
| 2539 | flags[d->follows[i].elems[j].index] |= OPT_WALKED;
|
---|
| 2540 | }
|
---|
| 2541 | }
|
---|
| 2542 |
|
---|
| 2543 | flags[0] |= OPT_QUEUED;
|
---|
| 2544 |
|
---|
| 2545 | position_set merged0;
|
---|
| 2546 | position_set *merged = &merged0;
|
---|
| 2547 | alloc_position_set (merged, d->nleaves);
|
---|
| 2548 |
|
---|
| 2549 | d->constraints = xicalloc (d->tindex, sizeof *d->constraints);
|
---|
| 2550 |
|
---|
| 2551 | for (idx_t i = 0; i < d->tindex; i++)
|
---|
| 2552 | if (flags[i] & OPT_QUEUED)
|
---|
| 2553 | merge_nfa_state (d, i, flags, merged);
|
---|
| 2554 |
|
---|
| 2555 | reorder_tokens (d);
|
---|
| 2556 |
|
---|
| 2557 | free (merged->elems);
|
---|
| 2558 | free (flags);
|
---|
| 2559 | }
|
---|
| 2560 |
|
---|
| 2561 | /* Perform bottom-up analysis on the parse tree, computing various functions.
|
---|
| 2562 | Note that at this point, we're pretending constructs like \< are real
|
---|
| 2563 | characters rather than constraints on what can follow them.
|
---|
| 2564 |
|
---|
| 2565 | Nullable: A node is nullable if it is at the root of a regexp that can
|
---|
| 2566 | match the empty string.
|
---|
| 2567 | * EMPTY leaves are nullable.
|
---|
| 2568 | * No other leaf is nullable.
|
---|
| 2569 | * A QMARK or STAR node is nullable.
|
---|
| 2570 | * A PLUS node is nullable if its argument is nullable.
|
---|
| 2571 | * A CAT node is nullable if both its arguments are nullable.
|
---|
| 2572 | * An OR node is nullable if either argument is nullable.
|
---|
| 2573 |
|
---|
| 2574 | Firstpos: The firstpos of a node is the set of positions (nonempty leaves)
|
---|
| 2575 | that could correspond to the first character of a string matching the
|
---|
| 2576 | regexp rooted at the given node.
|
---|
| 2577 | * EMPTY leaves have empty firstpos.
|
---|
| 2578 | * The firstpos of a nonempty leaf is that leaf itself.
|
---|
| 2579 | * The firstpos of a QMARK, STAR, or PLUS node is the firstpos of its
|
---|
| 2580 | argument.
|
---|
| 2581 | * The firstpos of a CAT node is the firstpos of the left argument, union
|
---|
| 2582 | the firstpos of the right if the left argument is nullable.
|
---|
| 2583 | * The firstpos of an OR node is the union of firstpos of each argument.
|
---|
| 2584 |
|
---|
| 2585 | Lastpos: The lastpos of a node is the set of positions that could
|
---|
| 2586 | correspond to the last character of a string matching the regexp at
|
---|
| 2587 | the given node.
|
---|
| 2588 | * EMPTY leaves have empty lastpos.
|
---|
| 2589 | * The lastpos of a nonempty leaf is that leaf itself.
|
---|
| 2590 | * The lastpos of a QMARK, STAR, or PLUS node is the lastpos of its
|
---|
| 2591 | argument.
|
---|
| 2592 | * The lastpos of a CAT node is the lastpos of its right argument, union
|
---|
| 2593 | the lastpos of the left if the right argument is nullable.
|
---|
| 2594 | * The lastpos of an OR node is the union of the lastpos of each argument.
|
---|
| 2595 |
|
---|
| 2596 | Follow: The follow of a position is the set of positions that could
|
---|
| 2597 | correspond to the character following a character matching the node in
|
---|
| 2598 | a string matching the regexp. At this point we consider special symbols
|
---|
| 2599 | that match the empty string in some context to be just normal characters.
|
---|
| 2600 | Later, if we find that a special symbol is in a follow set, we will
|
---|
| 2601 | replace it with the elements of its follow, labeled with an appropriate
|
---|
| 2602 | constraint.
|
---|
| 2603 | * Every node in the firstpos of the argument of a STAR or PLUS node is in
|
---|
| 2604 | the follow of every node in the lastpos.
|
---|
| 2605 | * Every node in the firstpos of the second argument of a CAT node is in
|
---|
| 2606 | the follow of every node in the lastpos of the first argument.
|
---|
| 2607 |
|
---|
| 2608 | Because of the postfix representation of the parse tree, the depth-first
|
---|
| 2609 | analysis is conveniently done by a linear scan with the aid of a stack.
|
---|
| 2610 | Sets are stored as arrays of the elements, obeying a stack-like allocation
|
---|
| 2611 | scheme; the number of elements in each set deeper in the stack can be
|
---|
| 2612 | used to determine the address of a particular set's array. */
|
---|
| 2613 | static void
|
---|
| 2614 | dfaanalyze (struct dfa *d, bool searchflag)
|
---|
| 2615 | {
|
---|
| 2616 | /* Array allocated to hold position sets. */
|
---|
| 2617 | position *posalloc = xnmalloc (d->nleaves, 2 * sizeof *posalloc);
|
---|
| 2618 | /* Firstpos and lastpos elements. */
|
---|
| 2619 | position *firstpos = posalloc;
|
---|
| 2620 | position *lastpos = firstpos + d->nleaves;
|
---|
| 2621 | position pos;
|
---|
| 2622 | position_set tmp;
|
---|
| 2623 |
|
---|
| 2624 | /* Stack for element counts and nullable flags. */
|
---|
| 2625 | struct
|
---|
| 2626 | {
|
---|
| 2627 | /* Whether the entry is nullable. */
|
---|
| 2628 | bool nullable;
|
---|
| 2629 |
|
---|
| 2630 | /* Counts of firstpos and lastpos sets. */
|
---|
| 2631 | idx_t nfirstpos;
|
---|
| 2632 | idx_t nlastpos;
|
---|
| 2633 | } *stkalloc = xnmalloc (d->depth, sizeof *stkalloc), *stk = stkalloc;
|
---|
| 2634 |
|
---|
| 2635 | position_set merged; /* Result of merging sets. */
|
---|
| 2636 |
|
---|
| 2637 | addtok (d, CAT);
|
---|
| 2638 | idx_t tindex = d->tindex;
|
---|
| 2639 |
|
---|
| 2640 | #ifdef DEBUG
|
---|
| 2641 | fprintf (stderr, "dfaanalyze:\n");
|
---|
| 2642 | for (idx_t i = 0; i < tindex; i++)
|
---|
| 2643 | {
|
---|
| 2644 | fprintf (stderr, " %td:", i);
|
---|
| 2645 | prtok (d->tokens[i]);
|
---|
| 2646 | }
|
---|
| 2647 | putc ('\n', stderr);
|
---|
| 2648 | #endif
|
---|
| 2649 |
|
---|
| 2650 | d->searchflag = searchflag;
|
---|
| 2651 | alloc_position_set (&merged, d->nleaves);
|
---|
| 2652 | d->follows = xicalloc (tindex, sizeof *d->follows);
|
---|
| 2653 | position_set *backward
|
---|
| 2654 | = d->epsilon ? xicalloc (tindex, sizeof *backward) : NULL;
|
---|
| 2655 |
|
---|
| 2656 | for (idx_t i = 0; i < tindex; i++)
|
---|
| 2657 | {
|
---|
| 2658 | switch (d->tokens[i])
|
---|
| 2659 | {
|
---|
| 2660 | case EMPTY:
|
---|
| 2661 | /* The empty set is nullable. */
|
---|
| 2662 | stk->nullable = true;
|
---|
| 2663 |
|
---|
| 2664 | /* The firstpos and lastpos of the empty leaf are both empty. */
|
---|
| 2665 | stk->nfirstpos = stk->nlastpos = 0;
|
---|
| 2666 | stk++;
|
---|
| 2667 | break;
|
---|
| 2668 |
|
---|
| 2669 | case STAR:
|
---|
| 2670 | case PLUS:
|
---|
| 2671 | /* Every element in the lastpos of the argument is in the backward
|
---|
| 2672 | set of every element in the firstpos. */
|
---|
| 2673 | if (d->epsilon)
|
---|
| 2674 | {
|
---|
| 2675 | tmp.elems = lastpos - stk[-1].nlastpos;
|
---|
| 2676 | tmp.nelem = stk[-1].nlastpos;
|
---|
| 2677 | for (position *p = firstpos - stk[-1].nfirstpos;
|
---|
| 2678 | p < firstpos; p++)
|
---|
| 2679 | merge2 (&backward[p->index], &tmp, &merged);
|
---|
| 2680 | }
|
---|
| 2681 |
|
---|
| 2682 | /* Every element in the firstpos of the argument is in the follow
|
---|
| 2683 | of every element in the lastpos. */
|
---|
| 2684 | {
|
---|
| 2685 | tmp.elems = firstpos - stk[-1].nfirstpos;
|
---|
| 2686 | tmp.nelem = stk[-1].nfirstpos;
|
---|
| 2687 | for (position *p = lastpos - stk[-1].nlastpos; p < lastpos; p++)
|
---|
| 2688 | merge2 (&d->follows[p->index], &tmp, &merged);
|
---|
| 2689 | }
|
---|
| 2690 | FALLTHROUGH;
|
---|
| 2691 | case QMARK:
|
---|
| 2692 | /* A QMARK or STAR node is automatically nullable. */
|
---|
| 2693 | if (d->tokens[i] != PLUS)
|
---|
| 2694 | stk[-1].nullable = true;
|
---|
| 2695 | break;
|
---|
| 2696 |
|
---|
| 2697 | case CAT:
|
---|
| 2698 | /* Every element in the lastpos of the first argument is in
|
---|
| 2699 | the backward set of every element in the firstpos of the
|
---|
| 2700 | second argument. */
|
---|
| 2701 | if (backward)
|
---|
| 2702 | {
|
---|
| 2703 | tmp.nelem = stk[-2].nlastpos;
|
---|
| 2704 | tmp.elems = lastpos - stk[-1].nlastpos - stk[-2].nlastpos;
|
---|
| 2705 | for (position *p = firstpos - stk[-1].nfirstpos;
|
---|
| 2706 | p < firstpos; p++)
|
---|
| 2707 | merge2 (&backward[p->index], &tmp, &merged);
|
---|
| 2708 | }
|
---|
| 2709 |
|
---|
| 2710 | /* Every element in the firstpos of the second argument is in the
|
---|
| 2711 | follow of every element in the lastpos of the first argument. */
|
---|
| 2712 | {
|
---|
| 2713 | tmp.nelem = stk[-1].nfirstpos;
|
---|
| 2714 | tmp.elems = firstpos - stk[-1].nfirstpos;
|
---|
| 2715 | for (position *plim = lastpos - stk[-1].nlastpos,
|
---|
| 2716 | *p = plim - stk[-2].nlastpos;
|
---|
| 2717 | p < plim; p++)
|
---|
| 2718 | merge2 (&d->follows[p->index], &tmp, &merged);
|
---|
| 2719 | }
|
---|
| 2720 |
|
---|
| 2721 | /* The firstpos of a CAT node is the firstpos of the first argument,
|
---|
| 2722 | union that of the second argument if the first is nullable. */
|
---|
| 2723 | if (stk[-2].nullable)
|
---|
| 2724 | stk[-2].nfirstpos += stk[-1].nfirstpos;
|
---|
| 2725 | else
|
---|
| 2726 | firstpos -= stk[-1].nfirstpos;
|
---|
| 2727 |
|
---|
| 2728 | /* The lastpos of a CAT node is the lastpos of the second argument,
|
---|
| 2729 | union that of the first argument if the second is nullable. */
|
---|
| 2730 | if (stk[-1].nullable)
|
---|
| 2731 | stk[-2].nlastpos += stk[-1].nlastpos;
|
---|
| 2732 | else
|
---|
| 2733 | {
|
---|
| 2734 | position *p = lastpos - stk[-1].nlastpos - stk[-2].nlastpos;
|
---|
| 2735 | for (idx_t j = 0; j < stk[-1].nlastpos; j++)
|
---|
| 2736 | p[j] = p[j + stk[-2].nlastpos];
|
---|
| 2737 | lastpos -= stk[-2].nlastpos;
|
---|
| 2738 | stk[-2].nlastpos = stk[-1].nlastpos;
|
---|
| 2739 | }
|
---|
| 2740 |
|
---|
| 2741 | /* A CAT node is nullable if both arguments are nullable. */
|
---|
| 2742 | stk[-2].nullable &= stk[-1].nullable;
|
---|
| 2743 | stk--;
|
---|
| 2744 | break;
|
---|
| 2745 |
|
---|
| 2746 | case OR:
|
---|
| 2747 | /* The firstpos is the union of the firstpos of each argument. */
|
---|
| 2748 | stk[-2].nfirstpos += stk[-1].nfirstpos;
|
---|
| 2749 |
|
---|
| 2750 | /* The lastpos is the union of the lastpos of each argument. */
|
---|
| 2751 | stk[-2].nlastpos += stk[-1].nlastpos;
|
---|
| 2752 |
|
---|
| 2753 | /* An OR node is nullable if either argument is nullable. */
|
---|
| 2754 | stk[-2].nullable |= stk[-1].nullable;
|
---|
| 2755 | stk--;
|
---|
| 2756 | break;
|
---|
| 2757 |
|
---|
| 2758 | default:
|
---|
| 2759 | /* Anything else is a nonempty position. (Note that special
|
---|
| 2760 | constructs like \< are treated as nonempty strings here;
|
---|
| 2761 | an "epsilon closure" effectively makes them nullable later.
|
---|
| 2762 | Backreferences have to get a real position so we can detect
|
---|
| 2763 | transitions on them later. But they are nullable. */
|
---|
| 2764 | stk->nullable = d->tokens[i] == BACKREF;
|
---|
| 2765 |
|
---|
| 2766 | /* This position is in its own firstpos and lastpos. */
|
---|
| 2767 | stk->nfirstpos = stk->nlastpos = 1;
|
---|
| 2768 | stk++;
|
---|
| 2769 |
|
---|
| 2770 | firstpos->index = lastpos->index = i;
|
---|
| 2771 | firstpos->constraint = lastpos->constraint = NO_CONSTRAINT;
|
---|
| 2772 | firstpos++, lastpos++;
|
---|
| 2773 |
|
---|
| 2774 | break;
|
---|
| 2775 | }
|
---|
| 2776 | #ifdef DEBUG
|
---|
| 2777 | /* ... balance the above nonsyntactic #ifdef goo... */
|
---|
| 2778 | fprintf (stderr, "node %td:", i);
|
---|
| 2779 | prtok (d->tokens[i]);
|
---|
| 2780 | putc ('\n', stderr);
|
---|
| 2781 | fprintf (stderr,
|
---|
| 2782 | stk[-1].nullable ? " nullable: yes\n" : " nullable: no\n");
|
---|
| 2783 | fprintf (stderr, " firstpos:");
|
---|
| 2784 | for (idx_t j = 0; j < stk[-1].nfirstpos; j++)
|
---|
| 2785 | {
|
---|
| 2786 | fprintf (stderr, " %td:", firstpos[j - stk[-1].nfirstpos].index);
|
---|
| 2787 | prtok (d->tokens[firstpos[j - stk[-1].nfirstpos].index]);
|
---|
| 2788 | }
|
---|
| 2789 | fprintf (stderr, "\n lastpos:");
|
---|
| 2790 | for (idx_t j = 0; j < stk[-1].nlastpos; j++)
|
---|
| 2791 | {
|
---|
| 2792 | fprintf (stderr, " %td:", lastpos[j - stk[-1].nlastpos].index);
|
---|
| 2793 | prtok (d->tokens[lastpos[j - stk[-1].nlastpos].index]);
|
---|
| 2794 | }
|
---|
| 2795 | putc ('\n', stderr);
|
---|
| 2796 | #endif
|
---|
| 2797 | }
|
---|
| 2798 |
|
---|
| 2799 | if (backward)
|
---|
| 2800 | {
|
---|
| 2801 | /* For each follow set that is the follow set of a real position,
|
---|
| 2802 | replace it with its epsilon closure. */
|
---|
| 2803 | epsclosure (d, backward);
|
---|
| 2804 |
|
---|
| 2805 | for (idx_t i = 0; i < tindex; i++)
|
---|
| 2806 | free (backward[i].elems);
|
---|
| 2807 | free (backward);
|
---|
| 2808 | }
|
---|
| 2809 |
|
---|
| 2810 | dfaoptimize (d);
|
---|
| 2811 |
|
---|
| 2812 | #ifdef DEBUG
|
---|
| 2813 | for (idx_t i = 0; i < tindex; i++)
|
---|
| 2814 | if (d->tokens[i] == BEG || d->tokens[i] < NOTCHAR
|
---|
| 2815 | || d->tokens[i] == BACKREF || d->tokens[i] == ANYCHAR
|
---|
| 2816 | || d->tokens[i] == MBCSET || d->tokens[i] >= CSET)
|
---|
| 2817 | {
|
---|
| 2818 | fprintf (stderr, "follows(%td:", i);
|
---|
| 2819 | prtok (d->tokens[i]);
|
---|
| 2820 | fprintf (stderr, "):");
|
---|
| 2821 | for (idx_t j = 0; j < d->follows[i].nelem; j++)
|
---|
| 2822 | {
|
---|
| 2823 | fprintf (stderr, " %td:", d->follows[i].elems[j].index);
|
---|
| 2824 | prtok (d->tokens[d->follows[i].elems[j].index]);
|
---|
| 2825 | }
|
---|
| 2826 | putc ('\n', stderr);
|
---|
| 2827 | }
|
---|
| 2828 | #endif
|
---|
| 2829 |
|
---|
| 2830 | pos.index = 0;
|
---|
| 2831 | pos.constraint = NO_CONSTRAINT;
|
---|
| 2832 |
|
---|
| 2833 | alloc_position_set (&tmp, 1);
|
---|
| 2834 |
|
---|
| 2835 | append (pos, &tmp);
|
---|
| 2836 |
|
---|
| 2837 | d->separates = xicalloc (tindex, sizeof *d->separates);
|
---|
| 2838 |
|
---|
| 2839 | for (idx_t i = 0; i < tindex; i++)
|
---|
| 2840 | {
|
---|
| 2841 | if (prev_newline_dependent (d->constraints[i]))
|
---|
| 2842 | d->separates[i] |= CTX_NEWLINE;
|
---|
| 2843 | if (prev_letter_dependent (d->constraints[i]))
|
---|
| 2844 | d->separates[i] |= CTX_LETTER;
|
---|
| 2845 |
|
---|
| 2846 | for (idx_t j = 0; j < d->follows[i].nelem; j++)
|
---|
| 2847 | {
|
---|
| 2848 | if (prev_newline_dependent (d->follows[i].elems[j].constraint))
|
---|
| 2849 | d->separates[i] |= CTX_NEWLINE;
|
---|
| 2850 | if (prev_letter_dependent (d->follows[i].elems[j].constraint))
|
---|
| 2851 | d->separates[i] |= CTX_LETTER;
|
---|
| 2852 | }
|
---|
| 2853 | }
|
---|
| 2854 |
|
---|
| 2855 | /* Context wanted by some position. */
|
---|
| 2856 | int separate_contexts = state_separate_contexts (d, &tmp);
|
---|
| 2857 |
|
---|
| 2858 | /* Build the initial state. */
|
---|
| 2859 | if (separate_contexts & CTX_NEWLINE)
|
---|
| 2860 | state_index (d, &tmp, CTX_NEWLINE);
|
---|
| 2861 | d->initstate_notbol = d->min_trcount
|
---|
| 2862 | = state_index (d, &tmp, separate_contexts ^ CTX_ANY);
|
---|
| 2863 | if (separate_contexts & CTX_LETTER)
|
---|
| 2864 | d->min_trcount = state_index (d, &tmp, CTX_LETTER);
|
---|
| 2865 | d->min_trcount++;
|
---|
| 2866 | d->trcount = 0;
|
---|
| 2867 |
|
---|
| 2868 | free (posalloc);
|
---|
| 2869 | free (stkalloc);
|
---|
| 2870 | free (merged.elems);
|
---|
| 2871 | free (tmp.elems);
|
---|
| 2872 | }
|
---|
| 2873 |
|
---|
| 2874 | /* Make sure D's state arrays are large enough to hold NEW_STATE. */
|
---|
| 2875 | static void
|
---|
| 2876 | realloc_trans_if_necessary (struct dfa *d)
|
---|
| 2877 | {
|
---|
| 2878 | state_num oldalloc = d->tralloc;
|
---|
| 2879 | if (oldalloc < d->sindex)
|
---|
| 2880 | {
|
---|
| 2881 | state_num **realtrans = d->trans ? d->trans - 2 : NULL;
|
---|
| 2882 | idx_t newalloc1 = realtrans ? d->tralloc + 2 : 0;
|
---|
| 2883 | realtrans = xpalloc (realtrans, &newalloc1, d->sindex - oldalloc,
|
---|
| 2884 | -1, sizeof *realtrans);
|
---|
| 2885 | realtrans[0] = realtrans[1] = NULL;
|
---|
| 2886 | d->trans = realtrans + 2;
|
---|
| 2887 | idx_t newalloc = d->tralloc = newalloc1 - 2;
|
---|
| 2888 | d->fails = xreallocarray (d->fails, newalloc, sizeof *d->fails);
|
---|
| 2889 | d->success = xreallocarray (d->success, newalloc, sizeof *d->success);
|
---|
| 2890 | d->newlines = xreallocarray (d->newlines, newalloc, sizeof *d->newlines);
|
---|
| 2891 | if (d->localeinfo.multibyte)
|
---|
| 2892 | {
|
---|
| 2893 | realtrans = d->mb_trans ? d->mb_trans - 2 : NULL;
|
---|
| 2894 | realtrans = xreallocarray (realtrans, newalloc1, sizeof *realtrans);
|
---|
| 2895 | if (oldalloc == 0)
|
---|
| 2896 | realtrans[0] = realtrans[1] = NULL;
|
---|
| 2897 | d->mb_trans = realtrans + 2;
|
---|
| 2898 | }
|
---|
| 2899 | for (; oldalloc < newalloc; oldalloc++)
|
---|
| 2900 | {
|
---|
| 2901 | d->trans[oldalloc] = NULL;
|
---|
| 2902 | d->fails[oldalloc] = NULL;
|
---|
| 2903 | if (d->localeinfo.multibyte)
|
---|
| 2904 | d->mb_trans[oldalloc] = NULL;
|
---|
| 2905 | }
|
---|
| 2906 | }
|
---|
| 2907 | }
|
---|
| 2908 |
|
---|
| 2909 | /*
|
---|
| 2910 | Calculate the transition table for a new state derived from state s
|
---|
| 2911 | for a compiled dfa d after input character uc, and return the new
|
---|
| 2912 | state number.
|
---|
| 2913 |
|
---|
| 2914 | Do not worry about all possible input characters; calculate just the group
|
---|
| 2915 | of positions that match uc. Label it with the set of characters that
|
---|
| 2916 | every position in the group matches (taking into account, if necessary,
|
---|
| 2917 | preceding context information of s). Then find the union
|
---|
| 2918 | of these positions' follows, i.e., the set of positions of the
|
---|
| 2919 | new state. For each character in the group's label, set the transition
|
---|
| 2920 | on this character to be to a state corresponding to the set's positions,
|
---|
| 2921 | and its associated backward context information, if necessary.
|
---|
| 2922 |
|
---|
| 2923 | When building a searching matcher, include the positions of state
|
---|
| 2924 | 0 in every state.
|
---|
| 2925 |
|
---|
| 2926 | The group is constructed by building an equivalence-class
|
---|
| 2927 | partition of the positions of s.
|
---|
| 2928 |
|
---|
| 2929 | For each position, find the set of characters C that it matches. Eliminate
|
---|
| 2930 | any characters from C that fail on grounds of backward context.
|
---|
| 2931 |
|
---|
| 2932 | Check whether the group's label L has nonempty
|
---|
| 2933 | intersection with C. If L - C is nonempty, create a new group labeled
|
---|
| 2934 | L - C and having the same positions as the current group, and set L to
|
---|
| 2935 | the intersection of L and C. Insert the position in the group, set
|
---|
| 2936 | C = C - L, and resume scanning.
|
---|
| 2937 |
|
---|
| 2938 | If after comparing with every group there are characters remaining in C,
|
---|
| 2939 | create a new group labeled with the characters of C and insert this
|
---|
| 2940 | position in that group. */
|
---|
| 2941 |
|
---|
| 2942 | static state_num
|
---|
| 2943 | build_state (state_num s, struct dfa *d, unsigned char uc)
|
---|
| 2944 | {
|
---|
| 2945 | position_set follows; /* Union of the follows for each
|
---|
| 2946 | position of the current state. */
|
---|
| 2947 | position_set group; /* Positions that match the input char. */
|
---|
| 2948 | position_set tmp; /* Temporary space for merging sets. */
|
---|
| 2949 | state_num state; /* New state. */
|
---|
| 2950 | state_num state_newline; /* New state on a newline transition. */
|
---|
| 2951 | state_num state_letter; /* New state on a letter transition. */
|
---|
| 2952 |
|
---|
| 2953 | #ifdef DEBUG
|
---|
| 2954 | fprintf (stderr, "build state %td\n", s);
|
---|
| 2955 | #endif
|
---|
| 2956 |
|
---|
| 2957 | /* A pointer to the new transition table, and the table itself. */
|
---|
| 2958 | state_num **ptrans = (accepting (s, d) ? d->fails : d->trans) + s;
|
---|
| 2959 | state_num *trans = *ptrans;
|
---|
| 2960 |
|
---|
| 2961 | if (!trans)
|
---|
| 2962 | {
|
---|
| 2963 | /* MAX_TRCOUNT is an arbitrary upper limit on the number of
|
---|
| 2964 | transition tables that can exist at once, other than for
|
---|
| 2965 | initial states. Often-used transition tables are quickly
|
---|
| 2966 | rebuilt, whereas rarely-used ones are cleared away. */
|
---|
| 2967 | if (MAX_TRCOUNT <= d->trcount)
|
---|
| 2968 | {
|
---|
| 2969 | for (state_num i = d->min_trcount; i < d->tralloc; i++)
|
---|
| 2970 | {
|
---|
| 2971 | free (d->trans[i]);
|
---|
| 2972 | free (d->fails[i]);
|
---|
| 2973 | d->trans[i] = d->fails[i] = NULL;
|
---|
| 2974 | }
|
---|
| 2975 | d->trcount = 0;
|
---|
| 2976 | }
|
---|
| 2977 |
|
---|
| 2978 | d->trcount++;
|
---|
| 2979 | *ptrans = trans = xmalloc (NOTCHAR * sizeof *trans);
|
---|
| 2980 |
|
---|
| 2981 | /* Fill transition table with a default value which means that the
|
---|
| 2982 | transited state has not been calculated yet. */
|
---|
| 2983 | for (int i = 0; i < NOTCHAR; i++)
|
---|
| 2984 | trans[i] = -2;
|
---|
| 2985 | }
|
---|
| 2986 |
|
---|
| 2987 | /* Set up the success bits for this state. */
|
---|
| 2988 | d->success[s] = 0;
|
---|
| 2989 | if (accepts_in_context (d->states[s].context, CTX_NEWLINE, s, d))
|
---|
| 2990 | d->success[s] |= CTX_NEWLINE;
|
---|
| 2991 | if (accepts_in_context (d->states[s].context, CTX_LETTER, s, d))
|
---|
| 2992 | d->success[s] |= CTX_LETTER;
|
---|
| 2993 | if (accepts_in_context (d->states[s].context, CTX_NONE, s, d))
|
---|
| 2994 | d->success[s] |= CTX_NONE;
|
---|
| 2995 |
|
---|
| 2996 | alloc_position_set (&follows, d->nleaves);
|
---|
| 2997 |
|
---|
| 2998 | /* Find the union of the follows of the positions of the group.
|
---|
| 2999 | This is a hideously inefficient loop. Fix it someday. */
|
---|
| 3000 | for (idx_t j = 0; j < d->states[s].elems.nelem; j++)
|
---|
| 3001 | for (idx_t k = 0;
|
---|
| 3002 | k < d->follows[d->states[s].elems.elems[j].index].nelem; ++k)
|
---|
| 3003 | insert (d->follows[d->states[s].elems.elems[j].index].elems[k],
|
---|
| 3004 | &follows);
|
---|
| 3005 |
|
---|
| 3006 | /* Positions that match the input char. */
|
---|
| 3007 | alloc_position_set (&group, d->nleaves);
|
---|
| 3008 |
|
---|
| 3009 | /* The group's label. */
|
---|
| 3010 | charclass label;
|
---|
| 3011 | fillset (&label);
|
---|
| 3012 |
|
---|
| 3013 | for (idx_t i = 0; i < follows.nelem; i++)
|
---|
| 3014 | {
|
---|
| 3015 | charclass matches; /* Set of matching characters. */
|
---|
| 3016 | position pos = follows.elems[i];
|
---|
| 3017 | bool matched = false;
|
---|
| 3018 | if (d->tokens[pos.index] >= 0 && d->tokens[pos.index] < NOTCHAR)
|
---|
| 3019 | {
|
---|
| 3020 | zeroset (&matches);
|
---|
| 3021 | setbit (d->tokens[pos.index], &matches);
|
---|
| 3022 | if (d->tokens[pos.index] == uc)
|
---|
| 3023 | matched = true;
|
---|
| 3024 | }
|
---|
| 3025 | else if (d->tokens[pos.index] >= CSET)
|
---|
| 3026 | {
|
---|
| 3027 | matches = d->charclasses[d->tokens[pos.index] - CSET];
|
---|
| 3028 | if (tstbit (uc, &matches))
|
---|
| 3029 | matched = true;
|
---|
| 3030 | }
|
---|
| 3031 | else if (d->tokens[pos.index] == ANYCHAR)
|
---|
| 3032 | {
|
---|
| 3033 | matches = d->charclasses[d->canychar];
|
---|
| 3034 | if (tstbit (uc, &matches))
|
---|
| 3035 | matched = true;
|
---|
| 3036 |
|
---|
| 3037 | /* ANYCHAR must match with a single character, so we must put
|
---|
| 3038 | it to D->states[s].mbps which contains the positions which
|
---|
| 3039 | can match with a single character not a byte. If all
|
---|
| 3040 | positions which has ANYCHAR does not depend on context of
|
---|
| 3041 | next character, we put the follows instead of it to
|
---|
| 3042 | D->states[s].mbps to optimize. */
|
---|
| 3043 | if (succeeds_in_context (pos.constraint, d->states[s].context,
|
---|
| 3044 | CTX_NONE))
|
---|
| 3045 | {
|
---|
| 3046 | if (d->states[s].mbps.nelem == 0)
|
---|
| 3047 | alloc_position_set (&d->states[s].mbps, 1);
|
---|
| 3048 | insert (pos, &d->states[s].mbps);
|
---|
| 3049 | }
|
---|
| 3050 | }
|
---|
| 3051 | else
|
---|
| 3052 | continue;
|
---|
| 3053 |
|
---|
| 3054 | /* Some characters may need to be eliminated from matches because
|
---|
| 3055 | they fail in the current context. */
|
---|
| 3056 | if (pos.constraint != NO_CONSTRAINT)
|
---|
| 3057 | {
|
---|
| 3058 | if (!succeeds_in_context (pos.constraint,
|
---|
| 3059 | d->states[s].context, CTX_NEWLINE))
|
---|
| 3060 | for (int j = 0; j < CHARCLASS_WORDS; j++)
|
---|
| 3061 | matches.w[j] &= ~d->syntax.newline.w[j];
|
---|
| 3062 | if (!succeeds_in_context (pos.constraint,
|
---|
| 3063 | d->states[s].context, CTX_LETTER))
|
---|
| 3064 | for (int j = 0; j < CHARCLASS_WORDS; ++j)
|
---|
| 3065 | matches.w[j] &= ~d->syntax.letters.w[j];
|
---|
| 3066 | if (!succeeds_in_context (pos.constraint,
|
---|
| 3067 | d->states[s].context, CTX_NONE))
|
---|
| 3068 | for (int j = 0; j < CHARCLASS_WORDS; ++j)
|
---|
| 3069 | matches.w[j] &= d->syntax.letters.w[j] | d->syntax.newline.w[j];
|
---|
| 3070 |
|
---|
| 3071 | /* If there are no characters left, there's no point in going on. */
|
---|
| 3072 | if (emptyset (&matches))
|
---|
| 3073 | continue;
|
---|
| 3074 |
|
---|
| 3075 | /* If we have reset the bit that made us declare "matched", reset
|
---|
| 3076 | that indicator, too. This is required to avoid an infinite loop
|
---|
| 3077 | with this command: echo cx | LC_ALL=C grep -E 'c\b[x ]' */
|
---|
| 3078 | if (!tstbit (uc, &matches))
|
---|
| 3079 | matched = false;
|
---|
| 3080 | }
|
---|
| 3081 |
|
---|
| 3082 | #ifdef DEBUG
|
---|
| 3083 | fprintf (stderr, " nextpos %td:", pos.index);
|
---|
| 3084 | prtok (d->tokens[pos.index]);
|
---|
| 3085 | fprintf (stderr, " of");
|
---|
| 3086 | for (unsigned j = 0; j < NOTCHAR; j++)
|
---|
| 3087 | if (tstbit (j, &matches))
|
---|
| 3088 | fprintf (stderr, " 0x%02x", j);
|
---|
| 3089 | fprintf (stderr, "\n");
|
---|
| 3090 | #endif
|
---|
| 3091 |
|
---|
| 3092 | if (matched)
|
---|
| 3093 | {
|
---|
| 3094 | for (int k = 0; k < CHARCLASS_WORDS; ++k)
|
---|
| 3095 | label.w[k] &= matches.w[k];
|
---|
| 3096 | append (pos, &group);
|
---|
| 3097 | }
|
---|
| 3098 | else
|
---|
| 3099 | {
|
---|
| 3100 | for (int k = 0; k < CHARCLASS_WORDS; ++k)
|
---|
| 3101 | label.w[k] &= ~matches.w[k];
|
---|
| 3102 | }
|
---|
| 3103 | }
|
---|
| 3104 |
|
---|
| 3105 | alloc_position_set (&tmp, d->nleaves);
|
---|
| 3106 |
|
---|
| 3107 | if (group.nelem > 0)
|
---|
| 3108 | {
|
---|
| 3109 | /* If we are building a searching matcher, throw in the positions
|
---|
| 3110 | of state 0 as well, if possible. */
|
---|
| 3111 | if (d->searchflag)
|
---|
| 3112 | {
|
---|
| 3113 | /* If a token in follows.elems is not 1st byte of a multibyte
|
---|
| 3114 | character, or the states of follows must accept the bytes
|
---|
| 3115 | which are not 1st byte of the multibyte character.
|
---|
| 3116 | Then, if a state of follows encounters a byte, it must not be
|
---|
| 3117 | a 1st byte of a multibyte character nor a single byte character.
|
---|
| 3118 | In this case, do not add state[0].follows to next state, because
|
---|
| 3119 | state[0] must accept 1st-byte.
|
---|
| 3120 |
|
---|
| 3121 | For example, suppose <sb a> is a certain single byte character,
|
---|
| 3122 | <mb A> is a certain multibyte character, and the codepoint of
|
---|
| 3123 | <sb a> equals the 2nd byte of the codepoint of <mb A>. When
|
---|
| 3124 | state[0] accepts <sb a>, state[i] transits to state[i+1] by
|
---|
| 3125 | accepting the 1st byte of <mb A>, and state[i+1] accepts the
|
---|
| 3126 | 2nd byte of <mb A>, if state[i+1] encounters the codepoint of
|
---|
| 3127 | <sb a>, it must not be <sb a> but the 2nd byte of <mb A>, so do
|
---|
| 3128 | not add state[0]. */
|
---|
| 3129 |
|
---|
| 3130 | bool mergeit = !d->localeinfo.multibyte;
|
---|
| 3131 | if (!mergeit)
|
---|
| 3132 | {
|
---|
| 3133 | mergeit = true;
|
---|
| 3134 | for (idx_t j = 0; mergeit && j < group.nelem; j++)
|
---|
| 3135 | mergeit &= d->multibyte_prop[group.elems[j].index];
|
---|
| 3136 | }
|
---|
| 3137 | if (mergeit)
|
---|
| 3138 | merge2 (&group, &d->states[0].elems, &tmp);
|
---|
| 3139 | }
|
---|
| 3140 |
|
---|
| 3141 | /* Find out if the new state will want any context information,
|
---|
| 3142 | by calculating possible contexts that the group can match,
|
---|
| 3143 | and separate contexts that the new state wants to know. */
|
---|
| 3144 | int possible_contexts = charclass_context (d, &label);
|
---|
| 3145 | int separate_contexts = state_separate_contexts (d, &group);
|
---|
| 3146 |
|
---|
| 3147 | /* Find the state(s) corresponding to the union of the follows. */
|
---|
| 3148 | if (possible_contexts & ~separate_contexts)
|
---|
| 3149 | state = state_index (d, &group, separate_contexts ^ CTX_ANY);
|
---|
| 3150 | else
|
---|
| 3151 | state = -1;
|
---|
| 3152 | if (separate_contexts & possible_contexts & CTX_NEWLINE)
|
---|
| 3153 | state_newline = state_index (d, &group, CTX_NEWLINE);
|
---|
| 3154 | else
|
---|
| 3155 | state_newline = state;
|
---|
| 3156 | if (separate_contexts & possible_contexts & CTX_LETTER)
|
---|
| 3157 | state_letter = state_index (d, &group, CTX_LETTER);
|
---|
| 3158 | else
|
---|
| 3159 | state_letter = state;
|
---|
| 3160 |
|
---|
| 3161 | /* Reallocate now, to reallocate any newline transition properly. */
|
---|
| 3162 | realloc_trans_if_necessary (d);
|
---|
| 3163 | }
|
---|
| 3164 |
|
---|
| 3165 | /* If we are a searching matcher, the default transition is to a state
|
---|
| 3166 | containing the positions of state 0, otherwise the default transition
|
---|
| 3167 | is to fail miserably. */
|
---|
| 3168 | else if (d->searchflag)
|
---|
| 3169 | {
|
---|
| 3170 | state_newline = 0;
|
---|
| 3171 | state_letter = d->min_trcount - 1;
|
---|
| 3172 | state = d->initstate_notbol;
|
---|
| 3173 | }
|
---|
| 3174 | else
|
---|
| 3175 | {
|
---|
| 3176 | state_newline = -1;
|
---|
| 3177 | state_letter = -1;
|
---|
| 3178 | state = -1;
|
---|
| 3179 | }
|
---|
| 3180 |
|
---|
| 3181 | /* Set the transitions for each character in the label. */
|
---|
| 3182 | for (int i = 0; i < NOTCHAR; i++)
|
---|
| 3183 | if (tstbit (i, &label))
|
---|
| 3184 | switch (d->syntax.sbit[i])
|
---|
| 3185 | {
|
---|
| 3186 | case CTX_NEWLINE:
|
---|
| 3187 | trans[i] = state_newline;
|
---|
| 3188 | break;
|
---|
| 3189 | case CTX_LETTER:
|
---|
| 3190 | trans[i] = state_letter;
|
---|
| 3191 | break;
|
---|
| 3192 | default:
|
---|
| 3193 | trans[i] = state;
|
---|
| 3194 | break;
|
---|
| 3195 | }
|
---|
| 3196 |
|
---|
| 3197 | #ifdef DEBUG
|
---|
| 3198 | fprintf (stderr, "trans table %td", s);
|
---|
| 3199 | for (int i = 0; i < NOTCHAR; ++i)
|
---|
| 3200 | {
|
---|
| 3201 | if (!(i & 0xf))
|
---|
| 3202 | fprintf (stderr, "\n");
|
---|
| 3203 | fprintf (stderr, " %2td", trans[i]);
|
---|
| 3204 | }
|
---|
| 3205 | fprintf (stderr, "\n");
|
---|
| 3206 | #endif
|
---|
| 3207 |
|
---|
| 3208 | free (group.elems);
|
---|
| 3209 | free (follows.elems);
|
---|
| 3210 | free (tmp.elems);
|
---|
| 3211 |
|
---|
| 3212 | /* Keep the newline transition in a special place so we can use it as
|
---|
| 3213 | a sentinel. */
|
---|
| 3214 | if (tstbit (d->syntax.eolbyte, &label))
|
---|
| 3215 | {
|
---|
| 3216 | d->newlines[s] = trans[d->syntax.eolbyte];
|
---|
| 3217 | trans[d->syntax.eolbyte] = -1;
|
---|
| 3218 | }
|
---|
| 3219 |
|
---|
| 3220 | return trans[uc];
|
---|
| 3221 | }
|
---|
| 3222 |
|
---|
| 3223 | /* Multibyte character handling sub-routines for dfaexec. */
|
---|
| 3224 |
|
---|
| 3225 | /* Consume a single byte and transit state from 's' to '*next_state'.
|
---|
| 3226 | This function is almost same as the state transition routin in dfaexec.
|
---|
| 3227 | But state transition is done just once, otherwise matching succeed or
|
---|
| 3228 | reach the end of the buffer. */
|
---|
| 3229 | static state_num
|
---|
| 3230 | transit_state_singlebyte (struct dfa *d, state_num s, unsigned char const **pp)
|
---|
| 3231 | {
|
---|
| 3232 | state_num *t;
|
---|
| 3233 |
|
---|
| 3234 | if (d->trans[s])
|
---|
| 3235 | t = d->trans[s];
|
---|
| 3236 | else if (d->fails[s])
|
---|
| 3237 | t = d->fails[s];
|
---|
| 3238 | else
|
---|
| 3239 | {
|
---|
| 3240 | build_state (s, d, **pp);
|
---|
| 3241 | if (d->trans[s])
|
---|
| 3242 | t = d->trans[s];
|
---|
| 3243 | else
|
---|
| 3244 | {
|
---|
| 3245 | t = d->fails[s];
|
---|
| 3246 | assert (t);
|
---|
| 3247 | }
|
---|
| 3248 | }
|
---|
| 3249 |
|
---|
| 3250 | if (t[**pp] == -2)
|
---|
| 3251 | build_state (s, d, **pp);
|
---|
| 3252 |
|
---|
| 3253 | return t[*(*pp)++];
|
---|
| 3254 | }
|
---|
| 3255 |
|
---|
| 3256 | /* Transit state from s, then return new state and update the pointer of
|
---|
| 3257 | the buffer. This function is for a period operator which can match a
|
---|
| 3258 | multi-byte character. */
|
---|
| 3259 | static state_num
|
---|
| 3260 | transit_state (struct dfa *d, state_num s, unsigned char const **pp,
|
---|
| 3261 | unsigned char const *end)
|
---|
| 3262 | {
|
---|
| 3263 | wint_t wc;
|
---|
| 3264 |
|
---|
| 3265 | int mbclen = mbs_to_wchar (&wc, (char const *) *pp, end - *pp, d);
|
---|
| 3266 |
|
---|
| 3267 | /* This state has some operators which can match a multibyte character. */
|
---|
| 3268 | d->mb_follows.nelem = 0;
|
---|
| 3269 |
|
---|
| 3270 | /* Calculate the state which can be reached from the state 's' by
|
---|
| 3271 | consuming 'mbclen' single bytes from the buffer. */
|
---|
| 3272 | state_num s1 = s;
|
---|
| 3273 | int mbci;
|
---|
| 3274 | for (mbci = 0; mbci < mbclen && (mbci == 0 || d->min_trcount <= s); mbci++)
|
---|
| 3275 | s = transit_state_singlebyte (d, s, pp);
|
---|
| 3276 | *pp += mbclen - mbci;
|
---|
| 3277 |
|
---|
| 3278 | if (wc == WEOF)
|
---|
| 3279 | {
|
---|
| 3280 | /* It is an invalid character, so ANYCHAR is not accepted. */
|
---|
| 3281 | return s;
|
---|
| 3282 | }
|
---|
| 3283 |
|
---|
| 3284 | /* If all positions which have ANYCHAR do not depend on the context
|
---|
| 3285 | of the next character, calculate the next state with
|
---|
| 3286 | pre-calculated follows and cache the result. */
|
---|
| 3287 | if (d->states[s1].mb_trindex < 0)
|
---|
| 3288 | {
|
---|
| 3289 | if (MAX_TRCOUNT <= d->mb_trcount)
|
---|
| 3290 | {
|
---|
| 3291 | state_num s3;
|
---|
| 3292 | for (s3 = -1; s3 < d->tralloc; s3++)
|
---|
| 3293 | {
|
---|
| 3294 | free (d->mb_trans[s3]);
|
---|
| 3295 | d->mb_trans[s3] = NULL;
|
---|
| 3296 | }
|
---|
| 3297 |
|
---|
| 3298 | for (state_num i = 0; i < d->sindex; i++)
|
---|
| 3299 | d->states[i].mb_trindex = -1;
|
---|
| 3300 | d->mb_trcount = 0;
|
---|
| 3301 | }
|
---|
| 3302 | d->states[s1].mb_trindex = d->mb_trcount++;
|
---|
| 3303 | }
|
---|
| 3304 |
|
---|
| 3305 | if (! d->mb_trans[s])
|
---|
| 3306 | {
|
---|
| 3307 | enum { TRANSPTR_SIZE = sizeof *d->mb_trans[s] };
|
---|
| 3308 | enum { TRANSALLOC_SIZE = MAX_TRCOUNT * TRANSPTR_SIZE };
|
---|
| 3309 | d->mb_trans[s] = xmalloc (TRANSALLOC_SIZE);
|
---|
| 3310 | for (int i = 0; i < MAX_TRCOUNT; i++)
|
---|
| 3311 | d->mb_trans[s][i] = -1;
|
---|
| 3312 | }
|
---|
| 3313 | else if (d->mb_trans[s][d->states[s1].mb_trindex] >= 0)
|
---|
| 3314 | return d->mb_trans[s][d->states[s1].mb_trindex];
|
---|
| 3315 |
|
---|
| 3316 | if (s == -1)
|
---|
| 3317 | copy (&d->states[s1].mbps, &d->mb_follows);
|
---|
| 3318 | else
|
---|
| 3319 | merge (&d->states[s1].mbps, &d->states[s].elems, &d->mb_follows);
|
---|
| 3320 |
|
---|
| 3321 | int separate_contexts = state_separate_contexts (d, &d->mb_follows);
|
---|
| 3322 | state_num s2 = state_index (d, &d->mb_follows, separate_contexts ^ CTX_ANY);
|
---|
| 3323 | realloc_trans_if_necessary (d);
|
---|
| 3324 |
|
---|
| 3325 | d->mb_trans[s][d->states[s1].mb_trindex] = s2;
|
---|
| 3326 |
|
---|
| 3327 | return s2;
|
---|
| 3328 | }
|
---|
| 3329 |
|
---|
| 3330 | /* The initial state may encounter a byte which is not a single byte character
|
---|
| 3331 | nor the first byte of a multibyte character. But it is incorrect for the
|
---|
| 3332 | initial state to accept such a byte. For example, in Shift JIS the regular
|
---|
| 3333 | expression "\\" accepts the codepoint 0x5c, but should not accept the second
|
---|
| 3334 | byte of the codepoint 0x815c. Then the initial state must skip the bytes
|
---|
| 3335 | that are not a single byte character nor the first byte of a multibyte
|
---|
| 3336 | character.
|
---|
| 3337 |
|
---|
| 3338 | Given DFA state d, use mbs_to_wchar to advance MBP until it reaches
|
---|
| 3339 | or exceeds P, and return the advanced MBP. If WCP is non-NULL and
|
---|
| 3340 | the result is greater than P, set *WCP to the final wide character
|
---|
| 3341 | processed, or to WEOF if no wide character is processed. Otherwise,
|
---|
| 3342 | if WCP is non-NULL, *WCP may or may not be updated.
|
---|
| 3343 |
|
---|
| 3344 | Both P and MBP must be no larger than END. */
|
---|
| 3345 | static unsigned char const *
|
---|
| 3346 | skip_remains_mb (struct dfa *d, unsigned char const *p,
|
---|
| 3347 | unsigned char const *mbp, char const *end)
|
---|
| 3348 | {
|
---|
| 3349 | if (d->syntax.never_trail[*p])
|
---|
| 3350 | return p;
|
---|
| 3351 | while (mbp < p)
|
---|
| 3352 | {
|
---|
| 3353 | wint_t wc;
|
---|
| 3354 | mbp += mbs_to_wchar (&wc, (char const *) mbp,
|
---|
| 3355 | end - (char const *) mbp, d);
|
---|
| 3356 | }
|
---|
| 3357 | return mbp;
|
---|
| 3358 | }
|
---|
| 3359 |
|
---|
| 3360 | /* Search through a buffer looking for a match to the struct dfa *D.
|
---|
| 3361 | Find the first occurrence of a string matching the regexp in the
|
---|
| 3362 | buffer, and the shortest possible version thereof. Return a pointer to
|
---|
| 3363 | the first character after the match, or NULL if none is found. BEGIN
|
---|
| 3364 | points to the beginning of the buffer, and END points to the first byte
|
---|
| 3365 | after its end. Note however that we store a sentinel byte (usually
|
---|
| 3366 | newline) in *END, so the actual buffer must be one byte longer.
|
---|
| 3367 | When ALLOW_NL, newlines may appear in the matching string.
|
---|
| 3368 | If COUNT is non-NULL, increment *COUNT once for each newline processed.
|
---|
| 3369 | If MULTIBYTE, the input consists of multibyte characters and/or
|
---|
| 3370 | encoding-error bytes. Otherwise, it consists of single-byte characters.
|
---|
| 3371 | Here is the list of features that make this DFA matcher punt:
|
---|
| 3372 | - [M-N] range in non-simple locale: regex is up to 25% faster on [a-z]
|
---|
| 3373 | - [^...] in non-simple locale
|
---|
| 3374 | - [[=foo=]] or [[.foo.]]
|
---|
| 3375 | - [[:alpha:]] etc. in multibyte locale (except [[:digit:]] works OK)
|
---|
| 3376 | - back-reference: (.)\1
|
---|
| 3377 | - word-delimiter in multibyte locale: \<, \>, \b, \B
|
---|
| 3378 | See struct localeinfo.simple for the definition of "simple locale". */
|
---|
| 3379 |
|
---|
| 3380 | static inline char *
|
---|
| 3381 | dfaexec_main (struct dfa *d, char const *begin, char *end, bool allow_nl,
|
---|
| 3382 | ptrdiff_t *count, bool multibyte)
|
---|
| 3383 | {
|
---|
| 3384 | if (MAX_TRCOUNT <= d->sindex)
|
---|
| 3385 | {
|
---|
| 3386 | for (state_num s = d->min_trcount; s < d->sindex; s++)
|
---|
| 3387 | {
|
---|
| 3388 | free (d->states[s].elems.elems);
|
---|
| 3389 | free (d->states[s].mbps.elems);
|
---|
| 3390 | }
|
---|
| 3391 | d->sindex = d->min_trcount;
|
---|
| 3392 |
|
---|
| 3393 | if (d->trans)
|
---|
| 3394 | {
|
---|
| 3395 | for (state_num s = 0; s < d->tralloc; s++)
|
---|
| 3396 | {
|
---|
| 3397 | free (d->trans[s]);
|
---|
| 3398 | free (d->fails[s]);
|
---|
| 3399 | d->trans[s] = d->fails[s] = NULL;
|
---|
| 3400 | }
|
---|
| 3401 | d->trcount = 0;
|
---|
| 3402 | }
|
---|
| 3403 |
|
---|
| 3404 | if (d->localeinfo.multibyte && d->mb_trans)
|
---|
| 3405 | {
|
---|
| 3406 | for (state_num s = -1; s < d->tralloc; s++)
|
---|
| 3407 | {
|
---|
| 3408 | free (d->mb_trans[s]);
|
---|
| 3409 | d->mb_trans[s] = NULL;
|
---|
| 3410 | }
|
---|
| 3411 | for (state_num s = 0; s < d->min_trcount; s++)
|
---|
| 3412 | d->states[s].mb_trindex = -1;
|
---|
| 3413 | d->mb_trcount = 0;
|
---|
| 3414 | }
|
---|
| 3415 | }
|
---|
| 3416 |
|
---|
| 3417 | if (!d->tralloc)
|
---|
| 3418 | realloc_trans_if_necessary (d);
|
---|
| 3419 |
|
---|
| 3420 | /* Current state. */
|
---|
| 3421 | state_num s = 0, s1 = 0;
|
---|
| 3422 |
|
---|
| 3423 | /* Current input character. */
|
---|
| 3424 | unsigned char const *p = (unsigned char const *) begin;
|
---|
| 3425 | unsigned char const *mbp = p;
|
---|
| 3426 |
|
---|
| 3427 | /* Copy of d->trans so it can be optimized into a register. */
|
---|
| 3428 | state_num **trans = d->trans;
|
---|
| 3429 | unsigned char eol = d->syntax.eolbyte; /* Likewise for eolbyte. */
|
---|
| 3430 | unsigned char saved_end = *(unsigned char *) end;
|
---|
| 3431 | *end = eol;
|
---|
| 3432 |
|
---|
| 3433 | if (multibyte)
|
---|
| 3434 | {
|
---|
| 3435 | memset (&d->mbs, 0, sizeof d->mbs);
|
---|
| 3436 | if (d->mb_follows.alloc == 0)
|
---|
| 3437 | alloc_position_set (&d->mb_follows, d->nleaves);
|
---|
| 3438 | }
|
---|
| 3439 |
|
---|
| 3440 | idx_t nlcount = 0;
|
---|
| 3441 | for (;;)
|
---|
| 3442 | {
|
---|
| 3443 | state_num *t;
|
---|
| 3444 | while ((t = trans[s]) != NULL)
|
---|
| 3445 | {
|
---|
| 3446 | if (s < d->min_trcount)
|
---|
| 3447 | {
|
---|
| 3448 | if (!multibyte || d->states[s].mbps.nelem == 0)
|
---|
| 3449 | {
|
---|
| 3450 | while (t[*p] == s)
|
---|
| 3451 | p++;
|
---|
| 3452 | }
|
---|
| 3453 | if (multibyte)
|
---|
| 3454 | p = mbp = skip_remains_mb (d, p, mbp, end);
|
---|
| 3455 | }
|
---|
| 3456 |
|
---|
| 3457 | if (multibyte)
|
---|
| 3458 | {
|
---|
| 3459 | s1 = s;
|
---|
| 3460 |
|
---|
| 3461 | if (d->states[s].mbps.nelem == 0
|
---|
| 3462 | || d->localeinfo.sbctowc[*p] != WEOF || (char *) p >= end)
|
---|
| 3463 | {
|
---|
| 3464 | /* If an input character does not match ANYCHAR, do it
|
---|
| 3465 | like a single-byte character. */
|
---|
| 3466 | s = t[*p++];
|
---|
| 3467 | }
|
---|
| 3468 | else
|
---|
| 3469 | {
|
---|
| 3470 | s = transit_state (d, s, &p, (unsigned char *) end);
|
---|
| 3471 | mbp = p;
|
---|
| 3472 | trans = d->trans;
|
---|
| 3473 | }
|
---|
| 3474 | }
|
---|
| 3475 | else
|
---|
| 3476 | {
|
---|
| 3477 | s1 = t[*p++];
|
---|
| 3478 | t = trans[s1];
|
---|
| 3479 | if (! t)
|
---|
| 3480 | {
|
---|
| 3481 | state_num tmp = s;
|
---|
| 3482 | s = s1;
|
---|
| 3483 | s1 = tmp; /* swap */
|
---|
| 3484 | break;
|
---|
| 3485 | }
|
---|
| 3486 | if (s < d->min_trcount)
|
---|
| 3487 | {
|
---|
| 3488 | while (t[*p] == s1)
|
---|
| 3489 | p++;
|
---|
| 3490 | }
|
---|
| 3491 | s = t[*p++];
|
---|
| 3492 | }
|
---|
| 3493 | }
|
---|
| 3494 |
|
---|
| 3495 | if (s < 0)
|
---|
| 3496 | {
|
---|
| 3497 | if (s == -2)
|
---|
| 3498 | {
|
---|
| 3499 | s = build_state (s1, d, p[-1]);
|
---|
| 3500 | trans = d->trans;
|
---|
| 3501 | }
|
---|
| 3502 | else if ((char *) p <= end && p[-1] == eol && 0 <= d->newlines[s1])
|
---|
| 3503 | {
|
---|
| 3504 | /* The previous character was a newline. Count it, and skip
|
---|
| 3505 | checking of multibyte character boundary until here. */
|
---|
| 3506 | nlcount++;
|
---|
| 3507 | mbp = p;
|
---|
| 3508 |
|
---|
| 3509 | s = (allow_nl ? d->newlines[s1]
|
---|
| 3510 | : d->syntax.sbit[eol] == CTX_NEWLINE ? 0
|
---|
| 3511 | : d->syntax.sbit[eol] == CTX_LETTER ? d->min_trcount - 1
|
---|
| 3512 | : d->initstate_notbol);
|
---|
| 3513 | }
|
---|
| 3514 | else
|
---|
| 3515 | {
|
---|
| 3516 | p = NULL;
|
---|
| 3517 | goto done;
|
---|
| 3518 | }
|
---|
| 3519 | }
|
---|
| 3520 | else if (d->fails[s])
|
---|
| 3521 | {
|
---|
| 3522 | if ((d->success[s] & d->syntax.sbit[*p])
|
---|
| 3523 | || ((char *) p == end
|
---|
| 3524 | && accepts_in_context (d->states[s].context, CTX_NEWLINE, s,
|
---|
| 3525 | d)))
|
---|
| 3526 | goto done;
|
---|
| 3527 |
|
---|
| 3528 | if (multibyte && s < d->min_trcount)
|
---|
| 3529 | p = mbp = skip_remains_mb (d, p, mbp, end);
|
---|
| 3530 |
|
---|
| 3531 | s1 = s;
|
---|
| 3532 | if (!multibyte || d->states[s].mbps.nelem == 0
|
---|
| 3533 | || d->localeinfo.sbctowc[*p] != WEOF || (char *) p >= end)
|
---|
| 3534 | {
|
---|
| 3535 | /* If a input character does not match ANYCHAR, do it
|
---|
| 3536 | like a single-byte character. */
|
---|
| 3537 | s = d->fails[s][*p++];
|
---|
| 3538 | }
|
---|
| 3539 | else
|
---|
| 3540 | {
|
---|
| 3541 | s = transit_state (d, s, &p, (unsigned char *) end);
|
---|
| 3542 | mbp = p;
|
---|
| 3543 | trans = d->trans;
|
---|
| 3544 | }
|
---|
| 3545 | }
|
---|
| 3546 | else
|
---|
| 3547 | {
|
---|
| 3548 | build_state (s, d, p[0]);
|
---|
| 3549 | trans = d->trans;
|
---|
| 3550 | }
|
---|
| 3551 | }
|
---|
| 3552 |
|
---|
| 3553 | done:
|
---|
| 3554 | if (count)
|
---|
| 3555 | *count += nlcount;
|
---|
| 3556 | *end = saved_end;
|
---|
| 3557 | return (char *) p;
|
---|
| 3558 | }
|
---|
| 3559 |
|
---|
| 3560 | /* Specialized versions of dfaexec for multibyte and single-byte cases.
|
---|
| 3561 | This is for performance, as dfaexec_main is an inline function. */
|
---|
| 3562 |
|
---|
| 3563 | static char *
|
---|
| 3564 | dfaexec_mb (struct dfa *d, char const *begin, char *end,
|
---|
| 3565 | bool allow_nl, ptrdiff_t *count, bool *backref)
|
---|
| 3566 | {
|
---|
| 3567 | return dfaexec_main (d, begin, end, allow_nl, count, true);
|
---|
| 3568 | }
|
---|
| 3569 |
|
---|
| 3570 | static char *
|
---|
| 3571 | dfaexec_sb (struct dfa *d, char const *begin, char *end,
|
---|
| 3572 | bool allow_nl, ptrdiff_t *count, bool *backref)
|
---|
| 3573 | {
|
---|
| 3574 | return dfaexec_main (d, begin, end, allow_nl, count, false);
|
---|
| 3575 | }
|
---|
| 3576 |
|
---|
| 3577 | /* Always set *BACKREF and return BEGIN. Use this wrapper for
|
---|
| 3578 | any regexp that uses a construct not supported by this code. */
|
---|
| 3579 | static char *
|
---|
| 3580 | dfaexec_noop (struct dfa *d, char const *begin, char *end,
|
---|
| 3581 | bool allow_nl, ptrdiff_t *count, bool *backref)
|
---|
| 3582 | {
|
---|
| 3583 | *backref = true;
|
---|
| 3584 | return (char *) begin;
|
---|
| 3585 | }
|
---|
| 3586 |
|
---|
| 3587 | /* Like dfaexec_main (D, BEGIN, END, ALLOW_NL, COUNT, D->localeinfo.multibyte),
|
---|
| 3588 | but faster and set *BACKREF if the DFA code does not support this
|
---|
| 3589 | regexp usage. */
|
---|
| 3590 |
|
---|
| 3591 | char *
|
---|
| 3592 | dfaexec (struct dfa *d, char const *begin, char *end,
|
---|
| 3593 | bool allow_nl, ptrdiff_t *count, bool *backref)
|
---|
| 3594 | {
|
---|
| 3595 | return d->dfaexec (d, begin, end, allow_nl, count, backref);
|
---|
| 3596 | }
|
---|
| 3597 |
|
---|
| 3598 | struct dfa *
|
---|
| 3599 | dfasuperset (struct dfa const *d)
|
---|
| 3600 | {
|
---|
| 3601 | return d->superset;
|
---|
| 3602 | }
|
---|
| 3603 |
|
---|
| 3604 | bool
|
---|
| 3605 | dfaisfast (struct dfa const *d)
|
---|
| 3606 | {
|
---|
| 3607 | return d->fast;
|
---|
| 3608 | }
|
---|
| 3609 |
|
---|
| 3610 | static void
|
---|
| 3611 | free_mbdata (struct dfa *d)
|
---|
| 3612 | {
|
---|
| 3613 | free (d->multibyte_prop);
|
---|
| 3614 | free (d->lex.brack.chars);
|
---|
| 3615 | free (d->mb_follows.elems);
|
---|
| 3616 |
|
---|
| 3617 | if (d->mb_trans)
|
---|
| 3618 | {
|
---|
| 3619 | state_num s;
|
---|
| 3620 | for (s = -1; s < d->tralloc; s++)
|
---|
| 3621 | free (d->mb_trans[s]);
|
---|
| 3622 | free (d->mb_trans - 2);
|
---|
| 3623 | }
|
---|
| 3624 | }
|
---|
| 3625 |
|
---|
| 3626 | /* Return true if every construct in D is supported by this DFA matcher. */
|
---|
| 3627 | bool
|
---|
| 3628 | dfasupported (struct dfa const *d)
|
---|
| 3629 | {
|
---|
| 3630 | for (idx_t i = 0; i < d->tindex; i++)
|
---|
| 3631 | {
|
---|
| 3632 | switch (d->tokens[i])
|
---|
| 3633 | {
|
---|
| 3634 | case BEGWORD:
|
---|
| 3635 | case ENDWORD:
|
---|
| 3636 | case LIMWORD:
|
---|
| 3637 | case NOTLIMWORD:
|
---|
| 3638 | if (!d->localeinfo.multibyte)
|
---|
| 3639 | continue;
|
---|
| 3640 | FALLTHROUGH;
|
---|
| 3641 | case BACKREF:
|
---|
| 3642 | case MBCSET:
|
---|
| 3643 | return false;
|
---|
| 3644 | }
|
---|
| 3645 | }
|
---|
| 3646 | return true;
|
---|
| 3647 | }
|
---|
| 3648 |
|
---|
| 3649 | /* Disable use of the superset DFA if it is not likely to help
|
---|
| 3650 | performance. */
|
---|
| 3651 | static void
|
---|
| 3652 | maybe_disable_superset_dfa (struct dfa *d)
|
---|
| 3653 | {
|
---|
| 3654 | if (!d->localeinfo.using_utf8)
|
---|
| 3655 | return;
|
---|
| 3656 |
|
---|
| 3657 | bool have_backref = false;
|
---|
| 3658 | for (idx_t i = 0; i < d->tindex; i++)
|
---|
| 3659 | {
|
---|
| 3660 | switch (d->tokens[i])
|
---|
| 3661 | {
|
---|
| 3662 | case ANYCHAR:
|
---|
| 3663 | /* Lowered. */
|
---|
| 3664 | abort ();
|
---|
| 3665 | case BACKREF:
|
---|
| 3666 | have_backref = true;
|
---|
| 3667 | break;
|
---|
| 3668 | case MBCSET:
|
---|
| 3669 | /* Requires multi-byte algorithm. */
|
---|
| 3670 | return;
|
---|
| 3671 | default:
|
---|
| 3672 | break;
|
---|
| 3673 | }
|
---|
| 3674 | }
|
---|
| 3675 |
|
---|
| 3676 | if (!have_backref && d->superset)
|
---|
| 3677 | {
|
---|
| 3678 | /* The superset DFA is not likely to be much faster, so remove it. */
|
---|
| 3679 | dfafree (d->superset);
|
---|
| 3680 | free (d->superset);
|
---|
| 3681 | d->superset = NULL;
|
---|
| 3682 | }
|
---|
| 3683 |
|
---|
| 3684 | free_mbdata (d);
|
---|
| 3685 | d->localeinfo.multibyte = false;
|
---|
| 3686 | d->dfaexec = dfaexec_sb;
|
---|
| 3687 | d->fast = true;
|
---|
| 3688 | }
|
---|
| 3689 |
|
---|
| 3690 | static void
|
---|
| 3691 | dfassbuild (struct dfa *d)
|
---|
| 3692 | {
|
---|
| 3693 | struct dfa *sup = dfaalloc ();
|
---|
| 3694 |
|
---|
| 3695 | *sup = *d;
|
---|
| 3696 | sup->localeinfo.multibyte = false;
|
---|
| 3697 | sup->dfaexec = dfaexec_sb;
|
---|
| 3698 | sup->multibyte_prop = NULL;
|
---|
| 3699 | sup->superset = NULL;
|
---|
| 3700 | sup->states = NULL;
|
---|
| 3701 | sup->sindex = 0;
|
---|
| 3702 | sup->constraints = NULL;
|
---|
| 3703 | sup->separates = NULL;
|
---|
| 3704 | sup->follows = NULL;
|
---|
| 3705 | sup->tralloc = 0;
|
---|
| 3706 | sup->trans = NULL;
|
---|
| 3707 | sup->fails = NULL;
|
---|
| 3708 | sup->success = NULL;
|
---|
| 3709 | sup->newlines = NULL;
|
---|
| 3710 |
|
---|
| 3711 | sup->charclasses = xnmalloc (sup->calloc, sizeof *sup->charclasses);
|
---|
| 3712 | if (d->cindex)
|
---|
| 3713 | {
|
---|
| 3714 | memcpy (sup->charclasses, d->charclasses,
|
---|
| 3715 | d->cindex * sizeof *sup->charclasses);
|
---|
| 3716 | }
|
---|
| 3717 |
|
---|
| 3718 | sup->tokens = xnmalloc (d->tindex, 2 * sizeof *sup->tokens);
|
---|
| 3719 | sup->talloc = d->tindex * 2;
|
---|
| 3720 |
|
---|
| 3721 | bool have_achar = false;
|
---|
| 3722 | bool have_nchar = false;
|
---|
| 3723 | idx_t j;
|
---|
| 3724 | for (idx_t i = j = 0; i < d->tindex; i++)
|
---|
| 3725 | {
|
---|
| 3726 | switch (d->tokens[i])
|
---|
| 3727 | {
|
---|
| 3728 | case ANYCHAR:
|
---|
| 3729 | case MBCSET:
|
---|
| 3730 | case BACKREF:
|
---|
| 3731 | {
|
---|
| 3732 | charclass ccl;
|
---|
| 3733 | fillset (&ccl);
|
---|
| 3734 | sup->tokens[j++] = CSET + charclass_index (sup, &ccl);
|
---|
| 3735 | sup->tokens[j++] = STAR;
|
---|
| 3736 | if (d->tokens[i + 1] == QMARK || d->tokens[i + 1] == STAR
|
---|
| 3737 | || d->tokens[i + 1] == PLUS)
|
---|
| 3738 | i++;
|
---|
| 3739 | have_achar = true;
|
---|
| 3740 | }
|
---|
| 3741 | break;
|
---|
| 3742 | case BEGWORD:
|
---|
| 3743 | case ENDWORD:
|
---|
| 3744 | case LIMWORD:
|
---|
| 3745 | case NOTLIMWORD:
|
---|
| 3746 | if (d->localeinfo.multibyte)
|
---|
| 3747 | {
|
---|
| 3748 | /* These constraints aren't supported in a multibyte locale.
|
---|
| 3749 | Ignore them in the superset DFA. */
|
---|
| 3750 | sup->tokens[j++] = EMPTY;
|
---|
| 3751 | break;
|
---|
| 3752 | }
|
---|
| 3753 | FALLTHROUGH;
|
---|
| 3754 | default:
|
---|
| 3755 | sup->tokens[j++] = d->tokens[i];
|
---|
| 3756 | if ((0 <= d->tokens[i] && d->tokens[i] < NOTCHAR)
|
---|
| 3757 | || d->tokens[i] >= CSET)
|
---|
| 3758 | have_nchar = true;
|
---|
| 3759 | break;
|
---|
| 3760 | }
|
---|
| 3761 | }
|
---|
| 3762 | sup->tindex = j;
|
---|
| 3763 |
|
---|
| 3764 | if (have_nchar && (have_achar || d->localeinfo.multibyte))
|
---|
| 3765 | d->superset = sup;
|
---|
| 3766 | else
|
---|
| 3767 | {
|
---|
| 3768 | dfafree (sup);
|
---|
| 3769 | free (sup);
|
---|
| 3770 | }
|
---|
| 3771 | }
|
---|
| 3772 |
|
---|
| 3773 | /* Parse a string S of length LEN into D (but skip this step if S is null).
|
---|
| 3774 | Then analyze D and build a matcher for it.
|
---|
| 3775 | SEARCHFLAG says whether to build a searching or an exact matcher. */
|
---|
| 3776 | void
|
---|
| 3777 | dfacomp (char const *s, idx_t len, struct dfa *d, bool searchflag)
|
---|
| 3778 | {
|
---|
| 3779 | if (s != NULL)
|
---|
| 3780 | dfaparse (s, len, d);
|
---|
| 3781 |
|
---|
| 3782 | dfassbuild (d);
|
---|
| 3783 |
|
---|
| 3784 | if (dfasupported (d))
|
---|
| 3785 | {
|
---|
| 3786 | maybe_disable_superset_dfa (d);
|
---|
| 3787 | dfaanalyze (d, searchflag);
|
---|
| 3788 | }
|
---|
| 3789 | else
|
---|
| 3790 | {
|
---|
| 3791 | d->dfaexec = dfaexec_noop;
|
---|
| 3792 | }
|
---|
| 3793 |
|
---|
| 3794 | if (d->superset)
|
---|
| 3795 | {
|
---|
| 3796 | d->fast = true;
|
---|
| 3797 | dfaanalyze (d->superset, searchflag);
|
---|
| 3798 | }
|
---|
| 3799 | }
|
---|
| 3800 |
|
---|
| 3801 | /* Free the storage held by the components of a dfa. */
|
---|
| 3802 | void
|
---|
| 3803 | dfafree (struct dfa *d)
|
---|
| 3804 | {
|
---|
| 3805 | free (d->charclasses);
|
---|
| 3806 | free (d->tokens);
|
---|
| 3807 |
|
---|
| 3808 | if (d->localeinfo.multibyte)
|
---|
| 3809 | free_mbdata (d);
|
---|
| 3810 |
|
---|
| 3811 | free (d->constraints);
|
---|
| 3812 | free (d->separates);
|
---|
| 3813 |
|
---|
| 3814 | for (idx_t i = 0; i < d->sindex; i++)
|
---|
| 3815 | {
|
---|
| 3816 | free (d->states[i].elems.elems);
|
---|
| 3817 | free (d->states[i].mbps.elems);
|
---|
| 3818 | }
|
---|
| 3819 | free (d->states);
|
---|
| 3820 |
|
---|
| 3821 | if (d->follows)
|
---|
| 3822 | {
|
---|
| 3823 | for (idx_t i = 0; i < d->tindex; i++)
|
---|
| 3824 | free (d->follows[i].elems);
|
---|
| 3825 | free (d->follows);
|
---|
| 3826 | }
|
---|
| 3827 |
|
---|
| 3828 | if (d->trans)
|
---|
| 3829 | {
|
---|
| 3830 | for (idx_t i = 0; i < d->tralloc; i++)
|
---|
| 3831 | {
|
---|
| 3832 | free (d->trans[i]);
|
---|
| 3833 | free (d->fails[i]);
|
---|
| 3834 | }
|
---|
| 3835 |
|
---|
| 3836 | free (d->trans - 2);
|
---|
| 3837 | free (d->fails);
|
---|
| 3838 | free (d->newlines);
|
---|
| 3839 | free (d->success);
|
---|
| 3840 | }
|
---|
| 3841 |
|
---|
| 3842 | if (d->superset)
|
---|
| 3843 | {
|
---|
| 3844 | dfafree (d->superset);
|
---|
| 3845 | free (d->superset);
|
---|
| 3846 | }
|
---|
| 3847 | }
|
---|
| 3848 |
|
---|
| 3849 | /* Having found the postfix representation of the regular expression,
|
---|
| 3850 | try to find a long sequence of characters that must appear in any line
|
---|
| 3851 | containing the r.e.
|
---|
| 3852 | Finding a "longest" sequence is beyond the scope here;
|
---|
| 3853 | we take an easy way out and hope for the best.
|
---|
| 3854 | (Take "(ab|a)b"--please.)
|
---|
| 3855 |
|
---|
| 3856 | We do a bottom-up calculation of sequences of characters that must appear
|
---|
| 3857 | in matches of r.e.'s represented by trees rooted at the nodes of the postfix
|
---|
| 3858 | representation:
|
---|
| 3859 | sequences that must appear at the left of the match ("left")
|
---|
| 3860 | sequences that must appear at the right of the match ("right")
|
---|
| 3861 | lists of sequences that must appear somewhere in the match ("in")
|
---|
| 3862 | sequences that must constitute the match ("is")
|
---|
| 3863 |
|
---|
| 3864 | When we get to the root of the tree, we use one of the longest of its
|
---|
| 3865 | calculated "in" sequences as our answer.
|
---|
| 3866 |
|
---|
| 3867 | The sequences calculated for the various types of node (in pseudo ANSI c)
|
---|
| 3868 | are shown below. "p" is the operand of unary operators (and the left-hand
|
---|
| 3869 | operand of binary operators); "q" is the right-hand operand of binary
|
---|
| 3870 | operators.
|
---|
| 3871 |
|
---|
| 3872 | "ZERO" means "a zero-length sequence" below.
|
---|
| 3873 |
|
---|
| 3874 | Type left right is in
|
---|
| 3875 | ---- ---- ----- -- --
|
---|
| 3876 | char c # c # c # c # c
|
---|
| 3877 |
|
---|
| 3878 | ANYCHAR ZERO ZERO ZERO ZERO
|
---|
| 3879 |
|
---|
| 3880 | MBCSET ZERO ZERO ZERO ZERO
|
---|
| 3881 |
|
---|
| 3882 | CSET ZERO ZERO ZERO ZERO
|
---|
| 3883 |
|
---|
| 3884 | STAR ZERO ZERO ZERO ZERO
|
---|
| 3885 |
|
---|
| 3886 | QMARK ZERO ZERO ZERO ZERO
|
---|
| 3887 |
|
---|
| 3888 | PLUS p->left p->right ZERO p->in
|
---|
| 3889 |
|
---|
| 3890 | CAT (p->is==ZERO)? (q->is==ZERO)? (p->is!=ZERO && p->in plus
|
---|
| 3891 | p->left : q->right : q->is!=ZERO) ? q->in plus
|
---|
| 3892 | p->is##q->left p->right##q->is p->is##q->is : p->right##q->left
|
---|
| 3893 | ZERO
|
---|
| 3894 |
|
---|
| 3895 | OR longest common longest common (do p->is and substrings common
|
---|
| 3896 | leading trailing to q->is have same p->in and
|
---|
| 3897 | (sub)sequence (sub)sequence q->in length and content) ?
|
---|
| 3898 | of p->left of p->right
|
---|
| 3899 | and q->left and q->right p->is : NULL
|
---|
| 3900 |
|
---|
| 3901 | If there's anything else we recognize in the tree, all four sequences get set
|
---|
| 3902 | to zero-length sequences. If there's something we don't recognize in the
|
---|
| 3903 | tree, we just return a zero-length sequence.
|
---|
| 3904 |
|
---|
| 3905 | Break ties in favor of infrequent letters (choosing 'zzz' in preference to
|
---|
| 3906 | 'aaa')?
|
---|
| 3907 |
|
---|
| 3908 | And ... is it here or someplace that we might ponder "optimizations" such as
|
---|
| 3909 | egrep 'psi|epsilon' -> egrep 'psi'
|
---|
| 3910 | egrep 'pepsi|epsilon' -> egrep 'epsi'
|
---|
| 3911 | (Yes, we now find "epsi" as a "string
|
---|
| 3912 | that must occur", but we might also
|
---|
| 3913 | simplify the *entire* r.e. being sought)
|
---|
| 3914 | grep '[c]' -> grep 'c'
|
---|
| 3915 | grep '(ab|a)b' -> grep 'ab'
|
---|
| 3916 | grep 'ab*' -> grep 'a'
|
---|
| 3917 | grep 'a*b' -> grep 'b'
|
---|
| 3918 |
|
---|
| 3919 | There are several issues:
|
---|
| 3920 |
|
---|
| 3921 | Is optimization easy (enough)?
|
---|
| 3922 |
|
---|
| 3923 | Does optimization actually accomplish anything,
|
---|
| 3924 | or is the automaton you get from "psi|epsilon" (for example)
|
---|
| 3925 | the same as the one you get from "psi" (for example)?
|
---|
| 3926 |
|
---|
| 3927 | Are optimizable r.e.'s likely to be used in real-life situations
|
---|
| 3928 | (something like 'ab*' is probably unlikely; something like is
|
---|
| 3929 | 'psi|epsilon' is likelier)? */
|
---|
| 3930 |
|
---|
| 3931 | static char *
|
---|
| 3932 | icatalloc (char *old, char const *new)
|
---|
| 3933 | {
|
---|
| 3934 | idx_t newsize = strlen (new);
|
---|
| 3935 | if (newsize == 0)
|
---|
| 3936 | return old;
|
---|
| 3937 | idx_t oldsize = strlen (old);
|
---|
| 3938 | char *result = xirealloc (old, oldsize + newsize + 1);
|
---|
| 3939 | memcpy (result + oldsize, new, newsize + 1);
|
---|
| 3940 | return result;
|
---|
| 3941 | }
|
---|
| 3942 |
|
---|
| 3943 | static void
|
---|
| 3944 | freelist (char **cpp)
|
---|
| 3945 | {
|
---|
| 3946 | while (*cpp)
|
---|
| 3947 | free (*cpp++);
|
---|
| 3948 | }
|
---|
| 3949 |
|
---|
| 3950 | static char **
|
---|
| 3951 | enlistnew (char **cpp, char *new)
|
---|
| 3952 | {
|
---|
| 3953 | /* Is there already something in the list that's new (or longer)? */
|
---|
| 3954 | idx_t i;
|
---|
| 3955 | for (i = 0; cpp[i] != NULL; i++)
|
---|
| 3956 | if (strstr (cpp[i], new) != NULL)
|
---|
| 3957 | {
|
---|
| 3958 | free (new);
|
---|
| 3959 | return cpp;
|
---|
| 3960 | }
|
---|
| 3961 | /* Eliminate any obsoleted strings. */
|
---|
| 3962 | for (idx_t j = 0; cpp[j] != NULL; )
|
---|
| 3963 | if (strstr (new, cpp[j]) == NULL)
|
---|
| 3964 | ++j;
|
---|
| 3965 | else
|
---|
| 3966 | {
|
---|
| 3967 | free (cpp[j]);
|
---|
| 3968 | if (--i == j)
|
---|
| 3969 | break;
|
---|
| 3970 | cpp[j] = cpp[i];
|
---|
| 3971 | cpp[i] = NULL;
|
---|
| 3972 | }
|
---|
| 3973 | /* Add the new string. */
|
---|
| 3974 | cpp = xreallocarray (cpp, i + 2, sizeof *cpp);
|
---|
| 3975 | cpp[i] = new;
|
---|
| 3976 | cpp[i + 1] = NULL;
|
---|
| 3977 | return cpp;
|
---|
| 3978 | }
|
---|
| 3979 |
|
---|
| 3980 | static char **
|
---|
| 3981 | enlist (char **cpp, char const *str, idx_t len)
|
---|
| 3982 | {
|
---|
| 3983 | return enlistnew (cpp, ximemdup0 (str, len));
|
---|
| 3984 | }
|
---|
| 3985 |
|
---|
| 3986 | /* Given pointers to two strings, return a pointer to an allocated
|
---|
| 3987 | list of their distinct common substrings. */
|
---|
| 3988 | static char **
|
---|
| 3989 | comsubs (char *left, char const *right)
|
---|
| 3990 | {
|
---|
| 3991 | char **cpp = xzalloc (sizeof *cpp);
|
---|
| 3992 |
|
---|
| 3993 | for (char *lcp = left; *lcp != '\0'; lcp++)
|
---|
| 3994 | {
|
---|
| 3995 | idx_t len = 0;
|
---|
| 3996 | char *rcp = strchr (right, *lcp);
|
---|
| 3997 | while (rcp != NULL)
|
---|
| 3998 | {
|
---|
| 3999 | idx_t i;
|
---|
| 4000 | for (i = 1; lcp[i] != '\0' && lcp[i] == rcp[i]; ++i)
|
---|
| 4001 | continue;
|
---|
| 4002 | if (i > len)
|
---|
| 4003 | len = i;
|
---|
| 4004 | rcp = strchr (rcp + 1, *lcp);
|
---|
| 4005 | }
|
---|
| 4006 | if (len != 0)
|
---|
| 4007 | cpp = enlist (cpp, lcp, len);
|
---|
| 4008 | }
|
---|
| 4009 | return cpp;
|
---|
| 4010 | }
|
---|
| 4011 |
|
---|
| 4012 | static char **
|
---|
| 4013 | addlists (char **old, char **new)
|
---|
| 4014 | {
|
---|
| 4015 | for (; *new; new++)
|
---|
| 4016 | old = enlistnew (old, xstrdup (*new));
|
---|
| 4017 | return old;
|
---|
| 4018 | }
|
---|
| 4019 |
|
---|
| 4020 | /* Given two lists of substrings, return a new list giving substrings
|
---|
| 4021 | common to both. */
|
---|
| 4022 | static char **
|
---|
| 4023 | inboth (char **left, char **right)
|
---|
| 4024 | {
|
---|
| 4025 | char **both = xzalloc (sizeof *both);
|
---|
| 4026 |
|
---|
| 4027 | for (idx_t lnum = 0; left[lnum] != NULL; lnum++)
|
---|
| 4028 | {
|
---|
| 4029 | for (idx_t rnum = 0; right[rnum] != NULL; rnum++)
|
---|
| 4030 | {
|
---|
| 4031 | char **temp = comsubs (left[lnum], right[rnum]);
|
---|
| 4032 | both = addlists (both, temp);
|
---|
| 4033 | freelist (temp);
|
---|
| 4034 | free (temp);
|
---|
| 4035 | }
|
---|
| 4036 | }
|
---|
| 4037 | return both;
|
---|
| 4038 | }
|
---|
| 4039 |
|
---|
| 4040 | typedef struct must must;
|
---|
| 4041 |
|
---|
| 4042 | struct must
|
---|
| 4043 | {
|
---|
| 4044 | char **in;
|
---|
| 4045 | char *left;
|
---|
| 4046 | char *right;
|
---|
| 4047 | char *is;
|
---|
| 4048 | bool begline;
|
---|
| 4049 | bool endline;
|
---|
| 4050 | must *prev;
|
---|
| 4051 | };
|
---|
| 4052 |
|
---|
| 4053 | static must *
|
---|
| 4054 | allocmust (must *mp, idx_t size)
|
---|
| 4055 | {
|
---|
| 4056 | must *new_mp = xmalloc (sizeof *new_mp);
|
---|
| 4057 | new_mp->in = xzalloc (sizeof *new_mp->in);
|
---|
| 4058 | new_mp->left = xizalloc (size);
|
---|
| 4059 | new_mp->right = xizalloc (size);
|
---|
| 4060 | new_mp->is = xizalloc (size);
|
---|
| 4061 | new_mp->begline = false;
|
---|
| 4062 | new_mp->endline = false;
|
---|
| 4063 | new_mp->prev = mp;
|
---|
| 4064 | return new_mp;
|
---|
| 4065 | }
|
---|
| 4066 |
|
---|
| 4067 | static void
|
---|
| 4068 | resetmust (must *mp)
|
---|
| 4069 | {
|
---|
| 4070 | freelist (mp->in);
|
---|
| 4071 | mp->in[0] = NULL;
|
---|
| 4072 | mp->left[0] = mp->right[0] = mp->is[0] = '\0';
|
---|
| 4073 | mp->begline = false;
|
---|
| 4074 | mp->endline = false;
|
---|
| 4075 | }
|
---|
| 4076 |
|
---|
| 4077 | static void
|
---|
| 4078 | freemust (must *mp)
|
---|
| 4079 | {
|
---|
| 4080 | freelist (mp->in);
|
---|
| 4081 | free (mp->in);
|
---|
| 4082 | free (mp->left);
|
---|
| 4083 | free (mp->right);
|
---|
| 4084 | free (mp->is);
|
---|
| 4085 | free (mp);
|
---|
| 4086 | }
|
---|
| 4087 |
|
---|
| 4088 | struct dfamust *
|
---|
| 4089 | dfamust (struct dfa const *d)
|
---|
| 4090 | {
|
---|
| 4091 | must *mp = NULL;
|
---|
| 4092 | char const *result = "";
|
---|
| 4093 | bool exact = false;
|
---|
| 4094 | bool begline = false;
|
---|
| 4095 | bool endline = false;
|
---|
| 4096 | bool need_begline = false;
|
---|
| 4097 | bool need_endline = false;
|
---|
| 4098 | bool case_fold_unibyte = d->syntax.case_fold & !d->localeinfo.multibyte;
|
---|
| 4099 |
|
---|
| 4100 | for (idx_t ri = 1; ri + 1 < d->tindex; ri++)
|
---|
| 4101 | {
|
---|
| 4102 | token t = d->tokens[ri];
|
---|
| 4103 | switch (t)
|
---|
| 4104 | {
|
---|
| 4105 | case BEGLINE:
|
---|
| 4106 | mp = allocmust (mp, 2);
|
---|
| 4107 | mp->begline = true;
|
---|
| 4108 | need_begline = true;
|
---|
| 4109 | break;
|
---|
| 4110 | case ENDLINE:
|
---|
| 4111 | mp = allocmust (mp, 2);
|
---|
| 4112 | mp->endline = true;
|
---|
| 4113 | need_endline = true;
|
---|
| 4114 | break;
|
---|
| 4115 | case LPAREN:
|
---|
| 4116 | case RPAREN:
|
---|
| 4117 | assert (!"neither LPAREN nor RPAREN may appear here");
|
---|
| 4118 |
|
---|
| 4119 | case EMPTY:
|
---|
| 4120 | case BEGWORD:
|
---|
| 4121 | case ENDWORD:
|
---|
| 4122 | case LIMWORD:
|
---|
| 4123 | case NOTLIMWORD:
|
---|
| 4124 | case BACKREF:
|
---|
| 4125 | case ANYCHAR:
|
---|
| 4126 | case MBCSET:
|
---|
| 4127 | mp = allocmust (mp, 2);
|
---|
| 4128 | break;
|
---|
| 4129 |
|
---|
| 4130 | case STAR:
|
---|
| 4131 | case QMARK:
|
---|
| 4132 | assume_nonnull (mp);
|
---|
| 4133 | resetmust (mp);
|
---|
| 4134 | break;
|
---|
| 4135 |
|
---|
| 4136 | case OR:
|
---|
| 4137 | {
|
---|
| 4138 | char **new;
|
---|
| 4139 | must *rmp = mp;
|
---|
| 4140 | assume_nonnull (rmp);
|
---|
| 4141 | must *lmp = mp = mp->prev;
|
---|
| 4142 | assume_nonnull (lmp);
|
---|
| 4143 | idx_t j, ln, rn, n;
|
---|
| 4144 |
|
---|
| 4145 | /* Guaranteed to be. Unlikely, but ... */
|
---|
| 4146 | if (streq (lmp->is, rmp->is))
|
---|
| 4147 | {
|
---|
| 4148 | lmp->begline &= rmp->begline;
|
---|
| 4149 | lmp->endline &= rmp->endline;
|
---|
| 4150 | }
|
---|
| 4151 | else
|
---|
| 4152 | {
|
---|
| 4153 | lmp->is[0] = '\0';
|
---|
| 4154 | lmp->begline = false;
|
---|
| 4155 | lmp->endline = false;
|
---|
| 4156 | }
|
---|
| 4157 | /* Left side--easy */
|
---|
| 4158 | idx_t i = 0;
|
---|
| 4159 | while (lmp->left[i] != '\0' && lmp->left[i] == rmp->left[i])
|
---|
| 4160 | ++i;
|
---|
| 4161 | lmp->left[i] = '\0';
|
---|
| 4162 | /* Right side */
|
---|
| 4163 | ln = strlen (lmp->right);
|
---|
| 4164 | rn = strlen (rmp->right);
|
---|
| 4165 | n = ln;
|
---|
| 4166 | if (n > rn)
|
---|
| 4167 | n = rn;
|
---|
| 4168 | for (i = 0; i < n; ++i)
|
---|
| 4169 | if (lmp->right[ln - i - 1] != rmp->right[rn - i - 1])
|
---|
| 4170 | break;
|
---|
| 4171 | for (j = 0; j < i; ++j)
|
---|
| 4172 | lmp->right[j] = lmp->right[(ln - i) + j];
|
---|
| 4173 | lmp->right[j] = '\0';
|
---|
| 4174 | new = inboth (lmp->in, rmp->in);
|
---|
| 4175 | freelist (lmp->in);
|
---|
| 4176 | free (lmp->in);
|
---|
| 4177 | lmp->in = new;
|
---|
| 4178 | freemust (rmp);
|
---|
| 4179 | }
|
---|
| 4180 | break;
|
---|
| 4181 |
|
---|
| 4182 | case PLUS:
|
---|
| 4183 | assume_nonnull (mp);
|
---|
| 4184 | mp->is[0] = '\0';
|
---|
| 4185 | break;
|
---|
| 4186 |
|
---|
| 4187 | case END:
|
---|
| 4188 | assume_nonnull (mp);
|
---|
| 4189 | assert (!mp->prev);
|
---|
| 4190 | for (idx_t i = 0; mp->in[i] != NULL; i++)
|
---|
| 4191 | if (strlen (mp->in[i]) > strlen (result))
|
---|
| 4192 | result = mp->in[i];
|
---|
| 4193 | if (streq (result, mp->is))
|
---|
| 4194 | {
|
---|
| 4195 | if ((!need_begline || mp->begline) && (!need_endline
|
---|
| 4196 | || mp->endline))
|
---|
| 4197 | exact = true;
|
---|
| 4198 | begline = mp->begline;
|
---|
| 4199 | endline = mp->endline;
|
---|
| 4200 | }
|
---|
| 4201 | goto done;
|
---|
| 4202 |
|
---|
| 4203 | case CAT:
|
---|
| 4204 | {
|
---|
| 4205 | must *rmp = mp;
|
---|
| 4206 | assume_nonnull (rmp);
|
---|
| 4207 | must *lmp = mp = mp->prev;
|
---|
| 4208 | assume_nonnull (lmp);
|
---|
| 4209 |
|
---|
| 4210 | /* In. Everything in left, plus everything in
|
---|
| 4211 | right, plus concatenation of
|
---|
| 4212 | left's right and right's left. */
|
---|
| 4213 | lmp->in = addlists (lmp->in, rmp->in);
|
---|
| 4214 | if (lmp->right[0] != '\0' && rmp->left[0] != '\0')
|
---|
| 4215 | {
|
---|
| 4216 | idx_t lrlen = strlen (lmp->right);
|
---|
| 4217 | idx_t rllen = strlen (rmp->left);
|
---|
| 4218 | char *tp = ximalloc (lrlen + rllen + 1);
|
---|
| 4219 | memcpy (tp + lrlen, rmp->left, rllen + 1);
|
---|
| 4220 | memcpy (tp, lmp->right, lrlen);
|
---|
| 4221 | lmp->in = enlistnew (lmp->in, tp);
|
---|
| 4222 | }
|
---|
| 4223 | /* Left-hand */
|
---|
| 4224 | if (lmp->is[0] != '\0')
|
---|
| 4225 | lmp->left = icatalloc (lmp->left, rmp->left);
|
---|
| 4226 | /* Right-hand */
|
---|
| 4227 | if (rmp->is[0] == '\0')
|
---|
| 4228 | lmp->right[0] = '\0';
|
---|
| 4229 | lmp->right = icatalloc (lmp->right, rmp->right);
|
---|
| 4230 | /* Guaranteed to be */
|
---|
| 4231 | if ((lmp->is[0] != '\0' || lmp->begline)
|
---|
| 4232 | && (rmp->is[0] != '\0' || rmp->endline))
|
---|
| 4233 | {
|
---|
| 4234 | lmp->is = icatalloc (lmp->is, rmp->is);
|
---|
| 4235 | lmp->endline = rmp->endline;
|
---|
| 4236 | }
|
---|
| 4237 | else
|
---|
| 4238 | {
|
---|
| 4239 | lmp->is[0] = '\0';
|
---|
| 4240 | lmp->begline = false;
|
---|
| 4241 | lmp->endline = false;
|
---|
| 4242 | }
|
---|
| 4243 | freemust (rmp);
|
---|
| 4244 | }
|
---|
| 4245 | break;
|
---|
| 4246 |
|
---|
| 4247 | case '\0':
|
---|
| 4248 | /* Not on *my* shift. */
|
---|
| 4249 | goto done;
|
---|
| 4250 |
|
---|
| 4251 | default:
|
---|
| 4252 | if (CSET <= t)
|
---|
| 4253 | {
|
---|
| 4254 | /* If T is a singleton, or if case-folding in a unibyte
|
---|
| 4255 | locale and T's members all case-fold to the same char,
|
---|
| 4256 | convert T to one of its members. Otherwise, do
|
---|
| 4257 | nothing further with T. */
|
---|
| 4258 | charclass *ccl = &d->charclasses[t - CSET];
|
---|
| 4259 | int j;
|
---|
| 4260 | for (j = 0; j < NOTCHAR; j++)
|
---|
| 4261 | if (tstbit (j, ccl))
|
---|
| 4262 | break;
|
---|
| 4263 | if (! (j < NOTCHAR))
|
---|
| 4264 | {
|
---|
| 4265 | mp = allocmust (mp, 2);
|
---|
| 4266 | break;
|
---|
| 4267 | }
|
---|
| 4268 | t = j;
|
---|
| 4269 | while (++j < NOTCHAR)
|
---|
| 4270 | if (tstbit (j, ccl)
|
---|
| 4271 | && ! (case_fold_unibyte
|
---|
| 4272 | && toupper (j) == toupper (t)))
|
---|
| 4273 | break;
|
---|
| 4274 | if (j < NOTCHAR)
|
---|
| 4275 | {
|
---|
| 4276 | mp = allocmust (mp, 2);
|
---|
| 4277 | break;
|
---|
| 4278 | }
|
---|
| 4279 | }
|
---|
| 4280 |
|
---|
| 4281 | idx_t rj = ri + 2;
|
---|
| 4282 | if (d->tokens[ri + 1] == CAT)
|
---|
| 4283 | {
|
---|
| 4284 | for (; rj < d->tindex - 1; rj += 2)
|
---|
| 4285 | {
|
---|
| 4286 | if ((rj != ri && (d->tokens[rj] <= 0
|
---|
| 4287 | || NOTCHAR <= d->tokens[rj]))
|
---|
| 4288 | || d->tokens[rj + 1] != CAT)
|
---|
| 4289 | break;
|
---|
| 4290 | }
|
---|
| 4291 | }
|
---|
| 4292 | mp = allocmust (mp, ((rj - ri) >> 1) + 1);
|
---|
| 4293 | mp->is[0] = mp->left[0] = mp->right[0]
|
---|
| 4294 | = case_fold_unibyte ? toupper (t) : t;
|
---|
| 4295 |
|
---|
| 4296 | idx_t i;
|
---|
| 4297 | for (i = 1; ri + 2 < rj; i++)
|
---|
| 4298 | {
|
---|
| 4299 | ri += 2;
|
---|
| 4300 | t = d->tokens[ri];
|
---|
| 4301 | mp->is[i] = mp->left[i] = mp->right[i]
|
---|
| 4302 | = case_fold_unibyte ? toupper (t) : t;
|
---|
| 4303 | }
|
---|
| 4304 | mp->is[i] = mp->left[i] = mp->right[i] = '\0';
|
---|
| 4305 | mp->in = enlist (mp->in, mp->is, i);
|
---|
| 4306 | break;
|
---|
| 4307 | }
|
---|
| 4308 | }
|
---|
| 4309 | done:;
|
---|
| 4310 |
|
---|
| 4311 | struct dfamust *dm = NULL;
|
---|
| 4312 | if (*result)
|
---|
| 4313 | {
|
---|
| 4314 | dm = xmalloc (FLEXSIZEOF (struct dfamust, must, strlen (result) + 1));
|
---|
| 4315 | dm->exact = exact;
|
---|
| 4316 | dm->begline = begline;
|
---|
| 4317 | dm->endline = endline;
|
---|
| 4318 | strcpy (dm->must, result);
|
---|
| 4319 | }
|
---|
| 4320 |
|
---|
| 4321 | while (mp)
|
---|
| 4322 | {
|
---|
| 4323 | must *prev = mp->prev;
|
---|
| 4324 | freemust (mp);
|
---|
| 4325 | mp = prev;
|
---|
| 4326 | }
|
---|
| 4327 |
|
---|
| 4328 | return dm;
|
---|
| 4329 | }
|
---|
| 4330 |
|
---|
| 4331 | void
|
---|
| 4332 | dfamustfree (struct dfamust *dm)
|
---|
| 4333 | {
|
---|
| 4334 | free (dm);
|
---|
| 4335 | }
|
---|
| 4336 |
|
---|
| 4337 | struct dfa *
|
---|
| 4338 | dfaalloc (void)
|
---|
| 4339 | {
|
---|
| 4340 | return xmalloc (sizeof (struct dfa));
|
---|
| 4341 | }
|
---|
| 4342 |
|
---|
| 4343 | /* Initialize DFA. */
|
---|
| 4344 | void
|
---|
| 4345 | dfasyntax (struct dfa *dfa, struct localeinfo const *linfo,
|
---|
| 4346 | reg_syntax_t bits, int dfaopts)
|
---|
| 4347 | {
|
---|
| 4348 | memset (dfa, 0, offsetof (struct dfa, dfaexec));
|
---|
| 4349 | dfa->dfaexec = linfo->multibyte ? dfaexec_mb : dfaexec_sb;
|
---|
| 4350 | dfa->localeinfo = *linfo;
|
---|
| 4351 |
|
---|
| 4352 | dfa->fast = !dfa->localeinfo.multibyte;
|
---|
| 4353 |
|
---|
| 4354 | dfa->canychar = -1;
|
---|
| 4355 | dfa->syntax.syntax_bits_set = true;
|
---|
| 4356 | dfa->syntax.case_fold = (bits & RE_ICASE) != 0;
|
---|
| 4357 | dfa->syntax.anchor = (dfaopts & DFA_ANCHOR) != 0;
|
---|
| 4358 | dfa->syntax.eolbyte = dfaopts & DFA_EOL_NUL ? '\0' : '\n';
|
---|
| 4359 | dfa->syntax.syntax_bits = bits;
|
---|
| 4360 |
|
---|
| 4361 | for (int i = CHAR_MIN; i <= CHAR_MAX; ++i)
|
---|
| 4362 | {
|
---|
| 4363 | unsigned char uc = i;
|
---|
| 4364 |
|
---|
| 4365 | dfa->syntax.sbit[uc] = char_context (dfa, uc);
|
---|
| 4366 | switch (dfa->syntax.sbit[uc])
|
---|
| 4367 | {
|
---|
| 4368 | case CTX_LETTER:
|
---|
| 4369 | setbit (uc, &dfa->syntax.letters);
|
---|
| 4370 | break;
|
---|
| 4371 | case CTX_NEWLINE:
|
---|
| 4372 | setbit (uc, &dfa->syntax.newline);
|
---|
| 4373 | break;
|
---|
| 4374 | }
|
---|
| 4375 |
|
---|
| 4376 | /* POSIX requires that the five bytes in "\n\r./" (including the
|
---|
| 4377 | terminating NUL) cannot occur inside a multibyte character. */
|
---|
| 4378 | dfa->syntax.never_trail[uc] = (dfa->localeinfo.using_utf8
|
---|
| 4379 | ? (uc & 0xc0) != 0x80
|
---|
| 4380 | : strchr ("\n\r./", uc) != NULL);
|
---|
| 4381 | }
|
---|
| 4382 | }
|
---|
| 4383 |
|
---|
| 4384 | /* Initialize TO by copying FROM's syntax settings. */
|
---|
| 4385 | void
|
---|
| 4386 | dfacopysyntax (struct dfa *to, struct dfa const *from)
|
---|
| 4387 | {
|
---|
| 4388 | memset (to, 0, offsetof (struct dfa, syntax));
|
---|
| 4389 | to->canychar = -1;
|
---|
| 4390 | to->fast = from->fast;
|
---|
| 4391 | to->syntax = from->syntax;
|
---|
| 4392 | to->dfaexec = from->dfaexec;
|
---|
| 4393 | to->localeinfo = from->localeinfo;
|
---|
| 4394 | }
|
---|
| 4395 |
|
---|
| 4396 | /* vim:set shiftwidth=2: */
|
---|