| 1 | /******************************************************************************
|
|---|
| 2 | * ata.c - ATA command processing
|
|---|
| 3 | *
|
|---|
| 4 | * Copyright (c) 2011 thi.guten Software Development
|
|---|
| 5 | * Copyright (c) 2011 Mensys B.V.
|
|---|
| 6 | *
|
|---|
| 7 | * Authors: Christian Mueller, Markus Thielen
|
|---|
| 8 | *
|
|---|
| 9 | * Parts copied from/inspired by the Linux AHCI driver;
|
|---|
| 10 | * those parts are (c) Linux AHCI/ATA maintainers
|
|---|
| 11 | *
|
|---|
| 12 | * This program is free software; you can redistribute it and/or modify
|
|---|
| 13 | * it under the terms of the GNU General Public License as published by
|
|---|
| 14 | * the Free Software Foundation; either version 2 of the License, or
|
|---|
| 15 | * (at your option) any later version.
|
|---|
| 16 | *
|
|---|
| 17 | * This program is distributed in the hope that it will be useful,
|
|---|
| 18 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 20 | * GNU General Public License for more details.
|
|---|
| 21 | *
|
|---|
| 22 | * You should have received a copy of the GNU General Public License
|
|---|
| 23 | * along with this program; if not, write to the Free Software
|
|---|
| 24 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|---|
| 25 | */
|
|---|
| 26 |
|
|---|
| 27 | #include "os2ahci.h"
|
|---|
| 28 | #include "ata.h"
|
|---|
| 29 |
|
|---|
| 30 | /* -------------------------- macros and constants ------------------------- */
|
|---|
| 31 |
|
|---|
| 32 | /* ------------------------ typedefs and structures ------------------------ */
|
|---|
| 33 |
|
|---|
| 34 | /* -------------------------- function prototypes -------------------------- */
|
|---|
| 35 |
|
|---|
| 36 | static int ata_cmd_read (IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
|
|---|
| 37 | ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
|
|---|
| 38 | ULONG sg_cnt);
|
|---|
| 39 |
|
|---|
| 40 | static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
|
|---|
| 41 | ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
|
|---|
| 42 | ULONG sg_cnt, int write_through);
|
|---|
| 43 |
|
|---|
| 44 | /* ------------------------ global/static variables ------------------------ */
|
|---|
| 45 |
|
|---|
| 46 | /* ----------------------------- start of code ----------------------------- */
|
|---|
| 47 |
|
|---|
| 48 | /******************************************************************************
|
|---|
| 49 | * Initialize AHCI command slot, FIS and S/G list for the specified ATA
|
|---|
| 50 | * command. The command parameters are passed as a variable argument list
|
|---|
| 51 | * of type and value(s). The list is terminated by AP_END.
|
|---|
| 52 | *
|
|---|
| 53 | * Notes:
|
|---|
| 54 | *
|
|---|
| 55 | * - The specified command slot is expected to be idle; no checks are
|
|---|
| 56 | * performed to prevent messing with a busy port.
|
|---|
| 57 | *
|
|---|
| 58 | * - Port multipliers are not supported, yet, thus 'd' should always
|
|---|
| 59 | * be 0 for the time being.
|
|---|
| 60 | *
|
|---|
| 61 | * - 'cmd' is passed as 16-bit integer because the compiler would push
|
|---|
| 62 | * a 'u8' as 16-bit value (it's a fixed argument) and the stdarg
|
|---|
| 63 | * macros would screw up the address of the first variable argument
|
|---|
| 64 | * if the size of the last fixed argument wouldn't match what the
|
|---|
| 65 | * compiler pushed on the stack.
|
|---|
| 66 | *
|
|---|
| 67 | * Return values:
|
|---|
| 68 | * 0 : success
|
|---|
| 69 | * > 0 : could not map all S/G entries; the return value is the number of
|
|---|
| 70 | * S/G entries that could be mapped.
|
|---|
| 71 | * < 0 : other error
|
|---|
| 72 | */
|
|---|
| 73 | int ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, ...)
|
|---|
| 74 | {
|
|---|
| 75 | va_list va;
|
|---|
| 76 | va_start(va, cmd);
|
|---|
| 77 | return(v_ata_cmd(ai, p, d, slot, cmd, va));
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | int v_ata_cmd(AD_INFO *ai, int p, int d, int slot, int cmd, va_list va)
|
|---|
| 81 | {
|
|---|
| 82 | AHCI_PORT_DMA _far *dma_base_virt;
|
|---|
| 83 | AHCI_CMD_HDR _far *cmd_hdr;
|
|---|
| 84 | AHCI_CMD_TBL _far *cmd_tbl;
|
|---|
| 85 | SCATGATENTRY _far *sg_list = NULL;
|
|---|
| 86 | SCATGATENTRY sg_single;
|
|---|
| 87 | ATA_PARM ap;
|
|---|
| 88 | ATA_CMD ata_cmd;
|
|---|
| 89 | void _far *atapi_cmd = NULL;
|
|---|
| 90 | u32 dma_base_phys;
|
|---|
| 91 | u16 atapi_cmd_len = 0;
|
|---|
| 92 | u16 ahci_flags = 0;
|
|---|
| 93 | u16 sg_cnt = 0;
|
|---|
| 94 | int i;
|
|---|
| 95 | int n;
|
|---|
| 96 |
|
|---|
| 97 | /* --------------------------------------------------------------------------
|
|---|
| 98 | * Initialize ATA command. The ATA command is set up with the main command
|
|---|
| 99 | * value and a variable list of additional parameters such as the sector
|
|---|
| 100 | * address, transfer count, ...
|
|---|
| 101 | */
|
|---|
| 102 | memset(&ata_cmd, 0x00, sizeof(ata_cmd));
|
|---|
| 103 | ata_cmd.cmd = (u8) cmd;
|
|---|
| 104 |
|
|---|
| 105 | /* parse variable arguments */
|
|---|
| 106 | do {
|
|---|
| 107 | switch ((ap = va_arg(va, ATA_PARM))) {
|
|---|
| 108 |
|
|---|
| 109 | case AP_AHCI_FLAGS:
|
|---|
| 110 | ahci_flags |= va_arg(va, u16);
|
|---|
| 111 | break;
|
|---|
| 112 |
|
|---|
| 113 | case AP_WRITE:
|
|---|
| 114 | if (va_arg(va, u16) != 0) {
|
|---|
| 115 | ahci_flags |= AHCI_CMD_WRITE;
|
|---|
| 116 | }
|
|---|
| 117 | break;
|
|---|
| 118 |
|
|---|
| 119 | case AP_FEATURES:
|
|---|
| 120 | /* ATA features word */
|
|---|
| 121 | ata_cmd.features |= va_arg(va, u16);
|
|---|
| 122 | break;
|
|---|
| 123 |
|
|---|
| 124 | case AP_COUNT:
|
|---|
| 125 | /* transfer count */
|
|---|
| 126 | ata_cmd.count = va_arg(va, u16);
|
|---|
| 127 | break;
|
|---|
| 128 |
|
|---|
| 129 | case AP_SECTOR_28:
|
|---|
| 130 | /* 28-bit sector address */
|
|---|
| 131 | ata_cmd.lba_l = va_arg(va, u32);
|
|---|
| 132 | if (ata_cmd.lba_l & 0xf0000000UL) {
|
|---|
| 133 | dprintf("error: LBA-28 address %ld has more than 28 bits\n", ata_cmd.lba_l);
|
|---|
| 134 | return(ATA_CMD_INVALID_PARM);
|
|---|
| 135 | }
|
|---|
| 136 | /* add upper 4 bits to device field */
|
|---|
| 137 | ata_cmd.device |= (ata_cmd.lba_l >> 24) & 0x0fU;
|
|---|
| 138 | /* only lower 24 bits come into lba_l */
|
|---|
| 139 | ata_cmd.lba_l &= 0x00ffffffUL;
|
|---|
| 140 | break;
|
|---|
| 141 |
|
|---|
| 142 | case AP_SECTOR_48:
|
|---|
| 143 | /* 48-bit sector address */
|
|---|
| 144 | ata_cmd.lba_l = va_arg(va, u32);
|
|---|
| 145 | ata_cmd.lba_h = va_arg(va, u16);
|
|---|
| 146 | break;
|
|---|
| 147 |
|
|---|
| 148 | case AP_DEVICE:
|
|---|
| 149 | /* ATA device byte; note that this byte contains the highest
|
|---|
| 150 | * 4 bits of LBA-28 address; we have to leave them alone here. */
|
|---|
| 151 | ata_cmd.device |= va_arg(va, u16) & 0xf0U;
|
|---|
| 152 | break;
|
|---|
| 153 |
|
|---|
| 154 | case AP_SGLIST:
|
|---|
| 155 | /* scatter/gather list in SCATGATENTRY/count format */
|
|---|
| 156 | sg_list = va_arg(va, void _far *);
|
|---|
| 157 | sg_cnt = va_arg(va, u16);
|
|---|
| 158 | break;
|
|---|
| 159 |
|
|---|
| 160 | case AP_VADDR:
|
|---|
| 161 | /* virtual buffer address in addr/len format (up to 4K) */
|
|---|
| 162 | sg_single.ppXferBuf = virt_to_phys(va_arg(va, void _far *));
|
|---|
| 163 | sg_single.XferBufLen = va_arg(va, u16);
|
|---|
| 164 | sg_list = &sg_single;
|
|---|
| 165 | sg_cnt = 1;
|
|---|
| 166 | break;
|
|---|
| 167 |
|
|---|
| 168 | case AP_ATAPI_CMD:
|
|---|
| 169 | /* ATAPI command */
|
|---|
| 170 | atapi_cmd = va_arg(va, void _far *);
|
|---|
| 171 | atapi_cmd_len = va_arg(va, u16);
|
|---|
| 172 | ahci_flags |= AHCI_CMD_ATAPI;
|
|---|
| 173 | break;
|
|---|
| 174 |
|
|---|
| 175 | case AP_ATA_CMD:
|
|---|
| 176 | /* ATA command "pass-through" */
|
|---|
| 177 | memcpy(&ata_cmd, va_arg(va, void _far *), sizeof(ATA_CMD));
|
|---|
| 178 | break;
|
|---|
| 179 |
|
|---|
| 180 | case AP_END:
|
|---|
| 181 | break;
|
|---|
| 182 |
|
|---|
| 183 | default:
|
|---|
| 184 | dprintf("error: v_ata_cmd() called with invalid parameter type (%d)\n", (int) ap);
|
|---|
| 185 | return(ATA_CMD_INVALID_PARM);
|
|---|
| 186 | }
|
|---|
| 187 |
|
|---|
| 188 | } while (ap != AP_END);
|
|---|
| 189 |
|
|---|
| 190 | /* --------------------------------------------------------------------------
|
|---|
| 191 | * Fill in AHCI ATA command information. This includes the port command slot,
|
|---|
| 192 | * the corresponding command FIS and the S/G list. The layout of the AHCI
|
|---|
| 193 | * port DMA region is based on the Linux AHCI driver and looks like this:
|
|---|
| 194 | *
|
|---|
| 195 | * - 32 AHCI command headers (AHCI_CMD_HDR) with 32 bytes, each
|
|---|
| 196 | * - 1 FIS receive area with 256 bytes (AHCI_RX_FIS_SZ)
|
|---|
| 197 | * - 32 AHCI command tables, each consisting of
|
|---|
| 198 | * - 64 bytes for command FIS
|
|---|
| 199 | * - 16 bytes for ATAPI comands
|
|---|
| 200 | * - 48 bytes reserved
|
|---|
| 201 | * - 48 S/G entries (AHCI_SG) with 32 bytes, each
|
|---|
| 202 | *
|
|---|
| 203 | * Since the whole DMA buffer for all ports is larger than 64KB and we need
|
|---|
| 204 | * multiple segments to address all of them, there are no virtual pointers
|
|---|
| 205 | * to the individual elements in AD_INFO. Instead, we're relying on macros
|
|---|
| 206 | * for getting the base address of a particular port's DMA region, then
|
|---|
| 207 | * map a structure on top of that for convenience (AHCI_PORT_DMA).
|
|---|
| 208 | */
|
|---|
| 209 | dma_base_virt = port_dma_base(ai, p);
|
|---|
| 210 | dma_base_phys = port_dma_base_phys(ai, p);
|
|---|
| 211 |
|
|---|
| 212 | /* AHCI command header */
|
|---|
| 213 | cmd_hdr = dma_base_virt->cmd_hdr + slot;
|
|---|
| 214 | memset(cmd_hdr, 0x00, sizeof(*cmd_hdr));
|
|---|
| 215 | cmd_hdr->options = ((d & 0x0f) << 12);
|
|---|
| 216 | cmd_hdr->options |= ahci_flags; /* AHCI command flags */
|
|---|
| 217 | cmd_hdr->options |= 5; /* length of command FIS in 32-bit words */
|
|---|
| 218 | cmd_hdr->tbl_addr = dma_base_phys + offsetof(AHCI_PORT_DMA, cmd_tbl[slot]);
|
|---|
| 219 |
|
|---|
| 220 | /* AHCI command table */
|
|---|
| 221 | cmd_tbl = dma_base_virt->cmd_tbl + slot;
|
|---|
| 222 | memset(cmd_tbl, 0x00, sizeof(*cmd_tbl));
|
|---|
| 223 | ata_cmd_to_fis(cmd_tbl->cmd_fis, &ata_cmd, d);
|
|---|
| 224 |
|
|---|
| 225 | if (atapi_cmd != NULL) {
|
|---|
| 226 | /* copy ATAPI command */
|
|---|
| 227 | memcpy(cmd_tbl->atapi_cmd, atapi_cmd, atapi_cmd_len);
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 | /* PRDT (S/G list)
|
|---|
| 231 | *
|
|---|
| 232 | * - The S/G list for AHCI adapters is limited to 22 bits for the transfer
|
|---|
| 233 | * size of each element, thus we need to split S/G elements larger than
|
|---|
| 234 | * 22 bits into 2 AHCI_SG elements.
|
|---|
| 235 | *
|
|---|
| 236 | * - The S/G element size for AHCI is what the spec calls "'0' based"
|
|---|
| 237 | * (i.e. 0 means 1 bytes). On top of that, the spec requires S/G transfer
|
|---|
| 238 | * sizes to be even in the context of 16-bit transfers, thus bit '1'
|
|---|
| 239 | * always needs to be set.
|
|---|
| 240 | *
|
|---|
| 241 | * - AHCI_MAX_SG_ELEMENT_LEN defines the maximum size of an AHCI S/G
|
|---|
| 242 | * element in bytes, ignoring the '0'-based methodology (i.e. 1 << 22).
|
|---|
| 243 | *
|
|---|
| 244 | * - There's a limit on the maximum number of S/G elements in the port DMA
|
|---|
| 245 | * buffer (AHCI_MAX_SG) which is lower than the HW maximum. It's beyond
|
|---|
| 246 | * the control of this function to split commands which require more
|
|---|
| 247 | * than AHCI_MAX_SG entries. In order to help the caller, the return value
|
|---|
| 248 | * of this function will indicate how many OS/2 S/G entries were
|
|---|
| 249 | * successfully mapped.
|
|---|
| 250 | *
|
|---|
| 251 | */
|
|---|
| 252 | for (i = n = 0; i < sg_cnt; i++) {
|
|---|
| 253 | u32 sg_addr = sg_list[i].ppXferBuf;
|
|---|
| 254 | u32 sg_size = sg_list[i].XferBufLen;
|
|---|
| 255 |
|
|---|
| 256 | do {
|
|---|
| 257 | u32 chunk = (sg_size > AHCI_MAX_SG_ELEMENT_LEN) ? AHCI_MAX_SG_ELEMENT_LEN
|
|---|
| 258 | : sg_size;
|
|---|
| 259 | if (n >= AHCI_MAX_SG) {
|
|---|
| 260 | /* couldn't store all S/G elements in our DMA buffer */
|
|---|
| 261 | ddprintf("ata_cmd(): too many S/G elements\n");
|
|---|
| 262 | return(i - 1);
|
|---|
| 263 | }
|
|---|
| 264 | if ((sg_addr & 1) || (chunk & 1)) {
|
|---|
| 265 | ddprintf("error: ata_cmd() called with unaligned S/G element(s)\n");
|
|---|
| 266 | return(ATA_CMD_UNALIGNED_ADDR);
|
|---|
| 267 | }
|
|---|
| 268 | cmd_tbl->sg_list[n].addr = sg_addr;
|
|---|
| 269 | cmd_tbl->sg_list[n].size = chunk - 1;
|
|---|
| 270 | sg_addr += chunk;
|
|---|
| 271 | sg_size -= chunk;
|
|---|
| 272 | n++;
|
|---|
| 273 | } while (sg_size > 0);
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | /* set final S/G count in AHCI command header */
|
|---|
| 277 | cmd_hdr->options |= (u32) n << 16;
|
|---|
| 278 |
|
|---|
| 279 | if (debug >= 2) {
|
|---|
| 280 | printf("ATA command for %d.%d.%d:\n", ad_no(ai), p, d);
|
|---|
| 281 | phex(cmd_hdr, offsetof(AHCI_CMD_HDR, reserved), "cmd_hdr: ");
|
|---|
| 282 | phex(&ata_cmd, sizeof(ata_cmd), "ata_cmd: ");
|
|---|
| 283 | if (atapi_cmd != NULL) {
|
|---|
| 284 | phex(atapi_cmd, atapi_cmd_len, "atapi_cmd: ");
|
|---|
| 285 | }
|
|---|
| 286 | if (n > 0) {
|
|---|
| 287 | phex(cmd_tbl->sg_list, sizeof(*cmd_tbl->sg_list) * n, "sg_list: ");
|
|---|
| 288 | }
|
|---|
| 289 | }
|
|---|
| 290 |
|
|---|
| 291 | return(ATA_CMD_SUCCESS);
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | /******************************************************************************
|
|---|
| 295 | * Fill SATA command FIS with values extracted from an ATA command structure.
|
|---|
| 296 | * The command FIS buffer (fis) is expected to be initialized to 0s. The
|
|---|
| 297 | * structure of the FIS maps to the ATA shadow register block, including
|
|---|
| 298 | * registers which can be written twice to store 16 bits (called 'exp').
|
|---|
| 299 | *
|
|---|
| 300 | * The FIS structure looks like this (using LSB notation):
|
|---|
| 301 | *
|
|---|
| 302 | * +----------------+----------------+----------------+----------------+
|
|---|
| 303 | * 00 | FIS type (27h) | C|R|R|R|PMP | Command | Features |
|
|---|
| 304 | * +----------------+----------------+----------------+----------------+
|
|---|
| 305 | * 04 | LBA 7:0 | LBA 15:8 | LBA 23:16 | R|R|R|D|Head |
|
|---|
| 306 | * +----------------+----------------+----------------+----------------+
|
|---|
| 307 | * 08 | LBA 31:24 | LBA 40:32 | LBA 47:40 | Features exp |
|
|---|
| 308 | * +----------------+----------------+----------------+----------------+
|
|---|
| 309 | * 12 | Count 7:0 | Count 15:8 | Reserved | Control |
|
|---|
| 310 | * +----------------+----------------+----------------+----------------+
|
|---|
| 311 | * 16 | Reserved | Reserved | Reserved | Reserved |
|
|---|
| 312 | * +----------------+----------------+----------------+----------------+
|
|---|
| 313 | */
|
|---|
| 314 | void ata_cmd_to_fis(u8 _far *fis, ATA_CMD _far *ata_cmd, int d)
|
|---|
| 315 | {
|
|---|
| 316 | fis[0] = 0x27; /* register - host to device FIS */
|
|---|
| 317 | fis[1] = (u8) (d & 0xf); /* port multiplier number */
|
|---|
| 318 | fis[1] |= 0x80; /* bit 7 indicates Command FIS */
|
|---|
| 319 | fis[2] = (u8) ata_cmd->cmd;
|
|---|
| 320 | fis[3] = (u8) ata_cmd->features;
|
|---|
| 321 |
|
|---|
| 322 | fis[4] = (u8) ata_cmd->lba_l;
|
|---|
| 323 | fis[5] = (u8) (ata_cmd->lba_l >> 8);
|
|---|
| 324 | fis[6] = (u8) (ata_cmd->lba_l >> 16);
|
|---|
| 325 | fis[7] = (u8) ata_cmd->device;
|
|---|
| 326 |
|
|---|
| 327 | fis[8] = (u8) (ata_cmd->lba_l >> 24);
|
|---|
| 328 | fis[9] = (u8) ata_cmd->lba_h;
|
|---|
| 329 | fis[10] = (u8) (ata_cmd->lba_h >> 8);
|
|---|
| 330 | fis[11] = (u8) (ata_cmd->features >> 8);
|
|---|
| 331 |
|
|---|
| 332 | fis[12] = (u8) ata_cmd->count;
|
|---|
| 333 | fis[13] = (u8) (ata_cmd->count >> 8);
|
|---|
| 334 | }
|
|---|
| 335 |
|
|---|
| 336 | /******************************************************************************
|
|---|
| 337 | * Get index in S/G list for the number of transferred sectors in the IORB.
|
|---|
| 338 | *
|
|---|
| 339 | * Returning io->cSGList indicates an error.
|
|---|
| 340 | *
|
|---|
| 341 | * NOTE: OS/2 makes sure S/G lists are set up such that entries at the HW
|
|---|
| 342 | * limit will never cross sector boundaries. This means that splitting
|
|---|
| 343 | * S/G lists into multiple commands can be done without editing the S/G
|
|---|
| 344 | * lists.
|
|---|
| 345 | */
|
|---|
| 346 | u16 ata_get_sg_indx(IORB_EXECUTEIO _far *io)
|
|---|
| 347 | {
|
|---|
| 348 | ULONG offset = io->BlocksXferred * io->BlockSize;
|
|---|
| 349 | USHORT i;
|
|---|
| 350 |
|
|---|
| 351 | for (i = 0; i < io->cSGList && offset > 0; i++) {
|
|---|
| 352 | offset -= io->pSGList[i].XferBufLen;
|
|---|
| 353 | }
|
|---|
| 354 |
|
|---|
| 355 | return(i);
|
|---|
| 356 | }
|
|---|
| 357 |
|
|---|
| 358 | /******************************************************************************
|
|---|
| 359 | * Get max S/G count which will fit into our HW S/G buffers. This function is
|
|---|
| 360 | * called when the S/G list is too long and we need to split the IORB into
|
|---|
| 361 | * multiple commands. It returns both the number of sectors and S/G list
|
|---|
| 362 | * elements that we can handle in a single command.
|
|---|
| 363 | *
|
|---|
| 364 | * The parameter 'sg_indx' indicates the current start index in the S/G list
|
|---|
| 365 | * (0 if this is the first command iteration).
|
|---|
| 366 | *
|
|---|
| 367 | * The parameter 'sg_max' is the return value of v_ata_cmd() and indicates
|
|---|
| 368 | * how many S/G elements were successfully mapped. Whatever we return needs to
|
|---|
| 369 | * be less or equal to this value.
|
|---|
| 370 | *
|
|---|
| 371 | * Returning 0 in *sg_cnt indicates an error.
|
|---|
| 372 | *
|
|---|
| 373 | * NOTE: OS/2 makes sure S/G lists are set up such that entries at HW limits
|
|---|
| 374 | * will never cross sector boundaries. This means that splitting S/G
|
|---|
| 375 | * lists into multiple commands can be done without editing S/G list
|
|---|
| 376 | * elements. Since AHCI only allows 22 bits for each S/G element, the
|
|---|
| 377 | * hardware limits are reported as AHCI_MAX_SG / 2 but will vary based
|
|---|
| 378 | * on the actual length of S/G elements. This function looks for the
|
|---|
| 379 | * maximum number of S/G elements that can be mapped on sector
|
|---|
| 380 | * boundaries which will still fit into our HW S/G list.
|
|---|
| 381 | */
|
|---|
| 382 | void ata_max_sg_cnt(IORB_EXECUTEIO _far *io, USHORT sg_indx, USHORT sg_max,
|
|---|
| 383 | USHORT _far *sg_cnt, USHORT _far *sector_cnt)
|
|---|
| 384 | {
|
|---|
| 385 | ULONG max_sector_cnt = 0;
|
|---|
| 386 | USHORT max_sg_cnt = 0;
|
|---|
| 387 | ULONG offset = 0;
|
|---|
| 388 | USHORT i;
|
|---|
| 389 |
|
|---|
| 390 | for (i = sg_indx; i < io->cSGList; i++) {
|
|---|
| 391 | if (i - sg_indx >= sg_max) {
|
|---|
| 392 | /* we're beyond the number of S/G elements we can map */
|
|---|
| 393 | break;
|
|---|
| 394 | }
|
|---|
| 395 |
|
|---|
| 396 | offset += io->pSGList[i].XferBufLen;
|
|---|
| 397 | if (offset % io->BlockSize == 0) {
|
|---|
| 398 | /* this S/G element ends on a sector boundary */
|
|---|
| 399 | max_sector_cnt = offset / io->BlockSize;
|
|---|
| 400 | max_sg_cnt = i + 1;
|
|---|
| 401 | }
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | /* return the best match we found (0 indicating failure) */
|
|---|
| 405 | *sector_cnt = max_sector_cnt;
|
|---|
| 406 | *sg_cnt = max_sg_cnt;
|
|---|
| 407 | }
|
|---|
| 408 |
|
|---|
| 409 |
|
|---|
| 410 | /******************************************************************************
|
|---|
| 411 | * Get device or media geometry. Device and media geometry are expected to be
|
|---|
| 412 | * the same for non-removable devices, which will always be the case for the
|
|---|
| 413 | * ATA devices we're dealing with (hard disks). ATAPI is a different story
|
|---|
| 414 | * and handled by atapi_get_geometry().
|
|---|
| 415 | */
|
|---|
| 416 | int ata_get_geometry(IORBH _far *iorb, int slot)
|
|---|
| 417 | {
|
|---|
| 418 | ADD_WORKSPACE _far *aws = add_workspace(iorb);
|
|---|
| 419 | int rc;
|
|---|
| 420 |
|
|---|
| 421 | /* allocate buffer for ATA identify information */
|
|---|
| 422 | if ((aws->buf = malloc(ATA_ID_WORDS * sizeof(u16))) == NULL) {
|
|---|
| 423 | iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
|
|---|
| 424 | return(-1);
|
|---|
| 425 | }
|
|---|
| 426 |
|
|---|
| 427 | /* request ATA identify information */
|
|---|
| 428 | aws->ppfunc = ata_get_geometry_pp;
|
|---|
| 429 | rc = ata_cmd(ad_infos + iorb_unit_adapter(iorb),
|
|---|
| 430 | iorb_unit_port(iorb),
|
|---|
| 431 | iorb_unit_device(iorb),
|
|---|
| 432 | slot,
|
|---|
| 433 | ATA_CMD_ID_ATA,
|
|---|
| 434 | AP_VADDR, (void _far *) aws->buf, ATA_ID_WORDS * sizeof(u16),
|
|---|
| 435 | AP_END);
|
|---|
| 436 |
|
|---|
| 437 | if (rc != 0) {
|
|---|
| 438 | iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
|---|
| 439 | }
|
|---|
| 440 |
|
|---|
| 441 | return(rc);
|
|---|
| 442 | }
|
|---|
| 443 |
|
|---|
| 444 | /******************************************************************************
|
|---|
| 445 | * Post processing function for ata_get_geometry(): convert the ATA identify
|
|---|
| 446 | * information to OS/2 IOCC_GEOMETRY information.
|
|---|
| 447 | */
|
|---|
| 448 | void ata_get_geometry_pp(IORBH _far *iorb)
|
|---|
| 449 | {
|
|---|
| 450 | GEOMETRY _far *geometry = ((IORB_GEOMETRY _far *) iorb)->pGeometry;
|
|---|
| 451 | USHORT geometry_len = ((IORB_GEOMETRY _far *) iorb)->GeometryLen;
|
|---|
| 452 | u16 *id_buf = add_workspace(iorb)->buf;
|
|---|
| 453 | int a = iorb_unit_adapter(iorb);
|
|---|
| 454 | int p = iorb_unit_port(iorb);
|
|---|
| 455 |
|
|---|
| 456 | /* Fill-in geometry information; the ATA-8 spec declares the geometry
|
|---|
| 457 | * fields in the ATA ID buffer as obsolete but it's still the best
|
|---|
| 458 | * guess in most cases. If the information stored in the geometry
|
|---|
| 459 | * fields is apparently incorrect, we'll use the algorithm typically
|
|---|
| 460 | * used by SCSI adapters and modern PC BIOS versions:
|
|---|
| 461 | *
|
|---|
| 462 | * - 512 bytes per sector
|
|---|
| 463 | * - 255 heads
|
|---|
| 464 | * - 63 sectors per track (or 56 with the parameter "/4")
|
|---|
| 465 | * - x cylinders (calculated)
|
|---|
| 466 | *
|
|---|
| 467 | * Please note that os2ahci currently does not natively support ATA sectors
|
|---|
| 468 | * larger than 512 bytes, therefore relies on the translation logic built
|
|---|
| 469 | * into the corresponding ATA disks. In order to prevent file systems that
|
|---|
| 470 | * use block sizes larger than 512 bytes (FAT, JFS, ...) from ending up on
|
|---|
| 471 | * incorrectly aligned physical sector accesses, hence using more physical
|
|---|
| 472 | * I/Os than necessary, the command line parameter "/4" can be used to force
|
|---|
| 473 | * a track size of 56 sectors. This way, partitions will start on 4K
|
|---|
| 474 | * boundaries.
|
|---|
| 475 | *
|
|---|
| 476 | * Another limitation is that OS/2 has a 32-bit variable for the total number
|
|---|
| 477 | * of sectors, limiting the maximum capacity to roughly 2TB. This is another
|
|---|
| 478 | * issue that needs to be addressed sooner or later; large sectors could
|
|---|
| 479 | * raise this limit to something like 8TB but this is not really much of a
|
|---|
| 480 | * difference. Maybe there's something in later DDKs that allows more than
|
|---|
| 481 | * 32 bits?
|
|---|
| 482 | */
|
|---|
| 483 | memset(geometry, 0x00, geometry_len);
|
|---|
| 484 | geometry->BytesPerSector = ATA_SECTOR_SIZE;
|
|---|
| 485 |
|
|---|
| 486 | /* extract total number of sectors */
|
|---|
| 487 | if (id_buf[ATA_ID_CFS_ENABLE_2] & 0x400) {
|
|---|
| 488 | /* 48-bit LBA supported */
|
|---|
| 489 | if (ATA_CAPACITY48_H(id_buf) != 0) {
|
|---|
| 490 | /* more than 32 bits for number of sectors */
|
|---|
| 491 | dprintf("warning: limiting disk %d.%d.%d to 2TB\n",
|
|---|
| 492 | iorb_unit_adapter(iorb), iorb_unit_port(iorb),
|
|---|
| 493 | iorb_unit_device(iorb));
|
|---|
| 494 | geometry->TotalSectors = 0xffffffffUL;
|
|---|
| 495 | } else {
|
|---|
| 496 | geometry->TotalSectors = ATA_CAPACITY48_L(id_buf);
|
|---|
| 497 | }
|
|---|
| 498 | } else {
|
|---|
| 499 | /* 28-bit LBA */
|
|---|
| 500 | geometry->TotalSectors = ATA_CAPACITY(id_buf) & 0x0fffffffUL;
|
|---|
| 501 | }
|
|---|
| 502 |
|
|---|
| 503 | /* fabricate the remaining geometry fields */
|
|---|
| 504 | if (track_size[a][p] != 0) {
|
|---|
| 505 | /* A specific track size has been requested for this port; this is
|
|---|
| 506 | * typically done for disks with 4K sectors to make sure partitions
|
|---|
| 507 | * start on 8-sector boundaries (parameter "/4").
|
|---|
| 508 | */
|
|---|
| 509 | geometry->NumHeads = 255;
|
|---|
| 510 | geometry->SectorsPerTrack = track_size[a][p];
|
|---|
| 511 | geometry->TotalCylinders = geometry->TotalSectors /
|
|---|
| 512 | ((u32) geometry->NumHeads *
|
|---|
| 513 | (u32) geometry->SectorsPerTrack);
|
|---|
| 514 |
|
|---|
| 515 | } else if (CUR_HEADS(id_buf) > 0 && CUR_CYLS(id_buf) > 0 &&
|
|---|
| 516 | CUR_SECTORS(id_buf) > 0 &&
|
|---|
| 517 | CUR_CAPACITY(id_buf) == (u32) CUR_HEADS(id_buf) *
|
|---|
| 518 | (u32) CUR_CYLS(id_buf) *
|
|---|
| 519 | (u32) CUR_SECTORS(id_buf)) {
|
|---|
| 520 | /* BIOS-supplied (aka "current") geometry values look valid */
|
|---|
| 521 | geometry->NumHeads = CUR_HEADS(id_buf);
|
|---|
| 522 | geometry->SectorsPerTrack = CUR_SECTORS(id_buf);
|
|---|
| 523 | geometry->TotalCylinders = CUR_CYLS(id_buf);
|
|---|
| 524 |
|
|---|
| 525 | } else if (ATA_HEADS(id_buf) > 0 && ATA_CYLS(id_buf) > 0 &&
|
|---|
| 526 | ATA_SECTORS(id_buf) > 0) {
|
|---|
| 527 | /* ATA-supplied values for geometry look valid */
|
|---|
| 528 | geometry->NumHeads = ATA_HEADS(id_buf);
|
|---|
| 529 | geometry->SectorsPerTrack = ATA_SECTORS(id_buf);
|
|---|
| 530 | geometry->TotalCylinders = ATA_CYLS(id_buf);
|
|---|
| 531 |
|
|---|
| 532 | } else {
|
|---|
| 533 | /* use typical SCSI geometry */
|
|---|
| 534 | geometry->NumHeads = 255;
|
|---|
| 535 | geometry->SectorsPerTrack = 63;
|
|---|
| 536 | geometry->TotalCylinders = geometry->TotalSectors /
|
|---|
| 537 | ((u32) geometry->NumHeads *
|
|---|
| 538 | (u32) geometry->SectorsPerTrack);
|
|---|
| 539 | }
|
|---|
| 540 |
|
|---|
| 541 | if (debug) {
|
|---|
| 542 | printf("geometry information:\n");
|
|---|
| 543 | printf(" heads: %d\n", (u16) geometry->NumHeads);
|
|---|
| 544 | printf(" sectors: %d\n", (u16) geometry->SectorsPerTrack);
|
|---|
| 545 | printf(" cylinders: %d\n", (u16) geometry->TotalCylinders);
|
|---|
| 546 | printf(" capacity: %ldMB\n", (u32) (geometry->TotalSectors / 2048));
|
|---|
| 547 | }
|
|---|
| 548 |
|
|---|
| 549 | /* tell interrupt handler that this IORB is complete */
|
|---|
| 550 | add_workspace(iorb)->complete = 1;
|
|---|
| 551 | }
|
|---|
| 552 |
|
|---|
| 553 | /******************************************************************************
|
|---|
| 554 | * Test whether unit is ready.
|
|---|
| 555 | */
|
|---|
| 556 | int ata_unit_ready(IORBH _far *iorb, int slot)
|
|---|
| 557 | {
|
|---|
| 558 | /* This is a NOP for ATA devices (at least right now); returning an error
|
|---|
| 559 | * without setting an error code means ahci_exec_iorb() will not queue any
|
|---|
| 560 | * HW command and the IORB will complete successfully.
|
|---|
| 561 | */
|
|---|
| 562 | ((IORB_UNIT_STATUS _far *) iorb)->UnitStatus = US_READY | US_POWER;
|
|---|
| 563 | return(-1);
|
|---|
| 564 | }
|
|---|
| 565 |
|
|---|
| 566 | /******************************************************************************
|
|---|
| 567 | * Read sectors from AHCI device.
|
|---|
| 568 | */
|
|---|
| 569 | int ata_read(IORBH _far *iorb, int slot)
|
|---|
| 570 | {
|
|---|
| 571 | IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
|
|---|
| 572 | AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
|
|---|
| 573 | ULONG sector = io->RBA + io->BlocksXferred;
|
|---|
| 574 | USHORT count = io->BlockCount - io->BlocksXferred;
|
|---|
| 575 | USHORT sg_indx;
|
|---|
| 576 | USHORT sg_cnt;
|
|---|
| 577 | int p = iorb_unit_port(iorb);
|
|---|
| 578 | int d = iorb_unit_device(iorb);
|
|---|
| 579 | int rc;
|
|---|
| 580 |
|
|---|
| 581 | if (io->BlockCount == 0) {
|
|---|
| 582 | /* NOP; return -1 without error in IORB to indicate success */
|
|---|
| 583 | return(-1);
|
|---|
| 584 | }
|
|---|
| 585 |
|
|---|
| 586 | if (add_workspace(iorb)->unaligned) {
|
|---|
| 587 | /* unaligned S/G addresses present; need to use double buffers */
|
|---|
| 588 | return(ata_read_unaligned(iorb, slot));
|
|---|
| 589 | }
|
|---|
| 590 |
|
|---|
| 591 | /* Kludge: some I/O commands during boot use excessive S/G buffer lengths
|
|---|
| 592 | * which cause NCQ commands to lock up. If there's only one S/G element
|
|---|
| 593 | * and this element is already larger than what we can derive from the sector
|
|---|
| 594 | * count, we'll adjust that element.
|
|---|
| 595 | */
|
|---|
| 596 | if (io->BlocksXferred == 0 && io->cSGList == 1 &&
|
|---|
| 597 | io->pSGList[0].XferBufLen > (ULONG) io->BlockCount * io->BlockSize) {
|
|---|
| 598 | io->pSGList[0].XferBufLen = (ULONG) io->BlockCount * io->BlockSize;
|
|---|
| 599 | }
|
|---|
| 600 |
|
|---|
| 601 | /* prepare read command while keeping an eye on S/G count limitations */
|
|---|
| 602 | do {
|
|---|
| 603 | sg_indx = ata_get_sg_indx(io);
|
|---|
| 604 | sg_cnt = io->cSGList - sg_indx;
|
|---|
| 605 | if ((rc = ata_cmd_read(iorb, ai, p, d, slot, sector, count,
|
|---|
| 606 | io->pSGList + sg_indx, sg_cnt)) > 0) {
|
|---|
| 607 | /* couldn't map all S/G elements */
|
|---|
| 608 | ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
|
|---|
| 609 | }
|
|---|
| 610 | } while (rc > 0 && sg_cnt > 0);
|
|---|
| 611 |
|
|---|
| 612 | if (rc == 0) {
|
|---|
| 613 | add_workspace(iorb)->blocks = count;
|
|---|
| 614 | add_workspace(iorb)->ppfunc = ata_read_pp;
|
|---|
| 615 |
|
|---|
| 616 | } else if (rc > 0) {
|
|---|
| 617 | iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
|
|---|
| 618 |
|
|---|
| 619 | } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
|
|---|
| 620 | /* unaligned S/G addresses detected; need to use double buffers */
|
|---|
| 621 | add_workspace(iorb)->unaligned = 1;
|
|---|
| 622 | return(ata_read_unaligned(iorb, slot));
|
|---|
| 623 |
|
|---|
| 624 | } else {
|
|---|
| 625 | iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
|---|
| 626 | }
|
|---|
| 627 |
|
|---|
| 628 | return(rc);
|
|---|
| 629 | }
|
|---|
| 630 |
|
|---|
| 631 | /******************************************************************************
|
|---|
| 632 | * Read sectors from AHCI device with unaligned S/G element addresses. AHCI
|
|---|
| 633 | * only allows aligned S/G addresses while OS/2 doesn't have these kind of
|
|---|
| 634 | * restrictions. This doesn't happen very often but when it does, we need to
|
|---|
| 635 | * use a transfer buffer and copy the data manually.
|
|---|
| 636 | */
|
|---|
| 637 | int ata_read_unaligned(IORBH _far *iorb, int slot)
|
|---|
| 638 | {
|
|---|
| 639 | IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
|
|---|
| 640 | ADD_WORKSPACE _far *aws = add_workspace(iorb);
|
|---|
| 641 | AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
|
|---|
| 642 | ULONG sector = io->RBA + io->BlocksXferred;
|
|---|
| 643 | SCATGATENTRY sg_single;
|
|---|
| 644 | int p = iorb_unit_port(iorb);
|
|---|
| 645 | int d = iorb_unit_device(iorb);
|
|---|
| 646 | int rc;
|
|---|
| 647 |
|
|---|
| 648 | ddprintf("ata_read_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
|
|---|
| 649 |
|
|---|
| 650 | /* allocate transfer buffer */
|
|---|
| 651 | if ((aws->buf = malloc(io->BlockSize)) == NULL) {
|
|---|
| 652 | iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
|
|---|
| 653 | return(-1);
|
|---|
| 654 | }
|
|---|
| 655 |
|
|---|
| 656 | /* prepare read command using transfer buffer */
|
|---|
| 657 | sg_single.ppXferBuf = virt_to_phys(aws->buf);
|
|---|
| 658 | sg_single.XferBufLen = io->BlockSize;
|
|---|
| 659 | rc = ata_cmd_read(iorb, ai, p, d, slot, sector, 1, &sg_single, 1);
|
|---|
| 660 |
|
|---|
| 661 | if (rc == 0) {
|
|---|
| 662 | add_workspace(iorb)->blocks = 1;
|
|---|
| 663 | add_workspace(iorb)->ppfunc = ata_read_pp;
|
|---|
| 664 |
|
|---|
| 665 | } else if (rc > 0) {
|
|---|
| 666 | iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
|
|---|
| 667 |
|
|---|
| 668 | } else {
|
|---|
| 669 | iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
|---|
| 670 | }
|
|---|
| 671 |
|
|---|
| 672 | return(rc);
|
|---|
| 673 | }
|
|---|
| 674 |
|
|---|
| 675 | /******************************************************************************
|
|---|
| 676 | * Post processing function for ata_read(); this function updates the
|
|---|
| 677 | * BlocksXferred counter in the IORB and, if not all blocks have been
|
|---|
| 678 | * transferred, requeues the IORB to process the remaining sectors. It also
|
|---|
| 679 | * takes care of copying data from the transfer buffer for unaligned reads.
|
|---|
| 680 | */
|
|---|
| 681 | void ata_read_pp(IORBH _far *iorb)
|
|---|
| 682 | {
|
|---|
| 683 | IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
|
|---|
| 684 | ADD_WORKSPACE _far *aws = add_workspace(iorb);
|
|---|
| 685 |
|
|---|
| 686 | if (aws->unaligned) {
|
|---|
| 687 | /* copy transfer buffer to corresponding physical address in S/G list */
|
|---|
| 688 | sg_memcpy(io->pSGList, io->cSGList,
|
|---|
| 689 | (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
|
|---|
| 690 | aws->buf, io->BlockSize, BUF_TO_SG);
|
|---|
| 691 | }
|
|---|
| 692 |
|
|---|
| 693 | io->BlocksXferred += add_workspace(iorb)->blocks;
|
|---|
| 694 | dprintf("ata_read_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
|
|---|
| 695 |
|
|---|
| 696 | if (io->BlocksXferred >= io->BlockCount) {
|
|---|
| 697 | /* we're done; tell IRQ handler the IORB is complete */
|
|---|
| 698 | add_workspace(iorb)->complete = 1;
|
|---|
| 699 | } else {
|
|---|
| 700 | /* requeue this IORB for next iteration */
|
|---|
| 701 | iorb_requeue(iorb);
|
|---|
| 702 | }
|
|---|
| 703 | }
|
|---|
| 704 |
|
|---|
| 705 | /******************************************************************************
|
|---|
| 706 | * Verify readability of sectors on ATA device.
|
|---|
| 707 | */
|
|---|
| 708 | int ata_verify(IORBH _far *iorb, int slot)
|
|---|
| 709 | {
|
|---|
| 710 | IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
|
|---|
| 711 | AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
|
|---|
| 712 | int p = iorb_unit_port(iorb);
|
|---|
| 713 | int d = iorb_unit_device(iorb);
|
|---|
| 714 | int rc;
|
|---|
| 715 |
|
|---|
| 716 | if (io->BlockCount == 0) {
|
|---|
| 717 | /* NOP; return -1 without error in IORB to indicate success */
|
|---|
| 718 | return(-1);
|
|---|
| 719 | }
|
|---|
| 720 |
|
|---|
| 721 | /* prepare verify command */
|
|---|
| 722 | if (io->RBA >= (1UL << 28) || io->BlockCount > 256) {
|
|---|
| 723 | /* need LBA48 for this command */
|
|---|
| 724 | if (!ai->ports[p].devs[d].lba48) {
|
|---|
| 725 | iorb_seterr(iorb, IOERR_RBA_LIMIT);
|
|---|
| 726 | return(-1);
|
|---|
| 727 | }
|
|---|
| 728 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY_EXT,
|
|---|
| 729 | AP_SECTOR_48, (u32) io->RBA, (u16) 0,
|
|---|
| 730 | AP_COUNT, (u16) io->BlockCount,
|
|---|
| 731 | AP_DEVICE, 0x40,
|
|---|
| 732 | AP_END);
|
|---|
| 733 | } else {
|
|---|
| 734 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_VERIFY,
|
|---|
| 735 | AP_SECTOR_28, (u32) io->RBA,
|
|---|
| 736 | AP_COUNT, (u16) io->BlockCount & 0xffU,
|
|---|
| 737 | AP_END);
|
|---|
| 738 | }
|
|---|
| 739 |
|
|---|
| 740 | return(rc);
|
|---|
| 741 | }
|
|---|
| 742 |
|
|---|
| 743 | /******************************************************************************
|
|---|
| 744 | * Write sectors to AHCI device.
|
|---|
| 745 | */
|
|---|
| 746 | int ata_write(IORBH _far *iorb, int slot)
|
|---|
| 747 | {
|
|---|
| 748 | IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
|
|---|
| 749 | AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
|
|---|
| 750 | ULONG sector = io->RBA + io->BlocksXferred;
|
|---|
| 751 | USHORT count = io->BlockCount - io->BlocksXferred;
|
|---|
| 752 | USHORT sg_indx;
|
|---|
| 753 | USHORT sg_cnt;
|
|---|
| 754 | int p = iorb_unit_port(iorb);
|
|---|
| 755 | int d = iorb_unit_device(iorb);
|
|---|
| 756 | int rc;
|
|---|
| 757 |
|
|---|
| 758 | if (io->BlockCount == 0) {
|
|---|
| 759 | /* NOP; return -1 without error in IORB to indicate success */
|
|---|
| 760 | return(-1);
|
|---|
| 761 | }
|
|---|
| 762 |
|
|---|
| 763 | if (add_workspace(iorb)->unaligned) {
|
|---|
| 764 | /* unaligned S/G addresses present; need to use double buffers */
|
|---|
| 765 | return(ata_write_unaligned(iorb, slot));
|
|---|
| 766 | }
|
|---|
| 767 |
|
|---|
| 768 | /* prepare write command while keeping an eye on S/G count limitations */
|
|---|
| 769 | do {
|
|---|
| 770 | sg_indx = ata_get_sg_indx(io);
|
|---|
| 771 | sg_cnt = io->cSGList - sg_indx;
|
|---|
| 772 | if ((rc = ata_cmd_write(iorb, ai, p, d, slot, sector, count,
|
|---|
| 773 | io->pSGList + sg_indx, sg_cnt,
|
|---|
| 774 | io->Flags & XIO_DISABLE_HW_WRITE_CACHE)) > 0) {
|
|---|
| 775 | /* couldn't map all S/G elements */
|
|---|
| 776 | ata_max_sg_cnt(io, sg_indx, (USHORT) rc, &sg_cnt, &count);
|
|---|
| 777 | }
|
|---|
| 778 | } while (rc > 0 && sg_cnt > 0);
|
|---|
| 779 |
|
|---|
| 780 | if (rc == 0) {
|
|---|
| 781 | add_workspace(iorb)->blocks = count;
|
|---|
| 782 | add_workspace(iorb)->ppfunc = ata_write_pp;
|
|---|
| 783 |
|
|---|
| 784 | } else if (rc > 0) {
|
|---|
| 785 | iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
|
|---|
| 786 |
|
|---|
| 787 | } else if (rc == ATA_CMD_UNALIGNED_ADDR) {
|
|---|
| 788 | /* unaligned S/G addresses detected; need to use double buffers */
|
|---|
| 789 | add_workspace(iorb)->unaligned = 1;
|
|---|
| 790 | return(ata_write_unaligned(iorb, slot));
|
|---|
| 791 |
|
|---|
| 792 | } else {
|
|---|
| 793 | iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
|---|
| 794 | }
|
|---|
| 795 |
|
|---|
| 796 | return(rc);
|
|---|
| 797 | }
|
|---|
| 798 |
|
|---|
| 799 | /******************************************************************************
|
|---|
| 800 | * Write sectors from AHCI device with unaligned S/G element addresses. AHCI
|
|---|
| 801 | * only allows aligned S/G addresses while OS/2 doesn't have these kind of
|
|---|
| 802 | * restrictions. This doesn't happen very often but when it does, we need to
|
|---|
| 803 | * use a transfer buffer and copy the data manually.
|
|---|
| 804 | */
|
|---|
| 805 | int ata_write_unaligned(IORBH _far *iorb, int slot)
|
|---|
| 806 | {
|
|---|
| 807 | IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
|
|---|
| 808 | ADD_WORKSPACE _far *aws = add_workspace(iorb);
|
|---|
| 809 | AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
|
|---|
| 810 | ULONG sector = io->RBA + io->BlocksXferred;
|
|---|
| 811 | SCATGATENTRY sg_single;
|
|---|
| 812 | int p = iorb_unit_port(iorb);
|
|---|
| 813 | int d = iorb_unit_device(iorb);
|
|---|
| 814 | int rc;
|
|---|
| 815 |
|
|---|
| 816 | ddprintf("ata_write_unaligned(%d.%d.%d, %ld)\n", ad_no(ai), p, d, sector);
|
|---|
| 817 |
|
|---|
| 818 | /* allocate transfer buffer */
|
|---|
| 819 | if ((aws->buf = malloc(io->BlockSize)) == NULL) {
|
|---|
| 820 | iorb_seterr(iorb, IOERR_CMD_SW_RESOURCE);
|
|---|
| 821 | return(-1);
|
|---|
| 822 | }
|
|---|
| 823 |
|
|---|
| 824 | /* copy next sector from S/G list to transfer buffer */
|
|---|
| 825 | sg_memcpy(io->pSGList, io->cSGList,
|
|---|
| 826 | (ULONG) io->BlocksXferred * (ULONG) io->BlockSize,
|
|---|
| 827 | aws->buf, io->BlockSize, SG_TO_BUF);
|
|---|
| 828 |
|
|---|
| 829 | /* prepare write command using transfer buffer */
|
|---|
| 830 | sg_single.ppXferBuf = virt_to_phys(aws->buf);
|
|---|
| 831 | sg_single.XferBufLen = io->BlockSize;
|
|---|
| 832 | rc = ata_cmd_write(iorb, ai, p, d, slot, sector, 1, &sg_single, 1,
|
|---|
| 833 | io->Flags & XIO_DISABLE_HW_WRITE_CACHE);
|
|---|
| 834 |
|
|---|
| 835 | if (rc == 0) {
|
|---|
| 836 | add_workspace(iorb)->blocks = 1;
|
|---|
| 837 | add_workspace(iorb)->ppfunc = ata_write_pp;
|
|---|
| 838 |
|
|---|
| 839 | } else if (rc > 0) {
|
|---|
| 840 | iorb_seterr(iorb, IOERR_CMD_SGLIST_BAD);
|
|---|
| 841 |
|
|---|
| 842 | } else {
|
|---|
| 843 | iorb_seterr(iorb, IOERR_CMD_ADD_SOFTWARE_FAILURE);
|
|---|
| 844 | }
|
|---|
| 845 |
|
|---|
| 846 | return(rc);
|
|---|
| 847 | }
|
|---|
| 848 |
|
|---|
| 849 |
|
|---|
| 850 | /******************************************************************************
|
|---|
| 851 | * Post processing function for ata_write(); this function updates the
|
|---|
| 852 | * BlocksXferred counter in the IORB and, if not all blocks have been
|
|---|
| 853 | * transferred, requeues the IORB to process the remaining sectors.
|
|---|
| 854 | */
|
|---|
| 855 | void ata_write_pp(IORBH _far *iorb)
|
|---|
| 856 | {
|
|---|
| 857 | IORB_EXECUTEIO _far *io = (IORB_EXECUTEIO _far *) iorb;
|
|---|
| 858 |
|
|---|
| 859 | io->BlocksXferred += add_workspace(iorb)->blocks;
|
|---|
| 860 | dprintf("ata_write_pp(): blocks transferred = %d\n", (int) io->BlocksXferred);
|
|---|
| 861 |
|
|---|
| 862 | if (io->BlocksXferred >= io->BlockCount) {
|
|---|
| 863 | /* we're done; tell IRQ handler the IORB is complete */
|
|---|
| 864 | add_workspace(iorb)->complete = 1;
|
|---|
| 865 | } else {
|
|---|
| 866 | /* requeue this IORB for next iteration */
|
|---|
| 867 | iorb_requeue(iorb);
|
|---|
| 868 | }
|
|---|
| 869 | }
|
|---|
| 870 |
|
|---|
| 871 | /******************************************************************************
|
|---|
| 872 | * Execute ATA command.
|
|---|
| 873 | */
|
|---|
| 874 | int ata_execute_ata(IORBH _far *iorb, int slot)
|
|---|
| 875 | {
|
|---|
| 876 | IORB_ADAPTER_PASSTHRU _far *apt = (IORB_ADAPTER_PASSTHRU _far *) iorb;
|
|---|
| 877 | AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
|
|---|
| 878 | int p = iorb_unit_port(iorb);
|
|---|
| 879 | int d = iorb_unit_device(iorb);
|
|---|
| 880 | int rc;
|
|---|
| 881 |
|
|---|
| 882 | if (apt->ControllerCmdLen != sizeof(ATA_CMD)) {
|
|---|
| 883 | iorb_seterr(iorb, IOERR_CMD_SYNTAX);
|
|---|
| 884 | return(-1);
|
|---|
| 885 | }
|
|---|
| 886 |
|
|---|
| 887 | rc = ata_cmd(ai, p, d, slot, 0,
|
|---|
| 888 | AP_SGLIST, apt->pSGList, apt->cSGList,
|
|---|
| 889 | AP_ATA_CMD, apt->pControllerCmd,
|
|---|
| 890 | AP_WRITE, !(apt->Flags & PT_DIRECTION_IN),
|
|---|
| 891 | AP_END);
|
|---|
| 892 |
|
|---|
| 893 | return(rc);
|
|---|
| 894 | }
|
|---|
| 895 |
|
|---|
| 896 | /******************************************************************************
|
|---|
| 897 | * Request sense information for a failed command. Since there is no "request
|
|---|
| 898 | * sense" command for ATA devices, we need to read the current error code from
|
|---|
| 899 | * the AHCI task file register and fabricate the sense information.
|
|---|
| 900 | *
|
|---|
| 901 | * NOTES:
|
|---|
| 902 | *
|
|---|
| 903 | * - This function must be called right after an ATA command has failed and
|
|---|
| 904 | * before any other commands are queued on the corresponding port. This
|
|---|
| 905 | * function is typically called in the port restart context hook which is
|
|---|
| 906 | * triggered by an AHCI error interrupt.
|
|---|
| 907 | *
|
|---|
| 908 | * - The ATA error bits are a complete mess. We'll try and catch the most
|
|---|
| 909 | * interesting error codes (such as medium errors) and report everything
|
|---|
| 910 | * else with a generic error code.
|
|---|
| 911 | */
|
|---|
| 912 | int ata_req_sense(IORBH _far *iorb, int slot)
|
|---|
| 913 | {
|
|---|
| 914 | AD_INFO *ai = ad_infos + iorb_unit_adapter(iorb);
|
|---|
| 915 | u8 _far *port_mmio = port_base(ai, iorb_unit_port(iorb));
|
|---|
| 916 | u32 tf_data = readl(port_mmio + PORT_TFDATA);
|
|---|
| 917 | u8 err = (u8) (tf_data >> 8);
|
|---|
| 918 | u8 sts = (u8) (tf_data);
|
|---|
| 919 |
|
|---|
| 920 | if (sts & ATA_ERR) {
|
|---|
| 921 | if (sts & ATA_DF) {
|
|---|
| 922 | /* there is a device-specific error condition */
|
|---|
| 923 | if (err & ATA_ICRC) {
|
|---|
| 924 | iorb_seterr(iorb, IOERR_ADAPTER_DEVICEBUSCHECK);
|
|---|
| 925 | } else if (err & ATA_UNC) {
|
|---|
| 926 | iorb_seterr(iorb, IOERR_MEDIA);
|
|---|
| 927 | } else if (err & ATA_IDNF) {
|
|---|
| 928 | iorb_seterr(iorb, IOERR_RBA_ADDRESSING_ERROR);
|
|---|
| 929 | } else {
|
|---|
| 930 | iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
|
|---|
| 931 | }
|
|---|
| 932 |
|
|---|
| 933 | } else {
|
|---|
| 934 | iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
|
|---|
| 935 | }
|
|---|
| 936 | } else {
|
|---|
| 937 | /* this function only gets called when we received an error interrupt */
|
|---|
| 938 | iorb_seterr(iorb, IOERR_DEVICE_NONSPECIFIC);
|
|---|
| 939 | }
|
|---|
| 940 |
|
|---|
| 941 | /* Return an error to indicate there's no HW command to be submitted and
|
|---|
| 942 | * that the IORB can be completed "as is" (the upstream code expects the
|
|---|
| 943 | * IORB error code, if any, to be set when this happens and this is exactly
|
|---|
| 944 | * what this function is all about).
|
|---|
| 945 | */
|
|---|
| 946 | return(-1);
|
|---|
| 947 | }
|
|---|
| 948 |
|
|---|
| 949 | /******************************************************************************
|
|---|
| 950 | * Extract vendor and device name from an ATA INDENTIFY buffer. Since strings
|
|---|
| 951 | * in the indentify buffer are byte-swapped, we need to swap them back.
|
|---|
| 952 | */
|
|---|
| 953 | char *ata_dev_name(u16 *id_buf)
|
|---|
| 954 | {
|
|---|
| 955 | static char dev_name[ATA_ID_PROD_LEN + 1];
|
|---|
| 956 | char *t = dev_name;
|
|---|
| 957 | char *s = (char *) (id_buf + ATA_ID_PROD);
|
|---|
| 958 | int i;
|
|---|
| 959 |
|
|---|
| 960 | dev_name[sizeof(dev_name)-1] = '\0';
|
|---|
| 961 |
|
|---|
| 962 | for (i = 0; i < ATA_ID_PROD_LEN / 2; i++) {
|
|---|
| 963 | *(t++) = s[1];
|
|---|
| 964 | *(t++) = s[0];
|
|---|
| 965 | s += 2;
|
|---|
| 966 | }
|
|---|
| 967 |
|
|---|
| 968 | return(dev_name);
|
|---|
| 969 | }
|
|---|
| 970 |
|
|---|
| 971 | /******************************************************************************
|
|---|
| 972 | * Fabricate ATA READ command based on the capabilities of the corresponding
|
|---|
| 973 | * device and the paramters set from above (NCQ, etc).
|
|---|
| 974 | */
|
|---|
| 975 | static int ata_cmd_read(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
|
|---|
| 976 | ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
|
|---|
| 977 | ULONG sg_cnt)
|
|---|
| 978 | {
|
|---|
| 979 | int rc;
|
|---|
| 980 |
|
|---|
| 981 | if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
|
|---|
| 982 | /* need LBA48 for this command */
|
|---|
| 983 | if (!ai->ports[p].devs[d].lba48) {
|
|---|
| 984 | iorb_seterr(iorb, IOERR_RBA_LIMIT);
|
|---|
| 985 | return(-1);
|
|---|
| 986 | }
|
|---|
| 987 | if (add_workspace(iorb)->is_ncq) {
|
|---|
| 988 | /* use NCQ read; count goes into feature register, tag into count! */
|
|---|
| 989 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_READ,
|
|---|
| 990 | AP_SECTOR_48, (u32) sector, (u16) 0,
|
|---|
| 991 | AP_FEATURES, (u16) count,
|
|---|
| 992 | AP_COUNT, (u16) (slot << 3), /* tag == slot */
|
|---|
| 993 | AP_SGLIST, sg_list, (u16) sg_cnt,
|
|---|
| 994 | AP_DEVICE, 0x40,
|
|---|
| 995 | AP_END);
|
|---|
| 996 | } else {
|
|---|
| 997 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ_EXT,
|
|---|
| 998 | AP_SECTOR_48, (u32) sector, (u16) 0,
|
|---|
| 999 | AP_COUNT, (u16) count,
|
|---|
| 1000 | AP_SGLIST, sg_list, (u16) sg_cnt,
|
|---|
| 1001 | AP_DEVICE, 0x40,
|
|---|
| 1002 | AP_END);
|
|---|
| 1003 | }
|
|---|
| 1004 |
|
|---|
| 1005 | } else {
|
|---|
| 1006 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_READ,
|
|---|
| 1007 | AP_SECTOR_28, (u32) sector,
|
|---|
| 1008 | AP_COUNT, (u16) count & 0xffU,
|
|---|
| 1009 | AP_SGLIST, sg_list, (u16) sg_cnt,
|
|---|
| 1010 | AP_DEVICE, 0x40,
|
|---|
| 1011 | AP_END);
|
|---|
| 1012 | }
|
|---|
| 1013 |
|
|---|
| 1014 | return(rc);
|
|---|
| 1015 | }
|
|---|
| 1016 |
|
|---|
| 1017 | /******************************************************************************
|
|---|
| 1018 | * Fabricate ATA WRITE command based on the capabilities of the corresponding
|
|---|
| 1019 | * device and the paramters set from above (NCQ, etc)
|
|---|
| 1020 | */
|
|---|
| 1021 | static int ata_cmd_write(IORBH _far *iorb, AD_INFO *ai, int p, int d, int slot,
|
|---|
| 1022 | ULONG sector, ULONG count, SCATGATENTRY _far *sg_list,
|
|---|
| 1023 | ULONG sg_cnt, int write_through)
|
|---|
| 1024 | {
|
|---|
| 1025 | int rc;
|
|---|
| 1026 |
|
|---|
| 1027 | if (sector >= (1UL << 28) || count > 256 || add_workspace(iorb)->is_ncq) {
|
|---|
| 1028 | /* need LBA48 for this command */
|
|---|
| 1029 | if (!ai->ports[p].devs[d].lba48) {
|
|---|
| 1030 | iorb_seterr(iorb, IOERR_RBA_LIMIT);
|
|---|
| 1031 | return(-1);
|
|---|
| 1032 | }
|
|---|
| 1033 | if (add_workspace(iorb)->is_ncq) {
|
|---|
| 1034 | /* use NCQ write; count goes into feature register, tag into count! */
|
|---|
| 1035 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_FPDMA_WRITE,
|
|---|
| 1036 | AP_SECTOR_48, (u32) sector, (u16) 0,
|
|---|
| 1037 | AP_FEATURES, (u16) count,
|
|---|
| 1038 | AP_COUNT, (u16) (slot << 3), /* tag = slot */
|
|---|
| 1039 | AP_SGLIST, sg_list, (u16) sg_cnt,
|
|---|
| 1040 | AP_DEVICE, 0x40,
|
|---|
| 1041 | AP_DEVICE, (write_through) ? 0x80 : 0, /* force unit access */
|
|---|
| 1042 | AP_WRITE, 1,
|
|---|
| 1043 | AP_END);
|
|---|
| 1044 | } else {
|
|---|
| 1045 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE_EXT,
|
|---|
| 1046 | AP_SECTOR_48, (u32) sector, (u16) 0,
|
|---|
| 1047 | AP_COUNT, (u16) count,
|
|---|
| 1048 | AP_SGLIST, sg_list, (u16) sg_cnt,
|
|---|
| 1049 | AP_DEVICE, 0x40,
|
|---|
| 1050 | AP_WRITE, 1,
|
|---|
| 1051 | AP_END);
|
|---|
| 1052 | }
|
|---|
| 1053 |
|
|---|
| 1054 | } else {
|
|---|
| 1055 | rc = ata_cmd(ai, p, d, slot, ATA_CMD_WRITE,
|
|---|
| 1056 | AP_SECTOR_28, (u32) sector,
|
|---|
| 1057 | AP_COUNT, (u16) count & 0xffU,
|
|---|
| 1058 | AP_SGLIST, sg_list, (u16) sg_cnt,
|
|---|
| 1059 | AP_DEVICE, 0x40,
|
|---|
| 1060 | AP_WRITE, 1,
|
|---|
| 1061 | AP_END);
|
|---|
| 1062 | }
|
|---|
| 1063 |
|
|---|
| 1064 | return(rc);
|
|---|
| 1065 | }
|
|---|