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We report on the construction of a database of nonhyperelliptic genus-3 curves over Q of small discriminant.

1. Introduction

Cremona’s tables of elliptic curves over Q have long been a useful resource for number theorists, and
for mathematicians in general [10]. The most current version of Cremona’s tables, and similar tables of
elliptic curves over various number fields, can be found in the L-functions and modular forms database
(LMFDB) [7]. Motivated by the utility of Cremona’s tables, the LMFDB now includes a table of genus-2
curves over Q whose construction is described in [1]. The goal of this article is to describe the first steps
toward the construction of a similar table of genus-3 curves over Q.

Thanks to the modularity theorem, elliptic curves over Q can be comprehensively tabulated by conduc-
tor, as described in [10]. Tabulations by conductor are useful for several reasons, most notably because
this invariant can be directly associated to the corresponding L-function. Unfortunately, no comparable
method is yet available for higher-genus curves, or more generally, for abelian varieties of dimension
greater than 1. However, one can instead organize curves by discriminant. The discriminant of a curve is
necessarily divisible by every prime that divides the conductor of its Jacobian, and it imposes bounds on
the valuation of the conductor at those primes. In particular, if the discriminant is prime, it is necessarily
equal to the conductor (every abelian variety over Q has bad reduction at some prime [14]), and if the
discriminant is small, then the conductor must also be small.

Curves of small discriminant (and hence of small conductor) are interesting for several reasons. First,
with enough effort one can obtain a reasonably comprehensive list by exhaustively enumerating curves
with bounded coefficients, as noted in [1, §3]. Another reason is practical: it is only for such curves
that one has reasonable hope of computing certain invariants, such as the analytic rank of the Jacobian,
or special values of its L-function. Finally, there is the phenomenon of small numbers: interesting
exceptions that arise from improbable collisions that are more likely to occur early in the tabulation.
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Two such examples arise for the absolute discriminants 6050 and 8233, which are two of the ten smallest
that we found. The Jacobian of the discriminant 6050 curve is Q-isogenous to the product of an elliptic
curve of conductor 11 and an abelian surface of conductor 550; this is notable because no abelian surface
over Q of conductor 550 was previously known, despite having been actively sought in the context of the
paramodular conjecture (see [13, §8], for example). The Jacobian of the prime discriminant 8233 curve
has the smallest prime conductor we found in our search of nonhyperelliptic genus-3 curves, and 8233
is also the smallest prime conductor we found in our search of hyperelliptic genus-3 curves, and in fact
the two Jacobians appear to be isogenous. See Section 6 for details of these and some other examples.

The methods used in [1] extend fairly easily to genus-3 hyperelliptic curves and have been used
to construct a list of genus-3 hyperelliptic curves over Q of small discriminant, and to compute their
conductors, Euler factors at bad primes, endomorphism rings, and Sato–Tate groups. We plan to make
this data available in the LMFDB later this year (2018); a preliminary list of these curves can be found at
the author’s website. In this article we focus on the more difficult case of (nonsingular) nonhyperelliptic
curves of genus 3, which represent the generic case of a genus-3 curve and always have a model of the
form f (x, y, z)= 0, where f is a ternary quartic form.

In order to keep the length of this article reasonable, and in recognition of the fact that there is still
work in progress to compute some of the invariants mentioned above, we focus only on the first step in
the construction of this database: an enumeration of all smooth plane quartic curves with coefficients
of absolute value at most Bc := 9, with the aim of obtaining a set of unique Q-isomorphism class
representatives for all such curves that have absolute discriminant at most B1 := 107.

Even after accounting for obvious symmetries, this involves more than 1017.5 possible curve equations
and requires a massively distributed computation to complete in a reasonable amount of time. Efficiently
computing the discriminants of these equations is a nontrivial task, much more so than in the hyperelliptic
case, and much of this article is devoted to an explanation of how this was done. Many of the techniques
that we use can be generalized to other enumeration problems and may be of independent interest, both
from an algorithmic perspective, and as an example of how cloud computing can be effectively applied
to a research problem in number theory. A list of the curves that were found (more than 80 thousand) is
available on the author’s website [31].

Remark 1.1. The informed reader will know that not every genus-3 curve over Q falls into the category
of smooth plane quartics f (x, y, z) = 0 or curves with a hyperelliptic model y2

+ h(x)y = f (x). The
other possibility is a degree-2 cover of a pointless conic; see [18] for a discussion of such curves and
algorithms to efficiently compute their L-functions. We plan to conduct a separate search for curves of
this form that will also become part of the genus-3 database in the LMFDB.

2. The discriminant of a smooth plane curve

Let C[x]d denote the space of ternary forms of degree d ≥ 1, as homogeneous polynomials in the variables
x := (x0, x1, x2). It is a C-vector space of dimension nd :=

(d+2
2

)
equipped with a standard monomial
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basis

Bd := {xu
: u ∈ Ed}, Ed := {(u0, u1, u2) ∈ Z3

: u0, u1, u2 ≥ 0, u0+ u1+ u2 = d}.

The dual basis B∗d for C[x]∗d consists of linear functionals δu : C[x]d → C defined by
∑

u fu xu
7→ fu , so

that δu( f ) is the coefficient of xu in f . We define δ :C[x]d→Cnd by f 7→ (δu( f ))u and δ̂ :Cnd →C[x]d
by ( fu)u 7→

∑
u fu xu.

A polynomial f ∈C[x]d is singular if f and its partial derivatives ∂0 f , ∂1 f , ∂2 f simultaneously vanish
at some point (z0, z1, z2) 6= (0, 0, 0) in C3. The curve f (x) = 0 is a smooth projective geometrically
irreducible curve if and only if f is nonsingular (note that f = 1

d

∑
i xi∂i f , so any common zero of ∂0 f ,

∂1 f , ∂2 f is also a zero of f ).

Definition 2.1. For d ≥ 2 the discriminant 1d is the integer polynomial in nd variables a := (au)u∈Ed

uniquely determined by the following properties:

• For all f ∈ C[x]d we have 1d( f ) :=1d(δ( f ))= 0 if and only if f is singular.

• 1d is irreducible and has content 1.

• 1d(xd
0 + xd

1 + xd
2 ) < 0.

It is a homogeneous polynomial of degree 3(d − 1)2, by Boole’s formula [2, p. 171].1

The first two properties determine 1d up to sign [15]; our sign convention is consistent with the case
of quadratic forms:

12 = a200 a2
011+ a2

101a020+ a2
110a002− a110 a101a011− 4a200 a020 a002.

The discriminant 13 is too large to display here; it is a degree-12 polynomial in 10 variables, with
2040 terms and largest coefficient 26 244. The discriminant 14 of interest to us is larger still: it is a
degree-27 polynomial in 15 variables, with 50 767 957 terms and largest coefficient 9 393 093 476 352.
Our goal in this section is to briefly explain how we computed it.

Remark 2.2. The discriminant 14 is the largest of the seven projective invariants I3, I6, I9, I12, I15, I18,
I27 defined by Dixmier [11]. Together with six additional invariants J9, J12, J15, J18, I21, J21 studied by
Ohno [27] they generate the full ring of invariants of ternary quartic forms, as conjectured by Shioda in
[29, Appendix] and proved by Ohno in an unpublished preprint [27], and later verified by Elsenhans in
the published paper [12]. These 13 invariants are collectively known as the Dixmier–Ohno invariants
and have been studied by many authors [12; 16; 24; 25]. Algorithms to compute the Dixmier–Ohno
invariants of a given ternary quartic are described in [12; 16; 25], and Magma [3] implementations of
these algorithms are available [12; 16; 30]. For our application we want to explicitly compute 14 as a
polynomial in 15 variables. In [27, Remark 2.2] Ohno considers the question of counting the number
of terms in 14, and he proves an upper bound of 58 456 030. As a byproduct of our work, we can now
answer Ohno’s question: the polynomial 14 has 50 767 957 terms.

1Boole credits this formula to Sylvester.
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Definition 2.3. For d≥1 the resultant Rd is the integer polynomial in 3nd variables a := (a0,u, a1,u, a2,u)∈

E3
d uniquely determined by the following properties:

• For all f0, f1, f2 ∈ C[x]d we have Rd( f0, f1, f2) := Rd(δ( f0), δ( f1), δ( f2)) = 0 if and only if
f0, f1, f2 have a common root (z0, z1, z2) 6= (0, 0, 0) in C3.

• Rd is irreducible and has content 1.

• Rd(xd
0 , xd

1 , xd
2 )= 1.

It is a homogeneous polynomial of degree 3d2 [15, Proposition 13.1.7].

Proposition 2.4. For all f ∈ C[x]d we have 1d( f )=−d−d2
+3d−3 Rd−1(∂0 f, ∂1 f, ∂2 f ).

Proof. Up to sign this is implied by [15, Proposition 13.1.7]. To verify the sign, we note that

1d(xd
0 + xd

1 + xd
2 )=−d−d2

+3d−3 Rd−1(dxd−1
0 , dxd−1

1 , dxd−1
2 )=−dd(2d−3) < 0. �

Proposition 2.4 implies that to compute 1d it suffices to compute Rd−1. In fact we only need to
compute

Rd−1(∂̃0(a), ∂̃1(a), ∂̃2(a)),

where ∂̃i := δ ◦ ∂i ◦ δ̂, which is a polynomial in nd variables, rather than 3nd−1 variables. For d = 4 this
reduces the number of variables from 30 to 15, which is crucial to us. Computing 14 is a nontrivial but
feasible computation, as we explain below; explicitly computing R3 would be far more difficult.

Sylvester’s resultant formula for ternary forms. In this section we briefly recall the classical determinan-
tal formula of Sylvester for computing Rd for d ≥ 2, following [15, §3.4D]. It provides an efficient method
to compute Rd( f0, f1, f2) for particular values of f0, f1, f2, even when Rd is too large to compute
explicitly. We will use this formula to compute 14.

Given f0, f1, f2 ∈ C[x]d , we define the linear operator

T f0, f1, f2 : C[x]
3
d−2→ C[x]2d−2,

(g0, g1, g2) 7→ g0 f0+ g1 f1+ g2 f2.

We now define a second linear operator D f0, f1, f2 :C[x]
∗

d−1→C[x]2d−2 by defining its value on elements
δu ∈ B∗d−1 of the dual basis, where u ∈ Ed−1. For each u ∈ Ed−1 we may write fi in the form

fi =

2∑
j=0

xu j+1
j F (u)i j ,

with F (u)i j ∈ C[x]d−1−u j . Without loss of generality we assume fi − xu0+1
0 F (u)i0 has no terms divisible

by xu0+1
0 and fi − xu0+1

0 F (u)i0 − xu1+1
1 F (u)i1 has no terms divisible by xu1+1

1 , so that the F (u)i j are uniquely
determined. We then define

D f0, f1, f2(δu) := det [F (u)i j ] ∈ C[x]2d−2.
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Finally, we define the linear operator

8 f0, f1, f2 : C[x]
3
d−2⊕C[x]∗d−1→ C[x]2d−2,

((g0, g1, g2), v) 7→ T f0, f1, f2(g0, g1, g2)+ D f0, f1, f2(v),

and observe that its domain and codomain both have dimension

3
(d−2+2

2

)
+

(d−1+2
2

)
= 2d2

− d =
(2d−2+2

2

)
.

Proposition 2.5. For all f0, f1, f2 ∈ C[x]d we have Rd( f0, f1, f2)=± det8 f0, f1, f2 .

Proof. This follows from Lemma 4.9 and Theorem 4.10 in [15, §3]. �

Remark 2.6. Unlike Theorem 4.10 in [15, §3], we allow a sign ambiguity in Proposition 2.5. In order to
view 8 f0, f1, f2 as a linear operator one needs to fix an isomorphism between its domain and its codomain,
which we prefer not to do. The most natural way to compute8 f0, f1, f2 is to compute values of T f0, f1, f2 and
D f0, f1, f2 on monomial bases of C[x]3d−2 and C[x]∗d−1; the sign of det8 f0, f1, f2 will depend on how one
orders these bases and a monomial basis for C[x]2d−2, but the condition Rd(xd , yd , zd)= 1 determines
the correct sign (see Magma scripts in [31]).

Our explicit description of T f0, f1, f2 and D f0, f1, f2 above makes it easy to write down the (2d2
− d)×

(2d2
− d) matrix whose determinant is equal to Rd( f0, f1, f2). Each row consists of the coefficients of

homogeneous polynomial of degree 2d − 2 that is the image of a basis element of C[x]3d−2⊕C[x]∗d−1,
each of which we can identify with an element of Ed−2 or Ed−1. For each u ∈ Ed−2 we get three rows,
the coefficient vectors of xu f0, xu f1, xu f2 and for each u ∈ Ed−1 we get one row, the coefficient vector
of D f0, f1, f2(δu)= det[Fu

i j ].

Example 2.7. Let f := y2z− x3
−a2x2z−a4xz2

−a6z3, and let f0, f1, f2 be its partial derivatives with
respect to x, y, z respectively. If we order our monomial bases lexicographically (so x3 comes first) and
put the three rows of 8 f0, f1, f2 corresponding to T f0, f1, f2 at the top and the three rows corresponding to
D f0, f1, f2 at the bottom, we have

8 f0, f1, f2 =



−3 0 −2a2 0 0 −a4

0 0 0 0 2 0
−a2 0 −2a4 1 0 −3a6

0 0 −4a2
2+12a4 0 0 −2a2a4+18a6

0 6 0 0 4a2 0
0 0 −2a2a4+18a6 0 0 12a2a6−4a2

4


,

and therefore
13( f )=−3−3 R2( f0, f1, f2)=−3−3 det8 f0, f1, f2

=−64a3
2a6+ 16a2

2a2
4 + 288a2a4a6− 64a3

4 − 432a2
6,

which matches the discriminant of the elliptic curve y2
= x3
+ a2x2

+ a4x + a6.

See [9, Chapter 3, §4, Exercise 15] and the magma script in [31] for further details and more examples.
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Computing 14. To compute 14 we put f :=
∑

u∈E4
au xu using

(4+2
2

)
= 15 formal variables au . The

resulting polynomial f is then an element of (Z[a])[x]4, rather than C[x]4, but we can construct a matrix
M8 representing the linear operator 8∂0 f,∂1 f,∂2 f as in Example 2.7, obtaining a 15× 15 matrix whose
coefficients are homogeneous polynomials in Z[a], with det M8 ∈ Z[a]27. The first nine rows of M8 (cor-
responding to T∂0 f,∂1 f,∂2 f ) each contain five zero entries and linear monomials in the nonzero entries. The
remaining six rows of M8 (corresponding to D∂0 f,∂1 f,∂2 f ) contain a 3×3 submatrix of zeros and homoge-
neous polynomials of degree 3 in the nonzero entries. After some experimentation we settled on the strat-
egy of computing det M8 as the sum of

(12
3

)
= 220 products of the form (det A)(det B) with A ∈ Z[a]3×3

and B ∈ Z[a]9×9 submatrices of M8 with det A ∈ Z[a]9 and det B ∈ Z[a]18. Computing the determinants
of all the submatrices A and B takes only a few minutes. We then computed the 220 products in parallel
on a 64-core machine and summed the results to obtain 14; in total this computation took about 8 core-
hours. The resulting polynomial 14 can be downloaded as a 2 GB text file from the author’s website [31].

3. Computing discriminants using a monomial tree

In this section we describe our method for enumerating ternary quartic forms

f (x)=
∑
u∈E4

fu xu

with coefficients fu ∈Z satisfying | fu| ≤ Bc, for some coefficient bound Bc, along with their discriminants
14( f ). As explained in the Introduction, our goal is to select from this list all such forms with nonzero
discriminants satisfying |14( f )| ≤ B1, for some discriminant bound B1. Rather than separately comput-
ing each discriminant via Sylvester’s method (which would not require 14), we will instead enumerate
values of 14( f ) in tandem with our enumeration of values of f , using a monomial tree, a data structure
introduced in [1, §3.2].

In the computation described in [1], the discriminant polynomial has only 246 terms, and the cor-
responding monomial tree has 703 nodes and fits in 8 KB of memory. In particular, the monomial
tree easily fits in L1-cache, and there is very little overhead in recomputing it as required in a parallel
computation (indeed, in the computation described in [1] each thread builds and maintains its own private
monomial tree). In our case the discriminant polynomial 14 is several orders of magnitude larger, and
the implementation of the monomial tree merits further discussion, particularly in view of the need to
support a massively parallel computation that must be fault tolerant.

The monomial tree is based on a data structure known in the computer science literature as a trie (or
prefix tree). This data structure represents a set of (key, value) pairs using a tree whose paths correspond
to keys with values stored at the leaves; in addition to supporting lookup operations, a trie allows one to
efficiently enumerate all keys with a common prefix (it is commonly used to implement the autocomplete
feature found in many user interfaces), but we will exploit it in a different way.

In a monomial tree, the keys are exponent vectors e := (e0, . . . , en) and the values are coefficients cu .
Each leaf of the tree represents a term ceae of a polynomial in the variables a := (a0, . . . , an). Two
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Figure 1. Two monomial trees for g(a0, a1, a2).

uninstantiated monomial trees for the polynomial

g(a0, a1, a2) := a3
0a2+ 3a2

0a2
1 − 4a2

0a1a2− 5a0a2
1a2+ 2a4

1 + 7a3
1a2

are shown in Figure 1.
We are free to choose any ordering of the variables, and there are thus many monomial trees that

represent the same polynomial; in this case we prefer the tree on the right (both because it has fewer
nodes, and because the maximum degree appearing at the top level is smaller). Once we fix an ordering
of the variables, there is no need to actually identify the variable in each node, since this will be implied
by its level in the tree; we only need to store the exponent. For polynomials that are fairly dense, such
as 14, we can make the exponent implicit as well by simply using an array of fixed size determined by
the maximum degree of the variable in the next level, using null values to indicate the absence of a child
of a given degree.

To evaluate a polynomial represented by a monomial tree we work from the bottom up (the opposite
of the typical usage pattern for a trie). Using the monomial tree listed on the right in Figure 1, let us
partially evaluate it by first making the substitution a0 = 2, and then the substitution a1 =−1; this yields
monomial trees for the polynomials g(2, a1, a2) and g(2,−1, a2), as shown in Figure 2.

With each substitution we evaluate nodes one level above the leaves (so 3a2
0 becomes 12 when we

substitute a0= 2, for example), and sum siblings (this does not impact the first substitution, but 12a2
1+2a4

1

becomes 14 when we substitute a1 =−1, for example). We ultimately obtain a univariate polynomial
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Figure 2. Monomial trees for g(a0, a1, a2), g(2, a1, a2), and g(2,−1, a2).
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in whichever variable we choose to put at the top of the tree; in this example that variable is a2 and we
have g(2,−1, a2)= 14+ 7a1

2 , which we could then evaluate on any value of a2 that we wish.
For the sake of illustration we have depicted the monomial tree as “shrinking” as we make these

substitutions, but in reality substitutions are performed by updating auxiliary values attached to each
node of the tree, the structure of which is not modified. At any point in the computation we can undo the
most recent substitution by simply incrementing a level pointer, a variable that identifies the level of the
tree where a variable substitution was most recently made (these are depicted as leaves in the diagrams
above). More generally, we can immediately revert to any prefix of the variable substitutions that have
been made by updating the level pointer; this feature is critical to the parallel implementation discussed
in the next section.

One can thus view the monomial tree as an arboreal stack. The top of the stack is at the leaves,
variable substitutions are “pushed” onto the stack by updating nodes at the current level, and we can
“pop” any number of variable substitutions off the stack by updating the level pointer (which acts as a
stack pointer).

For the discriminant polynomial 14 there are
(4+2

2

)
= 15 variables ai jk , each corresponding to a

possible coefficient of a monomial x i
0x i

1xk
2 in a ternary quartic form. After accounting for the symmetries

corresponding to permutations of x0, x1, x2, there 15!/3! distinct monomial trees we could use to repre-
sent 14, depending on how we choose to order the variables. The polynomial 14 has total degree 27, but
its degree in the variables ai jk varies: it has degree 9 in a400, a040, a004, degree 16 in a211, a121, a112, and
degree 12 in each of the remaining variables. One might expect that an optimal approach would have
the variables sorted by degree (lowest at the top of the tree, highest at the bottom), but this is not quite
true. After a lot of experimentation we settled on the following variable ordering (working from the top
of tree down):

a400, a310, a301, a220, a202, a130, a040, a103, a004, a031, a013, a022, a211, a121, a112.

This yields a monomial tree with a total of 246 798 264 nodes and level sizes as shown in Table 1.

Remark 3.1. As implied by the last four entries of Table 1, at the bottom several levels of the tree each
node has only one child. Indeed, fixing the exponent for all but the three variables a211, a121, a112 of
degree 16 uniquely determines a term in 14. There does not appear to be an easy way to compute the ex-
ponents of a211, a121, a112 directly from the exponents of the other 12 variables, but such a function exists.

Our implementation uses 16 bytes of storage for each node in the monomial tree. This includes a
64-bit integer value to store substitution results modulo 264 and a 32-bit integer that identifies the parent

a400 10 a220 1772 a040 246759 a031 11218852 a211 50767957
a310 67 a202 8128 a103 1197716 a013 27045996 a121 50767957
a301 328 a130 48856 a004 3957952 a022 50767957 a112 50767957

Table 1. Levels in the monomial tree used for 14.
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node by its index in an array that holds all the nodes in the tree; the total amount of memory required
is about 4 GB. Loading the terms of 14 from a suitably prepared binary file and constructing the tree in
memory takes less than 10 core-seconds on the machines we used (see the next section for details).

Modulo parallelization and optimizations discussed below, our strategy to enumerate ternary quartic
forms with their discriminants is given by the following recursive algorithm, in which we use vn to denote
the variable ai jk at level n of the tree, with v1 = a400 at the top and v15 = a112 at the bottom, and view
14 :=14(v1, . . . , v15) as a polynomial in these variables. After constructing the monomial tree T for
14 as above, we invoke the following algorithm with n = 15 (the bottom of the tree).

Algorithm. TERNARYQUARTICFORMENUMERATION (T, n)
Given a monomial tree T for 14 and a level n ∈ [1, 15]:

(1) If n = 1 then:

(a) Extract g(v1)=14(v1, c2, . . . , cn) mod 264 from T.
(b) For each integer c1 in the coefficient interval [−Bc, Bc]:

(i) Compute D := g(c1) mod 264 with −263
≤ D < 263.

(ii) If D = 0 or |D|> B1 proceed to the next value of c1.
(iii) Otherwise, compute 1 :=14(c1, . . . , cn) ∈ Z using Sylvester’s determinantal formula.

If |1| ≤ B1, output the ternary quartic form defined by c1, . . . , c15 with discriminant 1.

(2) Otherwise, for each integer cn in the coefficient interval [−Bc, Bc]:

(a) Apply the substitution vn← cn to T.
(b) Recursively invoke TERNARYQUARTICFORMENUMERATION(T, n− 1).

We assume that in the process of applying the substitution vn← cn the value of cn is stored in T so
that it can be accessed later in step (1.a.iii) if needed (so the data structure for T includes an auxiliary
array that holds c1, . . . cn). We now note the following optimizations and implementation details:

• We are interested in PGL3(Z)-isomorphism classes of ternary quartic forms represented by a form
within our coefficient bounds. Permutations of variables and sign changes do not change the absolute
value of the discriminant, so we can restrict our enumeration to 0≤ c15 ≤ c14 ≤ c13. This saves a factor
of 48.

• In the recursive call at level n, we can completely ignore levels of the tree below n. In a parallel
implementation, we can fork the execution at any level and divide the work among child processes that
only need the upper part of the tree. As described in the next section, we forked at level n = 10, at which
point the upper part of the tree fits in 700 MB of memory.

• In our implementation we use loops, not recursion, and completely unwind the inner loop, making
each integer value c1 ∈ [−Bc, Bc] fully explicit.

• With the coefficient bound Bc = 9 we only need to compute g(c1) for 19 values of c1. This makes
the finite differences approach of [23] that was used in [1] less attractive, as there is an initial setup cost
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and we cannot as easily take advantage of the fact that the values of c1 (and their powers) are known at
compile time. Instead, we write g1(v1)= g0+ v1h1(v

2
1)+ h2(v

2
1), with deg h1, deg h2 ≤ 4. We then have

g(0)= g0, and for c1 ∈ [1, Bc] we compute,

g(c1)= g0+ c1h1(c2
1)+ h2(c2

1), g(−c1)= g0− c1h1(c2
1)+ h2(c2

1),

reusing the values of c1h1(c2
1) and h2(c2

1), and taking advantage of the fact that all the powers of c1 are
known at compile time.

The last point is crucial, as most of the time will be spent in the inner loop evaluating g(c1). For the
nine values c1 = 0,±1,±2,±4,±8 we can compute g(c1) using only 64-bit additions/subtractions and
bit shifts, and for the remaining c1 ∈ [−Bc, Bc] we use an average of four 64-bit multiplications and six
64-bit additions.

With Bc = 9, benchmarking shows that on average we spend less than 22 clock cycles computing
each value of g(c1) and comparing the result with 0 and B1 (steps (1.b.ii) and (1.b.iii) of the algorithm),
which is consistent with the operation counts above. Overall, the average time per iteration of the inner
loop is about 33 clock cycles; this includes the cost of maintaining the monomial tree T, performing
variable substitutions, iterating values of cn , extracting the coefficients of g(v1) from T, and time spent
computing 14(c1, . . . , cn) ∈ Z using Sylvester’s formula and multiprecision arithmetic (but step (1.b.iii)
is executed so rarely that its impact is negligible).

Remark 3.2. Another advantage of unrolling the inner loop so that powers of c1 are available at com-
pile time (thereby turning polynomial evaluation into a dot product) is that the multiplications can be
performed in parallel. Although we did not take direct advantage of this in our implementation, it allows
the compiler to minimize instruction latency via pipelining. The AVX-512 instruction set supported on
newer Intel CPUs (Knights Landing and Skylake) provides SIMD instructions that support simultaneous
8-way 64-bit multiplication and 8-way 64-bit additive reduction, which in principle should reduce the
cost of evaluating g(c1) by close to a factor of 4. At the time we performed the computations described
in this article these newer processors were not yet widely available, but we plan to exploit this feature in
future computations.

4. Distributed parallel implementation

We performed our computations using preemptible compute instances on Google’s Compute Engine [17],
which is part of the Google Cloud Platform (GCP). We used the n1-highcpu-32 virtual machine type,
each instance of which has 32 virtual CPUs (vCPUs) and 28.8 GB memory; the 32 vCPUs correspond
to hyperthreads running on 16 physical cores. This machine type is widely available on all GCP regions
(geographical areas) and generally offers an optimal price/performance ratio for CPU intensive tasks.

With preemptible compute instances, computations are not allowed to run for more than 24 hours,
and the computation may be halted by GCP at any time. Preempted computations can be restarted if
and when the computational resources become available, and the restarted instance will have access to
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any information that was saved to disk, so in our implementation of the TERNARYQUARTICFORMENU-
MERATION algorithm we incorporated a checkpointing facility that tracks the current state of progress
by writing the values of c15, c14, . . . , cm to disk at regular intervals (we used m = 7). To restart we
simply read the most recently checkpointed values of c15, . . . , cm , rebuild the monomial tree, perform
the corresponding variable substitutions vn = cn , and resume where we left off (restarting typically takes
10–15 seconds).

To efficiently distribute the computation across multiple instances using the coefficient bound Bc = 9
we divide the work into

(Bc+3
3

)
(2Bc + 1)2 = 79 420 jobs. Each job is given a fixed set of integers

(c15, c14, c13, c12, c11), with 0 ≤ c15 ≤ c14 ≤ c13 ≤ Bc and c12, c11 ∈ [−Bc, Bc] (the constraints on
c15, c14, c13 come from the symmetry optimization noted above), and then proceeds to enumerate the
(2Bc + 1)10

= 1910
≈ 1012.79 values of the integers c10, . . . , c1 with |cn| ≤ Bc. Based on the GCP

resource quotas available to us, we assigned two jobs to each 32-vCPU instance, allowing us to use a
total of up to 39 710 preemptible instances at any one time, each equipped with 32 virtual CPUs.

To utilize the 32 virtual CPUs on each instance in parallel, after constructing the monomial tree and
applying substitutions using the values of c15, . . . , c11 assigned to the job, we fork the process into
32 child processes. As noted in the previous section, after performing these substitutions the relevant
part of the monomial tree (levels n ≤ 10) only requires 700 MB of memory, allowing each child process
to have a private copy of this portion of the tree while staying within our 28.8 GB memory footprint.
Each child process then iterates over values of c10, c9, c8 as usual, but only proceeds to c7, . . . , c1 when
(2Bc+ 1)2c10+ (2Bc+ 1)c9+ c8 ≡ i mod 32, where i ∈ [0, 31] is an integer that distinguishes the child
process among its 32 siblings.

With this approach it takes a typical 32-vCPU instance between 3000 and 4000 seconds of wall time
to complete one job (just under an hour, on average). The physical machine types vary, but most of the
machines we used were either 2.5 GHZ Intel Xeon E5v2 (Ivy Bridge) CPUs or 2.2 GHz Intel Xeon E5v4
(Broadwell) CPUs. The total time to complete all 79,420 jobs was about 290 vCPU-years.

Remark 4.1. One might assume 2 vCPUs= 1 core, but with our computational load vCPUs do substan-
tially better than this. It is difficult to make an exact comparison due to the variety of machines used,
but none of our GCP CPUs had a clock speed above 2.5 GHz and the majority were 2.2 GHz. If one
estimates the total number of vCPU clock cycles (≈ 1019.33±0.3) and divides by the number of ternary
quartic forms processed (≈ 1017.69), the average throughput is 44±3 vCPU clock cycles per form, versus
33 clock cycles for a single thread on an idle core. One explanation for this is that while 22 of the 33
average clock cycles represent processor bound low latency arithmetic operations in the inner loop that are
unlikely to benefit from hyperthreading, the remainder are spent on memory-bound activity (maintaining
the monomial tree), which can be overlapped with processor bound activity by another vCPU.

We ran the computations described above on Sunday June 11, 2017, distributing the work across 24
GCP zones located in nine regions (four in North America, two in Europe, and three in Asia). We ran the
computation in two stages, one in the morning and one in the afternoon, each involving approximately
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Figure 3. vCPU utilization on GCP.

20 000 preemptible 32-vCPU instances. Figure 3 shows the CPU utilization over the course of the day;
each color represents one of the 24 zones we used. As can be seen in the chart, our CPU utilization
peaked around 9:00, at which point we were utilizing the equivalent of 580,000 vCPUs at full capacity
(the total number of active vCPUs was well over 600,000, but not all were running at full capacity at the
same time, due to preemption and startup/restart latency).

5. Identifying isomorphism class representatives

With coefficient bound Bc = 9 and discriminant bound B1 = 107, the enumeration of ternary quartic
forms described in the previous sections produces a list of more than 107 forms f (x, y, z). But our goal
is to construct a list of smooth plane quartic curves C f : f (x, y, z) = 0 that we distinguish only up to
isomorphism over Q. The coefficient constraints that we added to optimize the search eliminate some
obvious isomorphisms (at least for curves where the coefficients of xyz2, xy2z, x2 yz are distinct), and
in some cases this does result in a unique isomorphism class representative appearing in our enumeration.
But in the vast majority of cases it does not. Indeed, among the 1378 forms f (x, y, z) we identified with
absolute discriminant |14( f )| = 3952, only two Q-isomorphism classes of curves are represented,

x3z+ x2z2
+ xy3

− xz3
+ y3z = 0, x3z+ y4

+ 2y3z− yz3
= 0,

and in general, among the more than ten million curves we found, only 82 241 distinct Q-isomorphism
classes are represented. Our goal in this section is to briefly explain how we efficiently reduced our initial
list of more than 107 ternary quartic forms to a list of 82 241 unique Q-isomorphism class representatives.

We first note that this computation cannot be easily accomplished using any of the standard computer
algebra packages. Even if one of them supported reliable isomorphism testing of smooth plane curves
over Q (to the author’s knowledge, none do), pairwise isomorphism testing is expensive and we would
need to perform hundreds of millions of such tests. We want a strategy that can be applied in bulk and effi-
ciently reduce a large set of smooth plane curves to a subset of unique isomorphism class representatives.

Given an equation f (x, y, z) in our list S of ternary quartic forms satisfying the coefficient bound Bc

and discriminant bound B1, let S f denote the set of ternary quartic forms g for which Cg is Q-isomorphic
to C f . The set S f is finite, and if we could efficiently compute it, our problem would be solved. Rather



A DATABASE OF NONHYPERELLIPTIC GENUS-3 CURVES OVER Q 455

than computing S f , we will compute successively larger subsets of it and use them to reduce the size of
S by removing all elements of S ∩ S f distinct from f (or distinct from a chosen representative of S f that
we happen to like better than f ).

Let us fix the following set of generators for GL3(Z):

A1 :=

1 1 0
0 1 0
0 0 1

 , A2 :=

 0 1 0
−1 0 0

0 0 1

 , A3 :=

−1 0 0
0 1 0
0 0 1

 , A4 :=

0 0 −1
1 0 0
0 1 0

 .
These induce invertible linear transformations

A1 : f (x, y, z) 7→ f (x + y, y, z), A2 : f (x, y, z) 7→ f (y,−x, z),

A3 : f (x, y, z) 7→ f (−x, y, z), A4 : f (x, y, z) 7→ f (−z, x, y),

which do not change the Q-isomorphism class of the curve f (x, y, z)= 0 or its absolute discriminant.
(This means we will not detect isomorphisms f (x, y, z) 7→ f (ax, y, z) with a 6= ±1, but these change
the discriminant by a36, which will push the discriminant well beyond our discriminant bound). Let
‖ f ‖ denote the maximum of the absolute values of the coefficients of f ; note that ‖ f ‖ is preserved
by A2, A3, A4, but not A1. The following algorithm performs a breadth-first search of the Cayley
graph of GL3(Z) with respect to our generators, subject to the restriction that it only explores paths
1,M1, . . . ,Mn ∈ GL3(Z) in the graph for which ‖Mi ( f )‖ ≤ b for 1≤ i ≤ n.

Algorithm. BOUNDEDISOMORPHISMCLASSENUMERATION ( f, b)
Given a ternary quartic form f (x, y, z) and a bound b ≥ ‖ f ‖, compute S f,b ⊆ S f as follows:

(1) Let U := { f } and V := { f }.

(2) Let W := { }, and for g ∈ V :

(a) If ‖A1(g)‖ ≤ b then set W ←W ∪ {A1(g)}.
(b) Set W ←W ∪ {A2(g), A3(g), A4(g)}.

(3) Set V ← {g : g ∈W and g 6∈U }.

(4) If V is empty then output S f,b :=U ∪ {−g : g ∈U } and terminate.

(5) Set U ←U ∪ V and return to step (2).

Our strategy is to start with b = Bc and for each f ∈ S remove every element of S f,b from S except
for f , and then increase b and repeat. With b = Bc and our initial set of over ten million forms S, an
efficient implementation of the algorithm above takes only ten minutes and reduces the number of curves
to around 125 000. The algorithm becomes slower as b increases, but even with b = B2

c = 81 it takes
just eight core-hours, yielding a list of 82 241 curves that appear to be nonisomorphic.

We are now left with the task of trying to prove that the remaining set of curves S are all nonisomorphic.
Here again we adopt a bulk strategy and compute two sets of invariants for every f ∈ S. First we use the
Magma package [30] which implements the algorithms described in [25] to compute the Dixmier–Ohno
invariants of C f ; these uniquely identify the Q-isomorphism class of C f . Second, we compute a vector
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of point counts of C f modulo all primes p ≤ 256 of good reduction for C f , using the smalljac software
package described in [23]. Both computations are quite fast; it takes only a few minutes to do this for
all 82 241 of our candidate curves.

We now define an equivalence relation on S by defining C f and Cg to be equivalent if and only if their
normalized Dixmier–Ohno invariants coincide and their point counts at all common primes p ≤ 256 of
good reduction coincide. The resulting equivalence classes partition S into 82 239 singleton sets and the
following pair of curves with absolute discriminant 324 480:

C f : x3 y+ x3z+ x2 y2
− 2x2 yz− 4x2z2

− 4xy3
+ xz3

+ 2y4
− 2yz3

+ z4
= 0,

Cg : x4
+ x3 y+ 2x3z+ 4x2 y2

− xy3
− 2xy2z+ y4

+ 3y3z+ 5y2z2
+ 4yz3

+ 2z4
= 0.

These curves both have good reduction modulo 7 but are not isomorphic as curves over F7, as can
be verified by exhaustively checking all possible isomorphisms, or by using the algorithm of [25] to
reconstruct unique F7-isomorphism class representatives of all twists with these Dixmier–Ohno invariants
and verifying that C1 and C2 are isomorphic to distinct representatives. As observed by one of the
referees, these curves are isomorphic over Q(i) via the maps (x : y : z) 7→ (z : i x : (1− i)x/2− y) and
(iy : (1+ i)y/2+ z : −x) 7→(x : y : z).

6. Examples

We conclude with a list of the curves C : f (x, y, z)= 0 that we found with absolute discriminants |1|
less than 104, as well as two other curves of larger discriminant that are discussed below. For each curve
we list the (geometric) real endomorphism algebra of its Jacobian J, and the decomposition of J up to
Q-isogeny. The real endomorphism algebras were computed by Jeroen Sijsling using an adaptation of the
algorithms described in [8]. An abelian threefold J/Q with real endomorphism algebra R×R or R×C

over Q is isogenous to the product of an abelian surface A with End(AQ)= Z and an elliptic curve E
(see Table 2 of [32], for example), and it is not hard to show that A, E , and the isogeny J ∼ A× E can
all be defined over Q. There is a finite set of possibilities for the isogeny class of E , since its conductor
must divide that of J, and by comparing Euler factors one can quickly rule out all but one possibility. We
have not attempted to construct explicit Prym varieties (which requires defining a morphism C→ E),
but we have uniquely determined the isogeny class of E , and therefore of A.

In Table 2, isogeny classes of abelian surfaces and elliptic curves are identified by a label containing
its conductor (Cremona labels in the case of elliptic curves). The highlighted abelian surface isogeny
classes 389.a, 427.a, 472.a, 555.a are isogeny classes of genus-2 Jacobians listed in the LMFDB [7].
The isogeny classes 561.a and 737.a likely correspond to the Prym varieties listed in [4, Table 2], while
the isogeny classes 550.a, 702.a, 732.a are likely to be three of the eight “unknown” isogeny classes
corresponding to paramodular cuspidal newforms of weight 2 and level N ≤ 1000 listed in the tables of
Poor and Yuen [28]. We have verified that the Euler factors of isogeny class 550.a match those listed
in [13, Table 2], and we have verified that the expected functional equation for the L-functions of the
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|1| f (x, y, z) End(JQ)⊗R Q-isog factors

2940 x3 y+ x3z+ x2 y2
+ 3x2 yz+ x2z2

− 4xy3
− 3xy2z M2(R)×R 14a, 14a, 15a

−3xyz2
− 4xz3

+ 2y4
+ 3y2z2

+ 2z4

4727 x3z+ x2z2
+ xy3

− xy2z+ y2z2
− yz3 R simple

5835 x4
+ 2x3 y+ 2x3z− 4x2 y2

+ 2x2 yz− 4x2z2
− xy3 R×R 389.a, 15a

−xz3
+ 2y4

− 3y3z+ 5y2z2
− 3yz3

+ 2z4

5978 x3z+ x2 y2
+ x2 yz+ xy3

+ xy2z+ xyz2
+ xz3

+ y3z+ y2z2 R×R 427.a, 14a
6050 x3z+ x2 y2

+ xy3
− xy2z− 2xz3

− y2z2
− z4 R×R 550.a, 11a

6171 x3z+ x2 yz+ x2z2
− xy3

+ xy2z+ xz3
− y2z2

+ yz3 R×R 561.a, 11a
6608 x3z+ x2 yz+ x2z2

+ xy3
− 3xy2z− 4xz3

− y4
+ 2y3z+ 2z4 R×R 472.a, 14a

7376 x3z+ x2 y2
+ x2z2

+ xy3
+ xyz2

+ y3z+ yz3 R simple
8107 x3z+ x2 yz+ x2z2

+ xy3
+ xyz2

+ y3z+ y2z2
+ yz3 R×R 737.a, 11a

8233 x3z+ x2 yz+ x2z2
+ xy3

− xy2z+ y4
− y3z− yz3 R simple

8325 x3z+ x2 y2
− 2x2z2

+ y3z− 2y2z2
+ z4 R×R 555.a, 15a

8471 x3z+ x2 y2
− x2z2

+ xy3
− xy2z+ xyz2

− xz3
+ y3z− y2z2 R simple

9607 x3z+ x2 yz+ x2z2
− xy3

+ xyz2
+ y2z2

+ yz3 R simple

75816 x3z+ x2 y2
+ 2x2 yz− x2z2

+ 2xy3
− xy2z− xz3

− yz3 R×C 702.a, 27a
144400 x3z+ 2x2 yz+ 2x2z2

+ xy3
− xz3

+ 2y4
+ 2y3z+ y2z2 R×R 760.a, 190b

Table 2. Smooth plane quartics over Q of small discriminant.

isogeny classes 550.a, 702.a, 760.a holds to a precision of 1000 decimal places. We thank Armand
Brumer for bringing the 550.a example to our attention.

Among the absolute discriminants listed in Table 2, exactly one is prime, 8233, which arises for the
curve

C1 : x3z+ x2 yz+ x2z2
+ xy3

− xy2z+ y4
− y3z− yz3

= 0.

As noted in the Introduction, in a similar search of hyperelliptic curves of genus-3, the smallest prime
absolute discriminant that appears is also 8233, for the hyperelliptic curve

C2 : y2
+ (x4

+ x3
+ x2
+ 1)y = x7

− 8x5
− 4x4

+ 18x3
− 3x2

− 16x + 8.

Using the average polynomial-time algorithms described in [20; 21; 19] to compute Frobenius traces at
all primes p 6= 8233 up to 228 for both curves, we find that they coincide in every case. This is compelling
evidence that their Jacobians are isogenous. Computation of their period matrices by Nils Bruin suggests
that they are related by an isogeny whose kernel is isomorphic to (Z/2Z)4×Z/4Z. In principle, one can
use trace computations to prove or disprove the existence of an isogeny via a Faltings–Serre argument
(see [5, Theorem 2.1.5] for an effective algorithm), but we have not yet attempted to do so.

Examples of hyperelliptic and nonhyperelliptic curves with isogenous (even isomorphic) Jacobians
have been previously constructed [22], but these constructions all involve abelian varieties with extra

http://www.lmfdb.org/EllipticCurve/Q/14a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/389/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/427/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/472/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/Genus2Curve/Q/555/a/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
http://www.lmfdb.org/EllipticCurve/Q/
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structure (typically products of elliptic curves). We have confirmed that the Jacobians of these discrim-
inant 8233 curves are generic in the sense that their Mumford–Tate groups are as large as possible (all
of GSp6). In genus 3 this is equivalent to having no extra endomorphisms over Q (type I in Albert’s
classification), see [26, §2.3], and to having large Galois image (open in GSp6(Ẑ)), see [6]. To prove this
it is enough to show that for some prime ` the image of the Galois representation given by the action of
Gal(Q/Q) on the `-torsion subgroup of Jac(Ci ) contains Sp6(Z/`Z): from the proof of [33, Lemma 2.4],
the image of the `-adic representation must contain Sp(Z`), and this implies that the Mumford–Tate group
is GSp6. Taking `= 5, if we compute the characteristic polynomial of Frobenius at the primes p= 31, 41
and reduce modulo ` we obtain

f 31(t) := t6
+ t4
+ 3t3

+ t2
+ 1 and f 41(t) := t6

+ 4t4
+ 2t3

+ 4t2
+ 1.

A computation in Magma shows that among the maximal subgroups of Sp6(Z/5Z) (ten, up to conjugacy),
none contain a pair of elements that realize these two characteristic polynomials; see the Magma scripts
in [31] for details. This proves that the mod-5 Galois image contains Sp6(F5); as argued above, this
implies that the Mumford–Tate groups of the Jacobians of the curves C1 and C2 are both equal to GSp6.
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