
 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Pentest-Report dnsmasq 05.-06.2016
Cure53, Dr.-Ing. Mario Heiderich, Mike Wege, Dario Weißer

Index
Introduction
Scope
Identified Vulnerabilities

DM -01-001 Uninitialized buffer leads to memory leakage (Medium)
DM -01-003 Makefile lacks security parameters for gcc (Low)
DM -01-006 Allocated memory is not cleared (Low)

Miscellaneous Issues
DM -01-002 Unchecked return value can lead to NULL pointer dereference (Low)
DM -01-004 Wrong assumption about return value of snprintf ()/ vsnprintf () (Low)
DM -01-005 Hardcoded values in fscanf () format strings with aliased buffers (Low)

Conclusion

Introduction
“Dnsmasq provides network infrastructure for small networks: DNS, DHCP, router
advertisement and network boot. It is designed to be lightweight and have a small
footprint, suitable for resource constrained routers and firewalls.

It has also been widely used for tethering on smartphones and portable hotspots, and to
support virtual networking in virtualisation frameworks. Supported platforms include
Linux (with glibc and uclibc), Android, *BSD, and Mac OS X. Dnsmasq is included in
most Linux distributions and the ports systems of FreeBSD, OpenBSD and NetBSD.
Dnsmasq provides full IPv6 support.”

From http :// www . thekelleys . org . uk / dnsmasq / doc . html

This report documents the findings of the penetration test and security assessment
conducted by the Cure53 team against the dnsmasq server. The project was generously
funded from the SOS programme run by Mozilla. Carried out over a period of two weeks
in May and June 2016, this assignment involved three members of the Cure53 team.

Cure53, Berlin · 06/22/16 1/10

https://cure53.de/
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Regarding the approach and scope, the test was performed as a tool-assisted code
audit. Getting full coverage of the available dnsmasq sources was attempted and the
tests were aimed at several specific attacks and vulnerability patterns, namely buffer
overflows, parsing errors, information leaks, cryptographic errors and usage of weak
functions.

As for the results, the tests have only uncovered six issues, with three among them
classified as actual security vulnerabilities. It has to be underscored that neither issues
with “Critical” nor with “High” severity rankings were found, denoting that the discoveries
are not particularly salient in terms of their impact, scope, and the risk they pose.

Scope
• dnsmasq Sources

◦ http :// thekelleys . org . uk / gitweb /? p = dnsmasq . git ; a = summary

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. DM-01-001) for the purpose of facilitating any
future follow-up correspondence.

DM-01-001 Uninitialized buffer leads to memory leakage (Medium)

It was discovered that the application does not properly initialize the buffer for incoming
and outgoing packets. This leads to a partial disclosure of the previously received or
sent packets. Taking advantage of this issue made it possible to leak up to
[28+tftp_prefix_length] bytes from a packet that another party had sent to the server. The
attack is limited in scope and impact since only the network data can be leaked. It is
further constrained by the condition that the packets must be greater than 530 bytes in
size. However, it cannot be excluded that an attacker could work around these
limitations by using other services, although this option has not been investigated further
during this test.

In the following example one can observe a setup comprising the server, a victim and an
attacker. The victim sends a long packet (around 550 bytes) to the server. Since this is
only a proof of concept the content is inconsequential here.

Cure53, Berlin · 06/22/16 2/10

https://cure53.de/
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
http://thekelleys.org.uk/gitweb/?p=dnsmasq.git;a=summary
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Victim → Server:
perl -e 'print "LeakMe"x91' | nc -u 192.168.1.1 53

Having completed sending assignments, the daemon->packet buffer is filled with the
data from the client’s request. In essence, the attacker can now run their attack aimed at
leaking a few bytes. The packet that is used here is a TFTP1 request to read a file.

Attacker → Server:
perl -e 'print "\x00\x01".("A"x500)."\x00octet\x00"' | nc -u 192.168.1.1 69

The file is not accessible and the server responds with the corresponding error
message. Since the buffer holding the packet is not flushed, it still holds the contents
from the previous communication with the victim.

Server → Attacker:
17:39:33.558152 IP (tos 0x0, ttl 64, id 65025, offset 0, flags [none], proto UDP
(17), length 570)
 192.168.1.1.47255 > 192.168.1.3.50423: [udp sum ok] UDP, length 542

0x0000: 0800 27d0 e35c 0800 2788 9fcd 0800 4500 ..'..\..'.....E.
0x0010: 023a fe01 0000 4011 f75c c0a8 0101 c0a8 .:....@..\......
0x0020: 0103 b897 c4f7 0226 9f78 0005 0000 6361 &.x....ca
0x0030: 6e6e 6f74 2072 6561 6420 2f6c 656c 2f41 nnot.read./lel/A
0x0040: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
...
0x0210: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0x0220: 4100 6374 6574 0065 4c65 616b 4d65 4c65 A.ctet.eLeakMeLe
0x0230: 616b 4d65 4c65 616b 4d65 4c65 616b 4d65 akMeLeakMeLeakMe
0x0240: 4c65 616b 4d65 4c65 LeakMeLe

It is evident that the message sent to the attacker should by no means contain data sent
by the victim. The vulnerability is caused by two different flaws described next.

1. No initialization of buffers:

The packet buffer “packet” located in the “daemon” structure is used to store requests
and responses for different protocols. The server does not fork when UDP packets are
received, signifying that the buffer becomes reusable for different connections from
different hosts. Because the memory is not cleared between the connections, the buffer
might technically contain old data.

1 https :// en . wikipedia . org / wiki / Trivial _ File _ Transfer _ Protocol

Cure53, Berlin · 06/22/16 3/10

https://cure53.de/
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Trivial_File_Transfer_Protocol
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

2. Incorrect use of snprintf():

It can be inferred from the existing schemes that the author of the code probably
believed that the return value of snprintf()2 equals the number of bytes written into the
destination buffer. In fact this is only the case if the source string is smaller or equal to
the limit value. Snprintf returns the number of bytes that could have been written if there
was no limitation in place.

The tftp_request function is called frequently in order to check for new requests on the
tftp socket. Basically, the file requests are handled here but, prior to a file being available
for reading, the accessibility needs to be verified. After checking the permissions and
potentially reading the requested file, a response of size len is sent to the client.

Affected File:
/src/tftp.c

Affected Code:
void tftp_request(struct listener *listen, time_t now)
{
…

if ((transfer->file = check_tftp_fileperm(&len, prefix))) {
...

}

while (sendto(transfer->sockfd, packet, len, 0,
(struct sockaddr *)&peer, sa_len(&peer)) == -1

&& errno == EINTR);

Check_tftp_fileperm performs a permission check and tries to open the file. If it turns out
impossible then an error message is generated and written into the packet buffer.

static struct tftp_file *check_tftp_fileperm(ssize_t *len, char *prefix)
{

…
if ((fd = open(namebuff, O_RDONLY)) == -1)
{

if (errno == ENOENT)
{

*len = tftp_err(ERR_FNF, packet,
_("file %s not found"), namebuff);

return NULL;
}
else if (errno == EACCES)

2 https :// en . wikipedia . org / wiki / C _ file _ input / output # sprintf

Cure53, Berlin · 06/22/16 4/10

https://cure53.de/
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
https://en.wikipedia.org/wiki/C_file_input/output#sprintf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

goto perm;
else

goto oops;
}
…
oops:
*len = tftp_err_oops(packet, namebuff);
if (fd != -1)

close(fd);
return NULL;

The problem occurs in tftp_err where the error message is written into the message
buffer. The return value of snprintf() is used to determine the size of the final message
that is sent to the user. While the maximum number of bytes snprintf can write is in fact
500, the return value equals the length of the string before it is truncated at 500 bytes.
Thus more data than what is actually in the buffer is sent to the user.

static ssize_t tftp_err_oops(char *packet, char *file)
{

/* May have >1 refs to file, so potentially mangle a copy of the name */
strcpy(daemon->namebuff, file);
return tftp_err(ERR_NOTDEF, packet,

_("cannot read %s: %s"), daemon->namebuff);
}

static ssize_t tftp_err(int err, char *packet, char *message, char *file)
{

struct errmess {
unsigned short op, err;
char message[];

} *mess = (struct errmess *)packet;
...
ssize_t ret = 4;
ret += (snprintf(mess->message, 500, message, file, errstr) + 1);
...
return ret;

}

It is recommended to overwrite buffers with zero, both before receiving data and after
sending it. Furthermore tftp_err needs to be adjusted to return the correct size.

Cure53, Berlin · 06/22/16 5/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

DM-01-003 Makefile lacks security parameters for gcc (Low)

Position-independant executable3 (PIE) is a security mechanism that makes exploitation
of vulnerabilities much more difficult. Binaries without the PIE are always mapped to the
same address when being executed. An attacker who already has found a vulnerability
can use this information to read data from a known address or to create a ROP
payload4. A binary compiled with PIE is mapped to a random memory location when
being executed and eliminates all predictable addresses.

By default, the Executables are mapped to the address 0x400000 on the 64bit Linux
systems.

Memory maps without PIE:
00400000-0044f000 r-xp 00000000 08:01 271825
/root/dnsmasq/src/dnsmasq
0064f000-00653000 rw-p 0004f000 08:01 271825
/root/dnsmasq/src/dnsmasq
00872000-00893000 rw-p 00000000 00:00 0 [heap]

With PIE enabled, the Executable no longer remains at 0x400000 but has a random
address which is chosen when the program is started.

Memory maps with PIE:
7f2292f5f000-7f2292fb1000 r-xp 00000000 08:01 271827
/root/dnsmasq/src/dnsmasq
7f22931a5000-7f22931a9000 rw-p 00000000 00:00 0
7f22931ae000-7f22931b1000 rw-p 00000000 00:00 0
7f22931b1000-7f22931b5000 rw-p 00052000 08:01 271827
/root/dnsmasq/src/dnsmasq
7f2293616000-7f2293637000 rw-p 00000000 00:00 0 [heap]

PIE should be enabled by default on all systems that support this feature. Furthermore,
adding subsequent compiler security flags should be considered. Some of them are
described in the debian wiki5.

3 https://en.wikipedia.org/wiki/Position-independent_code#PIE
4 https :// en . wikipedia . org / wiki / Return - oriented _ programming
5 https :// wiki . debian . org / Hardening # gcc _- Wformat _- Wformat - security

Cure53, Berlin · 06/22/16 6/10

https://cure53.de/
https://en.wikipedia.org/wiki/Position-independent_code#PIE
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://wiki.debian.org/Hardening#gcc_-Wformat_-Wformat-security
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Return-oriented_programming
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

DM-01-006 Allocated memory is not cleared (Low)

The application uses malloc()6 to allocate memory for buffers and data structures. This
function returns a pointer to the allocated space but leaves its contents untouched. In
other words, the previously freed data can remain in the area in which it will then be
contained by the buffer. This can lead to memory disclosure if this type of buffer is sent
via network without being filled properly.

The problem can be avoided by overwriting buffers with 0’s immediately after allocation.
It is recommended to use calloc() instead of the current function in order to avoid the
pitfalls of malloc(). The buffers that are allocated on the stack must be nulled manually.
As already described in DM -01-001, it is important to clear buffers prior to any re-usage.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

DM-01-002 Unchecked return value can lead to NULL pointer dereference (Low)

The functions send_ra_alias and periodic_slaac do not check the return value of
expand. Therefore, they might lead to a possible read from 0. Expand resizes a buffer
and returns the pointer on success and, if malloc fails to allocate enough memory, NULL
is returned. The result would be an invalid dereference call which effectively crashes the
program.

Affected File:
/src/slaac.c

Affected Code:
ping = expand(sizeof(struct ping_packet));
ping->type = ICMP6_ECHO_REQUEST;
ping->code = 0;

Affected File:
/src/radv.c

6 https :// en . wikipedia . org / wiki / C _ dynamic _ memory _ allocation

Cure53, Berlin · 06/22/16 7/10

https://cure53.de/
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected Code:
ra = expand(sizeof(struct ra_packet));

ra->type = ND_ROUTER_ADVERT;
ra->code = 0;
ra->hop_limit = hop_limit;

It is recommended to check the return values of Expand and to make sure that the
operation is aborted in case of the 0 value..

DM-01-004 Wrong assumption about return value of snprintf()/vsnprintf() (Low)

As already discussed, particularly in the realm of DM -01-001, the return value of
snprintf()/vsnprintf() is inappropriately used across various locations. While this can
fortunately result only in a mangled output in the cases described below, it is
nevertheless recommended to fix this oversight.

Affected File:
/src/log.c

Affected Code:
len = p - entry->payload;
va_start(ap, format);
len += vsnprintf(p, MAX_MESSAGE - len, format, ap) + 1; /* include zero-
terminator */
va_end(ap);
entry->length = len > MAX_MESSAGE ? MAX_MESSAGE : len;

Affected File:
/src/rfc2131.c

Affected Code:
char *s = option_string(AF_INET, req_options[i], NULL, 0, NULL, 0);
q += snprintf(q, MAXDNAME - (q - daemon->namebuff),

"%d%s%s%s",
req_options[i],
strlen(s) != 0 ? ":" : "",
s,
req_options[i+1] == OPTION_END ? "" : ", ")

Affected File:
/src/rfc3315.c

Cure53, Berlin · 06/22/16 8/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Affected Code:
char *s = option_string(AF_INET6, opt6_uint(oro, i, 2), NULL, 0, NULL, 0);
q += snprintf(q, MAXDNAME - (q - daemon->namebuff),

"%d%s%s%s",
opt6_uint(oro, i, 2),
strlen(s) != 0 ? ":" : "",
s,
(i > opt6_len(oro) - 3) ? "" : ", ");

A recommendation stemming from the above is to use the return value according to
RETURN VALUE and NOTES in the respective man-page or, alternatively, have it
properly implemented in /src/cache.c.

DM-01-005 Hardcoded values in fscanf() format strings with aliased buffers (Low)

The problem described here concerns the usage of hard-coded string length values.
More specifically, it is the values with calls to fscanf() with borrowed buffers that can
easily lead to buffer overflow in the event of code changes being deployed. This does
not currently lead to any buffer overflows because the buffer sizes are large enough.
Moreover the referenced names of the aliased buffers are specific to the original case
and not to the reuse or more general case.

Affected File:
/src/lease.c

Affected Code:
/* client-id max length is 255 which is 255*2 digits + 254 colons

borrow DNS packet buffer which is always larger than 1000 bytes */
if (leasestream)

while (fscanf(leasestream, "%255s %255s",
daemon->dhcp_buff3, daemon->dhcp_buff2) == 2)

{

Affected Code:
ei = atol(daemon->dhcp_buff3);

if (fscanf(leasestream, " %64s %255s %764s",
daemon->namebuff, daemon->dhcp_buff,

daemon->packet) != 3)
break;

It is recommended to use the allocated buffer size constants modulo the maximum
expected lengths from the respective header file and double-apply the stringify operator
to embed the resulting values in the format strings. The downside to this solution is that
it will likely not increase the readability of the code.

Cure53, Berlin · 06/22/16 9/10

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Rudolf Reusch Str. 33
 D 10367 Berlin
 cure53.de · mario@cure53.de

Conclusion
Describing the results of the spring 2016 security assessment of the dnsmasq server
carried out by the Cure53 team, this report highlights the overall positive impression that
the state of security at the dnsmasq makes. At the same time, some attention should be
given to the fact that six issues were still found. Three of the discoveries constitute
actual security vulnerabilities and should be addressed as soon as possible.

Looking at all findings of the audit, which was notably sponsored by the Mozilla SOS
Program, one has to underline that only one issue, namely the DM -01-001 revealing a
memory leak, was eventually classified as “Medium” in terms of severity. Consequently,
the remaining problems were less impactful, effectively suggesting not only the
robustness of the code, but also pointing to the predicted relative ease of implementing
fixes.

The overall impression of the code quality shared by the Cure53 testing team was
positive, with further notes being made about the code’s mature feel. At the same time,
some of the numerous hand hand-crafted parsers and serializers/deserializers were
somewhat questionable, thus leaving room for further investigations of the dnsmasq
server. The main problem appears to be the largely missing documentation of the great
majority of the existing code. As a result, it can be forecasted that future maintainers of
either the main branch or the potential forks of the codebase, will have considerable
difficulty in fully understanding the implementation in place. This needs to be discussed
and reflected upon when the long-term perspective of the dnsmasq evolution is
considered.

One general technical recommendation for improving the security of the dnsmasq is to
replace or further restrict unbounded string handling calls. This applies to strcat(),
strcpy(), strlen(), sprintf(), strtok() with their respective n-limited functions. At any rate,
the proper usage of the signed length values needs to be ensured as it otherwise leads
to a potential for buffer under- and over- flows. The application of an internal random
number generator over the system-rng/prng has not left the Cure53 overly confident
about its suitability and aptness. However, no obviously problematic usage of this
mechanism for the cryptographically relevant operations could be identified during the
tests.

Cure53 would like to thank Gervase Markham and Chris Riley of Mozilla for their
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 06/22/16 10/10

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report dnsmasq 05.-06.2016
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	DM-01-001 Uninitialized buffer leads to memory leakage (Medium)
	DM-01-003 Makefile lacks security parameters for gcc (Low)
	DM-01-006 Allocated memory is not cleared (Low)
	Miscellaneous Issues
	DM-01-002 Unchecked return value can lead to NULL pointer dereference (Low)
	DM-01-004 Wrong assumption about return value of snprintf()/vsnprintf() (Low)
	DM-01-005 Hardcoded values in fscanf() format strings with aliased buffers (Low)
	Conclusion

