

ODROID-HC1 and ODROID-MC1: A�ordable High-Performance
And Cloud Computing At Home
 September 1, 2017  By Rob Roy  ODROID-HC1

Many people have been using the ODROID-XU4 for server,
NAS, cluster, mining and build-farm applications, thanks to
its high computing performance and connectivities. They
kept requesting easier and cheaper solutions for scalability
with a stripped-down version of XU4, so Hardkernel has
introduced a new product that is intended to be used for
building an a�ordable and powerful Home Cloud server,
called the ODROID-HC1, which is now available for USD$49
at http://bit.ly/2wjNToV.

ODROID-HC1
The ODROID-HC1 is a single board computer (SBC) which is
an a�ordable solution for a network attached storage
(NAS) server. This home cloud server centralizes data and
enables users to share and stream multimedia �les to
phones, tablets and other devices on a network, which is
ideal for a single user on many devices, for sharing �les
between family members, and for developers or a group.
You can tailor the ODROID-HC1 to your speci�c needs, and
there is plenty of software available with minimal
con�guration. The storage of the server can be customized
by using a large capacity hard drive or SSD. Depending on
your needs, the frame is made to be stackable. The
engineered metal frame body is designed to store a 2.5
inch HDD/SSD while o�ering excellent heat dissipation.

The ODROID-HC1 is an elegant, a�ordable solution to home cloud
computing

The integrated SATA interface will give you the best performance

The ODROID-HC1 is an amazing stackable board for building your
personal cluster

The ODROID-HC1 is based on the very powerful ODROID-
XU4 platform, and can run Samba, FTP, NFS, SSH, NGINX,
Apache, SQL, Docker, WordPress and other server
software smoothly using full Linux distributions like
Ubuntu, Debian, Arch and OMV. Available and ready-to-go
operating system (OS) distributions are on the Hardkernel
Wiki at http://bit.ly/2wjNsuI. Any OS that runs on the XU4
is fully compatible with the HC1. We guarantee the
production of ODROID-HC1 to the middle of 2020, but
expect to continue production long after.

Key features

Samsung Exynos5422 Cortex-A15 2Ghz and
Cortex-A7 Octa core CPUs

2Gbyte LPDDR3 RAM PoP stacked

http://bit.ly/2wjNToV
http://bit.ly/2wjNsuI

SATA port for 2.5inch HDD/SSD storage

Gigabit Ethernet port

USB 2.0 Host

UHS-1 capable micro-SD card slot for boot media

Size : approximately 147 x 85 x 29 mm (including
aluminum cooling frame)

Linux server OS images based on modern Kernel
4.9 LTS

Since bad USB cables and faulty USB-to-SATA bridge
chipsets make users struggling due to physical/electrical
tolerance issues as well as driver compatibility issues, the
ODROID-HC1 has a built-in SATA connector on the PCB
with a fully tested SATA bridge controller. To lower the
cost, the board size was minimized due to the cost of the
10-layers PCB, which resulted in the removal of some
features such as the HDMI output, eMMC connector, USB
3.0 hub, power button, and slide switch.

Any type of 2.5-inch SATA HDD/SSD storage may be
installed, including 7mm, 9.5mm, 12mm and 15mm thick
units. The Seagate Barracuda 2TB/5TB HDDs, Samsung
500GB HDD and 256GB SSD, Western Digital 500GB and
1TB HDD, HGST 1TB HDD and other storages were fully
tested with UAS and S.M.A.R.T. functions.

The ODROID-HC1 supports many di�erent types of hard drives

Your distributed server can be modular, compact, and stylish

For further details and a demonstration of the ODROID-
HC1 functionality, please watch the video at

https://youtu.be/t-L99pUANaA.

ODROID-MC1
The ODROID-MC1, which stands for My Cluster, is a simple
solution for those who need an a�ordable and powerful
personal cluster. It is similar to the ODROID-HC1, but
excludes the SATA interface and adds a large cooling fan
for heavy computing loads. It is anticipated to be available
in September 2017 for USD$200.

Hardkernel spent several days building this big cluster computer
using 200 ODROID-MC1 units with 1600 CPU cores and 400GB RAM

A stack of 4 ODROID-MC1 units, creating a cluster with 32 CPU
cores and 8GB RAM.

Cooling 4 ODROIDs with a single fan is a great cost-saving feature

The SoC and PMIC are glued with epoxy resin to increase their
reliability

Technical speci�cations
Schematics http://bit.ly/2vLy7zH
PCB mechanical drawings (AutoCAD format)
http://bit.ly/2el0VZm
Product details http://bit.ly/2xzBXho

https://youtu.be/t-L99pUANaA
http://bit.ly/2vLy7zH
http://bit.ly/2el0VZm
http://bit.ly/2xzBXho

My ODROID-C2 Docker Swarm: Part 1 – Swarm Mode Features
 September 1, 2017  By Andy Yuen  Docker, Linux, ODROID-C2

Docker introduced swarm mode in version 1.12.x to
enable the deployment of containers on multiple docker
hosts. Swarm mode provides cluster management and
service orchestration capabilities including service
discovery and service scaling, among other things, using
overlay networks and an in-built load balancer
respectively. These are mandatory features for the
enterprise as there is a limit to the number of containers
one can deploy on a single docker host. For a high level
architectural description of swarm mode, please read my
previous article published in the November 2016 issue of
ODROID Magazine at http://bit.ly/2wiTVXM.

Several months ago, I was experimenting with Docker’s
swarm mode on my �ve board ODROID-C2 cluster. I was
able to start multiple Docker containers on multiple docker
hosts but neither overlay network, routing mesh, nor load
balancing were working in swarm mode. I tried using
di�erent versions of docker (1.12.x and 1.13.x) compiled
on my ODROID-C2 to no avail. I also tried running
Kubernetes on my ODROID-C2 cluster. Again the
networking part of Kubernetes did not work. I suspected
that the kernel was missing certain modules needed for
Docker and Kubernetes networking. Due to this, I stopped
my experimentation until now. What rekindled my passion
to get Docker swarm mode working was seeing my
hardware not being used: an ODROID VU7 multi-touch
screen and a VuShell for VU7.

I assembled the VU7 screen and an ODROID-C1+ with the
VuShell enclosure. Then I thought to myself, why not put
my ODROID-C2 cluster there as well? You can see the
screen displaying a soft keyboard in the Figure 1. All
ODROID single board computers are connected together
with an 8-port gigabit Ethernet switch, and an SSD is also

put inside the VuShell enclosure. The ODROID cardboard
box houses the power supply. The tiny wireless router
uses Wireless Distribution System, WDS, to connect to my
main router to provide Ethernet Internet access for all the
ODROIDs housed in the VuShell, because they don’t have
built-in WiFi.

Figure 1 – A Docker swam cluster using the ODROID-VU shell as a
case

Hardkernel’s Ubuntu 16.04 OS
I had the suspicion that the cause for Docker’s swarm
mode not working in previous attempts was due to some
missing or incompatible kernel modules in the OS. So, I
decided to switch to another OS. I noticed that Hardkernel

recently released Ubuntu 16.04 (v2.3) for the ODROID-C2
so I gave it a try. The earlier version of Hardkernel’s
Ubuntu OS that I tried months earlier was unstable, but
the current release worked without any issues. I was
happy and told myself that this time it might work!

To make things easier, I installed and con�gured the
following packages:

parallel-ssh on the docker manager to allow me
to issue commands once from the docker
manager to be executed on all nodes

nfs-kernel-server on the manager and nfs-
common on all nodes

curl on the manager for testing

dnsutils on all nodes

I also generated SSH keys for the “odroid” and “root” users
on all members of the cluster, so that they can SSH into
each other without a password.

Docker Swarm Mode Reboot
I installed docker.io using apt-get and did a quick “docker
run” test using my httpd image, and it worked. I wanted to
try out the swarm mode next to see if it will work with the
new OS. Here is a screenshot of the versions of software
being used. It is interesting to note that Hardkernel’s
Ubuntu distribution came with zram pre-installed for swap,
which is handy.

http://bit.ly/2wiTVXM

Figure 2 – Docker showing the versions of all of the current
software

Creating a Swarm
The host names and static IP addresses for my swarm
hosts are:

c2-swarm-00 – 192.168.1.100 (manager)

c2-swarm-01 – 192.168.1.101 (node 1)

c2-swarm-02 – 192.168.1.102 (node 2)

c2-swarm-03 – 192.168.1.103 (node 3)

c2-swarm-04 – 192.168.1.104 (node 4)

Only c2-swarm-00 has a SSD drive connected, but the �le
system is shared using NFS.

A node is a docker host participating in a swarm. A
manager node is where you submit a service de�nition
and it schedules the service to run as tasks on worker
nodes. Worker nodes receive and execute tasks scheduled
by a manager node. A manager node, by default, is also a
worker node unless explicitly con�gured not to execute
tasks. Multiple master and worker nodes can be set up in a
swarm to provide High Availability (HA). To bring up swarm
mode, issue the following command on the manager:

$ docker swarm init ­­advertise­addr

192.168.1.100

which returns:

swarm initialized: current mode

(8jw6y313hmt3vfa1me1dinro) is now a manager

To add a worker to this swarm, run the following
command on each node:

$ docker swarm join ­­token SWMTKN­1­

2gvqzfx48uw8zcokwl5033iwdel2rl9n96lc0wj1qso7

lrztub­aokk5xcm5v7c4usmeswsgg1k

192.168.1.100:2377

To make the other nodes join the cluster, issue the
previous “docker swarm join” command on each node.
This can be done using parallel-ssh to issue the command
once from the manager, which is then executed on each
node. The image below shows a screenshot after running
the “docker ps” command using parallel-ssh, which
signi�es that the Docker swarm is up and running.

Figure 3 – The output of the “docker ps” command showing all of
the nodes

One annoyance of Docker swarm I found is that after you
shut-down all nodes and power them up again, all nodes
will be “Active” but “Down”. This is seen when you use the
“docker node ls” to �nd out the status of your nodes. Since
the nodes are down, all services will be running on the
manager. The �x is to run “systemctl restart docker” on
every node. This will change their status from “Down” to
“Ready”, and everything is �ne again. The tool parallel-ssh
is a convenient way to do this, since all you have to do is
issue the command once from your manager.

Running Docker Swarm Visualizer and HTTPD Services
To help visualize what is going on in the swarm, I built the
“Docker Swarm Visualizer” image based on Docker
Samples on Github. I’ve pushed it to docker hub at
http://dockr.ly/2ipXzcL, so that anyone can use it. The
image’s name is “mrdreambot/arm64-docker-swarm-
visualizer”, available at http://bit.ly/2xqSaV4. I then
deployed it as a service by issuing the following command
from the manager:

$ docker service create ­­name=dsv ­­

publish=8080:8080/tcp ­­

constraint=node.role==manager ­­

mount=type=bind,src=/var/run/docker.sock,dst

=/var/run/docker.sock mrdreambot/arm64­

docker­swarm­visualizer

I then pointed the browser at the master node at
http://192.168.1.100:8080, but it also works when you
point your browser to any of the nodes in the swarm. The
changes reported by the visualizer when deploying the
httpd service can then be observed:

$ docker network create ­­driver overlay

home­net

$ docker service create ­­replicas 3 ­­

network home­net ­­name httpd ­p 80:80

mrdreambot/arm64­busy­box­httpd

The command line output for listing the services is shown
in Figure 4. Figure 5 is a Docker Swarm Visualizer
screenshot showing the nodes on which the service
replicas are run, which illustrates the declarative service
model used by swarm mode.

Figure 4 – Command line output for listing the services

Figure 5 – Docker Swarm Visualizer

Routing Mesh, Load Balancing and Self-healing
The routing mesh in the swarm allows a request to reach a
service even when the service is not running on the node

where the request has been received. This means that
although the httpd service is running on c2-swarm-00, c2-
swarm-03 and c2-swarm-04, one can point the browser at
any one of the 5 nodes and still get a response with the
ODROID-Docker image. This was the behaviour that I
observed.

Figure 6 – Load balancing example using 10.255.0.9

In addition to providing a routing mesh, the swarm also
performs load balancing. To test the load balancing
feature, I connected to the manager multiple time using
my browser, at the httpd service using the address
http://192.168.1.100/cgi-bin/lbtest. Notice that the
hostnames (container Id) and IP addresses are di�erent in
the two screenshots.

Figure 7 – Load balancing example using 10.255.0.10

The tests were repeated using the curl command:

$ curl http://192.168.1.100/cgi­bin/lbtest

Here is a screenshot of the curl commands output which
con�rmed, again, that each request has been directed to a
di�erent node:

Figure 8 – Load balancing across nodes

As for a demo on self-healing, I shut down c2-swarm-04,
and you can see from the visualizer as well as the
command line that another httpd container was spun up
on c2-swarm-02 to replace the one on c2-swarm-04. This is
because when we started the service, we speci�ed
“replica=3”. This means the Docker swarm will maintain
the desired number of replicas, here it is 3. This is called
desired state reconciliation.

http://dockr.ly/2ipXzcL
http://bit.ly/2xqSaV4
http://192.168.1.100/cgi-bin/lbtest

Figure 9 – Service recovery

Figure 10 – Service recovery httpd

I then shut down the rest of the nodes and left only the
manager running and the Visualizer showed the output in
Figure 11.

Figure 11 – Service recovery httpd – 1 node

Everything worked as expected!

Conclusion
Hardkernel’s new Ubuntu 16.04 release really made a
di�erence. The Docker swarm mode is now fully working
on my ODROID-C2 cluster. In the next installment, I will
upgrade Docker to 1.13.x to experiment with the “docker
stack deploy” feature new to v.1.13.x. A stack is a collection
of services that make up an application. It automatically
deploys multiple services that are linked to each other,
removing the need to de�ne each one separately. In other
words, it is docker-compose in swarm mode which
manages service orchestration. The use of an overlay
network for service discovery will also be described.

ODROID-XU4 Mainline U-Boot
 September 1, 2017  By Rob Roy  Linux, ODROID-XU4

Hardkernel is working on a new version of U-Boot for the
ODROID-XU4, with the following capabilities:

Enables the HYP mode for the KVM virtualization
with Kernel 4.9 LTS

Enables the Ethernet device to support the
TFTP/PXE remote booting

Boots from various new eMMC chipsets.

All fatload and ext4load commands are available
natively

Many other new features

The new version of U-Boot is available on the latest update
package for Linux, and Android 4.4 and Android 7.1 users
will receive an update soon, which will include the fastboot
protocol. The source code is available at
http://bit.ly/2xrM7R3.

A sample boot log is shown below:

u­boot booting log from the serial console

output.

U­Boot 2017.05­12186­gf98cc91­dirty (Aug 08

2017 ­ 12:16:58 +0900) for ODROID XU4

CPU: Exynos5422 @ 800 MHz

Model: Odroid XU4 based on EXYNOS5422

Board: Odroid XU4 based on EXYNOS5422

Type: xu4

DRAM: 2 GiB

MMC: EXYNOS DWMMC: 0, EXYNOS DWMMC: 1

MMC Device 0 (eMMC): 14.7 GiB

Info eMMC rst_n_func status = enabled

Card did not respond to voltage select!

mmc_init: ­95, time 11

*** Warning ­ bad CRC, using default

environment

In: serial

Out: serial

Err: serial

Net: No ethernet found.

Press quickly 'Enter' twice to stop

autoboot: 0

reading boot.ini

9088 bytes read in 4 ms (2.2 MiB/s)

cfgload: applying boot.ini...

cfgload: setenv initrd_high "0xffffffff"

cfgload: setenv fdt_high "0xffffffff"

cfgload: setenv macaddr "00:1e:06:61:7a:39"

cfgload: setenv vout "hdmi"

cfgload: setenv cecenable "false" # false or

true

cfgload: setenv disable_vu7 "false" # false

cfgload: setenv governor "performance"

cfgload: setenv ddr_freq 825

cfgload: setenv external_watchdog "false"

cfgload: setenv external_watchdog_debounce

"3"

cfgload: setenv HPD "true"

cfgload: setenv bootrootfs "console=tty1

console=ttySAC2,115200n8 root=UUID=e139ce78­

9841­40fe­8823­96a304a09859 rootwait ro

fsck.repair=yes net.ifnames=0"

cfgload: fatload mmc 0:1 0x40008000 zImage

reading zImage

4793144 bytes read in 135 ms (33.9 MiB/s)

cfgload: fatload mmc 0:1 0x42000000 uInitrd

reading uInitrd

5327028 bytes read in 143 ms (35.5 MiB/s)

cfgload: if test "${board_name}" = "xu4";

then fatload mmc 0:1 0x44000000 exynos5422­

odroidxu4.dtb; setenv fdtloaded "true"; fi

reading exynos5422­odroidxu4.dtb

61570 bytes read in 9 ms (6.5 MiB/s)

cfgload: if test "${board_name}" = "xu3";

then fatload mmc 0:1 0x44000000 exynos5422­

odroidxu3.dtb; setenv fdtloaded "true"; fi

cfgload: if test "${board_name}" = "xu3l";

then fatload mmc 0:1 0x44000000 exynos5422­

odroidxu3­lite.dtb; setenv fdtloaded "true";

fi

cfgload: if test "${fdtloaded}" != "true";

then fatload mmc 0:1 0x44000000 exynos5422­

odroidxu4.dtb; fi

cfgload: fdt addr 0x44000000

cfgload: setenv hdmi_phy_control "HPD=${HPD}

vout=${vout}"

cfgload: if test "${cecenable}" = "false";

then fdt rm /cec@101B0000; fi

cfgload: if test "${disable_vu7}" = "false";

then setenv hid_quirks

"usbhid.quirks=0x0eef:0x0005:0x0004"; fi

cfgload: if test "${external_watchdog}" =

"true"; then setenv external_watchdog

"external_watchdog=${external_watchdog}

external_watchdog_debounce=${external_watchd

og_debounce}"; fi

cfgload: setenv bootargs "${bootrootfs}

${videoconfig} ${hdmi_phy_control}

${hid_quirks} smsc95xx.macaddr=${macaddr}

${external_watchdog} governor=${governor}"

http://bit.ly/2xrM7R3

cfgload: bootz 0x40008000 0x42000000

0x44000000

Kernel image @ 0x40008000 [0x000000 ­

0x492338]

Loading init Ramdisk from Legacy Image at

42000000 ...

 Image Name: uInitrd

 Image Type: ARM Linux RAMDisk Image

(uncompressed)

 Data Size: 5326964 Bytes = 5.1 MiB

 Load Address: 00000000

 Entry Point: 00000000

 Verifying Checksum ... OK

Flattened Device Tree blob at 44000000

 Booting using the fdt blob at 0x44000000

 Using Device Tree in place at 44000000,

end 44012081

Starting kernel ...

For comments, questions and suggestions, please visit the
original post at http://bit.ly/2wNfnVu.

http://bit.ly/2wNfnVu

ODROID Wall Display: Using An LCD Monitor And An ODROID To
Show Helpful Information
 September 1, 2017  By William Green  ODROID-C0

I am a technical intern at ameriDroid.com, and I helped
with answering technical questions and got to work on fun
and interesting projects involving ODROIDs and related
electronics. This is a writeup of a recent project that I just
�nished, which involved creating a wall monitor.

A wall monitor is an e�ective method of passively
delivering a constant stream of information. Rather than
purchasing a digital picture frame that is not only
expensive, but is also small with limited functionality, why
not use a computer monitor or TV screen with an ODROID
to display photos, weather information, RSS feeds, and
other media?

Before assembling the project, you’ll need the following
things:

an ODROID (we used an ODROID-C0, but others
can work �ne)

USB WiFi module or an Ethernet cable, if the
board allows

computer monitor

power adapter

video output cable

mouse and keyboard, for setup

a method of mounting the ODROID on or near
the monitor

Double sided mounting tape can be a handy way to mount
the ODROID behind the monitor. The ODROID-C0 is a good
choice due to its compact size and minimal cost. A Linux
distribution is required, and Hardkernel’s Lubuntu is
recommended for the C0. The keyboard and mouse are
necessary for creating the project, but the wall monitor can
run without a keyboard or mouse after the project is
setup. The ODROID can be controlled at any time using
SSH if necessary.

After the required materials have been collected, follow
the steps below to assemble the monitor. Since ODROIDs,
like most other single board computers, lack a BIOS
interface, it instead uses a special �le where various
settings, such as screen resolution, are stored. To allow the
ODROID to output a signal to the monitor, �rst �nd out the
monitor’s screen resolution. Edit the boot.ini �le on the
boot partition of your media by uncommenting the
matching monitor speci�cation resolution. Power on the
ODROID and connect to an available wireless network.
Then, run the software updater using the following
command:

$ sudo apt update

After restarting the ODROID, the next step is to install the
required software. Navigate to the terminal and install the
unclutter program:

$ sudo apt install unclutter

Unclutter will hide the cursor when not in use. DAKboard is
a website that will provide the monitor with its content.
Navigate to dakboard.com, register an account, and
customize the page with RSS feeds, photos, weather, and
other information. Under DAKboard Options, Account
Settings, there is a private URL, which you should copy.
Open the terminal again and type the following:

$ sudo vi

~/.config/xlsession/Lubuntu/autostart

Press the o key and type “�refox –url”, then paste your
DAKboard private URL. In vi, you can paste by clicking the
left and right mouse buttons at the same time. Press the
escape key, then type “:wq”. Open Firefox and navigate to
https://mzl.la/2wpotqS in order to install the R-kiosk
extension for Firefox. After the extension is installed,
disconnect the power from the ODROID. Mount the
ODROID near the monitor, and position and organize the
power and video cables. Power on the ODROID and verify
that everything is working properly before mounting the
monitor to the wall.

The ODROID should now display the information that you
con�gured in DAKboard. Log in to DAKboard on another
computer to edit the page at any time. The page should
now provide live information for weather, photos, and RSS
feeds.

http://www.ameridroid.com/
https://mzl.la/2wpotqS

Linux Gaming on ODROID: Fanboy Part 2 – I am a Sega Fanboy!
 September 1, 2017  By Tobias Schaaf  Gaming, Linux

In last month’s issue, I talked about how I am not
particularly a Nintendo fanboy. By de�nition, this must
mean I’m a Sega fanboy, right? I mean, that’s the typical
assumption: you’re either a Nintendo or a Sega fanboy.
Since I already said I’m not Nintendo, that must mean I’m
Sega, right? I guess that’s right, but let’s take a deeper look
into it.

Sega Hardware
In the 1980s and 1990s, Nintendo and Sega fought to
dominate the console market. While both had similar
products, there were still some major di�erences. If you
compare their earlier products, the Nintendo
Entertainment System (NES) and Sega Master System
(SMS), and Game Boy/Game Boy Color (GB/GBC) and
Game Gear (GG), it always seemed like Sega was in the
lead when it came to technology.

The SMS had a faster processor, more RAM, more colors,
and could display more of those colors at the same time.
Overall it seemed to be the more powerful machine. Still, if
you compare sales, the NES outshone the SMS.

When I was still in school, a friend of mine owned an SMS.
He often brought it to school so we could play after classes
until our parents picked us up. Back then, we mostly
played Alex Kidd in Miracle World, which was built into the
system. This also meant if you bought a SMS you already
got your �rst game with it and didn’t needed to buy one.

Figure 1 – Alex Kidd in Miracle World on the ODROID with 2xsal-
level2-crt shader

The graphics and gameplay blew my mind back then. It
was so much better than what I’ve seen on the NES at my
uncle’s place, and there were more games we liked to play,
like Space Harrier 3D.

Later, I got my own SMS. I thought I would �nally be able
to �nish Alex the Kidd, but it turned out that not every
console came with the same built-in game. Mine came with
Hang-On, which was a nice motorcycle racing game, but
still not what I wanted at the time.

Someone else at school had a Game Gear, and wow, was
that a huge thing. This was a portable game machine,
unlike the Game boy, this was the real deal, with color and
everything. You could even play your SMS games on the
Game Gear if you had an adapter, and there was even an
add-on which allowed you to watch TV with a built-in
antenna. How cool was that?

The Game Gear had nearly the same specs as the SMS.
The CPU was the same, but was just clocked slightly lower,
and it was able to use even more colors than the SMS.
Overall, it was an awesome handheld device, but which
came with a hefty price. The device itself wasn’t cheap and
it used batteries very quickly. You only had a play time of
3-5 hours on 6 AA batteries. Still, seeing what the GG was
capable of is what prevented me from ever seriously
wanting a Game Boy. So yes, even in my early years I
preferred Sega consoles over Nintendo. Perhaps for the
wrong reasons, but I was a kid and didn’t know any better.

Looking back today, it’s clear why Nintendo had the lead at
the time. The number of high quality games on the NES
was much higher than on the SMS. This was partly due to
restrictions Nintendo that put on their third-party software
developers, which prevented them from producing games
for Nintendo’s competitors if they wanted if they wanted
their games on Nintendo’s consoles.

I missed most of the fourth and �fth generation Sega
consoles due to the fact I was not really into console
gaming at that time. I missed all the goodness and
badness of the Genesis/Mega Drive, Sega CD, Sega 32X,
and Sega Saturn. I got the Sega Dreamcast much later,
which was the last console that Sega built. I still have it to
this day, and I must say it was one of the most fun
consoles I’ve ever played. I was really impressed, and
having Soul Calibur as one of my �rst titles for the console
really blew my mind!

Figures 2 and 3 – Soul Calibur for the Sega Dreamcast running in
Reicast on ODROID

Sega obviously made some big mistakes when it came to
hardware. The Genesis/Mega Drive was a good device, but
Sega tried to expand the lifetime of the system with the
32X, and Sega CD add-ons were expensive and caused a
lot of frustration for third-party game developers due to
the rapid release cycle of hardware and add-ons, as well as
the short lifetime of these add-ons.

Because of this, Sega developed nearly all of the games for
the Dreamcast on their own. Sega may not have been the
best hardware developer at the time, but they knew how
to make good games. They still make games today, and
have even developed games for their former rival
Nintendo and their consoles.

Sega Emulation on ODROID
Since Sega stopped producing hardware after the Sega

Dreamcast, it is probably safe to say that all of Sega’s
consoles run on ODROID, although some may run better
than others. For example, the Sega 32X, which is an addon
for the Sega Genesis, was di�cult to emulate at �rst, but
thanks to the dynamic recompiler on the PicoDrive
emulator we can now play these games, even on the
ODROID-C1.

With Reicast, the Sega Dreamcast got a speedy emulator
that allows users to play many, but not all, of the Sega
Dreamcast games on ODROID. Even the Sega Saturn,
which is known to have a very complicated architecture,
runs at the very least on the XU3 and XU4 at a decent
speed, with many working titles.

Thanks to emulation, I found a lot of new games for the
Sega Genesis/Mega Drive and other Sega systems to enjoy.
Animaniacs, Beyond Oasis, Comix Zone, Donald in Maui
Mallard, or Monster World IV are just a few of the Sega
Genesis games I enjoy. With Keio Flying Squadron, Lunar:
The Silver Star, Popful Mail, and especially Snatcher, Sega
CD has in its library some really awesome games. I like the
fact that many games for the Sega CD are still cartoon- or
anime-based and, as such, often have cartoon or anime
cut-scene videos which, along with some great music
tracks, greatly enhance the experience. Maybe the Sega CD
was not a commercial success, but it had some nice games
which I enjoy playing to this day.

Although only really playable on the ODROID-XU3/XU4, the
Sega Saturn has some great games, including The Legend
of Oasis, Elevator Action Returns, Keio Flying Squadron 2,
or Radiant Silvergun. Personally, I think it was a failure as a
3D console. Games like Radiant Silvergun or Wipeout show
pretty well that 3D was not one of the Sega Saturn’s
strengths. You can see a lot of dithering, and the overall 3D
quality is much worse than on a Playstation or an N64.
However, the 2D capabilities were rather good. This could
have been a great 2D 32-bit console game with lots of
video cut-scenes and improved 2D graphics, rather than
trying to push “pseudo 3D” on the console. Some games

obviously went this route, but many tried too hard to be
3D console games.

Of course, I still love Dreamcast emulation on ODROID.
Crazy Taxi 2, Dead or Alive 2, Evolution 1 and 2, Giga Wing
1 and 2, Grandia II, Ikaruga, Incoming, Kidou Senshi
Gundam – Renpou vs. Zeon DX, Phantasy Star Online Ver.
2, Power Stone 2, Rez, Skies of Arcadia, Sonic Adventure 2,
Soul Calibur, Star Wars Episode I:Racer, Virtual Tennis 2,
and Zero Gunner 2. There are so many awesome games
with excellent 3D graphics that I really can’t get enough of
it. Next to the PSP, I �nd it’s the console with the second
most impressive graphics on the ODROID.

Final Thoughts
So am I a Sega fanboy? I guess I am, due to my good
experiences with Sega, �rst as a child with the Master
System and Game Gear (compared to the NES and Game
Boy), and later through the impressive Dreamcast, which I
still love to this day and of which I have the most fond
memories. Today, we can pick the best games for every
Sega console. It may not be as many as for Nintendo, but
that’s �ne with me. I continue to enjoy Sega consoles.

Still, I realize that the gaming libraries of Sega o�ered less
Triple A series compared to the Nintendo consoles,
especially when it came to great series such as Super
Mario Bros., Pokémon, Zelda, Earthbound, F-Zero, Metroid,
and Dragon Quest. However, Sega had his shining stars as
well, with Sonic the Hedgehog, Phantasy Star, Golden Axe,
Outrun, Virtual Fighter, and Wonderboy.

Sega might not have been the most successful console
company, but it created some very impressive consoles for
its time, even if some may have been ill-fated. Sega also
provided numerous games for arcade systems, and they
continue to produce great games today.

Home Assistant: Customization and Automations
 September 1, 2017  By Adrian Popa  Linux, Tinkering, Tutorial

In the July 2017 issue of ODROID Magazine, I introduced
you to Home Assistant (http://bit.ly/2hlOPOE), which is an
open-source home automation platform. Based on the
examples listed in that article, this article will discuss
advanced topics related to Home Assistant (HA) using in-
depth steps. This will allow you to maximize the use of HA,
and also help with experimentation.

Working with HA Developer Tools
When accessed, the HA webui looks similar to the one
shown in Figure 1a. In the previous article, I mentioned the
Developer Tools inside HA. You can access them by going
to the left panel (bottom) in the web interface and
hovering over the buttons.

Figure 1a – Webui

Figure 1b – Working with Developer Tools and Templates

The following tools are available to the developer:

Services: This lets you make calls to a variety of services
exposed by your components. You can do things like
trigger an automation, hide or show groups, reload HA
con�guration, control a media player object
(play/pause/load playlist), and so on. The available services
can change based on what components you have active in
your con�guration. It is a good place to test some action
before adding it to an automation.

States: This lets you override the state of any entity. It also
lists all entities, with their current state and attributes. You
can use this list to �nd out an entity name, either to know

how to reference it in the con�guration (e.g., the entities
visible in a view) or to use it in a template.

Events: This lets you generate an event on the event bus.
There are several events available, but in practice you may
not need to generate some of these events.

Templates: The HA templating engine uses Jinja2
templating syntax (http://bit.ly/2vd497l) with the addition
of exposing some internal variables. The templating syntax
is more like a programming language, so take your time to
read the documentation (http://bit.ly/2vOK7no). The point
of templates is to process input or output data, and to
format it in a di�erent way. The Templates view gives you
a workspace where you can experiment and test the
syntax before writing it to the con�guration �le. When you
�rst load the page, it will have a sample syntax, which
among other things, iterates through all your sensors and
shows you their current values. For example, this can
teach you that you can access a sensor state by calling {{
states.sensor.sensor_name.state }}.

Info: Shows you the current version as well as any errors
that have been logged.

In order to better understand the relationship between an
entity name and how to use it in a template, let us try an
experiment. Let us assume that we need to get the icon of
Dark Sky (https://darksky.net) weather forecast. First of
all, we need to use the States tool to get the correct entity
name. If you search there for the name shown in the web
interface “Dark Sky Hourly Summary”, then you will �nd an
entity called “sensor.dark_sky_hourly_summary”. Most HA
entities have a state and may have one or more attributes
and those should already be visible in the States view. Now

http://bit.ly/2hlOPOE
http://bit.ly/2vd497l
http://bit.ly/2vOK7no
https://darksky.net/

we can switch to the Templates tool and add our own
template at the end of the template dialog.

Let us try the following templates and let’s see what the
output is:

The states object is "{{ states }}"

The states.sensor object is "{{

states.sensor }}"

The states.sensor.dark_sky_hourly_summary

object is "{{

states.sensor.dark_sky_hourly_summary }}"

The

states.sensor.dark_sky_hourly_summary.state

value is "{{

states.sensor.dark_sky_hourly_summary.state

}}"

The

states.sensor.dark_sky_hourly_summary.attrib

utes.entity_picture value is "{{

states.sensor.dark_sky_hourly_summary.attrib

utes.entity_picture }}"

The output you receive can be viewed in Figure 2. Some of
the data points to Python objects, and some others (like,
state and attributes) return string values which you can
use. With this information, you are prepared to start
writing templates and automations.

Figure 2 – Templates in action

Noti�cation interface and HA API
If you have scripts which run in the background (started by
say, cron) you may want to be noti�ed when things go
wrong and the script fails for whatever reason. Most
tutorials online will show you how to send a noti�cation
email or SMS, but for problems which are not too critical,
maybe you would not like checking email or being woken
up at 3 AM. For this, you can push messages to Home
Assistant using curl and its API, so that you can get
noti�cations from your scripts whenever you log into
Home Assistant. This way, you get to know what happened
if you regularly log into the web interface. A similar
approach can be taken to change the states of Home
Assistant entities by using external triggers, or you can use
the API to query entities from external scripts.

To set this up, you only need to run a shell command from
your script when handling an error:

$ /usr/bin/curl ­X POST ­H "x­ha­access:

api_password" ­H "Content­Type:

application/json" ­­data "{"message":

"Something bad happened in your script",

"title": "My background script"}"

http://odroid­

ip:8123/api/services/persistent_notification

/create

The command above uses the persistent noti�cation
action (http://bit.ly/2wkVRiW) called via Home Assistant
API. To use it, you will need to provide the “api_password”
value and send a json (http://www.json.org/) object

containing the message and title. Note that JSON
mandates that you use the quote mark (“), and not
apostrophe (‘) for quoting. The nice thing is that the
noti�cation will be displayed on all views/tabs, so you
would not miss it. The result will look like Figure 3.

Figure 3 – Persistent noti�cation

Running external scripts on state change
Suppose, for example, that I wish to get the weather
forecast from Dark Sky in Romanian so that it is useful for
some non-English speakers. Since Dark Sky does not
support Romanian yet, I need to do it myself, which is not
a problem, since we can do it with Home Assistant using
the technique outlined below.

1. Install a translation program on the ODROID system that
can use various online translation services and output the
desired language. I used trans (http://bit.ly/2vcLJDU):

$ sudo wget ­O /usr/local/bin/trans

git.io/trans

$ sudo chmod a+x /usr/local/bin/trans

Test the program to make sure it works as desired:

$ trans ­b :ro "My name is my password"

2. Set up a new shell command component in Home
Assistant (http://bit.ly/2vOFnhe) to call the command-line
script. The shell component can execute a command and
take the output of a template as parameter for the
command. When a template is used as a parameter, the
command execution is more strict and you are not allowed
to use pipes or redirection to �le. Should you need to use
more complex command lines with pipes and templates,
you could add them to a shell script and call the script
instead. Fortunately, the trans command supports writing
output directly to a �le. Make the following changes to
con�guration.yaml:

shell_command:

 translate_weather: '/usr/local/bin/trans ­

b :ro "{{

states.sensor.dark_sky_hourly_summary.state

}}" ­o /tmp/ha­weather­forecast.txt'

The command takes the state of the Dark Sky Hourly
Summary sensor and passes it to trans for translation.
Practice getting the right state by playing in the Template
tool, as we have done before. It outputs the translated text
into /tmp/ha-weather-forecast.txt. To run this command
manually, log into the Home Assistant web interface,
navigate to Developer Tools in the left panel and click on
the Services icon. You can call the “shell_command”
domain with the translate_weather service and without
other parameters. If you check the temporary �le, you
should see your translated weather forecast.

3. Import the translation back into Home Assistant by
con�guring a �le sensor (http://bit.ly/2x2nmuw). The �le
sensor monitors a �le for changes and imports the last line
into Home Assistant. Make the following changes to your
con�guration.yaml:

sensor:

…

 ­ platform: file

 file_path: /tmp/ha­weather­forecast.txt

 name: Dark Sky Forecast Ro

You should also import this new entity in any views where
you wish to use it:

group:

…

 weather:

 entities:

…

 ­ sensor.dark_sky_forecast_ro

If you restart Home Assistant, you should see the new item
in the Weather group. However, there is still a problem:
this entity will never update. We still need to add a trigger
so that when the English forecast changes, the translated
forecast should change as well. For this, we need to use
automation.

Figure 4 – The translated forecast next to the original one

4. Create an automation by going to the Automation link in
the side panel. Note that you currently need to use the
Chrome browser for this step, since other browsers are
not supported. Use the “+” button to add an automation,
and give it a suggestive name like “Weather forecast
translation”. The trigger should be “state” and the entity id
should match the desired “source” entity, which is, in our
case, called “sensor.dark_sky_hourly_summary”. Note that
we are using the sensor name as it can be found in the
States tool. You can leave the “From” and “To” �elds blank,
since we want it to trigger on any value change.

Next, we need to specify an action or a sequence of
actions to be performed when triggered. We need “Call
Service” as an action type. The Alias is just a descriptive
name for our action and we can call it “Run
translate_weather shell_command”. The Service �eld is
composed from the whole service call, meaning domain
and service name are the same as those used in the
Services tool, so in our case it will be
“shell_command.translate_weather”. The Service Data �eld
can be left blank in our case, since the component does
not need additional parameters. You can now click the
Save icon and save your automation.

http://bit.ly/2wkVRiW
http://www.json.org/
http://bit.ly/2vcLJDU
http://bit.ly/2vOFnhe
http://bit.ly/2x2nmuw

Figure 5 – Create a new automation

Now, when the weather forecast changes, it will trigger the
automation and cause the forecast to be translated and
saved in a di�erent entity, except there is still a problem.
When you restart Home Assistant, the weather state might
not change for a long time and your translation might
return “unknown” until the �rst transition. To �x this, we
will run a second automation on Home Assistant startup to
update the translation. This time the trigger will be
platform homeassistant with event start. The action will be
the same as the previous automation. Unfortunately, the
web UI does not yet support this platform, so we will have
to edit the �le manually.

All automations are saved in
~/homeassistant/.homeassistant/automations.yaml. In this
case, you would need to add the following to it:

­ action:

 ­ alias: Run translate_weather

shell_command

 service: shell_command.translate_weather

 alias: Update weather translation on

startup

 id: '1502097058891'

 trigger:

 platform: homeassistant

 event: start

If you look at the automation you’ve already added
through the user interface, you’ll see a very similar syntax.
The only thing new is the id. This is simply the current UNIX
timestamp, and needs to be unique for your system (you
can get a new one with date +%s). Once this is con�gured,
after you restart Home Assistant, you will get the
translated state shortly. Starting with Home Assistant
version 0.51, there is a simpler, but less e�cient, way of
doing the same thing. You could have a command-line
sensor (http://bit.ly/2uUIQw3) with a templated
parameter, like this:

sensor:

…

 ­ platform: command_line

 command: /usr/local/bin/trans ­b :ro "

{{

states.sensor.dark_sky_hourly_summary.state

}}"

 friendly_name: Dark Sky Forecast

Romanian

The reason why this is less e�cient than the �rst solution
is that the sensor is polled frequently, and is translated
every time. So, in this particular case, you may run into
quota problems with the translation providers.

Toggling a system service from Home Assistant
Let’s explore a new use-case. Suppose you have a system
service running on your ODROID that you want to turn
on/o� from Home Assistant. In my case, such a service

would be Mycroft (https://mycroft.ai), because it uses
some resources when idle and can get confused by
ambient sounds when I am watching a movie. There are
more details about Mycroft at http://bit.ly/2tt3crC. The
point is that you can use commands such as service
mycroft start to control the service. You are not limited to
services; you could toggle anything on or o�.

To control it from Home Assistant we can use the
command line switch component (http://bit.ly/2wdVGW5).
Add the following to your con�guration.yaml:

switch:

 ­ platform: command_line

 switches:

 mycroft:

 command_on: sudo /usr/sbin/service

mycroft start

 command_off: sudo /usr/sbin/service

mycroft stop

 command_state: /usr/sbin/service

mycroft status >/dev/null 2>&1

 friendly_name: "Mycroft status"

You can also add it to a separate view:

group:

…

 switches:

 name: Switches

 view: yes

 entities:

 ­ switch.mycroft

There is one more thing you need to add for this to work.
The sudo command will ask for a password by default, so
we need to tell sudo that the user homeassistant can run
the service command as root without a password. We can
do this by running sudo visudo and adding the following
line at the end of the �le:

homeassistant ALL=NOPASSWD:

/usr/sbin/service

Let us expand this example a little. Suppose you want to
be able to toggle a service running on a di�erent device.
The most secure way to do this would be through ssh. In
order to do this, we will need to setup keys for ssh, so that
homeassistant user can run commands through ssh
without being prompted for a password (note that for
security’s sake you will need to protect your keys). You will
need to run the following steps with the homeassistant
user:

1. Create a new ssh key for homeassistant with no
password:

$ sudo su ­s /bin/bash homeassistant

$ cd ~homeassistant

$ ssh­keygen ­t rsa

Accept the default values (key stored in
/home/homeassistant/.ssh/id_rsa, and no passphrase).
You can use this key to control many devices (including
using it to login on routers for presence detection), so
there is no need to create multiple keys.

2. Copy the key to the remote system. Make sure that you
input the correct password for the account you are
connecting as (I am using root on the remote device):

$ ssh­copy­id root@other­device­ip

3. Test the connection manually:

$ ssh root@other­device­ip hostname

You should receive one line with the other device’s
hostname, without being prompted for a password. If you
get this, it means it is working. If not, you can �nd an
awesome troubleshooting guide at http://bit.ly/2vTQYdA.

4. Con�gure it in Home Assistant by adding a new switch
entry in con�guration.yaml:

switch:

 ­ platform: command_line

 switches:

…

 mycroft_kitchen:

 command_on: ssh root@kitchen

/usr/sbin/service mycroft start

 command_off: ssh root@kitchen

/usr/sbin/service mycroft stop

 friendly_name: "Mycroft Kitchen

status"

If you do not want the constant polling from Home
Assistant for the state, you can omit the “command_state”
line and in this case Home Assistant will assume it is o�
and will keep track only of the changes you make in the
user interface. Also, the interface will change from a slider
to two icons to activate/deactivate.

Figure 6 – Switches for system processes

Toggling a switch based on media playback or
presence information
Now that we can manually turn Mycroft on/o� (or any
switch for that matter), let us make things interesting. I
would like to have Mycroft running when I am at home (my
phone is connected to the router and detected by the
presence detection we have implemented in the previous
article) and Kodi is not playing. However, that can be
ambiguous. So, let us de�ne what we really want:

User transitions from “not_home” to “home” and
Kodi is idle => turn on Mycroft

User transitions from “home” to “not_home” =>
turn o� Mycroft

User is “home” and Kodi transitions from
anything to playing => turn o� Mycroft

User is “home” and Kodi transitions from
anything to idle => turn on Mycroft

For this, we will create a few automations. What is di�erent
from the previous automations will be the use of
conditions (http://bit.ly/2x2FDYz). Triggers indicate when
an action should happen, while conditions are used as
�lters and say if that action should happen.

So, let us take the �rst step. My user is tracked by the
device called “nutty”. Since the web interface does not
support conditions (note: conditions are only supported
starting with version 0.51), we will have to do it manually,
in the con�g �le automations.yaml:

­ action:

 ­ alias: Turn on Mycroft

 service: switch.turn_on

 entity_id:

http://bit.ly/2uUIQw3
https://mycroft.ai/
http://bit.ly/2tt3crC
http://bit.ly/2wdVGW5
http://bit.ly/2vTQYdA
http://bit.ly/2x2FDYz

 ­ switch.mycroft

 alias: Turn on Mycroft when Nutty arrives

home and Kodi is idle

 id: '1502097058892'

 trigger:

 platform: state

 entity_id: device_tracker.nutty

 to: 'home'

 condition:

 condition: and

 conditions:

 ­ condition: state

 entity_id:

'media_player.kodi_livingroom'

 state: 'idle'

The automation is triggered and evaluated each time the
entity “device_tracker.nutty” changes state. When it is
triggered, the condition is evaluated as well and if
“media_player.kodi_livingroom” is idle at that time, then
the action is executed and the switch is turned on. I could
have also tested that Mycroft is o�, but turning on an
already-on switch has no negative side e�ects.

If that is di�cult to follow, here is the pseudo-code:

onStateChange(device_tracker.nutty):

 if states.device_tracker.nutty.state ==

'home':

 if

states.media_player.kodi_livingroom.state ==

'idle':

 switch.turn_on(switch.mycroft)

The o� automation looks similar, but is simpler since it
does not have an extra condition:

­ action:

 ­ alias: Turn off Mycroft

 service: switch.turn_off

 entity_id:

 ­ switch.mycroft

 alias: Turn off Mycroft when Nutty leaves

home

 id: '1502097058893'

 trigger:

 platform: state

 entity_id: device_tracker.nutty

 to: 'not_home'

The last two automations should be triggered by Kodi state
changes and use conditions to test if the user is home or
not.

­ action:

 ­ alias: Turn off Mycroft

 service: switch.turn_off

 entity_id:

 ­ switch.mycroft

 alias: Turn off Mycroft when Kodi is

playing and Nutty is home

 id: '1502097058894'

 trigger:

 platform: state

 entity_id: media_player.kodi_livingroom

 to: 'playing'

 condition:

 condition: and

 conditions:

 ­ condition: state

 entity_id: 'device_tracker.nutty'

 state: 'home'

And the last one should be:

­ action:

 ­ alias: Turn on Mycroft

 service: switch.turn_on

 entity_id:

 ­ switch.mycroft

 alias: Turn on Mycroft when Kodi is idle

and Nutty is home

 id: '1502097058895'

 trigger:

 platform: state

 entity_id: media_player.kodi_livingroom

 to: 'idle'

 condition:

 condition: and

 conditions:

 ­ condition: state

 entity_id: 'device_tracker.nutty'

 state: 'home'

Once you are done editing automations.yaml, you can
reload the automations directly from Home Assistant by
going to the “Con�guration” view and selecting “Reload
Automation”.

You should now test the automations by triggering them
and checking the result in all the cases to rule out any
bugs. You can use the Logbook view to see when
automations have been triggered.

Fig 7 – Logbook viewer

Customize the names and icons
Let us address one more issue. By default, all switches
have the “lightning” icon, and maybe you want to use
something more appropriate. Also, you may later want to
change the friendly name of an entity, and that would
change its id and break the automations it is in. There are
also some built-in groups – like all the devices managed by
a “device_tracker” or all the automations which allows you
to enable/disable/manually trigger an automation, but
they are hidden by default. In order to make all these
changes, we will need to add a Customize section in the
beginning of the con�guration �le, under the
homeassistant label, indented by two spaces
(http://bit.ly/2x2q6bv).

Let us do the following: display the automations group and
change the icons for the switches with something more
appropriate. You can use icons from Material Design
(http://bit.ly/2wleenC) or your own images. We will make
changes to con�guration.yaml:

homeassistant:

…

 customize:

 group.all_automations:

 hidden: false

 friendly_name: All automations

 switch.mycroft:

 friendly_name: Mycroft living room

 icon: mdi:assistant

 switch.mycroft_kitchen:

 icon: mdi:assistant

 sensor.living_room:

 icon: mdi:temperature­celsius

…

group:

 default_view:

 entities:

…

 ­ group.all_automations

Fig 8 – Customizations for automations and icons

More examples
The Home Assistant community has numerous examples
in their cookbook at http://bit.ly/2xfAr2V. There are
additional great examples in their forums at
http://bit.ly/2v34WbL. For example, an alarm clock sample
is available at http://bit.ly/2vOCv48. For further
discussions, consult the original thread
http://bit.ly/2fVogVu.

http://bit.ly/2x2q6bv
http://bit.ly/2wleenC
http://bit.ly/2xfAr2V
http://bit.ly/2v34WbL
http://bit.ly/2vOCv48
http://bit.ly/2fVogVu

Digole Serial Displays: Driving Digole’s Serial Display in UART,
I2C, and SPI Modes with an ODROID-C1+
 September 1, 2017  By Dennis Chang  Linux, ODROID-C1+, Tutorial

Digole.com o�ers several intelligent serial displays that are
controlled through a complete set of high-level proprietary
commands. These commands make drawing complex
graphics and displaying images and video much easier,
o�ering a o�er a layer of abstraction that makes it easy to
port their displays to a number of di�erent platforms.
Perhaps the most useful is that all of Digole’s models of
serial displays are controlled in the same manner, with the
same high level command set, and are �rmware-
upgradeable. The user manual at http://bit.ly/2fXiD9y
provides complete documentation of all available
commands.

For this article, I used a Digole 1.8 inch Serial UART/I2C/SPI
True Color 160×128 OLED Module with 2MB Flash, model
number DS160128COLED-46F. This model does not have a
backlight or touchscreen like some of the other thin �lm
transistor (TFT) displays. If you buy a di�erent model, you
may have to modify the source code in order to change
the screen resolution.

Figure 1 – Dougherty’s mandel.c test in SPI 3-wire mode. Scan lines
in photos are not visible to the human eye.

All of the following was done on an ODROID-C1+ running
the o�cial Ubuntu 16.04 minimal image and logged in as
root.

Initial Test via UART Serial Connection
The Digole serial display ships in UART mode (both SPI and
I2C jumpers open). It’s always 8 bits, no parity bit, 1 stop
bit. The initial, user-con�gurable baud rate is 9600.

With the ODROID turned o�, wire up the following:

Digole VCC = 5V GPIO pin 2
Digole GND = Ground GPIO pin 6
Digole DATA = TXD1 GPIO pin 8

Power on the ODROID. The Digole should immediately go
through its own boot process, which involves an RGB test

and ends in a line of text. My display showed “UART
baud:9600 V4.1V+2MB Flash”. V4.1V is the �rmware
version, 2MB Flash is how much �ash memory is available
on this particular display model. Not all models have �ash
memory.

Set the UART device’s baud rate:

$ stty ­F /dev/ttyS2 9600

Clear the screen with:

$ echo “CL” > /dev/ttyS2

For this next command, use single-quotes–not smart-
quotes or backticks–so that the terminator is handled
correctly:

$ echo ­n ­e ‘TTHello ODROID’ > /dev/ttyS2

$ echo “CL” > /dev/ttyS2

Draw a 45px x 45px square:

$ echo ­n ­e ‘DR­­’ > /dev/ttyS2

Since this is a test, we don’t need to learn Digole’s
coordinate syntax right now.

At this point, the display is considered fully functional. It is
possible to use Digole’s proprietary commands to

http://bit.ly/2fXiD9y

completely control the display just by echoing to the UART
device. This means one could write an app or game
entirely in Bash script or any programming language that
can pipe directly to the UART device, including PHP, Perl,
Ruby, and Python, although probably with a higher baud
rate. With this approach, one can avoid coding in C and
using the Digole C library.

We will be testing other methods of serial connection, so
shut down the ODROID and remove the power plug to cut
power to the Digole display, then remove the Digole’s
connections to the GPIO pins.

I2C Serial Connection
Using a soldering iron with a tiny conical tip, carefully jump
the I2C jumper while leaving the SPI jumper open. It is
important not to solder both jumpers by bridging all three
pads. This requires a sharp eye or microscope, and a
steady hand. With the ODROID turned o�, wire up the
following:

Digole VCC = 5V GPIO pin 2
Digole GND = Ground GPIO pin 6
Digole DATA = I2CA_SDA GPIO pin 3
Digole CLK = I2CA_SCL GPIO pin 5

Note that the User Manual has diagrams with resistors of
10K or greater between VCC and DATA and VCC and CLK,
but the the sample code diagrams on the webpage do not
have any resistors. I found that it worked well enough
without the resistors, so I did not test to see if the resistors
worked.

Next, power up the display. If you soldered the I2C jumper
correctly, the startup test will say “I2C address:0x27…” The
startup test doesn’t appear to know if DATA and CLK are
wired up correctly.

Enable I2C on the ODROID by running:

$ modprobe aml_i2c

To test I2C, we will use the Digole sample C code provided
at http://bit.ly/2xh29MJ.

The sample code was written by Javier Sagrera for the
Raspberry Pi. We can modify it for the ODROID with a few
small changes; nothing critical, just re-naming a few
Raspberry Pi references and correcting misspellings, as
shown below:

// Pin­out using I2C

// ODROID – Digole LCD

// 1: 5v = 5: VCC

// 3: SDA0 = 4: DATA

// 5: SCL0 = 3: CLK

// 6: GND = 1: GND

/*

// Communication set up command

* "SB":Baud (ascII bytes end with

0x00/0x0A/0x0D) ­­ set UART Baud Rate

* "SI2CA":Address(1 byte <127) ­­ Set I2C

address, default address is:0x27

* "DC":1/0(1byte) ­­ set config display

on/off, if set to 1, displayer will display

current commucation setting when power on

// Text Function command

* "CL": ­­ Clear screen­­OK

* "CS":1/0 (1 byte)­­ Cursor on/off

* "TP":x(1 byte) y(1 byte) ­­ set text

position

* "TT":string(bytes) end with 0x00/0x0A/0x0D

­­ display string under regular mode

// Graphic function command

* "GP":x(1byte) y(1byte) ­­ set current

graphic position

* "DM":"C/!/~/&/|/^"(ASCII 1byte) ­­ set

drawing mode­­C="Copy",! and ~ = "Not", & =

"And", | = "Or", ^ = "Xor"

* "SC":1/0 (1byte) ­­ set draw color­­only 1

and 0

* "LN":x0(1byte) y0(1byte) x1(1byte)

y2(1byte)­­draw line from x0,y0 to x1,y1,set

new pot to x1,y1

* "LT":x(1byte) y(1byte) ­­ draw line from

current pos to x,y

* "CC":x(1byte) y(1byte) ratio(byte) ­­ draw

circle at x,y with ratio

* "DP":x(1byte) y(1byte) Color(1byte) ­­

draw a pixel­­OK

* "DR":x0(1byte) y0(1byte) x1(1byte)

y2(1byte)­­draw rectangle, top­left:x0,y0;

right­bottom:x1,y1

* "FR":x0(1byte) y0(1byte) x1(1byte)

y2(1byte)­­draw filled rectangle, top­

left:x0,y0; right­bottom:x1,y1

*/

#include < stdlib.h >

#include < linux/i2c­dev.h >

#include < fcntl.h >

#include < string.h >

#include < sys/ioctl.h >

#include < sys/types.h >

#include < sys/stat.h >

#include < unistd.h >

int main(int argc, char **argv)

{

 int fd;

 char *fileName = "/dev/i2c­1"; //

Name of the port we will be using

 int address = 0x27; //

Address of I2C device

 char buf[100];

 if ((fd = open (fileName, O_RDWR)) < 0) {

// Open port for reading and writing

 printf("Failed to open i2c port

");

 exit(1);

 }

 if (ioctl(fd, I2C_SLAVE, address) < 0) {

// Set the port options and set the address

of the device printf("Unable to get bus

access to talk to slave

"); exit(1); } if (argc>1) {

 sprintf(buf,argv[1]);

 //printf("%s %d %s

",buf,strlen(buf),buf[strlen(buf)]);

 if ((write(fd, buf, strlen(buf)+1))

!= strlen(buf)+1) {

 printf("Error writing to i2c

slave

");

 exit(1);

 }

 } else {

 printf(" Simple tool to send commands

to Digole graphic adapter

examples:

");

 printf(" digolei2ctest "CLTTHello

ODROID" ­ Clear the screen (CL) and prints

"Hello ODROID" (TT)

");

 printf(" digolei2ctest "CC002" ­

Draws a circle at x=30 (0), y=30 (0) with a

radius of 32 (2)

"); //not for Character LCD

 }

 return 0;

}

Save the above source code as digolei2ctest.c, then
compile it:

$ gcc ­o digolei2ctest digolei2ctest.c

You can then run it to send commands (several are
provided in the comments):

$./digolei2ctest "CLTTHello ODROID"

$./digolei2ctest "CC002"

Again, you can use every high-level command available in
the User Manual.

Note: I2C is the only means of communicating with the
Digole serial display that is capable of two-way
communication. Considering that we are only drawing on
the display, receive capability is not necessary, but I2C is
probably required for touchscreen access.

Next, we will try the SPI method of communication. This is
the fastest, but most complicated, of available serial
methods. Once again, shut down the ODROID and remove
the power plug to turn o� the Digole display, then
disconnect the connections between the ODROID and the
Digole display.

SPI 3-Wire Serial Connection
Using a soldering iron with tiny conical tip, carefully
desolder the I2C jumper and replace it by soldering the SPI
jumper instead. Again, make sure not to solder both
jumpers by bridging all three pads. With the ODROID
turned o�, wire up the following:

Digole VCC = 5V GPIO pin 2
Digole GND = Ground GPIO pin 6
Digole DATA = MOSI_PWM1 GPIO pin 19
Digole CLK = SPI_SCLK GPIO pin 23
Digole SS = SPI_CEN0 GPIO (#117) pin 24

Figure 2 – SPI wiring up close

Power on the ODROID. The Digole startup text should start
with “SPI Mode:0…” if you soldered the SPI jumper
correctly. It does not seem to know whether DATA, CLK, or
SS are wired correctly.

Note that Digole states in the manual that SPI mode has
the additional requirement of a “special handshake” to
“clock out data.” Check the “SPI transceiver data �ow chart”
at the end of the Port Connection section of the Digole
serial display User Manual for details. For SPI testing, we
will be using James F. Dougherty’s driver and sample code
at http://bit.ly/2wmyPIi.

This script is also written for the Raspberry Pi, but works
without modi�cation on the ODROID-C1+. The only
di�erence is the pinout: connect the Digole SS pin to GPIO

pin 24 on the ODROID-C1+ instead of GPIO pin 26 on a
Raspberry Pi.

Enable SPI on the ODROID:

$ modprobe spicc

Then obtain and build Dougherty’s SPI driver:

$ git clone

https://github.com/jafrado/digole.git

$ cd digole

$ make

Run the included test code:

$./oledtest /dev/spidev0.0

You should see the display start with an image of a
compass followed by many test screens. Don’t worry about
the slow drawing speed, since a way to increase it will be
described in the next section. Try the other sample
program to display a Mandelbrot fractal:

$./mandel /dev/spidev0.0

There are other sample programs, but they appear to be
slightly buggy and tend to draw their graphics in
unexpected positions. At this point, between the oledtest.c
and mandel.c programs, you should have all you need to
start building your own apps that use the Digole serial
displays.

Performance Considerations
In Dougherty’s code, change the spi_speed value at

rpi_spi.c line 41 from 200,000 to 1,000,000 (1MHz) to
increase the speed at which the images are displayed on
the screen. Going faster than 1MHz breaks the drawing
commands badly on my ODROID-C1+. Dougherty
commented in the code that he was not able to go faster
than 200KHz, but he was using a very slow Raspberry Pi
Zero for testing.

Curious about the limitation, I used a simple while loop
with a “sleep x” command and varying values of x in order
to overwhelm the Digole display by sending sentences of
commands too quickly, causing mis-drawn graphics or
corrupt images, which is exactly what happened when
“spi_speed” value was increased above 1MHz in
Dougherty’s sample programs. Theoretically, the SPI bus
and the Digole display can go much faster than 1MHz, but I
suspect that the aforementioned “special handshake” and
precise management of SPI communications at the byte
and word level will be necessary to achieve maximum
performance.

We do know, however, that these displays are capable of
performing very well. Digole links to a YouTube video at
http://bit.ly/2wfwPRJ showing a fast, smooth video
sequence of 27 frames in about 2 seconds, which is
approximately 14fps.

Unfortunately, they do not detail in the video how to
achieve this speed. The title of the video indicates they are
using the relatively new Video Box feature (as of �rmware
V4.0V) which allows one to write raw image data directly to
the display. The User Manual says Video Box runs at
“maximum speed: UART mode-460800bps, I2C->400K bps,
SPI-10MHz.” That’s ten times faster than our current best
performance using Dougherty’s samples in SPI mode. It
will probably require contacting Digole tech support to �nd
out how to pull it o�.

Regarding the while loop tests, a “sleep 0.05” command
appears to be the shortest delay between “TP00TTHello
ODROID” sends, resulting in a barely-perceptible �icker of
the words “Hello ODROID” being redrawn in place with no
errors. For many projects, especially those that update text
periodically, 0.05 seconds is plenty fast enough, and one
will not have to wrestle with performance tuning of the
serial communications.

Conclusion
I’m quite impressed with the Digole serial displays for their
multiple connection methods and easy, but powerful,
commands. There are many advanced features including
stored fonts, stored command sequences, and integrated
touchscreen that other, less intelligent, displays simply
don’t have. Most other touchscreens are a separate device
from the display, but the Digole touchscreen is controlled
through the same serial interface as the display. The
simple fact is that there aren’t that many full-color, high-
resolution displays in this small of a size, especially in
OLED.

I expect that these tiny full-color displays will �nd their way
into many ODROID projects, especially portable, battery-
powered projects. This is especially true of the models with
resistive touchscreens and the handful of TFT models with
dimmable backlights. OLED models do not have a
backlight to dim, but dimming can be accomplished by
changing the colors to darker shades.

The performance of the Digole serial displays is good
enough for most uses without any performance tuning.
For games and video where frame rate matters, it is
certainly possible to achieve decent performance through
managing the serial communications management and by
taking advantage of the Digole display’s advanced features.

Meet An ODROIDian: Ted Jack-Philippe Nivan (@TedJack)
 September 1, 2017  By Ted Jack-Philippe Nivan  Meet an ODROIDian

Please tell us a little about yourself.
I’m 25 years old, and was born and raised in Martinique
(French West Indies). I’m the Lead Developer of Adok
(www.getadok.com) and I operate in both Software and
Electrical areas. I currently live in the south of Paris, and
hold a Certi�cate in Electrical and Electronics Engineering
from École de Technologie Supérieure (Canada), a Master’s
degree in Signal and Image Processing from Université
Claude Bernard Lyon 1 (France) and a Master’s degree in
Electrical and Electronics Engineering from Institut national
des Sciences appliquées de Lyon (France). I’ve also done
my end-of-study internship at Harvard Medical School in
MRI Artifact Quanti�cation of the brain.

End of study at Harvard Medical School

How did you get started with computers?
Well, I’ve started with computers at the age of 13 and it
quickly became a need to play with this incredible piece of
hardware. I felt at this time that I had some much power in
my hands and I could extend my thoughts through the
machine. I was fascinated by both software and hardware

materials that the computer was made of. I’ve been
working on various projects ever since and one of them
that I’m particularly proud of was turning a bicycle into a
motorcycle. It was back in 2012, in my hometown.

Turning a bicycle to a motorcycle

What attracted you to the ODROID platform?
It is mainly for the product’s quality and the community. It
is easy to start out with ODROIDs and the platform is well
documented.

How do you use your ODROIDs?
I use my ODROIDs mainly for developing Android Apps,
Embedded Systems and Learning Linux Kernel
Development.

Which ODROID is your favorite and why?
My favorite ODROID is the XU4 because of its power and
the community behind it. People like @voodik have been
doing such a great job on keeping the platform up-to-date.

What innovations would you like to see in future Hardkernel
products?
I would like to see a next-generation board with a system
on module design in order to decrease the time to market.
In addition, a board with Windows support would be great
as well.

What hobbies and interests do you have apart from
computers?
I’m an independent music producer/artist who goes by the
name of “runthecode”. I’m also involved in sports such as
tennis and football.

What advice do you have for someone wanting to learn more
about programming?
Just get your hands on! The community is so big and still
growing up tremendously day after day. The Internet is the
place to be. I don’t think there’s a need to buy books while
starting o�. Therefore, start as soon as you can, even if
you’re young. It will pay o� in the long term. Do with what
you have, and more importantly, if you want to be
successful, do not let anyone tell you what to do in life.
Cultivate the seed within you, market yourself and get
along with the right people. You will get what you deserve .
Remember that successful people are not the ones who
were talented at the beginning, but the ones who stuck to
their beliefs.

http://www.getadok.com/

Ted is always cooking up something

