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ABSTRACT

Referring an hexagonal crystal to three sets of orthorhombic axes and taking ¢u-s and
#" 13m0’ alternatively, gnomonic calculation yields the following:

cos ¢1_3 (or ¢'1.3) - tan p :
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Linear calculation yields the following:

tan (90° —p)/cos ¢ a3y (Or é1-3)
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P e h+2k ¢ htk ¢ 24k ¢ h ¢ h—k ¢
The linear constants are a/c and 1/3a/c and the reciprocal gnomonic polar constants:are
¢/a and ¢/ 30, which, as they may be interchangeable, might be indicated as py and
. The gnomonic polar representation of the facts shown in the linear projection of a face
(hkil) is a circle with tan p as diameter, which is used for the graphical determination of the
polar constants, The linear projection is shown to be well adapted for use in two-circle
caleulation.

The caleulation of the reciprocal (polar) constants depends on two sets of triangles
(not polar) which are homopolar, with one common angle, and with the sides adjacent to
this angle having reciprocal tangents.

Five pairs of gnomonic constants are readily derived: two of which are definitely polar
and refer to triaxial systems; two others are polar in the sense that they locate the projec-
tion point by co-ordinates in three and six directions respectively, and refer to tetraxial and
heptaxial systems and because of the greater number of horizontal axes involved, must be
fractions of the reciprocal polar units; the fifth pair are definitely auxiliary units.

I a 1l 3

Two-circle equations for the calculation of axial ratios and indices in
the hexagonal system have been of two kinds; first a simple calculation
dealing only with indices and axial ratios which unfortunately has at-
tracted little attention, secondly equations involving various polar con-
stants. In a former paper, the writer (Parsons 1937) attempted, rather
unsuccessfully, to harmonize three pairs of polar constants, and in the
last paragraph gave the simple equations which have led up to this paper.
Later he found that Ford (1922) had given in graphical form the same
information, and ttat Lewis (1899) had used the same principle in con-
nection with the first order unit pyramid. For the writer, the discarding
of all polar constants, except ¢/a and ¢/+/3a, from the calculation, the
establishment of a simple correlation of the linear and gnomonic con-
stants, and the derivation of the curves involved in the various polar con-
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stants, has cleared up the tremendous confusion that has surrounded this
gystem for the past sixty years.

The two-circle calculation of hexagonal constants is best accomplished
by referring the crystal to three sets of orthorhombic axes with axial
ratios 4/3a:ac, but before entering upon the hexagonal calculation, it
will be well to see what facts may be deduced from the measurement and
projection of an orthorhombic crystal as well as the angles that can be
determined by trigonometric calculation so that a proper selection of
equations may be made for an abridged calculation of crystallographic
constants. .

In doing this, the writer is accepting the two-circle equations of W. H.
Miller (1839, p. 83) for the orthorhombic system, which apply to the
linear projection, and is making the changes that are necessary for the
gnomonic projection. He is also accepting the Miller and Miller-Bravais
indices, and the Miller conventions for form symbols, face symbols, zone
axis symbols, and zone (circle) symbols. He would also express his admir-
ation for the Miller precision two-circle goniometer constructed in 1874
(Lewis 1899, p. 601), which was in perfect condition in 1928 at the Uni-
versity of Cambridge.

The Miller (1839, p. 83) equations are as follows:

tan ¢p="rka/hb ¢=(hko) \(100) =90°—¢’
tan $L=la/hc - cos ¢ sL=[001]A[Zk]] =90°—p

In the form given, Miller’s (1839, p. 79) complete two-circle calcula-
tion of the orthorhombic is perfect arithmetically, but obscure graphi-
cally. Substituting tan 90°— PX, etc. for cot PX, etc., the equations are
identical with those used in the linear calculation in this paper. Substitut-
ing 1/tan PX, etc., for cot PX, etc., the equations, when inverted, are
identical with those used for the gnomonic calculation. Miller’s equations
have been used by nearly all crystallographers in the past century, some-
times in a mutilated condition. They have never been surpassed; when
changed, it has always been for the worse.

CONVENTIONS IN NOTATION

Following Miller’s practice, the form symbol is given as {kkil}, the face
symbol as (kkil); the zone axis as [uvu-+vw], and the zone circle symbol
as [kkil, KORO]. Miller used [wvu—+vw] interchangeably for the zone axis
and the zone circle except in one paragraph (p. 48) but commonly used
the zone symbol as given above for the zone circle only. This usage en-
ables one to use six types of angles without ambiguity, as follows:
(010) A(110), the well known interfacial angle, [001]A(001) or [001]
/\(kkl) giving po or p, (001) A[kkl, 100], not used in this paper, [001]



GNOMONIC AND HEPTAXIAL TWO-CIRCLE CALCULATION 549

/A\[001, 010] and [001] A[kEL, 010], giving & and £0+£, [001] A[kEl], useful
in the linear calculation, [001, 010] /A\[£&Z, 010}, giving &.

PRELIMINARY ORTHORHOMBIC PROJECTION AND CALCULATION

The projection of a beryl crystal (Fig. 1) will be used to illustrate
orthorhombic calculation both in linear and gnomonic projection. The
rectangular grid in the {ront half gives multiples of ¢/4/3a and c/a so
that the orthorhombic symbol of (2131) may be taken as (511). The line
A’'F’ in the rear half is the linear projection of the same face with the
origin below the projection. The angle of azimuth.on the g axis (hex-
agonal) isindicated as ¢ and its complement as ¢.’, as later similar angles
will be referred to the a; and a; axes.

\4_ \d \.*. ]m {./ -.1/ .r./
2] : ) L
o o
—
/ D
/ H
'E- i -] o ,."-1
o o o ° o
(4 | A L"“ ~ (/—2_7_2) £ aq R_a-axis |4 |
— - >
. 1|
2 \ / o \ A a
B [E) 4
N ' V%
——
. g J / l_,r P2 {n\
L1 N .
4 [eED, &)
Dl
e
l_ 95;
Via-axis
7 AT [N
Frc. 1

Now considering the orthorhombic as a special case of the triclinic,
we will see in Table 1 the information that we have in connection with
(511), (2131), together with the remaining angles to be solved.
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TABLE 1. ANGLES FounDp 1N Two-CIRCLE MEASUREMENT OF A CRYSTAL FOR THE
Facke (511) OrRTHORHOMBIC, (2131) HEXAGONAL

Orthorhombic Hexagonal

a="bAc=[001]A[010]=90° [0001] A [10T0]
B=a/\c={100]A[001]=90° [T210] A [0001]
y=aAb=[100] \[010]=90° [1210] A [1010]
= (001) A(010) = 90° (0001) A(T210)
w= (001) A(100) =90° (0001) A(1010)
s (010) A(100) =90° (T210) A(10T0)
] [001]A[001]= 0° [0001]A(0001)
R [001JA(11) = [0001] A(2131)
o= [001]A[511]=90°—p [0001] A [2131]
do= =
b= (510) A(010) (2130) A(T210)
o= (510) A(100) (2130) A1010)
= [001]A[001, 100]= 0° [0001] A[0001, 10T0]
= [001]A[001, 010]= 0° [0001] A[0001, T2T0]
= [001]A[010]  =90° [0001] A [T210]
£ = {001] A [100] =90° [00011A[1010]

To find in the gnomonic projection

7=[001, 100]A[511, 100] [1010, 0001]A[2131, 1010]

£=[001, 010]A[511, 010] [1210, 0001]A[2131, T210]

a,b,c. bkl V3a,a,c. k&, 3, 2h+k, b2k h—F, 1
And in the linear projection

7' =[001, 100]A[011]=90°— 14 [10T0, 0001 A[1212]

£=[001, 010] A\[501]=90°—¢ [1210, 0001] A[5051]

The calculation of these angles follows*

cos ¢-tan p=tan n==~/l-¢/a (IV and (III)

cos ¢~ tan p=tan t=h/l-¢c/~/3e (IV), = 2h+k)/1-¢/+/3a (I1I)
tan p’/cos ¢p=tan 4'=Il/k-a/c (IV and (TIII)
tan p’/cos ¢'=tan £=1/k-/3a/c (IV)=1/(2h+k)-+/3a/c (III)

AXIAL RELATIONS

Before going into the graphical and mathematical solution of an
hexagonal problem, it will be well to consider the axial relations and
intercepts of a plane on the hexagonal axes. It has been customary to re-
fer an hexagonal crystal to three horizontal axes (a1, s, as) of unit length
and a vertical axis (¢) which is greater or less than unity, and the re-
corded ratios are a:c. It has, however, been recognized that there is a
second set of horizontal axes, at right angles to the ¢ axes, having a
length of v/3a, which could be used if results obtained from the first set
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proved unsatisfactory. This seems to indicate that the compléte solution
of an hexagonal problem demands that the relationship of six horlzontal
axes to the vertical axis should be ascertained.

In x-ray analysis of hexagonal crystals, it is customary to look upon
the hexagonal cells as being made up of three unit cells, each an ortho-
rhombic prism with angles of 60° and 120°,

The results of measurement of an hexagonal crystal when plotted in a
gnomonic projection indicate three units with axes 4/3a:a:c. In this way
we get six horizontal axes, three pairs of rectangular axes, which yield
the simplest polar equation of the plane (kkil) for each of the triaxial
units involved.

CONSTANTS IN THE LINEAR PROJECTION

In the linear projection (Fig. 2), in order to have a common centre for
the three orthorhombic units, they are shown as interpenetrating, and
the height of the vertical axis is indicated by a circle with radius equal to
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¢ (beryl). Of the four faces shown, we will for the present confine our
attention to the general case (2131), which cuts the ae axis at unity.
Careful measurement will show that:
P'A" P'B” P'C” P'D” P'E" PF"

¢ ’ 14 ’ 7 ’ c ’

4 c
1 oa 1 N3l e 1 N3l a1 3
T R e A
1 a1 ABa, 1 e 1 V3 1l a 1
“% T h+2% ¢ htkc 2%tk ¢ k¢ h—k ¢

which are the abscissae cut off on six axes by the trace of the plane
(2131) in the linear projection with the origin above the plane of projec-
tion and with ro=c. The linear projection of the same face is shown in
Fig. 3 with the origin below the plane of projection and with 7o=1.The
ratios shown above are the tangents of interaxial angles (zonal axes).

CONSTANTS IN THE GNOMONIC PROJECTION

If we invert the terms of the equations under linear constants so as to
have reciprocal values, we get

4 2 4 5 ¢ . c ] c . c
PIA 3 P'B" ¥ P'Cc’ " P'D"’ . P'E" ° P'F'
k¢ h+2k c h+k c 2h+k c _h c h—k ¢

T2 T VAT e 1 VB 1 e 1 Vi
_PA PB PC PD PE PF
T r e m mre
which are the indices with the axial ratios, and the abscissae, respectively,
on the axes of the gnomonic projection when a circle is described with
tan p as the diameter. They are also the tangents of interzonal angles.

LINEAR ZONAL AXES AND GNOMONIC ZONE LINES

The line joining ¢ and A’ (Fig. 2) is common to (2131), (1121), (0111),
and (1212) and is the axis [1212] of the zone [1212, 1010] in which these
four faces lie. In like manner ¢B’’, ¢cC'’,¢D’’,cE", and ¢F'’ are zone axes
which are perpendicular to the planes which intersect in the normal to
the plane (2131) (Fig. 3). The traces of these planes in the gnomonic
projection are the familiar zone lines in the projection. The angle be-
tween one of these zonal planes and 7o on the a axes is known as 7, and
to distinguish the particular axis is indicated in this paper as n1, 72, and
ns. The corresponding angle on the \/3a axes is known as £, with similar
indication of the axis involved. The angles subtended between the zonal
axes and the perpendicular in the linear projection are 90°—n, and
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90°—¢, respectively. These zone axes are best indicated in terms of a
possible face as follows: ¢A’/[1212], ¢B’’[0221], ¢C’'[3362], c¢D’'[5052],
cE"[2111], and ¢F'’[1102]. In the transfer of the linear projection of
(2131) (Fig. 2) to the gnomonic projection (Fig. 3) there is a reversal of
the sign for I/h, I/k, and I/ h+k.

HExXAGONAL INDICES

In the hexagonal system, it is customary to use four indices, %, &, 7, and
I, with three of these referring to horizontal units and one to the vertical
unit. Of the horizontal values, one (i) equals the sum of the other two
(h and k) but with opposite sign (+). Of the twenty-four ways in which
these letters may be combined, four at least are given in standard works
on mineralogy and crystallography. In a previous paper, the writer used
the order given by Williams (1901). In this paper the usage of Dana is
followed, as indicated above, but inasmuch as indices on six horizontal
axes are to be considered, the following values will be sought:

ook (AR (20 QR (h—h)

— L

- 7 [ = % =] T %

Although the familiar transformation formula from the standard to
the alternative orientation is involved, no further reference to this will be
made, but in the gnomonic projection (Fig. 3), these values will be shown
as multiples of ¢/a and ¢/+/3a, together with their reciprocals in the
linear projection which are directly connected in Fig. 4 with the inter-
cepts on the axes in Fig. 2.

GNoMONIC CALCULATION OF ¢/a AND ¢/\/3a

In the accompanying projection (Fig. 3), we have the gnomonic pro-
jection of the forms c{0001}, o{1122}, p{1011}, s{1121}, v{2131},
m{1010}, {1120}, and {2130} of beryl with zone lines parallel to
the @ axes in the front half. In the rear half is shown the linear projec-
tion of the face (2131) A’F’, passing through the origin 5 cm. below the
plane of projection. The graphical solution will at once be clear to those
who know that tan p (1212) =¢/a and tan p(1012) =c/~/3a.

Dropping perpendiculars from H, (2131), to each of the six axes, we
have PA =c¢/a, PB=4c/\/3a, PC=3c/a, PD=>5¢c/\/3a, PE=2c/a, and
PF=c/~+/3a. This is an extension of Ford’s (1922) graphical determina-
tion of %, %, and 1.

For the complete mathematical calculation, six angles of azimuth are
used: ¢1, (2130) A (2110), ¢1' =90°— 1, ¢s, (2130) A (1210), ¢’ =90° —gbs,
$s, (2130) A (1120) and ¢s’ = 90° — ¢s.
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The cosine of each of the ¢ angles is multiplied by tan p to obtain
tan 5, the tangent of the angle of slope of the three zones involved, and
the cosine of each of the ¢’ angles is used similarly to obtain tan £, the
angle of slope of the other three zones involved with axial ratios, e.g.
CoS 3. tan p=tan ,, the angle of slope of [2131, 1010], whose zone axis is
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[1212]. This form for the equation involved was apparently first used by
Lewis (1899, pp. 428 and 449) for the pyramid (0111) but was not ex-
tended to the general case.

This fundamental calculation is the one from which all other gnomonic
constants are derived by multiplication or division by a constant, and is
the only one that gives the polar constants as reciprocals of the inter-
cepts on the linear axes. The complete calculation for (2231) follows:
cos¢e - tan p = PA/PH - PH/r, = tanne = k/l - ¢/a = ]/PA' = ry/PA’ (1)
cos¢n’ - tan p = PB/PH - PH/rq = tan & = (k+2k)/l- ¢/+/3a = 1/PB’ = ro/PB’ (2)

k+k
cos¢; - tan p = PC/PH - PH/ry = tan n3 = —(—-;_—) -¢/a  =1/PC" =r/PC" (3)
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2k + k)
I
tanp = PE/PH - PH/ro = tanm = &/l - ¢/a = ]/PE’ = r,/PE’ (5)
— B

tan p = PD/PH - PH/ry = tan £ = - ¢/+/3a =1/PD' = r,/PD' (4)

h -
tanp = PF/PH - PH/ro = tan & = - - ¢//3a = 1/PF' = r,/PF". (6)

These final results are shown graphically in a single plane in Fig. 4, where

and

and

and

ro/PA’ : ro/PE' : vo/PC’ = ¢/P'A’" : ¢/P'E" : ¢/P'C"’
P'A" : P'E' : P'C" (Fig. 4) = P'A" : P'E" : P'C"’ (Fig. 2)
ro/PF’:ro/PB':1ry/PD’: = ¢/P'F"":¢c/PB"":¢/P'D"’

P'F”:P'B": P'D" (Fig. 4)= P'F"’: P'B" = P'D" (Fig. 2)

LiNEAR CALCULATION OF a/c AND 3a/c

The line A’F’ (Fig. 3) is the linear projection of (2131) with the origin
below the plane of projection (ro=1). The calculation of the elements
concerned follows:

tan (90° — p)/cos ¢y = (PH’/ro)/(PH'/PA') = tan n’ = T = PA'[ro
tan (90° — p)/cos ¢n’ = (PH'/ro)/(PH’/PB") = tan &' = h_.-;_lﬂ - 1/? = PB'/ro
tan (90° — p)/cos ¢s = (PH'/ro)/(PH'/PC') = tan ny’ = hl—k % = PC'/ry
tan (90° — p)/cos ¢2’ = (PH'/ro)/(PH'/PD’) = tan &' = ﬁ% —f—a = PD'/r
tan (90° — p)/cos-¢n = (PH'/r,)/(PH'/PE') = tan n' = ;— ‘:— = PE'/r,
tan (90° — p)/cos ¢3' = (PH'/ro)/(PH'/PF’) = tan &’ =h—i-—k' '\/:l = PF'/r,.

The

final results are in every case reciprocal to the results of the

gnomonic calculation and establish definitely that the linear constants
are ¢/c and /3a/c and that the reciprocal polar constants of the gno-
monic projection are ¢/a and ¢/+/3a.

With the introduction of the circle with radius of 7o, the linear projec-
tion assumes importance in helping to solve crystallographic problems
and is worthy of further investigation, particularly in the inclined sys-

tems.
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The calculation of the indices for prismatic faces is as follows:

COS ¢1:c0S ¢o:COS Pat = hikii.

ABRIDGEMENTS TO THE CALCULATION

It is well to let the student see at least one complete calculation which
will show definitely the relationship between indices and parameters on
all seven axes, and then abridgements to the calculation may well be
introduced, depending altogether on what is desired. Equations 1, 3, and
5, give the complete calculation for the crystal when referred to the four
standard axes of reference. 1f only the best average values of ¢/a and
¢/A/3a are desired, equations 3 and 4 should be sufficient. If indices
are desired for forms where / is large or for forms which cannot be readily
be shown on the projection, equations 1 and 5 give k/l-¢/a and %/1-¢/a,
from which all other desired indices can be derived.

The student will be perfectly satisfied with such an abridgement,
whereas he is never satisfied with the explanation that one of the indices
has been lost in the projection but can be obtained by adding the two
others.

Equation for tan p (kkil)

From equations (1) and (4), we find

) k2 (4h2 A+ 4rk -+ RD)
tan p(hkil) = 12—02- + —__lz 3 gg (7
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and from equations (2) and (5)
I+ 4k + 487 & e

tan p(hkil) = T 32 l’? (8)
and from equations (3) and (6)
~ (h*+ 2k + kY & (B2 —2hk+ %Y
t hkil) = & S iy & HEREn T 9
an p(hkil) ,‘/ = pr + T 30t (9

Each of these equations when reduced to a common denominator and simplified, gives

2
tan p(hkil) = ‘/ ﬂlﬁilék——l_——kz—) q 56(,_2 (10
_WFEBEF | o
B [ +/3a

which is the equation of tan p when referred to three sets of orthorhombic
axes with ratios a:+/3a:c. It is simultaneously the equation for a circle
having tan p as its radius and the equation for the diameter (=tan p)
of a circle in terms of its supplementary chords. The first of these is ex-
tremely useful in analyzing the results of measurement in terms of 2¢ and
2¢/+/3, while the second gives the polar elements ¢ and ¢/ V'3 directly.

GRAPHICAL DETERMINATION OF PoLAR CONSTANTS FROM
THE EQUATION FOR TAN p

In the gnomonic projection (Fig. 3), with PH=tan p(2131) as diam-
eter, describe the circle PABC DEF cutting the sixaxesat 4, B,C, D, E,
and F. Then PA=c/a, PB=4c/\/3a, PC=3c/a, PD=5c//3a, PE
=2¢/a, and PF=c/+/3a.

The polar units derived in this manner are ¢/a and ¢/+/3a: they are the
polar units of a hexagonal crystal treated as a special case of the orthor-
hombic system.

ORIENTATION OF THE PROJECTION

In the hexagonal system there are two types, one giving a triangular
pattern in the gnomonic projection, the other an hexagonal pattern. For
the first of these, the rhombohedral, it is only necessary to draw the
principal zone lines which are parallel to the ¢ axes, having the apex of
the inner triangle (1011) to the front.

The second is more complicated, but, in general, the zone lines with
the greatest number of projection points are perpendicular to the a axes.
If there are only first order pyramids, or second order pyramids, or di-
hexagonal pyramids, the orientation cannot be established beyond ques-
tion. Any two of these ordinarily can establish the orientation beyond
reasonable doubt, so as to give the simplest indices for all the forms.
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An interesting exception to both these statements is exhibited in a
crystal of hematite described by Foshag (1920) which, except for triangu-
lar markings on the base, exhibits perfect hexagonal symmetry and shows
(1011) and (0111) truncating the edges of (2243).

PoLAR AND AUXILIARY CONSTANTS

The calculation of the axial ratios and polar constants ¢/e ahd ¢/ \V3a
brings us to the common point where all theories of axial relations in the
hexagonal system meet. If we go no further, it leaves us in the position
of considering the hexagonal system as a special case of the orthorhombic
system. Graphically, these constants have been determined as units of
measure of chords of a circle. Three other circles give three pairs of
constants, two of which are definitely connected with theories of axial
relations while the third seems to be more general in scope. In addition,
zone lines drawn perpendicular to any pair of ¢ axes or v/3¢ axes give
grids in terms of the polar constants po(G1) or po(Ge).

The four pairs of polar constants are as follows:

(1) Hexagonal heptaxial polar constants ¢/3a and ¢/3v/3a derived by
describing a circle with diameter equal to tan p/3 thus cutting the six
axes at one-third the distance obtained for the orthorhombic constants.
The six abscissae taken in any order and moved parallel with themselves,
when necessary, locate the projection point of the face normal by co-ordi-
nates in six directions.

(2) Hexagonal tetraxial polar constants pgand Iy (Goldschmidt 1886),
derived by describing a circle with diameter equal to 2 tan p/3, thus
cutting the six axes at two thirds the distance obtained for the ortho-
rhombic constants. Alternate abscissae give two sets of three which locate
the projection point by co-ordinates in three directions as shown by the
writer (1938) for p,, although as a matter of fact, $4(Gz), which is arith-
metically equal, was used. Goldschmidt could have obtained these con-
stants only from the polar equation of a plane derived from the equation
of the plane in terms of the intercepts on four hexagonal axes. This was
verified independently for the writer many years ago by Dean Samuel
Beatty, Professor of Mathematics in the University of Toronto, but until
the simple method described above was found, the writer could see no
way of deriving these constants with their proper indices by graphical
methods.

(3) Orthorhombic polar constants ¢/a and ¢/+/3a. These have already
been shown.

(4) The polar constants po(G1) and po(Gs) (Goldschmidt 1886) best
derived by drawing zone lines perpendicular to any pair of & axes for
po(G1) and any pair of /3¢ axes for po(Gs). These locate the projection
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point of the face normal by co-ordinates on #wo inclined axes.

An extremely useful pair of auxiliary constants, 2¢/a and 2¢//3a, is
obtained from abscissae on the zone lines, which intersect in the projec-
tion point of (kkil), when cut by a circle with radius equal to tan p. When
ro=5 cm., we get direct measurement of ¢/a and ¢/+/3¢ as units of
measurement of interfacial spacing in the zones shown in the gnomonic
projection.

It will be noted that only one pair of the four pairs of polar constants
i1s referred to alternative sets of three horizontal axes and belongs to the
hexagonal system, as ordinarily presented. These and the heptaxial con-
stants are polar only in the sense that they locate the projection point of
the plane (ki) by co-ordinates in three of six directions, respectively, in
the gnomonic projection. In every other respect, they must be looked
upon as auxiliary constants. When more than two horizontal axes are
involved, the projection units for locating the projection point of (%kl)
will be fractions of the normal polar units.

SUMMARY

The reciprocal relations of linear and polar constants in the hexagonal
system are shown graphically in linear and gnomonic projections and the
complete mathematical calculation from ¢ and p angles is given for
each projection, with suggested abridgements for ordinary use. The cal-
culations are based on the conception that an hexagonal crystal should be
referred to three sets of orthorhombic axes, seven axes in all. Polar con-
stants which have been proposed in the past introduce unnecessary
sources of error and should be discarded as a means of calculating axial
ratios.

/R + hk+ R ¢
l \3a

The polar constants ¢/a and ¢/+/3e with their proper indices are de-
termined graphically by chords of a circle with tan p as diameter, which
in the gnomonic projection is the reciprocal of the trace of the given plane
in the linear projection. Two other pairs of polar constants are derived
by drawing circles with diameter of tan p/3 and 2 tan p/3 and a fourth
pair by drawing zone lines perpendicular to any pair of a axes or v/3¢
axes. The linear projection with the addition of a circle with radius
ro=1 is shown to be well adapted to two-circle calculations in systems
which can be referred to rectangular axes, and when referred to the same
origin as the gnomonic projection gives reciprocal relations which are
easily recognized. Zonal axes in the linear projection are located by the
intersection of the traces of planes having a common horizontal intercept;

tan p =
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zone lines in the gnomonic projection, which are parallel to the v/3a axes,
connect the projection points of faces having a common &/, k/1, or i/l
and furnish the best means of orientating the projection, the lines with
the greatest number of faces being parallel with the ¢ axesin the rhom-
bohedral group and perpendicular to the ¢ axes in crystals with six-fold
symmetry.

In conclusion, the writer would pay high tribute to Miller, Gold-
schmidt, G. F. H. Smith, Lewis, Palache, and Ford, for their contribu-
tions to two-circle goniometry. The only changes introduced in their
fundamental equations, which are arithmetically correct, involve, in
some cases for graphical clarity,the substitution of 1/tan p or tan (90°—p)
for cot p; cos (90° —¢) for sin ¢; and 1/cos (90°—¢) for cosec ¢.

He would also thank Dr. E. H. Kraus, of the University of Michigan,
Dr. W. A. Wooster and Dr. F. Coles Phillips, of the University of Cam-
bridge for references establishing the date of the original Miller two-
circle goniometer, which preceded the instrument seen by the writer.
Finally, he would thank Dr. E. W. Nuffield, of the University of Toronto
for making the drawings which illustrate this paper.
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