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CHAPTER

ONE

QUICK REFERENCE FOR THE WIPY

1.1 General board control (including sleep modes)

See the machine module:

import machine

help(machine) # display all members from the machine module
machine.freq() # get the CPU frequency
machine.unique_id() # return the 6-byte unique id of the board (the WiPy's MAC address)

machine.idle() # average current decreases to (~12mA), any interrupts wake it up
machine.sleep() # everything except for WLAN is powered down (~950uA avg. current)

# wakes from Pin, RTC or WLAN
machine.deepsleep() # deepest sleep mode, MCU starts from reset. Wakes from Pin and RTC.

1.2 Pins and GPIO

See machine.Pin.

from machine import Pin

# initialize GP2 in gpio mode (alt=0) and make it an output
p_out = Pin('GP2', mode=Pin.OUT)
p_out.value(1)
p_out.value(0)
p_out.toggle()
p_out(True)

# make GP1 an input with the pull-up enabled
p_in = Pin('GP1', mode=Pin.IN, pull=Pin.PULL_UP)
p_in() # get value, 0 or 1

1.3 Timers

See machine.Timer and machine.Pin. Timer id‘s take values from 0 to 3.:

from machine import Timer
from machine import Pin

1
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tim = Timer(0, mode=Timer.PERIODIC)
tim_a = tim.channel(Timer.A, freq=1000)
tim_a.freq(5) # 5 Hz

p_out = Pin('GP2', mode=Pin.OUT)
tim_a.irq(trigger=Timer.TIMEOUT, handler=lambda t: p_out.toggle())

1.4 PWM (pulse width modulation)

See machine.Pin and machine.Timer.

from machine import Timer

# timer 1 in PWM mode and width must be 16 buts
tim = Timer(1, mode=Timer.PWM, width=16)

# enable channel A @1KHz with a 50.55% duty cycle
tim_a = tim.channel(Timer.A, freq=1000, duty_cycle=5055)

1.5 ADC (analog to digital conversion)

See machine.ADC.

from machine import ADC

adc = ADC()
apin = adc.channel(pin='GP3')
apin() # read value, 0-4095

1.6 UART (serial bus)

See machine.UART .

from machine import UART
uart = UART(0, baudrate=9600)
uart.write('hello')
uart.read(5) # read up to 5 bytes

1.7 SPI bus

See machine.SPI.

from machine import SPI

# configure the SPI master @ 2MHz
spi = SPI(0, SPI.MASTER, baudrate=200000, polarity=0, phase=0)
spi.write('hello')
spi.read(5) # receive 5 bytes on the bus

2 Chapter 1. Quick reference for the WiPy
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rbuf = bytearray(5)
spi.write_readinto('hello', rbuf) # send and receive 5 bytes

1.8 I2C bus

See machine.I2C.

from machine import I2C
# configure the I2C bus
i2c = I2C(baudrate=100000)
i2c.scan() # returns list of slave addresses
i2c.writeto(0x42, 'hello') # send 5 bytes to slave with address 0x42
i2c.readfrom(0x42, 5) # receive 5 bytes from slave
i2c.readfrom_mem(0x42, 0x10, 2) # read 2 bytes from slave 0x42, slave memory 0x10
i2c.writeto_mem(0x42, 0x10, 'xy') # write 2 bytes to slave 0x42, slave memory 0x10

1.9 Watchdog timer (WDT)

See machine.WDT .

from machine import WDT

# enable the WDT with a timeout of 5s (1s is the minimum)
wdt = WDT(timeout=5000)
wdt.feed()

1.10 Real time clock (RTC)

See machine.RTC

from machine import RTC

rtc = RTC() # init with default time and date
rtc = RTC(datetime=(2015, 8, 29, 9, 0, 0, 0, None)) # init with a specific time and date
print(rtc.now())

def alarm_handler (rtc_o):
pass
# do some non blocking operations
# warning printing on an irq via telnet is not
# possible, only via UART

# create a RTC alarm that expires after 5 seconds
rtc.alarm(time=5000, repeat=False)

# enable RTC interrupts
rtc_i = rtc.irq(trigger=RTC.ALARM0, handler=alarm_handler, wake=machine.SLEEP)

# go into suspended mode waiting for the RTC alarm to expire and wake us up
machine.sleep()

1.8. I2C bus 3
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1.11 SD card

See machine.SD.

from machine import SD
import os

# clock pin, cmd pin, data0 pin
sd = SD(pins=('GP10', 'GP11', 'GP15'))
# or use default ones for the expansion board
sd = SD()
os.mount(sd, '/sd')

1.12 WLAN (WiFi)

See network.WLAN and machine.

import machine
from network import WLAN

# configure the WLAN subsystem in station mode (the default is AP)
wlan = WLAN(mode=WLAN.STA)
# go for fixed IP settings
wlan.ifconfig(config=('192.168.0.107', '255.255.255.0', '192.168.0.1', '8.8.8.8'))
wlan.scan() # scan for available networks
wlan.connect(ssid='mynetwork', auth=(WLAN.WPA2, 'mynetworkkey'))
while not wlan.isconnected():

pass
print(wlan.ifconfig())
# enable wake on WLAN
wlan.irq(trigger=WLAN.ANY_EVENT, wake=machine.SLEEP)
# go to sleep
machine.sleep()
# now, connect to the FTP or the Telnet server and the WiPy will wake-up

1.13 Telnet and FTP server

See network.Server

from network import Server

# init with new user, password and seconds timeout
server = Server(login=('user', 'password'), timeout=60)
server.timeout(300) # change the timeout
server.timeout() # get the timeout
server.isrunning() # check whether the server is running or not

1.14 Heart beat LED

See wipy .

4 Chapter 1. Quick reference for the WiPy
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import wipy

wipy.heartbeat(False) # disable the heartbeat LED
wipy.heartbeat(True) # enable the heartbeat LED
wipy.heartbeat() # get the heartbeat state

1.14. Heart beat LED 5
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CHAPTER

TWO

GENERAL INFORMATION ABOUT THE WIPY

2.1 No floating point support

Due to space reasons, there’s no floating point support, and no math module. This means that floating point numbers
cannot be used anywhere in the code, and that all divisions must be performed using ‘//’ instead of ‘/’. Example:

>>> r = 4 // 2 # this will work
>>> r = 4 / 2 # this WON'T

2.2 Before applying power

Warning: The GPIO pins of the WiPy are NOT 5V tolerant, connecting them to voltages higher than 3.6V will
cause irreparable damage to the board. ADC pins, when configured in analog mode cannot withstand voltages
above 1.8V. Keep these considerations in mind when wiring your electronics.

2.3 WLAN default behaviour

When the WiPy boots with the default factory configuration starts in Access Point mode with ssid that starts
with: wipy-wlan and key: www.wipy.io. Connect to this network and the WiPy will be reachable at
192.168.1.1. In order to gain access to the interactive prompt, open a telnet session to that IP address on the
default port (23). You will be asked for credentials: login: micro and password: python

2.4 Telnet REPL

Linux stock telnet works like a charm (also on OSX), but other tools like putty work quite well too. The default
credentials are: user: micro, password: python. See network.server for info on how to change the defaults. For
instance, on a linux shell (when connected to the WiPy in AP mode):

$ telnet 192.168.1.1

2.5 Local file system and FTP access

There is a small internal file system (a drive) on the WiPy, called /flash, which is stored within the external serial
flash memory. If a micro SD card is hooked-up and mounted, it will be available as well.

7
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When the WiPy starts up, it always boots from the boot.py located in the /flash file system. On boot up, the
current directory is /flash.

The file system is accessible via the native FTP server running in the WiPy. Open your FTP client of choice and
connect to:

url: ftp://192.168.1.1, user: micro, password: python

See network.server for info on how to change the defaults. The recommended clients are: Linux stock FTP (also in
OSX), Filezilla and FireFTP. For example, on a linux shell:

$ ftp 192.168.1.1

The FTP server on the WiPy doesn’t support active mode, only passive, therefore, if using the native unix ftp client,
just after logging in do:

ftp> passive

Besides that, the FTP server only supports one data connection at a time. Check out the Filezilla settings section below
for more info.

2.6 FileZilla settings

Do not use the quick connect button, instead, open the site manager and create a new configuration. In the General
tab make sure that encryption is set to: Only use plain FTP (insecure). In the Transfer Settings tab limit
the max number of connections to one, otherwise FileZilla will try to open a second command connection when
retrieving and saving files, and for simplicity and to reduce code size, only one command and one data connections
are possible. Other FTP clients might behave in a similar way.

2.7 Upgrading the firmware Over The Air

OTA software updates can be performed through the FTP server. Upload the mcuimg.bin file to:
/flash/sys/mcuimg.bin it will take around 6s. You won’t see the file being stored inside /flash/sys/
because it’s actually saved bypassing the user file system, so it ends up inside the internal hidden file system, but rest
assured that it was successfully transferred, and it has been signed with a MD5 checksum to verify its integrity. Now,
reset the WiPy by pressing the switch on the board, or by typing:

>>> import machine
>>> machine.reset()

Software updates can be found in: https://github.com/wipy/wipy/releases (Binaries.zip). It’s always recommended to
update to the latest software, but make sure to read the release notes before.

Note: The bootloader.bin found inside Binaries.zip is there only for reference, it’s not needed for the
Over The Air update.

In order to check your software version, do:

>>> import os
>>> os.uname().release

If the version number is lower than the latest release found in the releases, go ahead and update your WiPy!

8 Chapter 2. General information about the WiPy
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2.8 Boot modes and safe boot

If you power up normally, or press the reset button, the WiPy will boot into standard mode; the boot.py file will be
executed first, then main.py will run.

You can override this boot sequence by pulling GP28 up (connect it to the 3v3 output pin) during reset. This procedure
also allows going back in time to old firmware versions. The WiPy can hold up to 3 different firmware versions, which
are: the factory firmware plus 2 user updates.

After reset, if GP28 is held high, the heartbeat LED will start flashing slowly, if after 3 seconds the pin is still being
held high, the LED will start blinking a bit faster and the WiPy will select the previous user update to boot. If the
previous user update is the desired firmware image, GP28 must be released before 3 more seconds elapse. If 3 seconds
later the pin is still high, the factory firmware will be selected, the LED will flash quickly for 1.5 seconds and the WiPy
will proceed to boot. The firmware selection mechanism is as follows:

Safe Boot Pin GP28 released during:

1st 3 secs window 2nd 3 secs window Final 1.5 secs window

Safe boot, latest
firmware is selected

Safe boot, previous
user update selected

Safe boot, the factory
firmware is selected

On all of the above 3 scenarios, safe boot mode is entered, meaning that the execution of both boot.py and main.py
is skipped. This is useful to recover from crash situations caused by the user scripts. The selection made during safe
boot is not persistent, therefore after the next normal reset the latest firmware will run again.

2.9 The heartbeat LED

By default the heartbeat LED flashes once every 4s to signal that the system is alive. This can be overridden through
the wipy module:

>>> import wipy
>>> wipy.heartbeat(False)

There are currently 2 kinds of errors that you might see:

1. If the heartbeat LED flashes quickly, then a Python script (eg main.py) has an error. Use the REPL to debug
it.

2. If the heartbeat LED stays on, then there was a hard fault, you cannot recover from this, the only way out is to
press the reset switch.

2.10 Details on sleep modes

• machine.idle(): Power consumption: ~12mA (in WLAN STA mode). Wake sources: any hardware inter-
rupt (including systick with period of 1ms), no special configuration required.

• machine.sleep(): 950uA (in WLAN STA mode). Wake sources are Pin, RTC and WLAN

• machine.deepsleep(): ~350uA. Wake sources are Pin and RTC.

2.8. Boot modes and safe boot 9
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2.11 Additional details for machine.Pin

On the WiPy board the pins are identified by their string id:

from machine import Pin
g = machine.Pin('GP9', mode=Pin.OUT, pull=None, drive=Pin.MED_POWER, alt=-1)

You can also configure the Pin to generate interrupts. For instance:

from machine import Pin

def pincb(pin):
print(pin.id())

pin_int = Pin('GP10', mode=Pin.IN, pull=Pin.PULL_DOWN)
pin_int.irq(trigger=Pin.IRQ_RISING, handler=pincb)
# the callback can be triggered manually
pin_int.irq()()
# to disable the callback
pin_int.irq().disable()

Now every time a falling edge is seen on the gpio pin, the callback will be executed. Caution: mechani-
cal push buttons have “bounce” and pushing or releasing a switch will often generate multiple edges. See:
http://www.eng.utah.edu/~cs5780/debouncing.pdf for a detailed explanation, along with various techniques for de-
bouncing.

All pin objects go through the pin mapper to come up with one of the gpio pins.

For the drive parameter the strengths are:

• Pin.LOW_POWER - 2mA drive capability.

• Pin.MED_POWER - 4mA drive capability.

• Pin.HIGH_POWER - 6mA drive capability.

For the alt parameter please refer to the pinout and alternate functions table at
<https://raw.githubusercontent.com/wipy/wipy/master/docs/PinOUT.png>‘_ for the specific alternate functions
that each pin supports.

For interrupts, the priority can take values in the range 1-7. And the wake parameter has the following properties:

• If wake_from=machine.Sleep.ACTIVE any pin can wake the board.

• If wake_from=machine.Sleep.SUSPENDED pins GP2, GP4, GP10, GP11, GP17‘‘ or GP24 can wake
the board. Note that only 1 of this pins can be enabled as a wake source at the same time, so, only the last
enabled pin as a machine.Sleep.SUSPENDED wake source will have effect.

• If wake_from=machine.Sleep.SUSPENDED pins GP2, GP4, GP10, GP11, GP17 and GP24 can wake
the board. In this case all of the 6 pins can be enabled as a machine.Sleep.HIBERNATE wake source at
the same time.

Additional Pin methods:

machine.Pin.alt_list()
Returns a list of the alternate functions supported by the pin. List items are a tuple of the form:
(’ALT_FUN_NAME’, ALT_FUN_INDEX)

10 Chapter 2. General information about the WiPy

http://www.eng.utah.edu/~cs5780/debouncing.pdf
https://raw.githubusercontent.com/wipy/wipy/master/docs/PinOUT.png


MicroPython Documentation, Release 1.9.2

2.12 Additional details for machine.I2C

On the WiPy there is a single hardware I2C peripheral, identified by “0”. By default this is the peripheral that is used
when constructing an I2C instance. The default pins are GP23 for SCL and GP13 for SDA, and one can create the
default I2C peripheral simply by doing:

i2c = machine.I2C()

The pins and frequency can be specified as:

i2c = machine.I2C(freq=400000, scl='GP23', sda='GP13')

Only certain pins can be used as SCL/SDA. Please refer to the pinout for further information.

2.13 Known issues

2.13.1 Incompatible way to create SSL sockets

SSL sockets need to be created the following way before wrapping them with. ssl.wrap_socket:

import socket
import ssl
s = socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s)

Certificates must be used in order to validate the other side of the connection, and also to authenticate ourselves with
the other end. Such certificates must be stored as files using the FTP server, and they must be placed in specific paths
with specific names.

• The certificate to validate the other side goes in: ‘/flash/cert/ca.pem’

• The certificate to authenticate ourselves goes in: ‘/flash/cert/cert.pem’

• The key for our own certificate goes in: ‘/flash/cert/private.key’

Note: When these files are stored, they are placed inside the internal hidden file system (just like firmware updates),
and therefore they are never visible.

For instance to connect to the Blynk servers using certificates, take the file ca.pem located in the blynk examples
folder. and put it in ‘/flash/cert/’. Then do:

import socket
import ssl
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM, socket.IPPROTO_SEC)
ss = ssl.wrap_socket(s, cert_reqs=ssl.CERT_REQUIRED, ca_certs='/flash/cert/ca.pem')
ss.connect(socket.getaddrinfo('cloud.blynk.cc', 8441)[0][-1])

2.13.2 Incompatibilities in uhashlib module

Due to hardware implementation details of the WiPy, data must be buffered before being digested, which would make
it impossible to calculate the hash of big blocks of data that do not fit in RAM. In this case, since most likely the total
size of the data is known in advance, the size can be passed to the constructor and hence the HASH hardware engine
of the WiPy can be properly initialized without needing buffering. If block_size is to be given, an initial chunk of

2.12. Additional details for machine.I2C 11
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data must be passed as well. When using this extension, care must be taken to make sure that the length of all
intermediate chunks (including the initial one) is a multiple of 4 bytes. The last chunk may be of any length.

Example:

hash = uhashlib.sha1('abcd1234', 1001) # length of the initial piece is multiple of 4 bytes
hash.update('1234') # also multiple of 4 bytes
...
hash.update('12345') # last chunk may be of any length
hash.digest()

2.13.3 Unrelated function in machine module

main(filename)
Set the filename of the main script to run after boot.py is finished. If this function is not called then the default
file main.py will be executed.

It only makes sense to call this function from within boot.py.

2.13.4 Adhoc way to control telnet/FTP server via network module

The Server class controls the behaviour and the configuration of the FTP and telnet services running on the WiPy.
Any changes performed using this class’ methods will affect both.

Example:

import network
server = network.Server()
server.deinit() # disable the server
# enable the server again with new settings
server.init(login=('user', 'password'), timeout=600)

class network.Server(id, ...)
Create a server instance, see init for parameters of initialization.

server.init(*, login=(‘micro’, ‘python’), timeout=300)
Init (and effectively start the server). Optionally a new user, password and timeout (in seconds) can be
passed.

server.deinit()
Stop the server

server.timeout([timeout_in_seconds])
Get or set the server timeout.

server.isrunning()
Returns True if the server is running, False otherwise.

2.13.5 Adhoc VFS-like support

WiPy doesn’t implement full MicroPython VFS support, instead following functions are defined in uos module:

mount(block_device, mount_point, *, readonly=False)
Mounts a block device (like an SD object) in the specified mount point. Example:

os.mount(sd, '/sd')
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unmount(path)
Unmounts a previously mounted block device from the given path.

mkfs(block_device or path)
Formats the specified path, must be either /flash or /sd. A block device can also be passed like an SD object
before being mounted.

2.13. Known issues 13
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CHAPTER

THREE

WIPY TUTORIALS AND EXAMPLES

Before starting, make sure that you are running the latest firmware, for instructions see OTA How-To.

3.1 Introduction to the WiPy

To get the most out of your WiPy, there are a few basic things to understand about how it works.

3.1.1 Caring for your WiPy and expansion board

Because the WiPy/expansion board does not have a housing it needs a bit of care:

• Be gentle when plugging/unplugging the USB cable. Whilst the USB connector is well soldered and is relatively
strong, if it breaks off it can be very difficult to fix.

• Static electricity can shock the components on the WiPy and destroy them. If you experience a lot of static
electricity in your area (eg dry and cold climates), take extra care not to shock the WiPy. If your WiPy came in
a ESD bag, then this bag is the best way to store and carry the WiPy as it will protect it against static discharges.

As long as you take care of the hardware, you should be okay. It’s almost impossible to break the software on the
WiPy, so feel free to play around with writing code as much as you like. If the filesystem gets corrupt, see below on
how to reset it. In the worst case you might need to do a safe boot, which is explained in detail here.

3.1.2 Plugging into the expansion board and powering on

The expansion board can power the WiPy via USB. The WiPy comes with a sticker on top of the RF shield that labels
all pins, and this should match the label numbers on the expansion board headers. When plugging it in, the WiPy
antenna will end up on top of the SD card connector of the expansion board. A video showing how to do this can be
found here.

3.1.3 Expansion board hardware guide

The document explaining the hardware details of the expansion board can be found here.

3.1.4 Powering by an external power source

The WiPy can be powered by a battery or other external power source.

Be sure to connect the positive lead of the power supply to VIN, and ground to GND. There is no polarity
protection on the WiPy so you must be careful when connecting anything to VIN.
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• When powering via VIN:

The input voltage must be between 3.6V and 5.5V.

• When powering via 3V3:

The input voltage must be exactly 3V3, ripple free and from a supply capable of sourcing at
least 300mA of current

3.1.5 Performing firmware upgrades

For detailed instructions see OTA How-To.

3.2 Getting a MicroPython REPL prompt

REPL stands for Read Evaluate Print Loop, and is the name given to the interactive MicroPython prompt that you can
access on the WiPy. Using the REPL is by far the easiest way to test out your code and run commands. You can use
the REPL in addition to writing scripts in main.py. To use the REPL, you must connect to the WiPy either via
telnet, or with a USB to serial converter wired to one of the two UARTs on the WiPy. To enable REPL duplication on
UART0 (the one accessible via the expansion board) do:

>>> from machine import UART
>>> import os
>>> uart = UART(0, 115200)
>>> os.dupterm(uart)

Place this piece of code inside your boot.py so that it’s done automatically after reset.

3.2.1 Windows

First you need to install the FTDI drivers for the expansion board’s USB to serial converter. Then you need a terminal
software. The best option is to download the free program PuTTY: putty.exe.

In order to get to the telnet REPL:

Using putty, select Telnet as connection type, leave the default port (23) and enter the IP address of your WiPy
(192.168.1.1 when in WLAN.AP mode), then click open.

In order to get to the REPL UART:

Using your serial program you must connect to the COM port that you found in the previous step. With PuTTY, click
on “Session” in the left-hand panel, then click the “Serial” radio button on the right, then enter you COM port (eg
COM4) in the “Serial Line” box. Finally, click the “Open” button.

3.2.2 Mac OS X

Open a terminal and run:

$ telnet 192.168.1.1

or:

$ screen /dev/tty.usbmodem* 115200
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When you are finished and want to exit screen, type CTRL-A CTRL-\. If your keyboard does not have a \-key (i.e.
you need an obscure combination for \ like ALT-SHIFT-7) you can remap the quit command:

• create ~/.screenrc

• add bind q quit

This will allow you to quit screen by hitting CTRL-A Q.

3.2.3 Linux

Open a terminal and run:

$ telnet 192.168.1.1

or:

$ screen /dev/ttyUSB0 115200

You can also try picocom or minicom instead of screen. You may have to use /dev/ttyUSB01 or a higher
number for ttyUSB. And, you may need to give yourself the correct permissions to access this devices (eg group
uucp or dialout, or use sudo).

3.2.4 Using the REPL prompt

Now let’s try running some MicroPython code directly on the WiPy.

With your serial program open (PuTTY, screen, picocom, etc) you may see a blank screen with a flashing cursor. Press
Enter and you should be presented with a MicroPython prompt, i.e. >>>. Let’s make sure it is working with the
obligatory test:

>>> print("hello WiPy!")
hello WiPy!

In the above, you should not type in the >>> characters. They are there to indicate that you should type the text after it
at the prompt. In the end, once you have entered the text print("hello WiPy!") and pressed Enter, the output
on your screen should look like it does above.

If you already know some Python you can now try some basic commands here.

If any of this is not working you can try either a hard reset or a soft reset; see below.

Go ahead and try typing in some other commands. For example:

>>> from machine import Pin
>>> import wipy
>>> wipy.heartbeat(False) # disable the heartbeat
>>> led = Pin('GP25', mode=Pin.OUT)
>>> led(1)
>>> led(0)
>>> led.toggle()
>>> 1 + 2
3
>>> 4 // 2
2
>>> 20 * 'py'
'pypypypypypypypypypypypypypypypypypypypy'

3.2. Getting a MicroPython REPL prompt 17
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3.2.5 Resetting the board

If something goes wrong, you can reset the board in two ways. The first is to press CTRL-D at the MicroPython
prompt, which performs a soft reset. You will see a message something like:

>>>
PYB: soft reboot
MicroPython v1.4.6-146-g1d8b5e5 on 2015-10-21; WiPy with CC3200
Type "help()" for more information.
>>>

If that isn’t working you can perform a hard reset (turn-it-off-and-on-again) by pressing the RST switch (the small
black button next to the heartbeat LED). During telnet, this will end your session, disconnecting whatever program
that you used to connect to the WiPy.

3.3 Getting started with Blynk and the WiPy

Blynk is a platform with iOS and Android apps to control Arduino, Raspberry Pi and the likes over the Internet. You
can easily build graphic interfaces for all your projects by simply dragging and dropping widgets.

There are several examples available that work out-of-the-box with the WiPy. Before anything else, make sure that
your WiPy is running the latest software, check OTA How-To for instructions.

1. Get the Blynk library and put it in /flash/lib/ via FTP.

2. Get the Blynk examples, edit the network settings, and afterwards upload them to /flash/lib/ via FTP as
well.

3. Follow the instructions on each example to setup the Blynk dashboard on your smartphone or tablet.

4. Give it a try, for instance:

>>> execfile('01_simple.py')

3.4 WLAN step by step

The WLAN is a system feature of the WiPy, therefore it is always enabled (even while in machine.SLEEP), except
when deepsleep mode is entered.

In order to retrieve the current WLAN instance, do:

>>> from network import WLAN
>>> wlan = WLAN() # we call the constructor without params

You can check the current mode (which is always WLAN.AP after power up):

>>> wlan.mode()

Warning: When you change the WLAN mode following the instructions below, your WLAN connection to the
WiPy will be broken. This means you will not be able to run these commands interactively over the WLAN.
There are two ways around this::

1. put this setup code into your boot.py file so that it gets executed automatically after reset.
2. duplicate the REPL on UART , so that you can run commands via USB.
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3.4.1 Connecting to your home router

The WLAN network card always boots in WLAN.AP mode, so we must first configure it as a station:

from network import WLAN
wlan = WLAN(mode=WLAN.STA)

Now you can proceed to scan for networks:

nets = wlan.scan()
for net in nets:

if net.ssid == 'mywifi':
print('Network found!')
wlan.connect(net.ssid, auth=(net.sec, 'mywifikey'), timeout=5000)
while not wlan.isconnected():

machine.idle() # save power while waiting
print('WLAN connection succeeded!')
break

3.4.2 Assigning a static IP address when booting

If you want your WiPy to connect to your home router after boot-up, and with a fixed IP address so that you can access
it via telnet or FTP, use the following script as /flash/boot.py:

import machine
from network import WLAN
wlan = WLAN() # get current object, without changing the mode

if machine.reset_cause() != machine.SOFT_RESET:
wlan.init(WLAN.STA)
# configuration below MUST match your home router settings!!
wlan.ifconfig(config=('192.168.178.107', '255.255.255.0', '192.168.178.1', '8.8.8.8'))

if not wlan.isconnected():
# change the line below to match your network ssid, security and password
wlan.connect('mywifi', auth=(WLAN.WPA2, 'mywifikey'), timeout=5000)
while not wlan.isconnected():

machine.idle() # save power while waiting

Note: Notice how we check for the reset cause and the connection status, this is crucial in order to be able to soft
reset the WiPy during a telnet session without breaking the connection.

3.5 Hardware timers

Timers can be used for a great variety of tasks, calling a function periodically, counting events, and generating a PWM
signal are among the most common use cases. Each timer consists of two 16-bit channels and this channels can be
tied together to form one 32-bit timer. The operating mode needs to be configured per timer, but then the period (or
the frequency) can be independently configured on each channel. By using the callback method, the timer event can
call a Python function.

Example usage to toggle an LED at a fixed frequency:

3.5. Hardware timers 19
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from machine import Timer
from machine import Pin
led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the LED
tim = Timer(3) # create a timer object using timer 3
tim.init(mode=Timer.PERIODIC) # initialize it in periodic mode
tim_ch = tim.channel(Timer.A, freq=5) # configure channel A at a frequency of 5Hz
tim_ch.irq(handler=lambda t:led.toggle(), trigger=Timer.TIMEOUT) # toggle a LED on every cycle of the timer

Example using named function for the callback:

from machine import Timer
from machine import Pin
tim = Timer(1, mode=Timer.PERIODIC, width=32)
tim_a = tim.channel(Timer.A | Timer.B, freq=1) # 1 Hz frequency requires a 32 bit timer

led = Pin('GP16', mode=Pin.OUT) # enable GP16 as output to drive the LED

def tick(timer): # we will receive the timer object when being called
global led
led.toggle() # toggle the LED

tim_a.irq(handler=tick, trigger=Timer.TIMEOUT) # create the interrupt

Further examples:

from machine import Timer
tim1 = Timer(1, mode=Timer.ONE_SHOT) # initialize it in one shot mode
tim2 = Timer(2, mode=Timer.PWM) # initialize it in PWM mode
tim1_ch = tim1.channel(Timer.A, freq=10, polarity=Timer.POSITIVE) # start the event counter with a frequency of 10Hz and triggered by positive edges
tim2_ch = tim2.channel(Timer.B, freq=10000, duty_cycle=5000) # start the PWM on channel B with a 50% duty cycle
tim2_ch.freq(20) # set the frequency (can also get)
tim2_ch.duty_cycle(3010) # set the duty cycle to 30.1% (can also get)
tim2_ch.duty_cycle(3020, Timer.NEGATIVE) # set the duty cycle to 30.2% and change the polarity to negative
tim2_ch.period(2000000) # change the period to 2 seconds

3.5.1 Additional constants for Timer class

Timer.PWM
PWM timer operating mode.

Timer.A

Timer.B
Selects the timer channel. Must be ORed (Timer.A | Timer.B) when using a 32-bit timer.

Timer.POSITIVE

Timer.NEGATIVE
Timer channel polarity selection (only relevant in PWM mode).

Timer.TIMEOUT

Timer.MATCH
Timer channel IRQ triggers.
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3.6 Reset and boot modes

There are soft resets and hard resets.

• A soft reset simply clears the state of the MicroPython virtual machine, but leaves hardware peripherals unaf-
fected. To do a soft reset, simply press Ctrl+D on the REPL, or within a script do:

import sys
sys.exit()

• A hard reset is the same as performing a power cycle to the board. In order to hard reset the WiPy, press the
switch on the board or:

import machine
machine.reset()

3.6.1 Safe boot

If something goes wrong with your WiPy, don’t panic! It is almost impossible for you to break the WiPy by program-
ming the wrong thing.

The first thing to try is to boot in safe mode: this temporarily skips execution of boot.py and main.py and gives
default WLAN settings.

If you have problems with the filesystem you can format the internal flash drive.

To boot in safe mode, follow the detailed instructions described here.

In safe mode, the boot.py and main.py files are not executed, and so the WiPy boots up with default settings.
This means you now have access to the filesystem, and you can edit boot.py and main.py to fix any problems.

Entering safe mode is temporary, and does not make any changes to the files on the WiPy.

3.6.2 Factory reset the filesystem

If you WiPy’s filesystem gets corrupted (very unlikely, but possible), you can format it very easily by doing:

>>> import os
>>> os.mkfs('/flash')

Resetting the filesystem deletes all files on the internal WiPy storage (not the SD card), and restores the files boot.py
and main.py back to their original state after the next reset.
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CHAPTER

FOUR

MICROPYTHON LIBRARIES

Warning: Important summary of this section
• MicroPython implements a subset of Python functionality for each module.
• To ease extensibility, MicroPython versions of standard Python modules usually have u (micro) prefix.
• Any particular MicroPython variant or port may miss any feature/function described in this general docu-

mentation, due to resource constraints.

This chapter describes modules (function and class libraries) which are built into MicroPython. There are a few
categories of modules:

• Modules which implement a subset of standard Python functionality and are not intended to be extended by the
user.

• Modules which implement a subset of Python functionality, with a provision for extension by the user (via
Python code).

• Modules which implement MicroPython extensions to the Python standard libraries.

• Modules specific to a particular port and thus not portable.

Note about the availability of modules and their contents: This documentation in general aspires to describe all mod-
ules and functions/classes which are implemented in MicroPython. However, MicroPython is highly configurable,
and each port to a particular board/embedded system makes available only a subset of MicroPython libraries. For
officially supported ports, there is an effort to either filter out non-applicable items, or mark individual descriptions
with “Availability:” clauses describing which ports provide a given feature. With that in mind, please still be warned
that some functions/classes in a module (or even the entire module) described in this documentation may be unavail-
able in a particular build of MicroPython on a particular board. The best place to find general information of the
availability/non-availability of a particular feature is the “General Information” section which contains information
pertaining to a specific port.

Beyond the built-in libraries described in this documentation, many more modules from the Python standard library,
as well as further MicroPython extensions to it, can be found in micropython-lib.

4.1 Python standard libraries and micro-libraries

The following standard Python libraries have been “micro-ified” to fit in with the philosophy of MicroPython. They
provide the core functionality of that module and are intended to be a drop-in replacement for the standard Python
library. Some modules below use a standard Python name, but prefixed with “u”, e.g. ujson instead of json. This
is to signify that such a module is micro-library, i.e. implements only a subset of CPython module functionality.
By naming them differently, a user has a choice to write a Python-level module to extend functionality for better
compatibility with CPython (indeed, this is what done by the micropython-lib project mentioned above).
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On some embedded platforms, where it may be cumbersome to add Python-level wrapper modules to achieve naming
compatibility with CPython, micro-modules are available both by their u-name, and also by their non-u-name. The
non-u-name can be overridden by a file of that name in your package path. For example, import json will first
search for a file json.py or directory json and load that package if it is found. If nothing is found, it will fallback
to loading the built-in ujson module.

4.1.1 Builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via builtins module.

Functions and types

abs()

all()

any()

bin()

class bool

class bytearray

class bytes
See CPython documentation: bytes.

callable()

chr()

classmethod()

compile()

class complex

delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by
obj.

class dict

dir()

divmod()

enumerate()

eval()

exec()

filter()

class float

class frozenset

getattr()

globals()

hasattr()
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hash()

hex()

id()

input()

class int

classmethod from_bytes(bytes, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)
In MicroPython, byteorder parameter must be positional (this is compatible with CPython).

isinstance()

issubclass()

iter()

len()

class list

locals()

map()

max()

class memoryview

min()

next()

class object

oct()

open()

ord()

pow()

print()

property()

range()

repr()

reversed()

round()

class set

setattr()

class slice
The slice builtin is the type that slice objects have.

sorted()
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staticmethod()

class str

sum()

super()

class tuple

type()

zip()

Exceptions

exception AssertionError

exception AttributeError

exception Exception

exception ImportError

exception IndexError

exception KeyboardInterrupt

exception KeyError

exception MemoryError

exception NameError

exception NotImplementedError

exception OSError
See CPython documentation: OSError. MicroPython doesn’t implement errno attribute, instead use the
standard way to access exception arguments: exc.args[0].

exception RuntimeError

exception StopIteration

exception SyntaxError

exception SystemExit
See CPython documentation: SystemExit.

exception TypeError
See CPython documentation: TypeError.

exception ValueError

exception ZeroDivisionError

4.1.2 array – arrays of numeric data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, f, d (the latter 2 depending on the floating-point support).
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Classes

class array.array(typecode[, iterable])
Create array with elements of given type. Initial contents of the array are given by an iterable. If it is not
provided, an empty array is created.

append(val)
Append new element to the end of array, growing it.

extend(iterable)
Append new elements as contained in an iterable to the end of array, growing it.

4.1.3 gc – control the garbage collector

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: gc.

Functions

gc.enable()
Enable automatic garbage collection.

gc.disable()
Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

gc.collect()
Run a garbage collection.

gc.mem_alloc()
Return the number of bytes of heap RAM that are allocated.

Difference to CPython

This function is MicroPython extension.

gc.mem_free()
Return the number of bytes of available heap RAM, or -1 if this amount is not known.

Difference to CPython

This function is MicroPython extension.

gc.threshold([amount ])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allo-
cation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been allocated (in total, since the pre-
vious time such an amount of bytes have been allocated). amount is usually specified as less than the full heap
size, with the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope
that an early collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of
which will vary from application to application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1 means a
disabled allocation threshold.
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Difference to CPython

This function is a MicroPython extension. CPython has a similar function - set_threshold(), but due to
different GC implementations, its signature and semantics are different.

4.1.4 sys – system specific functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: sys.

Functions

sys.exit(retval=0)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit exception.
If an argument is given, its value given as an argument to SystemExit.

sys.print_exception(exc, file=sys.stdout)
Print exception with a traceback to a file-like object file (or sys.stdout by default).

Difference to CPython

This is simplified version of a function which appears in the traceback module in CPython. Unlike
traceback.print_exception(), this function takes just exception value instead of exception type, ex-
ception value, and traceback object; file argument should be positional; further arguments are not supported.
CPython-compatible traceback module can be found in micropython-lib.

Constants

sys.argv
A mutable list of arguments the current program was started with.

sys.byteorder
The byte order of the system ("little" or "big").

sys.implementation
Object with information about the current Python implementation. For MicroPython, it has following attributes:

•name - string “micropython”

•version - tuple (major, minor, micro), e.g. (1, 7, 0)

This object is the recommended way to distinguish MicroPython from other Python implementations (note that
it still may not exist in the very minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in Mi-
croPython.

sys.maxsize
Maximum value which a native integer type can hold on the current platform, or maximum value representable
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by MicroPython integer type, if it’s smaller than platform max value (that is the case for MicroPython ports
without long int support).

This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended to not
compare this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:

bits += 1
v >>= 1

if bits > 32:
# 64-bit (or more) platform
...

else:
# 32-bit (or less) platform
# Note that on 32-bit platform, value of bits may be less than 32
# (e.g. 31) due to peculiarities described above, so use "> 16",
# "> 32", "> 64" style of comparisons.

sys.modules
Dictionary of loaded modules. On some ports, it may not include builtin modules.

sys.path
A mutable list of directories to search for imported modules.

sys.platform
The platform that MicroPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of a board, e.g. "pyboard" for the original MicroPython
reference board. It thus can be used to distinguish one board from another. If you need to check whether your
program runs on MicroPython (vs other Python implementation), use sys.implementation instead.

sys.stderr
Standard error stream.

sys.stdin
Standard input stream.

sys.stdout
Standard output stream.

sys.version
Python language version that this implementation conforms to, as a string.

sys.version_info
Python language version that this implementation conforms to, as a tuple of ints.

4.1.5 ubinascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in both direc-
tions).
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Functions

ubinascii.hexlify(data[, sep])
Convert binary data to hexadecimal representation. Returns bytes string.

Difference to CPython

If additional argument, sep is supplied, it is used as a separator between hexadecimal values.

ubinascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

ubinascii.a2b_base64(data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8. Returns a
bytes object.

ubinascii.b2a_base64(data)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character,
as a bytes object.

4.1.6 ujson – JSON encoding and decoding

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

Functions

ujson.dumps(obj)
Return obj represented as a JSON string.

ujson.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

4.1.7 uos – basic “operating system” services

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: os.

The uos module contains functions for filesystem access and urandom function.

Functions

uos.chdir(path)
Change current directory.

uos.getcwd()
Get the current directory.

uos.ilistdir([dir ])
This function returns an iterator which then yields 3-tuples corresponding to the entries in the directory that it is
listing. With no argument it lists the current directory, otherwise it lists the directory given by dir.
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The 3-tuples have the form (name, type, inode):

•name is a string (or bytes if dir is a bytes object) and is the name of the entry;

•type is an integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for regular
files;

•inode is an integer corresponding to the inode of the file, and may be 0 for filesystems that don’t have such
a notion.

uos.listdir([dir ])
With no argument, list the current directory. Otherwise list the given directory.

uos.mkdir(path)
Create a new directory.

uos.remove(path)
Remove a file.

uos.rmdir(path)
Remove a directory.

uos.rename(old_path, new_path)
Rename a file.

uos.stat(path)
Get the status of a file or directory.

uos.statvfs(path)
Get the status of a fileystem.

Returns a tuple with the filesystem information in the following order:

•f_bsize – file system block size

•f_frsize – fragment size

•f_blocks – size of fs in f_frsize units

•f_bfree – number of free blocks

•f_bavail – number of free blocks for unpriviliged users

•f_files – number of inodes

•f_ffree – number of free inodes

•f_favail – number of free inodes for unpriviliged users

•f_flag – mount flags

•f_namemax – maximum filename length

Parameters related to inodes: f_files, f_ffree, f_avail and the f_flags parameter may return 0 as
they can be unavailable in a port-specific implementation.

uos.sync()
Sync all filesystems.

uos.urandom(n)
Return a bytes object with n random bytes. Whenever possible, it is generated by the hardware random number
generator.

uos.dupterm(stream_object)
Duplicate or switch MicroPython terminal (the REPL) on the passed stream-like object. The given object
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must implement the readinto() and write() methods. If None is passed, previously set redirection is
cancelled.

4.1.8 ure – simple regular expressions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: re.

This module implements regular expression operations. Regular expression syntax supported is a subset of CPython
re module (and actually is a subset of POSIX extended regular expressions).

Supported operators are:

’.’ Match any character.

’[]’ Match set of characters. Individual characters and ranges are supported.

’^’

’$’

’?’

’*’

’+’

’??’

’*?’

’+?’

’()’ Grouping. Each group is capturing (a substring it captures can be accessed with match.group() method).

Counted repetitions ({m,n}), more advanced assertions, named groups, etc. are not supported.

Functions

ure.compile(regex_str)
Compile regular expression, return regex object.

ure.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

ure.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match, this will search string for first position which
matches regex (which still may be 0 if regex is anchored).

ure.DEBUG
Flag value, display debug information about compiled expression.

Regex objects

Compiled regular expression. Instances of this class are created using ure.compile().

regex.match(string)
regex.search(string)

Similar to the module-level functions match() and search(). Using methods is (much) more efficient if
the same regex is applied to multiple strings.
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regex.split(string, max_split=-1)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list
of strings (there may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods.

match.group([index ])
Return matching (sub)string. index is 0 for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

4.1.9 uselect – wait for events on a set of streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: select.

This module provides functions to efficiently wait for events on multiple streams (select streams which are ready for
operations).

Functions

uselect.poll()
Create an instance of the Poll class.

uselect.select(rlist, wlist, xlist[, timeout ])
Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Poll is
recommended instead.

class Poll

Methods

poll.register(obj[, eventmask ])
Register obj for polling. eventmask is logical OR of:

•select.POLLIN - data available for reading

•select.POLLOUT - more data can be written

•select.POLLERR - error occurred

•select.POLLHUP - end of stream/connection termination detected

eventmask defaults to select.POLLIN | select.POLLOUT.

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj.
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poll.poll([timeout ])
Wait for at least one of the registered objects to become ready. Returns list of (obj, event, ...) tuples, event
element specifies which events happened with a stream and is a combination of select.POLL* constants
described above. There may be other elements in tuple, depending on a platform and version, so don’t assume
that its size is 2. In case of timeout, an empty list is returned.

Timeout is in milliseconds.

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

poll.ipoll([timeout ])
Like poll.poll(), but instead returns an iterator which yields callee-owned tuples. This function provides
efficient, allocation-free way to poll on streams.

Difference to CPython

This function is a MicroPython extension.

4.1.10 usocket – socket module

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: socket.

This module provides access to the BSD socket interface.

Difference to CPython

For efficiency and consistency, socket objects in MicroPython implement a stream (file-like) interface directly. In
CPython, you need to convert a socket to a file-like object using makefile() method. This method is still supported
by MicroPython (but is a no-op), so where compatibility with CPython matters, be sure to use it.

Socket address format(s)

The native socket address format of the usocket module is an opaque data type returned by getaddrinfo func-
tion, which must be used to resolve textual address (including numeric addresses):

sockaddr = usocket.getaddrinfo('www.micropython.org', 80)[0][-1]
# You must use getaddrinfo() even for numeric addresses
sockaddr = usocket.getaddrinfo('127.0.0.1', 80)[0][-1]
# Now you can use that address
sock.connect(addr)

Using getaddrinfo is the most efficient (both in terms of memory and processing power) and portable way to work
with addresses.

However, socket module (note the difference with native MicroPython usocket module described here) pro-
vides CPython-compatible way to specify addresses using tuples, as described below. Note that depending on a
MicroPython port, socket module can be builtin or need to be installed from micropython-lib (as in the
case of MicroPython Unix port), and some ports still accept only numeric addresses in the tuple format, and
require to use getaddrinfo function to resolve domain names.
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Summing up:

• Always use getaddrinfo when writing portable applications.

• Tuple addresses described below can be used as a shortcut for quick hacks and interactive use, if your port
supports them.

Tuple address format for socket module:

• IPv4: (ipv4_address, port), where ipv4_address is a string with dot-notation numeric IPv4 address, e.g.
"8.8.8.8", and port is and integer port number in the range 1-65535. Note the domain names are not
accepted as ipv4_address, they should be resolved first using usocket.getaddrinfo().

• IPv6: (ipv6_address, port, flowinfo, scopeid), where ipv6_address is a string with colon-notation numeric IPv6
address, e.g. "2001:db8::1", and port is an integer port number in the range 1-65535. flowinfo must be
0. scopeid is the interface scope identifier for link-local addresses. Note the domain names are not accepted as
ipv6_address, they should be resolved first using usocket.getaddrinfo(). Availability of IPv6 support
depends on a MicroPython port.

Functions

usocket.socket(af=AF_INET, type=SOCK_STREAM, proto=IPPROTO_TCP)
Create a new socket using the given address family, socket type and protocol number.

usocket.getaddrinfo(host, port)
Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating
a socket connected to that service. The list of 5-tuples has following structure:

(family, type, proto, canonname, sockaddr)

The following example shows how to connect to a given url:

s = socket.socket()
s.connect(socket.getaddrinfo('www.micropython.org', 80)[0][-1])

Difference to CPython

CPython raises a socket.gaierror exception (OSError subclass) in case of error in this function.
MicroPython doesn’t have socket.gaierror and raises OSError directly. Note that error numbers of
getaddrinfo() form a separate namespace and may not match error numbers from uerrno module. To
distinguish getaddrinfo() errors, they are represented by negative numbers, whereas standard system er-
rors are positive numbers (error numbers are accessible using e.args[0] property from an exception object).
The use of negative values is a provisional detail which may change in the future.

Constants

usocket.AF_INET
usocket.AF_INET6

Address family types. Availability depends on a particular board.

usocket.SOCK_STREAM
usocket.SOCK_DGRAM

Socket types.

usocket.IPPROTO_UDP
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usocket.IPPROTO_TCP
IP protocol numbers.

usocket.SOL_*
Socket option levels (an argument to setsockopt()). The exact inventory depends on a MicroPython port.

usocket.SO_*
Socket options (an argument to setsockopt()). The exact inventory depends on a MicroPython port.

Constants specific to WiPy:

usocket.IPPROTO_SEC
Special protocol value to create SSL-compatible socket.

class socket

Methods

socket.close()
Mark the socket closed and release all resources. Once that happens, all future operations on the socket object
will fail. The remote end will receive EOF indication if supported by protocol.

Sockets are automatically closed when they are garbage-collected, but it is recommended to close() them
explicitly as soon you finished working with them.

socket.bind(address)
Bind the socket to address. The socket must not already be bound.

socket.listen([backlog])
Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it’s lower, it will be set to 0);
and specifies the number of unaccepted connections that the system will allow before refusing new connections.
If not specified, a default reasonable value is chosen.

socket.accept()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair (conn, address) where conn is a new socket object usable to send and receive data on the connection, and
address is the address bound to the socket on the other end of the connection.

socket.connect(address)
Connect to a remote socket at address.

socket.send(bytes)
Send data to the socket. The socket must be connected to a remote socket. Returns number of bytes sent, which
may be smaller than the length of data (“short write”).

socket.sendall(bytes)
Send all data to the socket. The socket must be connected to a remote socket. Unlike send(), this method will
try to send all of data, by sending data chunk by chunk consecutively.

The behavior of this method on non-blocking sockets is undefined. Due to this, on MicroPython, it’s recom-
mended to use write() method instead, which has the same “no short writes” policy for blocking sockets, and
will return number of bytes sent on non-blocking sockets.

socket.recv(bufsize)
Receive data from the socket. The return value is a bytes object representing the data received. The maximum
amount of data to be received at once is specified by bufsize.

socket.sendto(bytes, address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is
specified by address.
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socket.recvfrom(bufsize)
Receive data from the socket. The return value is a pair (bytes, address) where bytes is a bytes object representing
the data received and address is the address of the socket sending the data.

socket.setsockopt(level, optname, value)
Set the value of the given socket option. The needed symbolic constants are defined in the socket module (SO_*
etc.). The value can be an integer or a bytes-like object representing a buffer.

socket.settimeout(value)
Set a timeout on blocking socket operations. The value argument can be a nonnegative floating point number
expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise an OSError
exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket
is put in non-blocking mode. If None is given, the socket is put in blocking mode.

Difference to CPython

CPython raises a socket.timeout exception in case of timeout, which is an OSError subclass. MicroPy-
thon raises an OSError directly instead. If you use except OSError: to catch the exception, your code will
work both in MicroPython and CPython.

socket.setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to
blocking mode.

This method is a shorthand for certain settimeout() calls:

•sock.setblocking(True) is equivalent to sock.settimeout(None)

•sock.setblocking(False) is equivalent to sock.settimeout(0)

socket.makefile(mode=’rb’, buffering=0)
Return a file object associated with the socket. The exact returned type depends on the arguments given to
makefile(). The support is limited to binary modes only (‘rb’, ‘wb’, and ‘rwb’). CPython’s arguments: encoding,
errors and newline are not supported.

Difference to CPython

As MicroPython doesn’t support buffered streams, values of buffering parameter is ignored and treated as if it
was 0 (unbuffered).

Difference to CPython

Closing the file object returned by makefile() WILL close the original socket as well.

socket.read([size])
Read up to size bytes from the socket. Return a bytes object. If size is not given, it reads all data available from
the socket until EOF; as such the method will not return until the socket is closed. This function tries to read as
much data as requested (no “short reads”). This may be not possible with non-blocking socket though, and then
less data will be returned.

socket.readinto(buf [, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most len(buf)
bytes. Just as read(), this method follows “no short reads” policy.

Return value: number of bytes read and stored into buf.
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socket.readline()
Read a line, ending in a newline character.

Return value: the line read.

socket.write(buf)
Write the buffer of bytes to the socket. This function will try to write all data to a socket (no “short writes”).
This may be not possible with a non-blocking socket though, and returned value will be less than the length of
buf.

Return value: number of bytes written.

exception socket.error
MicroPython does NOT have this exception.

Difference to CPython

CPython used to have a socket.error exception which is now deprecated, and is an alias of OSError. In
MicroPython, use OSError directly.

4.1.11 ussl – SSL/TLS module

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: ssl.

This module provides access to Transport Layer Security (previously and widely known as “Secure Sockets Layer”)
encryption and peer authentication facilities for network sockets, both client-side and server-side.

Functions

ssl.wrap_socket(sock, server_side=False, keyfile=None, certfile=None, cert_reqs=CERT_NONE,
ca_certs=None)

Takes a stream sock (usually usocket.socket instance of SOCK_STREAM type), and returns an instance of
ssl.SSLSocket, which wraps the underlying stream in an SSL context. Returned object has the usual stream
interface methods like read(), write(), etc. In MicroPython, the returned object does not expose socket
interface and methods like recv(), send(). In particular, a server-side SSL socket should be created from a
normal socket returned from accept() on a non-SSL listening server socket.

Depending on the underlying module implementation for a particular board, some or all keyword arguments
above may be not supported.

Warning: Some implementations of ssl module do NOT validate server certificates, which makes an SSL
connection established prone to man-in-the-middle attacks.

Exceptions

ssl.SSLError
This exception does NOT exist. Instead its base class, OSError, is used.

Constants

ssl.CERT_NONE
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ssl.CERT_OPTIONAL
ssl.CERT_REQUIRED

Supported values for cert_reqs parameter.

4.1.12 utime – time related functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: time.

The utime module provides functions for getting the current time and date, measuring time intervals, and for delays.

Time Epoch: Unix port uses standard for POSIX systems epoch of 1970-01-01 00:00:00 UTC. However, embedded
ports use epoch of 2000-01-01 00:00:00 UTC.

Maintaining actual calendar date/time: This requires a Real Time Clock (RTC). On systems with underlying
OS (including some RTOS), an RTC may be implicit. Setting and maintaining actual calendar time is responsi-
bility of OS/RTOS and is done outside of MicroPython, it just uses OS API to query date/time. On baremetal
ports however system time depends on machine.RTC() object. The current calendar time may be set using
machine.RTC().datetime(tuple) function, and maintained by following means:

• By a backup battery (which may be an additional, optional component for a particular board).

• Using networked time protocol (requires setup by a port/user).

• Set manually by a user on each power-up (many boards then maintain RTC time across hard resets, though some
may require setting it again in such case).

If actual calendar time is not maintained with a system/MicroPython RTC, functions below which require reference to
current absolute time may behave not as expected.

Functions

utime.localtime([secs])
Convert a time expressed in seconds since the Epoch (see above) into an 8-tuple which contains: (year, month,
mday, hour, minute, second, weekday, yearday) If secs is not provided or None, then the current time from the
RTC is used.

•year includes the century (for example 2014).

•month is 1-12

•mday is 1-31

•hour is 0-23

•minute is 0-59

•second is 0-59

•weekday is 0-6 for Mon-Sun

•yearday is 1-366

utime.mktime()
This is inverse function of localtime. It’s argument is a full 8-tuple which expresses a time as per localtime. It
returns an integer which is the number of seconds since Jan 1, 2000.

utime.sleep(seconds)
Sleep for the given number of seconds. Some boards may accept seconds as a floating-point number to sleep for a
fractional number of seconds. Note that other boards may not accept a floating-point argument, for compatibility
with them use sleep_ms() and sleep_us() functions.
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utime.sleep_ms(ms)
Delay for given number of milliseconds, should be positive or 0.

utime.sleep_us(us)
Delay for given number of microseconds, should be positive or 0.

utime.ticks_ms()
Returns an increasing millisecond counter with an arbitrary reference point, that wraps around after some value.

The wrap-around value is not explicitly exposed, but we will refer to it as TICKS_MAX to simplify discussion.
Period of the values is TICKS_PERIOD = TICKS_MAX + 1. TICKS_PERIOD is guaranteed to be a power
of two, but otherwise may differ from port to port. The same period value is used for all of ticks_ms(),
ticks_us(), ticks_cpu() functions (for simplicity). Thus, these functions will return a value in range [0
.. TICKS_MAX], inclusive, total TICKS_PERIOD values. Note that only non-negative values are used. For the
most part, you should treat values returned by these functions as opaque. The only operations available for them
are ticks_diff() and ticks_add() functions described below.

Note: Performing standard mathematical operations (+, -) or relational operators (<, <=, >, >=) directly on these
value will lead to invalid result. Performing mathematical operations and then passing their results as arguments
to ticks_diff() or ticks_add() will also lead to invalid results from the latter functions.

utime.ticks_us()
Just like ticks_ms() above, but in microseconds.

utime.ticks_cpu()
Similar to ticks_ms() and ticks_us(), but with the highest possible resolution in the system. This is
usually CPU clocks, and that’s why the function is named that way. But it doesn’t have to be a CPU clock, some
other timing source available in a system (e.g. high-resolution timer) can be used instead. The exact timing unit
(resolution) of this function is not specified on utime module level, but documentation for a specific port may
provide more specific information. This function is intended for very fine benchmarking or very tight real-time
loops. Avoid using it in portable code.

Availability: Not every port implements this function.

utime.ticks_add(ticks, delta)
Offset ticks value by a given number, which can be either positive or negative. Given a ticks value, this function
allows to calculate ticks value delta ticks before or after it, following modular-arithmetic definition of tick values
(see ticks_ms() above). ticks parameter must be a direct result of call to ticks_ms(), ticks_us(), or
ticks_cpu() functions (or from previous call to ticks_add()). However, delta can be an arbitrary integer
number or numeric expression. ticks_add() is useful for calculating deadlines for events/tasks. (Note: you
must use ticks_diff() function to work with deadlines.)

Examples:

# Find out what ticks value there was 100ms ago
print(ticks_add(time.ticks_ms(), -100))

# Calculate deadline for operation and test for it
deadline = ticks_add(time.ticks_ms(), 200)
while ticks_diff(deadline, time.ticks_ms()) > 0:

do_a_little_of_something()

# Find out TICKS_MAX used by this port
print(ticks_add(0, -1))

utime.ticks_diff(ticks1, ticks2)
Measure ticks difference between values returned from ticks_ms(), ticks_us(), or ticks_cpu()
functions, as a signed value which may wrap around.

The argument order is the same as for subtraction operator, ticks_diff(ticks1, ticks2) has the same
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meaning as ticks1 - ticks2. However, values returned by ticks_ms(), etc. functions may wrap
around, so directly using subtraction on them will produce incorrect result. That is why ticks_diff() is
needed, it implements modular (or more specifically, ring) arithmetics to produce correct result even for wrap-
around values (as long as they not too distant inbetween, see below). The function returns signed value in
the range [-TICKS_PERIOD/2 .. TICKS_PERIOD/2-1] (that’s a typical range definition for two’s-complement
signed binary integers). If the result is negative, it means that ticks1 occurred earlier in time than ticks2. Other-
wise, it means that ticks1 occurred after ticks2. This holds only if ticks1 and ticks2 are apart from each other for
no more than TICKS_PERIOD/2-1 ticks. If that does not hold, incorrect result will be returned. Specifically, if
two tick values are apart for TICKS_PERIOD/2-1 ticks, that value will be returned by the function. However,
if TICKS_PERIOD/2 of real-time ticks has passed between them, the function will return -TICKS_PERIOD/2
instead, i.e. result value will wrap around to the negative range of possible values.

Informal rationale of the constraints above: Suppose you are locked in a room with no means to monitor passing
of time except a standard 12-notch clock. Then if you look at dial-plate now, and don’t look again for another
13 hours (e.g., if you fall for a long sleep), then once you finally look again, it may seem to you that only 1 hour
has passed. To avoid this mistake, just look at the clock regularly. Your application should do the same. “Too
long sleep” metaphor also maps directly to application behavior: don’t let your application run any single task
for too long. Run tasks in steps, and do time-keeping inbetween.

ticks_diff() is designed to accommodate various usage patterns, among them:

•Polling with timeout. In this case, the order of events is known, and you will deal only with positive results
of ticks_diff():

# Wait for GPIO pin to be asserted, but at most 500us
start = time.ticks_us()
while pin.value() == 0:

if time.ticks_diff(time.ticks_us(), start) > 500:
raise TimeoutError

•Scheduling events. In this case, ticks_diff() result may be negative if an event is overdue:

# This code snippet is not optimized
now = time.ticks_ms()
scheduled_time = task.scheduled_time()
if ticks_diff(now, scheduled_time) > 0:

print("Too early, let's nap")
sleep_ms(ticks_diff(now, scheduled_time))
task.run()

elif ticks_diff(now, scheduled_time) == 0:
print("Right at time!")
task.run()

elif ticks_diff(now, scheduled_time) < 0:
print("Oops, running late, tell task to run faster!")
task.run(run_faster=true)

Note: Do not pass time() values to ticks_diff(), you should use normal mathematical op-
erations on them. But note that time() may (and will) also overflow. This is known as
https://en.wikipedia.org/wiki/Year_2038_problem .

utime.time()
Returns the number of seconds, as an integer, since the Epoch, assuming that underlying RTC is set and main-
tained as described above. If an RTC is not set, this function returns number of seconds since a port-specific
reference point in time (for embedded boards without a battery-backed RTC, usually since power up or reset).
If you want to develop portable MicroPython application, you should not rely on this function to provide higher
than second precision. If you need higher precision, use ticks_ms() and ticks_us() functions, if you
need calendar time, localtime() without an argument is a better choice.
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Difference to CPython

In CPython, this function returns number of seconds since Unix epoch, 1970-01-01 00:00 UTC, as a floating-
point, usually having microsecond precision. With MicroPython, only Unix port uses the same Epoch, and if
floating-point precision allows, returns sub-second precision. Embedded hardware usually doesn’t have floating-
point precision to represent both long time ranges and subsecond precision, so they use integer value with second
precision. Some embedded hardware also lacks battery-powered RTC, so returns number of seconds since last
power-up or from other relative, hardware-specific point (e.g. reset).

4.2 MicroPython-specific libraries

Functionality specific to the MicroPython implementation is available in the following libraries.

4.2.1 btree – simple BTree database

The btree module implements a simple key-value database using external storage (disk files, or in general case, a
random-access stream). Keys are stored sorted in the database, and besides efficient retrieval by a key value, a database
also supports efficient ordered range scans (retrieval of values with the keys in a given range). On the application
interface side, BTree database work as close a possible to a way standard dict type works, one notable difference is
that both keys and values must be bytes objects (so, if you want to store objects of other types, you need to serialize
them to bytes first).

The module is based on the well-known BerkelyDB library, version 1.xx.

Example:

import btree

# First, we need to open a stream which holds a database
# This is usually a file, but can be in-memory database
# using uio.BytesIO, a raw flash partition, etc.
# Oftentimes, you want to create a database file if it doesn't
# exist and open if it exists. Idiom below takes care of this.
# DO NOT open database with "a+b" access mode.
try:

f = open("mydb", "r+b")
except OSError:

f = open("mydb", "w+b")

# Now open a database itself
db = btree.open(f)

# The keys you add will be sorted internally in the database
db[b"3"] = b"three"
db[b"1"] = b"one"
db[b"2"] = b"two"

# Assume that any changes are cached in memory unless
# explicitly flushed (or database closed). Flush database
# at the end of each "transaction".
db.flush()

# Prints b'two'
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print(db[b"2"])

# Iterate over sorted keys in the database, starting from b"2"
# until the end of the database, returning only values.
# Mind that arguments passed to values() method are *key* values.
# Prints:
# b'two'
# b'three'
for word in db.values(b"2"):

print(word)

del db[b"2"]

# No longer true, prints False
print(b"2" in db)

# Prints:
# b"1"
# b"3"
for key in db:

print(key)

db.close()

# Don't forget to close the underlying stream!
f.close()

Functions

btree.open(stream, *, flags=0, cachesize=0, pagesize=0, minkeypage=0)
Open a database from a random-access stream (like an open file). All other parameters are optional and
keyword-only, and allow to tweak advanced parameters of the database operation (most users will not need
them):

•flags - Currently unused.

•cachesize - Suggested maximum memory cache size in bytes. For a board with enough memory using
larger values may improve performance. The value is only a recommendation, the module may use more
memory if values set too low.

•pagesize - Page size used for the nodes in BTree. Acceptable range is 512-65536. If 0, underlying I/O
block size will be used (the best compromise between memory usage and performance).

•minkeypage - Minimum number of keys to store per page. Default value of 0 equivalent to 2.

Returns a BTree object, which implements a dictionary protocol (set of methods), and some additional methods
described below.

Methods

btree.close()
Close the database. It’s mandatory to close the database at the end of processing, as some unwritten data may be
still in the cache. Note that this does not close underlying stream with which the database was opened, it should
be closed separately (which is also mandatory to make sure that data flushed from buffer to the underlying
storage).
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btree.flush()
Flush any data in cache to the underlying stream.

btree.__getitem__(key)
btree.get(key, default=None)
btree.__setitem__(key, val)
btree.__detitem__(key)
btree.__contains__(key)

Standard dictionary methods.

btree.__iter__()
A BTree object can be iterated over directly (similar to a dictionary) to get access to all keys in order.

btree.keys([start_key[, end_key[, flags]]])
btree.values([start_key[, end_key[, flags]]])
btree.items([start_key[, end_key[, flags]]])

These methods are similar to standard dictionary methods, but also can take optional parameters to iterate over
a key sub-range, instead of the entire database. Note that for all 3 methods, start_key and end_key arguments
represent key values. For example, values() method will iterate over values corresponding to they key range
given. None values for start_key means “from the first key”, no end_key or its value of None means “until the
end of database”. By default, range is inclusive of start_key and exclusive of end_key, you can include end_key
in iteration by passing flags of btree.INCL. You can iterate in descending key direction by passing flags of
btree.DESC. The flags values can be ORed together.

Constants

btree.INCL
A flag for keys(), values(), items() methods to specify that scanning should be inclusive of the end
key.

btree.DESC
A flag for keys(), values(), items() methods to specify that scanning should be in descending direction
of keys.

4.2.2 framebuf — Frame buffer manipulation

This module provides a general frame buffer which can be used to create bitmap images, which can then be sent to a
display.

class FrameBuffer

The FrameBuffer class provides a pixel buffer which can be drawn upon with pixels, lines, rectangles, text and even
other FrameBuffer’s. It is useful when generating output for displays.

For example:

import framebuf

# FrameBuffer needs 2 bytes for every RGB565 pixel
fbuf = FrameBuffer(bytearray(10 * 100 * 2), 10, 100, framebuf.RGB565)

fbuf.fill(0)
fbuf.text('MicroPython!', 0, 0, 0xffff)
fbuf.hline(0, 10, 96, 0xffff)
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Constructors

class framebuf.FrameBuffer(buffer, width, height, format, stride=width)
Construct a FrameBuffer object. The parameters are:

•buffer is an object with a buffer protocol which must be large enough to contain every pixel defined by the
width, height and format of the FrameBuffer.

•width is the width of the FrameBuffer in pixels

•height is the height of the FrameBuffer in pixels

•format specifies the type of pixel used in the FrameBuffer; valid values are framebuf.MVLSB,
framebuf.RGB565 and framebuf.GS4_HMSB. MVLSB is monochrome 1-bit color, RGB565 is
RGB 16-bit color, and GS4_HMSB is grayscale 4-bit color. Where a color value c is passed to a method,
c is a small integer with an encoding that is dependent on the format of the FrameBuffer.

•stride is the number of pixels between each horizontal line of pixels in the FrameBuffer. This defaults to
width but may need adjustments when implementing a FrameBuffer within another larger FrameBuffer or
screen. The buffer size must accommodate an increased step size.

One must specify valid buffer, width, height, format and optionally stride. Invalid buffer size or dimensions may
lead to unexpected errors.

Drawing primitive shapes

The following methods draw shapes onto the FrameBuffer.

FrameBuffer.fill(c)
Fill the entire FrameBuffer with the specified color.

FrameBuffer.pixel(x, y[, c])
If c is not given, get the color value of the specified pixel. If c is given, set the specified pixel to the given color.

FrameBuffer.hline(x, y, w, c)

FrameBuffer.vline(x, y, h, c)

FrameBuffer.line(x1, y1, x2, y2, c)
Draw a line from a set of coordinates using the given color and a thickness of 1 pixel. The line method draws
the line up to a second set of coordinates whereas the hline and vline methods draw horizontal and vertical
lines respectively up to a given length.

FrameBuffer.rect(x, y, w, h, c)

FrameBuffer.fill_rect(x, y, w, h, c)
Draw a rectangle at the given location, size and color. The rect method draws only a 1 pixel outline whereas
the fill_rect method draws both the outline and interior.

Drawing text

FrameBuffer.text(s, x, y[, c])
Write text to the FrameBuffer using the the coordinates as the upper-left corner of the text. The color of the text
can be defined by the optional argument but is otherwise a default value of 1. All characters have dimensions of
8x8 pixels and there is currently no way to change the font.
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Other methods

FrameBuffer.scroll(xstep, ystep)
Shift the contents of the FrameBuffer by the given vector. This may leave a footprint of the previous colors in
the FrameBuffer.

FrameBuffer.blit(fbuf, x, y[, key])
Draw another FrameBuffer on top of the current one at the given coordinates. If key is specified then it should
be a color integer and the corresponding color will be considered transparent: all pixels with that color value
will not be drawn.

This method works between FrameBuffer’s utilising different formats, but the resulting colors may be unex-
pected due to the mismatch in color formats.

Constants

framebuf.MONO_VLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are vertically mapped with
bit 0 being nearest the top of the screen. Consequently each byte occupies 8 vertical pixels. Subsequent bytes
appear at successive horizontal locations until the rightmost edge is reached. Further bytes are rendered at
locations starting at the leftmost edge, 8 pixels lower.

framebuf.MONO_HLSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 0 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.MONO_HMSB
Monochrome (1-bit) color format This defines a mapping where the bits in a byte are horizontally mapped. Each
byte occupies 8 horizontal pixels with bit 7 being the leftmost. Subsequent bytes appear at successive horizontal
locations until the rightmost edge is reached. Further bytes are rendered on the next row, one pixel lower.

framebuf.RGB565
Red Green Blue (16-bit, 5+6+5) color format

framebuf.GS4_HMSB
Grayscale (4-bit) color format

4.2.3 machine — functions related to the hardware

The machine module contains specific functions related to the hardware on a particular board. Most functions in
this module allow to achieve direct and unrestricted access to and control of hardware blocks on a system (like CPU,
timers, buses, etc.). Used incorrectly, this can lead to malfunction, lockups, crashes of your board, and in extreme
cases, hardware damage. A note of callbacks used by functions and class methods of machine module: all these
callbacks should be considered as executing in an interrupt context. This is true for both physical devices with IDs >=
0 and “virtual” devices with negative IDs like -1 (these “virtual” devices are still thin shims on top of real hardware
and real hardware interrupts). See Writing interrupt handlers.

Reset related functions

machine.reset()
Resets the device in a manner similar to pushing the external RESET button.

machine.reset_cause()
Get the reset cause. See constants for the possible return values.
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Interrupt related functions

machine.disable_irq()
Disable interrupt requests. Returns the previous IRQ state which should be considered an opaque value. This
return value should be passed to the enable_irq() function to restore interrupts to their original state, before
disable_irq() was called.

machine.enable_irq(state)
Re-enable interrupt requests. The state parameter should be the value that was returned from the most recent
call to the disable_irq() function.

Power related functions

machine.freq()
Returns CPU frequency in hertz.

machine.idle()
Gates the clock to the CPU, useful to reduce power consumption at any time during short or long periods.
Peripherals continue working and execution resumes as soon as any interrupt is triggered (on many ports this
includes system timer interrupt occurring at regular intervals on the order of millisecond).

machine.sleep()
Stops the CPU and disables all peripherals except for WLAN. Execution is resumed from the point where the
sleep was requested. For wake up to actually happen, wake sources should be configured first.

machine.deepsleep()
Stops the CPU and all peripherals (including networking interfaces, if any). Execution is resumed from
the main script, just as with a reset. The reset cause can be checked to know that we are coming from
machine.DEEPSLEEP. For wake up to actually happen, wake sources should be configured first, like Pin
change or RTC timeout.

machine.wake_reason()
Get the wake reason. See constants for the possible return values.

Miscellaneous functions

machine.rng()
Return a 24-bit software generated random number.

machine.unique_id()
Returns a byte string with a unique identifier of a board/SoC. It will vary from a board/SoC instance to another,
if underlying hardware allows. Length varies by hardware (so use substring of a full value if you expect a short
ID). In some MicroPython ports, ID corresponds to the network MAC address.

machine.time_pulse_us(pin, pulse_level, timeout_us=1000000)
Time a pulse on the given pin, and return the duration of the pulse in microseconds. The pulse_level argument
should be 0 to time a low pulse or 1 to time a high pulse.

If the current input value of the pin is different to pulse_level, the function first (*) waits until the pin input
becomes equal to pulse_level, then (**) times the duration that the pin is equal to pulse_level. If the pin is
already equal to pulse_level then timing starts straight away.

The function will return -2 if there was timeout waiting for condition marked (*) above, and -1 if there was
timeout during the main measurement, marked (**) above. The timeout is the same for both cases and given by
timeout_us (which is in microseconds).
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Constants

machine.IDLE
machine.SLEEP
machine.DEEPSLEEP

IRQ wake values.

machine.PWRON_RESET
machine.HARD_RESET
machine.WDT_RESET
machine.DEEPSLEEP_RESET
machine.SOFT_RESET

Reset causes.

machine.WLAN_WAKE
machine.PIN_WAKE
machine.RTC_WAKE

Wake-up reasons.

Classes

class Pin – control I/O pins

A pin object is used to control I/O pins (also known as GPIO - general-purpose input/output). Pin objects are com-
monly associated with a physical pin that can drive an output voltage and read input voltages. The pin class has
methods to set the mode of the pin (IN, OUT, etc) and methods to get and set the digital logic level. For analog control
of a pin, see the ADC class.

A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The allowed forms
of the identifier and the physical pin that the identifier maps to are port-specific. Possibilities for the identifier are an
integer, a string or a tuple with port and pin number.

Usage Model:

from machine import Pin

# create an output pin on pin #0
p0 = Pin(0, Pin.OUT)

# set the value low then high
p0.value(0)
p0.value(1)

# create an input pin on pin #2, with a pull up resistor
p2 = Pin(2, Pin.IN, Pin.PULL_UP)

# read and print the pin value
print(p2.value())

# reconfigure pin #0 in input mode
p0.mode(p0.IN)

# configure an irq callback
p0.irq(lambda p:print(p))

Constructors
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class machine.Pin(id, mode=-1, pull=-1, *, value, drive, alt)
Access the pin peripheral (GPIO pin) associated with the given id. If additional arguments are given in the
constructor then they are used to initialise the pin. Any settings that are not specified will remain in their
previous state.

The arguments are:

•id is mandatory and can be an arbitrary object. Among possible value types are: int (an internal Pin
identifier), str (a Pin name), and tuple (pair of [port, pin]).

•mode specifies the pin mode, which can be one of:

–Pin.IN - Pin is configured for input. If viewed as an output the pin is in high-impedance state.

–Pin.OUT - Pin is configured for (normal) output.

–Pin.OPEN_DRAIN - Pin is configured for open-drain output. Open-drain output works in the fol-
lowing way: if the output value is set to 0 the pin is active at a low level; if the output value is 1 the
pin is in a high-impedance state. Not all ports implement this mode, or some might only on certain
pins.

–Pin.ALT - Pin is configured to perform an alternative function, which is port specific. For a pin
configured in such a way any other Pin methods (except Pin.init()) are not applicable (calling
them will lead to undefined, or a hardware-specific, result). Not all ports implement this mode.

–Pin.ALT_OPEN_DRAIN - The Same as Pin.ALT, but the pin is configured as open-drain. Not all
ports implement this mode.

•pull specifies if the pin has a (weak) pull resistor attached, and can be one of:

–None - No pull up or down resistor.

–Pin.PULL_UP - Pull up resistor enabled.

–Pin.PULL_DOWN - Pull down resistor enabled.

•value is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial output pin value if
given, otherwise the state of the pin peripheral remains unchanged.

•drive specifies the output power of the pin and can be one of: Pin.LOW_POWER, Pin.MED_POWER or
Pin.HIGH_POWER. The actual current driving capabilities are port dependent. Not all ports implement
this argument.

•alt specifies an alternate function for the pin and the values it can take are port dependent. This argument
is valid only for Pin.ALT and Pin.ALT_OPEN_DRAIN modes. It may be used when a pin supports
more than one alternate function. If only one pin alternate function is supported the this argument is not
required. Not all ports implement this argument.

As specified above, the Pin class allows to set an alternate function for a particular pin, but it does not specify any
further operations on such a pin. Pins configured in alternate-function mode are usually not used as GPIO but
are instead driven by other hardware peripherals. The only operation supported on such a pin is re-initialising,
by calling the constructor or Pin.init() method. If a pin that is configured in alternate-function mode is
re-initialised with Pin.IN, Pin.OUT, or Pin.OPEN_DRAIN, the alternate function will be removed from
the pin.

Methods
Pin.init(mode=-1, pull=-1, *, value, drive, alt)

Re-initialise the pin using the given parameters. Only those arguments that are specified will be set. The rest of
the pin peripheral state will remain unchanged. See the constructor documentation for details of the arguments.

Returns None.
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Pin.value([x ])
This method allows to set and get the value of the pin, depending on whether the argument x is supplied or not.

If the argument is omitted then this method gets the digital logic level of the pin, returning 0 or 1 corresponding
to low and high voltage signals respectively. The behaviour of this method depends on the mode of the pin:

•Pin.IN - The method returns the actual input value currently present on the pin.

•Pin.OUT - The behaviour and return value of the method is undefined.

•Pin.OPEN_DRAIN - If the pin is in state ‘0’ then the behaviour and return value of the method is unde-
fined. Otherwise, if the pin is in state ‘1’, the method returns the actual input value currently present on
the pin.

If the argument is supplied then this method sets the digital logic level of the pin. The argument x can be
anything that converts to a boolean. If it converts to True, the pin is set to state ‘1’, otherwise it is set to state
‘0’. The behaviour of this method depends on the mode of the pin:

•Pin.IN - The value is stored in the output buffer for the pin. The pin state does not change, it remains
in the high-impedance state. The stored value will become active on the pin as soon as it is changed to
Pin.OUT or Pin.OPEN_DRAIN mode.

•Pin.OUT - The output buffer is set to the given value immediately.

•Pin.OPEN_DRAIN - If the value is ‘0’ the pin is set to a low voltage state. Otherwise the pin is set to
high-impedance state.

When setting the value this method returns None.

Pin.__call__([x ])
Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin. It is
equivalent to Pin.value([x]). See Pin.value() for more details.

Pin.on()
Set pin to “1” output level.

Pin.off()
Set pin to “0” output level.

Pin.mode([mode])
Get or set the pin mode. See the constructor documentation for details of the mode argument.

Pin.pull([pull])
Get or set the pin pull state. See the constructor documentation for details of the pull argument.

Pin.drive([drive])
Get or set the pin drive strength. See the constructor documentation for details of the drive argument.

Not all ports implement this method.

Availability: WiPy.

Pin.irq(handler=None, trigger=(Pin.IRQ_FALLING | Pin.IRQ_RISING), *, priority=1, wake=None)
Configure an interrupt handler to be called when the trigger source of the pin is active. If the pin mode is
Pin.IN then the trigger source is the external value on the pin. If the pin mode is Pin.OUT then the trigger
source is the output buffer of the pin. Otherwise, if the pin mode is Pin.OPEN_DRAIN then the trigger source
is the output buffer for state ‘0’ and the external pin value for state ‘1’.

The arguments are:

•handler is an optional function to be called when the interrupt triggers.

•trigger configures the event which can generate an interrupt. Possible values are:

–Pin.IRQ_FALLING interrupt on falling edge.
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–Pin.IRQ_RISING interrupt on rising edge.

–Pin.IRQ_LOW_LEVEL interrupt on low level.

–Pin.IRQ_HIGH_LEVEL interrupt on high level.

These values can be OR’ed together to trigger on multiple events.

•priority sets the priority level of the interrupt. The values it can take are port-specific, but higher values
always represent higher priorities.

•wake selects the power mode in which this interrupt can wake up the system. It can be machine.IDLE,
machine.SLEEP or machine.DEEPSLEEP. These values can also be OR’ed together to make a pin
generate interrupts in more than one power mode.

This method returns a callback object.

Constants The following constants are used to configure the pin objects. Note that not all constants are available on
all ports.

Pin.IN
Pin.OUT
Pin.OPEN_DRAIN
Pin.ALT
Pin.ALT_OPEN_DRAIN

Selects the pin mode.

Pin.PULL_UP
Pin.PULL_DOWN

Selects whether there is a pull up/down resistor. Use the value None for no pull.

Pin.LOW_POWER
Pin.MED_POWER
Pin.HIGH_POWER

Selects the pin drive strength.

Pin.IRQ_FALLING
Pin.IRQ_RISING
Pin.IRQ_LOW_LEVEL
Pin.IRQ_HIGH_LEVEL

Selects the IRQ trigger type.

class UART – duplex serial communication bus

UART implements the standard UART/USART duplex serial communications protocol. At the physical level it con-
sists of 2 lines: RX and TX. The unit of communication is a character (not to be confused with a string character)
which can be 8 or 9 bits wide.

UART objects can be created and initialised using:

from machine import UART

uart = UART(1, 9600) # init with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # init with given parameters

Supported parameters differ on a board:

Pyboard: Bits can be 7, 8 or 9. Stop can be 1 or 2. With parity=None, only 8 and 9 bits are supported. With parity
enabled, only 7 and 8 bits are supported.
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WiPy/CC3200: Bits can be 5, 6, 7, 8. Stop can be 1 or 2.

A UART object acts like a stream object and reading and writing is done using the standard stream methods:

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line
uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

Constructors
class machine.UART(id, ...)

Construct a UART object of the given id.

Methods
UART.init(baudrate=9600, bits=8, parity=None, stop=1, *, pins=(TX, RX, RTS, CTS))

Initialise the UART bus with the given parameters:

•baudrate is the clock rate.

•bits is the number of bits per character, 7, 8 or 9.

•parity is the parity, None, 0 (even) or 1 (odd).

•stop is the number of stop bits, 1 or 2.

•pins is a 4 or 2 item list indicating the TX, RX, RTS and CTS pins (in that order). Any of the pins can
be None if one wants the UART to operate with limited functionality. If the RTS pin is given the the RX
pin must be given as well. The same applies to CTS. When no pins are given, then the default set of TX
and RX pins is taken, and hardware flow control will be disabled. If pins=None, no pin assignment will be
made.

UART.deinit()
Turn off the UART bus.

UART.any()
Returns an integer counting the number of characters that can be read without blocking. It will return 0 if there
are no characters available and a positive number if there are characters. The method may return 1 even if there
is more than one character available for reading.

For more sophisticated querying of available characters use select.poll:

poll = select.poll()
poll.register(uart, select.POLLIN)
poll.poll(timeout)

UART.read([nbytes])
Read characters. If nbytes is specified then read at most that many bytes, otherwise read as much data as
possible.

Return value: a bytes object containing the bytes read in. Returns None on timeout.

UART.readinto(buf [, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len(buf) bytes.

Return value: number of bytes read and stored into buf or None on timeout.

UART.readline()
Read a line, ending in a newline character.

Return value: the line read or None on timeout.
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UART.write(buf)
Write the buffer of bytes to the bus.

Return value: number of bytes written or None on timeout.

UART.sendbreak()
Send a break condition on the bus. This drives the bus low for a duration longer than required for a normal
transmission of a character.

UART.irq(trigger, priority=1, handler=None, wake=machine.IDLE)
Create a callback to be triggered when data is received on the UART.

•trigger can only be UART.RX_ANY

•priority level of the interrupt. Can take values in the range 1-7. Higher values represent higher
priorities.

•handler an optional function to be called when new characters arrive.

•wake can only be machine.IDLE.

Note: The handler will be called whenever any of the following two conditions are met:

•8 new characters have been received.

•At least 1 new character is waiting in the Rx buffer and the Rx line has been silent for the duration of 1
complete frame.

This means that when the handler function is called there will be between 1 to 8 characters waiting.

Returns an irq object.

Constants
UART.RX_ANY

IRQ trigger sources

class SPI – a Serial Peripheral Interface bus protocol (master side)

SPI is a synchronous serial protocol that is driven by a master. At the physical level, a bus consists of 3 lines: SCK,
MOSI, MISO. Multiple devices can share the same bus. Each device should have a separate, 4th signal, SS (Slave
Select), to select a particular device on a bus with which communication takes place. Management of an SS signal
should happen in user code (via machine.Pin class).

Constructors
class machine.SPI(id, ...)

Construct an SPI object on the given bus, id. Values of id depend on a particular port and its hardware. Values
0, 1, etc. are commonly used to select hardware SPI block #0, #1, etc. Value -1 can be used for bitbanging
(software) implementation of SPI (if supported by a port).

With no additional parameters, the SPI object is created but not initialised (it has the settings from the last
initialisation of the bus, if any). If extra arguments are given, the bus is initialised. See init for parameters of
initialisation.
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Methods
SPI.init(baudrate=1000000, *, polarity=0, phase=0, bits=8, firstbit=SPI.MSB, sck=None, mosi=None,

miso=None, pins=(SCK, MOSI, MISO))
Initialise the SPI bus with the given parameters:

•baudrate is the SCK clock rate.

•polarity can be 0 or 1, and is the level the idle clock line sits at.

•phase can be 0 or 1 to sample data on the first or second clock edge respectively.

•bits is the width in bits of each transfer. Only 8 is guaranteed to be supported by all hardware.

•firstbit can be SPI.MSB or SPI.LSB.

•sck, mosi, miso are pins (machine.Pin) objects to use for bus signals. For most hardware SPI blocks
(as selected by id parameter to the constructor), pins are fixed and cannot be changed. In some cases,
hardware blocks allow 2-3 alternative pin sets for a hardware SPI block. Arbitrary pin assignments are
possible only for a bitbanging SPI driver (id = -1).

•pins - WiPy port doesn’t sck, mosi, miso arguments, and instead allows to specify them as a tuple of
pins parameter.

SPI.deinit()
Turn off the SPI bus.

SPI.read(nbytes, write=0x00)
Read a number of bytes specified by nbytes while continuously writing the single byte given by write.
Returns a bytes object with the data that was read.

SPI.readinto(buf, write=0x00)
Read into the buffer specified by buf while continuously writing the single byte given by write. Returns
None.

Note: on WiPy this function returns the number of bytes read.

SPI.write(buf)
Write the bytes contained in buf. Returns None.

Note: on WiPy this function returns the number of bytes written.

SPI.write_readinto(write_buf, read_buf)
Write the bytes from write_buf while reading into read_buf. The buffers can be the same or different, but
both buffers must have the same length. Returns None.

Note: on WiPy this function returns the number of bytes written.

Constants
SPI.MASTER

for initialising the SPI bus to master; this is only used for the WiPy
SPI.MSB

set the first bit to be the most significant bit

SPI.LSB
set the first bit to be the least significant bit

class I2C – a two-wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL and
SDA, the clock and data lines respectively.

I2C objects are created attached to a specific bus. They can be initialised when created, or initialised later on.
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Printing the I2C object gives you information about its configuration.

Example usage:

from machine import I2C

i2c = I2C(freq=400000) # create I2C peripheral at frequency of 400kHz
# depending on the port, extra parameters may be required
# to select the peripheral and/or pins to use

i2c.scan() # scan for slaves, returning a list of 7-bit addresses

i2c.writeto(42, b'123') # write 3 bytes to slave with 7-bit address 42
i2c.readfrom(42, 4) # read 4 bytes from slave with 7-bit address 42

i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of slave 42,
# starting at memory-address 8 in the slave

i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of slave 42
# starting at address 2 in the slave

Constructors
class machine.I2C(id=-1, *, scl, sda, freq=400000)

Construct and return a new I2C object using the following parameters:

•id identifies a particular I2C peripheral. The default value of -1 selects a software implementation of I2C
which can work (in most cases) with arbitrary pins for SCL and SDA. If id is -1 then scl and sda must be
specified. Other allowed values for id depend on the particular port/board, and specifying scl and sda may
or may not be required or allowed in this case.

•scl should be a pin object specifying the pin to use for SCL.

•sda should be a pin object specifying the pin to use for SDA.

•freq should be an integer which sets the maximum frequency for SCL.

General Methods
I2C.init(scl, sda, *, freq=400000)

Initialise the I2C bus with the given arguments:

•scl is a pin object for the SCL line

•sda is a pin object for the SDA line

•freq is the SCL clock rate
I2C.deinit()

Turn off the I2C bus.

Availability: WiPy.

I2C.scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A device
responds if it pulls the SDA line low after its address (including a write bit) is sent on the bus.

Primitive I2C operations The following methods implement the primitive I2C master bus operations and can be
combined to make any I2C transaction. They are provided if you need more control over the bus, otherwise the
standard methods (see below) can be used.
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I2C.start()
Generate a START condition on the bus (SDA transitions to low while SCL is high).

Availability: ESP8266.

I2C.stop()
Generate a STOP condition on the bus (SDA transitions to high while SCL is high).

Availability: ESP8266.

I2C.readinto(buf, nack=True)
Reads bytes from the bus and stores them into buf. The number of bytes read is the length of buf. An ACK will
be sent on the bus after receiving all but the last byte. After the last byte is received, if nack is true then a NACK
will be sent, otherwise an ACK will be sent (and in this case the slave assumes more bytes are going to be read
in a later call).

Availability: ESP8266.

I2C.write(buf)
Write the bytes from buf to the bus. Checks that an ACK is received after each byte and stops transmitting the
remaining bytes if a NACK is received. The function returns the number of ACKs that were received.

Availability: ESP8266.

Standard bus operations The following methods implement the standard I2C master read and write operations that
target a given slave device.

I2C.readfrom(addr, nbytes, stop=True)
Read nbytes from the slave specified by addr. If stop is true then a STOP condition is generated at the end of
the transfer. Returns a bytes object with the data read.

I2C.readfrom_into(addr, buf, stop=True)
Read into buf from the slave specified by addr. The number of bytes read will be the length of buf. If stop is
true then a STOP condition is generated at the end of the transfer.

The method returns None.

I2C.writeto(addr, buf, stop=True)
Write the bytes from buf to the slave specified by addr. If a NACK is received following the write of a byte
from buf then the remaining bytes are not sent. If stop is true then a STOP condition is generated at the end of
the transfer, even if a NACK is received. The function returns the number of ACKs that were received.

Memory operations Some I2C devices act as a memory device (or set of registers) that can be read from and written
to. In this case there are two addresses associated with an I2C transaction: the slave address and the memory address.
The following methods are convenience functions to communicate with such devices.

I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)
Read nbytes from the slave specified by addr starting from the memory address specified by memaddr. The
argument addrsize specifies the address size in bits. Returns a bytes object with the data read.

I2C.readfrom_mem_into(addr, memaddr, buf, *, addrsize=8)
Read into buf from the slave specified by addr starting from the memory address specified by memaddr. The
number of bytes read is the length of buf. The argument addrsize specifies the address size in bits (on ESP8266
this argument is not recognised and the address size is always 8 bits).

The method returns None.

I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)
Write buf to the slave specified by addr starting from the memory address specified by memaddr. The argument

56 Chapter 4. MicroPython libraries



MicroPython Documentation, Release 1.9.2

addrsize specifies the address size in bits (on ESP8266 this argument is not recognised and the address size is
always 8 bits).

The method returns None.

class RTC – real time clock

The RTC is and independent clock that keeps track of the date and time.

Example usage:

rtc = machine.RTC()
rtc.init((2014, 5, 1, 4, 13, 0, 0, 0))
print(rtc.now())

Constructors
class machine.RTC(id=0, ...)

Create an RTC object. See init for parameters of initialization.

Methods
RTC.init(datetime)

Initialise the RTC. Datetime is a tuple of the form:

(year, month, day[, hour[, minute[, second[, microsecond[,
tzinfo]]]]])

RTC.now()
Get get the current datetime tuple.

RTC.deinit()
Resets the RTC to the time of January 1, 2015 and starts running it again.

RTC.alarm(id, time, *, repeat=False)
Set the RTC alarm. Time might be either a millisecond value to program the alarm to current time + time_in_ms
in the future, or a datetimetuple. If the time passed is in milliseconds, repeat can be set to True to make the
alarm periodic.

RTC.alarm_left(alarm_id=0)
Get the number of milliseconds left before the alarm expires.

RTC.cancel(alarm_id=0)
Cancel a running alarm.

RTC.irq(*, trigger, handler=None, wake=machine.IDLE)
Create an irq object triggered by a real time clock alarm.

•trigger must be RTC.ALARM0

•handler is the function to be called when the callback is triggered.

•wake specifies the sleep mode from where this interrupt can wake up the system.

Constants
RTC.ALARM0

irq trigger source
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class Timer – control hardware timers

Hardware timers deal with timing of periods and events. Timers are perhaps the most flexible and heterogeneous kind
of hardware in MCUs and SoCs, differently greatly from a model to a model. MicroPython’s Timer class defines a
baseline operation of executing a callback with a given period (or once after some delay), and allow specific boards to
define more non-standard behavior (which thus won’t be portable to other boards).

See discussion of important constraints on Timer callbacks.

Note: Memory can’t be allocated inside irq handlers (an interrupt) and so exceptions raised within a handler don’t
give much information. See micropython.alloc_emergency_exception_buf() for how to get around
this limitation.

Constructors
class machine.Timer(id, ...)

Construct a new timer object of the given id. Id of -1 constructs a virtual timer (if supported by a board).

Methods
Timer.init(mode, *, width=16)

Initialise the timer. Example:

tim.init(Timer.PERIODIC) # periodic 16-bit timer
tim.init(Timer.ONE_SHOT, width=32) # one shot 32-bit timer

Keyword arguments:

•mode can be one of:

–Timer.ONE_SHOT - The timer runs once until the configured period of the channel expires.

–Timer.PERIODIC - The timer runs periodically at the configured frequency of the channel.

–Timer.PWM - Output a PWM signal on a pin.

•width must be either 16 or 32 (bits). For really low frequencies < 5Hz (or large periods), 32-bit timers
should be used. 32-bit mode is only available for ONE_SHOT AND PERIODIC modes.

Timer.deinit()
Deinitialises the timer. Stops the timer, and disables the timer peripheral.

Timer.channel(channel, **, freq, period, polarity=Timer.POSITIVE, duty_cycle=0)
If only a channel identifier passed, then a previously initialized channel object is returned (or None if there is
no previous channel).

Otherwise, a TimerChannel object is initialized and returned.

The operating mode is is the one configured to the Timer object that was used to create the channel.

•channel if the width of the timer is 16-bit, then must be either TIMER.A, TIMER.B. If the width is
32-bit then it must be TIMER.A | TIMER.B.

Keyword only arguments:

•freq sets the frequency in Hz.

•period sets the period in microseconds.

Note: Either freq or period must be given, never both.
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•polarity this is applicable for PWM, and defines the polarity of the duty cycle

•duty_cycle only applicable to PWM. It’s a percentage (0.00-100.00). Since the WiPy doesn’t
support floating point numbers the duty cycle must be specified in the range 0-10000, where
10000 would represent 100.00, 5050 represents 50.50, and so on.

Note: When the channel is in PWM mode, the corresponding pin is assigned automatically, therefore there’s
no need to assign the alternate function of the pin via the Pin class. The pins which support PWM functionality
are the following:

•GP24 on Timer 0 channel A.

•GP25 on Timer 1 channel A.

•GP9 on Timer 2 channel B.

•GP10 on Timer 3 channel A.

•GP11 on Timer 3 channel B.

timerchannel.freq([value])
Get or set the timer channel frequency (in Hz).

timerchannel.period([value])
Get or set the timer channel period (in microseconds).

timerchannel.duty_cycle([value])
Get or set the duty cycle of the PWM signal. It’s a percentage (0.00-100.00). Since the WiPy doesn’t support
floating point numbers the duty cycle must be specified in the range 0-10000, where 10000 would represent
100.00, 5050 represents 50.50, and so on.

Constants
Timer.ONE_SHOT
Timer.PERIODIC

Timer operating mode.

class TimerChannel — setup a channel for a timer

Timer channels are used to generate/capture a signal using a timer.

TimerChannel objects are created using the Timer.channel() method.

Methods
timerchannel.irq(*, trigger, priority=1, handler=None)

The behavior of this callback is heavily dependent on the operating mode of the timer channel:

•If mode is Timer.PERIODIC the callback is executed periodically with the configured frequency or
period.

•If mode is Timer.ONE_SHOT the callback is executed once when the configured timer expires.

•If mode is Timer.PWM the callback is executed when reaching the duty cycle value.

The accepted params are:

•priority level of the interrupt. Can take values in the range 1-7. Higher values represent higher
priorities.
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•handler is an optional function to be called when the interrupt is triggered.

•trigger must be Timer.TIMEOUT when the operating mode is either Timer.PERIODIC or
Timer.ONE_SHOT. In the case that mode is Timer.PWM then trigger must be equal to Timer.MATCH.

Returns a callback object.

class WDT – watchdog timer

The WDT is used to restart the system when the application crashes and ends up into a non recoverable state. Once
started it cannot be stopped or reconfigured in any way. After enabling, the application must “feed” the watchdog
periodically to prevent it from expiring and resetting the system.

Example usage:

from machine import WDT
wdt = WDT(timeout=2000) # enable it with a timeout of 2s
wdt.feed()

Availability of this class: pyboard, WiPy.

Constructors
class machine.WDT(id=0, timeout=5000)

Create a WDT object and start it. The timeout must be given in seconds and the minimum value that is accepted
is 1 second. Once it is running the timeout cannot be changed and the WDT cannot be stopped either.

Methods
wdt.feed()

Feed the WDT to prevent it from resetting the system. The application should place this call in a sensible place
ensuring that the WDT is only fed after verifying that everything is functioning correctly.

class ADC – analog to digital conversion

Usage:

import machine

adc = machine.ADC() # create an ADC object
apin = adc.channel(pin='GP3') # create an analog pin on GP3
val = apin() # read an analog value

Constructors
class machine.ADC(id=0, *, bits=12)

Create an ADC object associated with the given pin. This allows you to then read analog values on that pin. For
more info check the pinout and alternate functions table.

Warning: ADC pin input range is 0-1.4V (being 1.8V the absolute maximum that it can withstand). When
GP2, GP3, GP4 or GP5 are remapped to the ADC block, 1.8 V is the maximum. If these pins are used in
digital mode, then the maximum allowed input is 3.6V.
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Methods
ADC.channel(id, *, pin)

Create an analog pin. If only channel ID is given, the correct pin will be selected. Alternatively, only the pin
can be passed and the correct channel will be selected. Examples:

# all of these are equivalent and enable ADC channel 1 on GP3
apin = adc.channel(1)
apin = adc.channel(pin='GP3')
apin = adc.channel(id=1, pin='GP3')

ADC.init()
Enable the ADC block.

ADC.deinit()
Disable the ADC block.

class ADCChannel — read analog values from internal or external sources

ADC channels can be connected to internal points of the MCU or to GPIO pins. ADC channels are created using the
ADC.channel method.

machine.adcchannel()
Fast method to read the channel value.

adcchannel.value()
Read the channel value.

adcchannel.init()
Re-init (and effectively enable) the ADC channel.

adcchannel.deinit()
Disable the ADC channel.

class SD – secure digital memory card

The SD card class allows to configure and enable the memory card module of the WiPy and automatically mount it as
/sd as part of the file system. There are several pin combinations that can be used to wire the SD card socket to the
WiPy and the pins used can be specified in the constructor. Please check the pinout and alternate functions table. for
more info regarding the pins which can be remapped to be used with a SD card.

Example usage:

from machine import SD
import os
# clk cmd and dat0 pins must be passed along with
# their respective alternate functions
sd = machine.SD(pins=('GP10', 'GP11', 'GP15'))
os.mount(sd, '/sd')
# do normal file operations

Constructors
class machine.SD(id, ...)

Create a SD card object. See init() for parameters if initialization.
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Methods
SD.init(id=0, pins=(‘GP10’, ‘GP11’, ‘GP15’))

Enable the SD card. In order to initialize the card, give it a 3-tuple: (clk_pin, cmd_pin, dat0_pin).
SD.deinit()

Disable the SD card.

4.2.4 micropython – access and control MicroPython internals

Functions

micropython.const(expr)
Used to declare that the expression is a constant so that the compile can optimise it. The use of this function
should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from outside the module they are declared
in. On the other hand, if a constant begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is provided as part of the
micropython module mainly so that scripts can be written which run under both CPython and MicroPy-
thon, by following the above pattern.

micropython.opt_level([level])
If level is given then this function sets the optimisation level for subsequent compilation of scripts, and returns
None. Otherwise it returns the current optimisation level.

micropython.alloc_emergency_exception_buf(size)
Allocate size bytes of RAM for the emergency exception buffer (a good size is around 100 bytes). The buffer is
used to create exceptions in cases when normal RAM allocation would fail (eg within an interrupt handler) and
therefore give useful traceback information in these situations.

A good way to use this function is to put it at the start of your main script (eg boot.py or main.py) and then
the emergency exception buffer will be active for all the code following it.

micropython.mem_info([verbose])
Print information about currently used memory. If the verbose‘ argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the amount of stack and
heap used. In verbose mode it prints out the entire heap indicating which blocks are used and which are free.

micropython.qstr_info([verbose])
Print information about currently interned strings. If the verbose argument is given then extra information is
printed.

The information that is printed is implementation dependent, but currently includes the number of interned
strings and the amount of RAM they use. In verbose mode it prints out the names of all RAM-interned strings.

micropython.stack_use()
Return an integer representing the current amount of stack that is being used. The absolute value of this is not
particularly useful, rather it should be used to compute differences in stack usage at different points.

micropython.heap_lock()
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micropython.heap_unlock()
Lock or unlock the heap. When locked no memory allocation can occur and a MemoryError will be raised if
any heap allocation is attempted.

These functions can be nested, ie heap_lock() can be called multiple times in a row and the lock-depth
will increase, and then heap_unlock() must be called the same number of times to make the heap available
again.

micropython.kbd_intr(chr)
Set the character that will raise a KeyboardInterrupt exception. By default this is set to 3 during script
execution, corresponding to Ctrl-C. Passing -1 to this function will disable capture of Ctrl-C, and passing 3 will
restore it.

This function can be used to prevent the capturing of Ctrl-C on the incoming stream of characters that is usually
used for the REPL, in case that stream is used for other purposes.

micropython.schedule(func, arg)
Schedule the function func to be executed “very soon”. The function is passed the value arg as its single
argument. “Very soon” means that the MicroPython runtime will do its best to execute the function at the
earliest possible time, given that it is also trying to be efficient, and that the following conditions hold:

•A scheduled function will never preempt another scheduled function.

•Scheduled functions are always executed “between opcodes” which means that all fundamental Python
operations (such as appending to a list) are guaranteed to be atomic.

•A given port may define “critical regions” within which scheduled functions will never be executed. Func-
tions may be scheduled within a critical region but they will not be executed until that region is exited. An
example of a critical region is a preempting interrupt handler (an IRQ).

A use for this function is to schedule a callback from a preempting IRQ. Such an IRQ puts restrictions on the
code that runs in the IRQ (for example the heap may be locked) and scheduling a function to call later will lift
those restrictions.

There is a finite stack to hold the scheduled functions and schedule will raise a RuntimeError if the stack
is full.

4.2.5 network — network configuration

This module provides network drivers and routing configuration. To use this module, a MicroPython variant/build
with network capabilities must be installed. Network drivers for specific hardware are available within this module
and are used to configure hardware network interface(s). Network services provided by configured interfaces are then
available for use via the socket module.

For example:

# connect/ show IP config a specific network interface
# see below for examples of specific drivers
import network
import utime
nic = network.Driver(...)
if not nic.isconnected():

nic.connect()
print("Waiting for connection...")
while not nic.isconnected():

utime.sleep(1)
print(nic.ifconfig())

# now use usocket as usual
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import usocket as socket
addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
s = socket.socket()
s.connect(addr)
s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
data = s.recv(1000)
s.close()

Common network adapter interface

This section describes an (implied) abstract base class for all network interface classes implemented by different ports
of MicroPython for different hardware. This means that MicroPython does not actually provide AbstractNIC class,
but any actual NIC class, as described in the following sections, implements methods as described here.

class network.AbstractNIC(id=None, ...)

Instantiate a network interface object. Parameters are network interface dependent. If there are more than one interface
of the same type, the first parameter should be id.

network.active([is_active])
Activate (“up”) or deactivate (“down”) the network interface, if a boolean argument is passed. Other-
wise, query current state if no argument is provided. Most other methods require an active interface
(behavior of calling them on inactive interface is undefined).

network.connect([service_id, key=None, *, ...])
Connect the interface to a network. This method is optional, and available only for interfaces which
are not “always connected”. If no parameters are given, connect to the default (or the only) ser-
vice. If a single parameter is given, it is the primary identifier of a service to connect to. It may
be accompanied by a key (password) required to access said service. There can be further arbi-
trary keyword-only parameters, depending on the networking medium type and/or particular device.
Parameters can be used to: a) specify alternative service identifer types; b) provide additional con-
nection parameters. For various medium types, there are different sets of predefined/recommended
parameters, among them:

•WiFi: bssid keyword to connect by BSSID (MAC address) instead of access point name

network.disconnect()
Disconnect from network.

network.isconnected()
Returns True if connected to network, otherwise returns False.

network.scan(*, ...)
Scan for the available network services/connections. Returns a list of tuples with discovered service
parameters. For various network media, there are different variants of predefined/ recommended
tuple formats, among them:

•WiFi: (ssid, bssid, channel, RSSI, authmode, hidden). There may be further fields, specific to a
particular device.

The function may accept additional keyword arguments to filter scan results (e.g. scan for a particu-
lar service, on a particular channel, for services of a particular set, etc.), and to affect scan duration
and other parameters. Where possible, parameter names should match those in connect().

network.status()
Return detailed status of the interface, values are dependent on the network medium/technology.

network.ifconfig([(ip, subnet, gateway, dns)])
Get/set IP-level network interface parameters: IP address, subnet mask, gateway and DNS server.
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When called with no arguments, this method returns a 4-tuple with the above information. To set
the above values, pass a 4-tuple with the required information. For example:

nic.ifconfig(('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

network.config(‘param’)
network.config(param=value, ...)

Get or set general network interface parameters. These methods allow to work with additional
parameters beyond standard IP configuration (as dealt with by ifconfig()). These include
network-specific and hardware-specific parameters and status values. For setting parameters, the
keyword argument syntax should be used, and multiple parameters can be set at once. For querying,
a parameter name should be quoted as a string, and only one parameter can be queried at a time:

# Set WiFi access point name (formally known as ESSID) and WiFi channel
ap.config(essid='My AP', channel=11)
# Query params one by one
print(ap.config('essid'))
print(ap.config('channel'))
# Extended status information also available this way
print(sta.config('rssi'))

class WLAN

This class provides a driver for the WiFi network processor in the WiPy. Example usage:

import network
import time
# setup as a station
wlan = network.WLAN(mode=WLAN.STA)
wlan.connect('your-ssid', auth=(WLAN.WPA2, 'your-key'))
while not wlan.isconnected():

time.sleep_ms(50)
print(wlan.ifconfig())

# now use socket as usual
...

Constructors

class network.WLAN(id=0, ...)
Create a WLAN object, and optionally configure it. See init() for params of configuration.

Note: The WLAN constructor is special in the sense that if no arguments besides the id are given, it will return the
already existing WLAN instance without re-configuring it. This is because WLAN is a system feature of the WiPy. If the
already existing instance is not initialized it will do the same as the other constructors an will initialize it with default
values.

Methods

wlan.init(mode, *, ssid, auth, channel, antenna)
Set or get the WiFi network processor configuration.

Arguments are:
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•mode can be either WLAN.STA or WLAN.AP.

•ssid is a string with the ssid name. Only needed when mode is WLAN.AP.

•auth is a tuple with (sec, key). Security can be None, WLAN.WEP, WLAN.WPA or WLAN.WPA2. The
key is a string with the network password. If sec is WLAN.WEP the key must be a string representing
hexadecimal values (e.g. ‘ABC1DE45BF’). Only needed when mode is WLAN.AP.

•channel a number in the range 1-11. Only needed when mode is WLAN.AP.

•antenna selects between the internal and the external antenna. Can be either WLAN.INT_ANT or
WLAN.EXT_ANT.

For example, you can do:

# create and configure as an access point
wlan.init(mode=WLAN.AP, ssid='wipy-wlan', auth=(WLAN.WPA2,'www.wipy.io'), channel=7, antenna=WLAN.INT_ANT)

or:

# configure as an station
wlan.init(mode=WLAN.STA)

wlan.connect(ssid, *, auth=None, bssid=None, timeout=None)
Connect to a WiFi access point using the given SSID, and other security parameters.

•auth is a tuple with (sec, key). Security can be None, WLAN.WEP, WLAN.WPA or WLAN.WPA2. The
key is a string with the network password. If sec is WLAN.WEP the key must be a string representing
hexadecimal values (e.g. ‘ABC1DE45BF’).

•bssid is the MAC address of the AP to connect to. Useful when there are several APs with the same ssid.

•timeout is the maximum time in milliseconds to wait for the connection to succeed.

wlan.scan()
Performs a network scan and returns a list of named tuples with (ssid, bssid, sec, channel, rssi). Note that
channel is always None since this info is not provided by the WiPy.

wlan.disconnect()
Disconnect from the WiFi access point.

wlan.isconnected()
In case of STA mode, returns True if connected to a WiFi access point and has a valid IP address. In AP mode
returns True when a station is connected, False otherwise.

wlan.ifconfig(if_id=0, config=[’dhcp’ or configtuple])
With no parameters given returns a 4-tuple of (ip, subnet_mask, gateway, DNS_server).

if ’dhcp’ is passed as a parameter then the DHCP client is enabled and the IP params are negotiated with the
AP.

If the 4-tuple config is given then a static IP is configured. For instance:

wlan.ifconfig(config=('192.168.0.4', '255.255.255.0', '192.168.0.1', '8.8.8.8'))

wlan.mode([mode])
Get or set the WLAN mode.

wlan.ssid([ssid ])
Get or set the SSID when in AP mode.

wlan.auth([auth])
Get or set the authentication type when in AP mode.
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wlan.channel([channel])
Get or set the channel (only applicable in AP mode).

wlan.antenna([antenna])
Get or set the antenna type (external or internal).

wlan.mac([mac_addr ])
Get or set a 6-byte long bytes object with the MAC address.

wlan.irq(*, handler, wake)
Create a callback to be triggered when a WLAN event occurs during machine.SLEEP mode. Events are
triggered by socket activity or by WLAN connection/disconnection.

•handler is the function that gets called when the IRQ is triggered.

•wake must be machine.SLEEP.

Returns an IRQ object.

Constants

WLAN.STA

WLAN.AP
selects the WLAN mode

WLAN.WEP

WLAN.WPA

WLAN.WPA2
selects the network security

WLAN.INT_ANT

WLAN.EXT_ANT
selects the antenna type

4.2.6 uctypes – access binary data in a structured way

This module implements “foreign data interface” for MicroPython. The idea behind it is similar to CPython’s ctypes
modules, but the actual API is different, streamlined and optimized for small size. The basic idea of the module is
to define data structure layout with about the same power as the C language allows, and the access it using familiar
dot-syntax to reference sub-fields.

See also:

Module ustruct Standard Python way to access binary data structures (doesn’t scale well to large and complex
structures).

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which encodes field names as keys and other
properties required to access them as associated values. Currently, uctypes requires explicit specification of offsets for
each field. Offset are given in bytes from a structure start.

Following are encoding examples for various field types:

• Scalar types:
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"field_name": uctypes.UINT32 | 0

in other words, value is scalar type identifier ORed with field offset (in bytes) from the start of the structure.

• Recursive structures:

"sub": (2, {
"b0": uctypes.UINT8 | 0,
"b1": uctypes.UINT8 | 1,

})

i.e. value is a 2-tuple, first element of which is offset, and second is a structure descriptor dictionary (note:
offsets in recursive descriptors are relative to a structure it defines).

• Arrays of primitive types:

"arr": (uctypes.ARRAY | 0, uctypes.UINT8 | 2),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed with offset, and second is scalar element type
ORed number of elements in array.

• Arrays of aggregate types:

"arr2": (uctypes.ARRAY | 0, 2, {"b": uctypes.UINT8 | 0}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed with offset, second is a number of elements
in array, and third is descriptor of element type.

• Pointer to a primitive type:

"ptr": (uctypes.PTR | 0, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, and second is scalar element type.

• Pointer to an aggregate type:

"ptr2": (uctypes.PTR | 0, {"b": uctypes.UINT8 | 0}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, second is descriptor of type pointed
to.

• Bitfields:

"bitf0": uctypes.BFUINT16 | 0 | 0 << uctypes.BF_POS | 8 << uctypes.BF_LEN,

i.e. value is type of scalar value containing given bitfield (typenames are similar to scalar types, but prefixes with
“BF”), ORed with offset for scalar value containing the bitfield, and further ORed with values for bit offset and
bit length of the bitfield within scalar value, shifted by BF_POS and BF_LEN positions, respectively. Bitfield
position is counted from the least significant bit, and is the number of right-most bit of a field (in other words,
it’s a number of bits a scalar needs to be shifted right to extra the bitfield).

In the example above, first UINT16 value will be extracted at offset 0 (this detail may be important when
accessing hardware registers, where particular access size and alignment are required), and then bitfield whose
rightmost bit is least-significant bit of this UINT16, and length is 8 bits, will be extracted - effectively, this will
access least-significant byte of UINT16.

Note that bitfield operations are independent of target byte endianness, in particular, example above will access
least-significant byte of UINT16 in both little- and big-endian structures. But it depends on the least significant
bit being numbered 0. Some targets may use different numbering in their native ABI, but uctypes always uses
normalized numbering described above.
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Module contents

class uctypes.struct(addr, descriptor, layout_type=NATIVE)
Instantiate a “foreign data structure” object based on structure address in memory, descriptor (encoded as a
dictionary), and layout type (see below).

uctypes.LITTLE_ENDIAN
Layout type for a little-endian packed structure. (Packed means that every field occupies exactly as many bytes
as defined in the descriptor, i.e. the alignment is 1).

uctypes.BIG_ENDIAN
Layout type for a big-endian packed structure.

uctypes.NATIVE
Layout type for a native structure - with data endianness and alignment conforming to the ABI of the system on
which MicroPython runs.

uctypes.sizeof(struct)
Return size of data structure in bytes. Argument can be either structure class or specific instantiated structure
object (or its aggregate field).

uctypes.addressof(obj)
Return address of an object. Argument should be bytes, bytearray or other object supporting buffer protocol
(and address of this buffer is what actually returned).

uctypes.bytes_at(addr, size)
Capture memory at the given address and size as bytes object. As bytes object is immutable, memory is actually
duplicated and copied into bytes object, so if memory contents change later, created object retains original value.

uctypes.bytearray_at(addr, size)
Capture memory at the given address and size as bytearray object. Unlike bytes_at() function above, memory
is captured by reference, so it can be both written too, and you will access current value at the given memory
address.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can instantiate a specific structure instance at a given
memory address using uctypes.struct() constructor. Memory address usually comes from following sources:

• Predefined address, when accessing hardware registers on a baremetal system. Lookup these addresses in
datasheet for a particular MCU/SoC.

• As a return value from a call to some FFI (Foreign Function Interface) function.

• From uctypes.addressof(), when you want to pass arguments to an FFI function, or alternatively, to access some
data for I/O (for example, data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot notation:
my_struct.substruct1.field1. If a field is of scalar type, getting it will produce a primitive value
(Python integer or float) corresponding to the value contained in a field. A scalar field can also be assigned to.

If a field is an array, its individual elements can be accessed with the standard subscript operator [] - both read and
assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax (corresponding to C * operator, though [0] works in C
too). Subscripting a pointer with other integer values but 0 are supported too, with the same semantics as in C.

4.2. MicroPython-specific libraries 69



MicroPython Documentation, Release 1.9.2

Summing up, accessing structure fields generally follows C syntax, except for pointer dereference, when you need to
use [0] operator instead of *.

Limitations

Accessing non-scalar fields leads to allocation of intermediate objects to represent them. This means that special care
should be taken to layout a structure which needs to be accessed when memory allocation is disabled (e.g. from an
interrupt). The recommendations are:

• Avoid nested structures. For example, instead of mcu_registers.peripheral_a.register1, define
separate layout descriptors for each peripheral, to be accessed as peripheral_a.register1.

• Avoid other non-scalar data, like array. For example, instead of peripheral_a.register[0] use
peripheral_a.register0.

Note that these recommendations will lead to decreased readability and conciseness of layouts, so they should be used
only if the need to access structure fields without allocation is anticipated (it’s even possible to define 2 parallel layouts
- one for normal usage, and a restricted one to use when memory allocation is prohibited).

4.3 Libraries specific to the WiPy

The following libraries are specific to the WiPy.

4.3.1 wipy – WiPy specific features

The wipy module contains functions to control specific features of the WiPy, such as the heartbeat LED.

Functions

wipy.heartbeat([enable])
Get or set the state (enabled or disabled) of the heartbeat LED. Accepts and returns boolean values (True or
False).
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CHAPTER

FIVE

THE MICROPYTHON LANGUAGE

MicroPython aims to implement the Python 3.4 standard (with selected features from later versions) with respect to
language syntax, and most of the features of MicroPython are identical to those described by the “Language Reference”
documentation at docs.python.org.

The MicroPython standard library is described in the corresponding chapter. The MicroPython differences from
CPython chapter describes differences between MicroPython and CPython (which mostly concern standard library
and types, but also some language-level features).

This chapter describes features and peculiarities of MicroPython implementation and the best practices to use them.

5.1 Glossary

baremetal A system without (full-fledged) OS, like an MCU. When running on a baremetal system, MicroPython
effectively becomes its user-facing OS with a command interpreter (REPL).

board A PCB board. Oftentimes, the term is used to denote a particular model of an MCU system. Sometimes, it
is used to actually refer to MicroPython port to a particular board (and then may also refer to “boardless” ports
like Unix port).

CPython CPython is the reference implementation of Python programming language, and the most well-known one,
which most of the people run. It is however one of many implementations (among which Jython, IronPython,
PyPy, and many more, including MicroPython). As there is no formal specification of the Python language, only
CPython documentation, it is not always easy to draw a line between Python the language and CPython its partic-
ular implementation. This however leaves more freedom for other implementations. For example, MicroPython
does a lot of things differently than CPython, while still aspiring to be a Python language implementation.

GPIO General-purpose input/output. The simplest means to control electrical signals. With GPIO, user can configure
hardware signal pin to be either input or output, and set or get its digital signal value (logical “0” or “1”).
MicroPython abstracts GPIO access using machine.Pin and machine.Signal classes.

GPIO port A group of GPIO pins, usually based on hardware properties of these pins (e.g. controllable by the same
register).

MCU Microcontroller. Microcontrollers usually have much less resources than a full-fledged computing system, but
smaller, cheaper and require much less power. MicroPython is designed to be small and optimized enough to
run on an average modern microcontroller.

micropython-lib MicroPython is (usually) distributed as a single executable/binary file with just few builtin modules.
There is no extensive standard library comparable with CPython. Instead, there is a related, but separate project
micropython-lib which provides implementations for many modules from CPython’s standard library. However,
large subset of these modules require POSIX-like environment (Linux, MacOS, Windows may be partially
supported), and thus would work or make sense only with MicroPython Unix port. Some subset of modules is
however usable for baremetal ports too.
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Unlike monolithic CPython stdlib, micropython-lib modules are intended to be installed individually - either
using manual copying or using upip.

MicroPython port MicroPython supports different boards, RTOSes, and OSes, and can be relatively easily adapted
to new systems. MicroPython with support for a particular system is called a “port” to that system. Different
ports may have widely different functionality. This documentation is intended to be a reference of the generic
APIs available across different ports (“MicroPython core”). Note that some ports may still omit some APIs
described here (e.g. due to resource constraints). Any such differences, and port-specific extensions beyond
MicroPython core functionality, would be described in the separate port-specific documentation.

MicroPython Unix port Unix port is one of the major MicroPython ports. It is intended to run on POSIX-compatible
operating systems, like Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the basis of Windows port. The
importance of Unix port lies in the fact that while there are many different boards, so two random users unlikely
have the same board, almost all modern OSes have some level of POSIX compatibility, so Unix port serves as
a kind of “common ground” to which any user can have access. So, Unix port is used for initial prototyping,
different kinds of testing, development of machine-independent features, etc. All users of MicroPython, even
those which are interested only in running MicroPython on MCU systems, are recommended to be familiar with
Unix (or Windows) port, as it is important productivity helper and a part of normal MicroPython workflow.

port Either MicroPython port or GPIO port. If not clear from context, it’s recommended to use full specification like
one of the above.

upip (Literally, “micro pip”). A package manage for MicroPython, inspired by CPython‘s pip, but much smaller and
with reduced functionality. upip runs both on Unix port and on baremetal ports (those which offer filesystem
and networking support).

5.2 The MicroPython Interactive Interpreter Mode (aka REPL)

This section covers some characteristics of the MicroPython Interactive Interpreter Mode. A commonly used term for
this is REPL (read-eval-print-loop) which will be used to refer to this interactive prompt.

5.2.1 Auto-indent

When typing python statements which end in a colon (for example if, for, while) then the prompt will change to three
dots (...) and the cursor will be indented by 4 spaces. When you press return, the next line will continue at the same
level of indentation for regular statements or an additional level of indentation where appropriate. If you press the
backspace key then it will undo one level of indentation.

If your cursor is all the way back at the beginning, pressing RETURN will then execute the code that you’ve entered.
The following shows what you’d see after entering a for statement (the underscore shows where the cursor winds up):

>>> for i in range(3):
... _

If you then enter an if statement, an additional level of indentation will be provided:

>>> for i in range(30):
... if i > 3:
... _

Now enter break followed by RETURN and press BACKSPACE:

>>> for i in range(30):
... if i > 3:
... break
... _
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Finally type print(i), press RETURN, press BACKSPACE and press RETURN again:

>>> for i in range(30):
... if i > 3:
... break
... print(i)
...
0
1
2
3
>>>

Auto-indent won’t be applied if the previous two lines were all spaces. This means that you can finish entering a
compound statement by pressing RETURN twice, and then a third press will finish and execute.

5.2.2 Auto-completion

While typing a command at the REPL, if the line typed so far corresponds to the beginning of the name of something,
then pressing TAB will show possible things that could be entered. For example type m and press TAB and it should
expand to machine. Enter a dot . and press TAB again. You should see something like:

>>> machine.
__name__ info unique_id reset
bootloader freq rng idle
sleep deepsleep disable_irq enable_irq
Pin

The word will be expanded as much as possible until multiple possibilities exist. For example, type
machine.Pin.AF3 and press TAB and it will expand to machine.Pin.AF3_TIM. Pressing TAB a second time
will show the possible expansions:

>>> machine.Pin.AF3_TIM
AF3_TIM10 AF3_TIM11 AF3_TIM8 AF3_TIM9
>>> machine.Pin.AF3_TIM

5.2.3 Interrupting a running program

You can interrupt a running program by pressing Ctrl-C. This will raise a KeyboardInterrupt which will bring you back
to the REPL, providing your program doesn’t intercept the KeyboardInterrupt exception.

For example:

>>> for i in range(1000000):
... print(i)
...
0
1
2
3
...
6466
6467
6468
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
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KeyboardInterrupt:
>>>

5.2.4 Paste Mode

If you want to paste some code into your terminal window, the auto-indent feature will mess things up. For example,
if you had the following python code:

def foo():
print('This is a test to show paste mode')
print('Here is a second line')

foo()

and you try to paste this into the normal REPL, then you will see something like this:

>>> def foo():
... print('This is a test to show paste mode')
... print('Here is a second line')
... foo()
...

File "<stdin>", line 3
IndentationError: unexpected indent

If you press Ctrl-E, then you will enter paste mode, which essentially turns off the auto-indent feature, and changes
the prompt from >>> to ===. For example:

>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish
=== def foo():
=== print('This is a test to show paste mode')
=== print('Here is a second line')
=== foo()
===
This is a test to show paste mode
Here is a second line
>>>

Paste Mode allows blank lines to be pasted. The pasted text is compiled as if it were a file. Pressing Ctrl-D exits paste
mode and initiates the compilation.

5.2.5 Soft Reset

A soft reset will reset the python interpreter, but tries not to reset the method by which you’re connected to the
MicroPython board (USB-serial, or Wifi).

You can perform a soft reset from the REPL by pressing Ctrl-D, or from your python code by executing:

raise SystemExit

For example, if you reset your MicroPython board, and you execute a dir() command, you’d see something like this:

>>> dir()
['__name__', 'pyb']

Now create some variables and repeat the dir() command:
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>>> i = 1
>>> j = 23
>>> x = 'abc'
>>> dir()
['j', 'x', '__name__', 'pyb', 'i']
>>>

Now if you enter Ctrl-D, and repeat the dir() command, you’ll see that your variables no longer exist:

PYB: sync filesystems
PYB: soft reboot
MicroPython v1.5-51-g6f70283-dirty on 2015-10-30; PYBv1.0 with STM32F405RG
Type "help()" for more information.
>>> dir()
['__name__', 'pyb']
>>>

5.2.6 The special variable _ (underscore)

When you use the REPL, you may perform computations and see the results. MicroPython stores the results of the
previous statement in the variable _ (underscore). So you can use the underscore to save the result in a variable. For
example:

>>> 1 + 2 + 3 + 4 + 5
15
>>> x = _
>>> x
15
>>>

5.2.7 Raw Mode

Raw mode is not something that a person would normally use. It is intended for programmatic use. It essentially
behaves like paste mode with echo turned off.

Raw mode is entered using Ctrl-A. You then send your python code, followed by a Ctrl-D. The Ctrl-D will be ac-
knowledged by ‘OK’ and then the python code will be compiled and executed. Any output (or errors) will be sent
back. Entering Ctrl-B will leave raw mode and return the the regular (aka friendly) REPL.

The tools/pyboard.py program uses the raw REPL to execute python files on the MicroPython board.

5.3 Writing interrupt handlers

On suitable hardware MicroPython offers the ability to write interrupt handlers in Python. Interrupt handlers - also
known as interrupt service routines (ISR’s) - are defined as callback functions. These are executed in response to
an event such as a timer trigger or a voltage change on a pin. Such events can occur at any point in the execution
of the program code. This carries significant consequences, some specific to the MicroPython language. Others are
common to all systems capable of responding to real time events. This document covers the language specific issues
first, followed by a brief introduction to real time programming for those new to it.

This introduction uses vague terms like “slow” or “as fast as possible”. This is deliberate, as speeds are application
dependent. Acceptable durations for an ISR are dependent on the rate at which interrupts occur, the nature of the main
program, and the presence of other concurrent events.
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5.3.1 Tips and recommended practices

This summarises the points detailed below and lists the principal recommendations for interrupt handler code.

• Keep the code as short and simple as possible.

• Avoid memory allocation: no appending to lists or insertion into dictionaries, no floating point.

• Where an ISR returns multiple bytes use a pre-allocated bytearray. If multiple integers are to be shared
between an ISR and the main program consider an array (array.array).

• Where data is shared between the main program and an ISR, consider disabling interrupts prior to accessing the
data in the main program and re-enabling them immediately afterwards (see Critical Sections).

• Allocate an emergency exception buffer (see below).

5.3.2 MicroPython Issues

The emergency exception buffer

If an error occurs in an ISR, MicroPython is unable to produce an error report unless a special buffer is created for the
purpose. Debugging is simplified if the following code is included in any program using interrupts.

import micropython
micropython.alloc_emergency_exception_buf(100)

Simplicity

For a variety of reasons it is important to keep ISR code as short and simple as possible. It should do only what has
to be done immediately after the event which caused it: operations which can be deferred should be delegated to the
main program loop. Typically an ISR will deal with the hardware device which caused the interrupt, making it ready
for the next interrupt to occur. It will communicate with the main loop by updating shared data to indicate that the
interrupt has occurred, and it will return. An ISR should return control to the main loop as quickly as possible. This is
not a specific MicroPython issue so is covered in more detail below.

Communication between an ISR and the main program

Normally an ISR needs to communicate with the main program. The simplest means of doing this is via one or more
shared data objects, either declared as global or shared via a class (see below). There are various restrictions and
hazards around doing this, which are covered in more detail below. Integers, bytes and bytearray objects are
commonly used for this purpose along with arrays (from the array module) which can store various data types.

The use of object methods as callbacks

MicroPython supports this powerful technique which enables an ISR to share instance variables with the underlying
code. It also enables a class implementing a device driver to support multiple device instances. The following example
causes two LED’s to flash at different rates.

import pyb, micropython
micropython.alloc_emergency_exception_buf(100)
class Foo(object):

def __init__(self, timer, led):
self.led = led
timer.callback(self.cb)
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def cb(self, tim):
self.led.toggle()

red = Foo(pyb.Timer(4, freq=1), pyb.LED(1))
greeen = Foo(pyb.Timer(2, freq=0.8), pyb.LED(2))

In this example the red instance associates timer 4 with LED 1: when a timer 4 interrupt occurs red.cb() is called
causing LED 1 to change state. The green instance operates similarly: a timer 2 interrupt results in the execution of
green.cb() and toggles LED 2. The use of instance methods confers two benefits. Firstly a single class enables
code to be shared between multiple hardware instances. Secondly, as a bound method the callback function’s first
argument is self. This enables the callback to access instance data and to save state between successive calls. For
example, if the class above had a variable self.count set to zero in the constructor, cb() could increment the
counter. The red and green instances would then maintain independent counts of the number of times each LED
had changed state.

Creation of Python objects

ISR’s cannot create instances of Python objects. This is because MicroPython needs to allocate memory for the object
from a store of free memory block called the heap. This is not permitted in an interrupt handler because heap allocation
is not re-entrant. In other words the interrupt might occur when the main program is part way through performing an
allocation - to maintain the integrity of the heap the interpreter disallows memory allocations in ISR code.

A consequence of this is that ISR’s can’t use floating point arithmetic; this is because floats are Python objects.
Similarly an ISR can’t append an item to a list. In practice it can be hard to determine exactly which code constructs
will attempt to perform memory allocation and provoke an error message: another reason for keeping ISR code short
and simple.

One way to avoid this issue is for the ISR to use pre-allocated buffers. For example a class constructor creates a
bytearray instance and a boolean flag. The ISR method assigns data to locations in the buffer and sets the flag.
The memory allocation occurs in the main program code when the object is instantiated rather than in the ISR.

The MicroPython library I/O methods usually provide an option to use a pre-allocated buffer. For example
pyb.i2c.recv() can accept a mutable buffer as its first argument: this enables its use in an ISR.

A means of creating an object without employing a class or globals is as follows:

def set_volume(t, buf=bytearray(3)):
buf[0] = 0xa5
buf[1] = t >> 4
buf[2] = 0x5a
return buf

The compiler instantiates the default buf argument when the function is loaded for the first time (usually when the
module it’s in is imported).

Use of Python objects

A further restriction on objects arises because of the way Python works. When an import statement is executed
the Python code is compiled to bytecode, with one line of code typically mapping to multiple bytecodes. When the
code runs the interpreter reads each bytecode and executes it as a series of machine code instructions. Given that
an interrupt can occur at any time between machine code instructions, the original line of Python code may be only
partially executed. Consequently a Python object such as a set, list or dictionary modified in the main loop may lack
internal consistency at the moment the interrupt occurs.

A typical outcome is as follows. On rare occasions the ISR will run at the precise moment in time when the object
is partially updated. When the ISR tries to read the object, a crash results. Because such problems typically occur on
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rare, random occasions they can be hard to diagnose. There are ways to circumvent this issue, described in Critical
Sections below.

It is important to be clear about what constitutes the modification of an object. An alteration to a built-in type such as
a dictionary is problematic. Altering the contents of an array or bytearray is not. This is because bytes or words are
written as a single machine code instruction which is not interruptible: in the parlance of real time programming the
write is atomic. A user defined object might instantiate an integer, array or bytearray. It is valid for both the main loop
and the ISR to alter the contents of these.

MicroPython supports integers of arbitrary precision. Values between 2**30 -1 and -2**30 will be stored in a single
machine word. Larger values are stored as Python objects. Consequently changes to long integers cannot be considered
atomic. The use of long integers in ISR’s is unsafe because memory allocation may be attempted as the variable’s value
changes.

Overcoming the float limitation

In general it is best to avoid using floats in ISR code: hardware devices normally handle integers and conversion to
floats is normally done in the main loop. However there are a few DSP algorithms which require floating point. On
platforms with hardware floating point (such as the Pyboard) the inline ARM Thumb assembler can be used to work
round this limitation. This is because the processor stores float values in a machine word; values can be shared between
the ISR and main program code via an array of floats.

5.3.3 Exceptions

If an ISR raises an exception it will not propagate to the main loop. The interrupt will be disabled unless the exception
is handled by the ISR code.

5.3.4 General Issues

This is merely a brief introduction to the subject of real time programming. Beginners should note that design errors
in real time programs can lead to faults which are particularly hard to diagnose. This is because they can occur rarely
and at intervals which are essentially random. It is crucial to get the initial design right and to anticipate issues before
they arise. Both interrupt handlers and the main program need to be designed with an appreciation of the following
issues.

Interrupt Handler Design

As mentioned above, ISR’s should be designed to be as simple as possible. They should always return in a short,
predictable period of time. This is important because when the ISR is running, the main loop is not: inevitably the
main loop experiences pauses in its execution at random points in the code. Such pauses can be a source of hard to
diagnose bugs particularly if their duration is long or variable. In order to understand the implications of ISR run time,
a basic grasp of interrupt priorities is required.

Interrupts are organised according to a priority scheme. ISR code may itself be interrupted by a higher priority
interrupt. This has implications if the two interrupts share data (see Critical Sections below). If such an interrupt
occurs it interposes a delay into the ISR code. If a lower priority interrupt occurs while the ISR is running, it will be
delayed until the ISR is complete: if the delay is too long, the lower priority interrupt may fail. A further issue with
slow ISR’s is the case where a second interrupt of the same type occurs during its execution. The second interrupt will
be handled on termination of the first. However if the rate of incoming interrupts consistently exceeds the capacity of
the ISR to service them the outcome will not be a happy one.

Consequently looping constructs should be avoided or minimised. I/O to devices other than to the interrupting device
should normally be avoided: I/O such as disk access, print statements and UART access is relatively slow, and its
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duration may vary. A further issue here is that filesystem functions are not reentrant: using filesystem I/O in an ISR
and the main program would be hazardous. Crucially ISR code should not wait on an event. I/O is acceptable if the
code can be guaranteed to return in a predictable period, for example toggling a pin or LED. Accessing the interrupting
device via I2C or SPI may be necessary but the time taken for such accesses should be calculated or measured and its
impact on the application assessed.

There is usually a need to share data between the ISR and the main loop. This may be done either through global
variables or via class or instance variables. Variables are typically integer or boolean types, or integer or byte arrays
(a pre-allocated integer array offers faster access than a list). Where multiple values are modified by the ISR it is
necessary to consider the case where the interrupt occurs at a time when the main program has accessed some, but not
all, of the values. This can lead to inconsistencies.

Consider the following design. An ISR stores incoming data in a bytearray, then adds the number of bytes received to
an integer representing total bytes ready for processing. The main program reads the number of bytes, processes the
bytes, then clears down the number of bytes ready. This will work until an interrupt occurs just after the main program
has read the number of bytes. The ISR puts the added data into the buffer and updates the number received, but the
main program has already read the number, so processes the data originally received. The newly arrived bytes are lost.

There are various ways of avoiding this hazard, the simplest being to use a circular buffer. If it is not possible to use a
structure with inherent thread safety other ways are described below.

Reentrancy

A potential hazard may occur if a function or method is shared between the main program and one or more ISR’s or
between multiple ISR’s. The issue here is that the function may itself be interrupted and a further instance of that
function run. If this is to occur, the function must be designed to be reentrant. How this is done is an advanced topic
beyond the scope of this tutorial.

Critical Sections

An example of a critical section of code is one which accesses more than one variable which can be affected by an ISR.
If the interrupt happens to occur between accesses to the individual variables, their values will be inconsistent. This
is an instance of a hazard known as a race condition: the ISR and the main program loop race to alter the variables.
To avoid inconsistency a means must be employed to ensure that the ISR does not alter the values for the duration of
the critical section. One way to achieve this is to issue pyb.disable_irq() before the start of the section, and
pyb.enable_irq() at the end. Here is an example of this approach:

import pyb, micropython, array
micropython.alloc_emergency_exception_buf(100)

class BoundsException(Exception):
pass

ARRAYSIZE = const(20)
index = 0
data = array.array('i', 0 for x in range(ARRAYSIZE))

def callback1(t):
global data, index
for x in range(5):

data[index] = pyb.rng() # simulate input
index += 1
if index >= ARRAYSIZE:

raise BoundsException('Array bounds exceeded')

tim4 = pyb.Timer(4, freq=100, callback=callback1)
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for loop in range(1000):
if index > 0:

irq_state = pyb.disable_irq() # Start of critical section
for x in range(index):

print(data[x])
index = 0
pyb.enable_irq(irq_state) # End of critical section
print('loop {}'.format(loop))

pyb.delay(1)

tim4.callback(None)

A critical section can comprise a single line of code and a single variable. Consider the following code fragment.

count = 0
def cb(): # An interrupt callback

count +=1
def main():

# Code to set up the interrupt callback omitted
while True:

count += 1

This example illustrates a subtle source of bugs. The line count += 1 in the main loop carries a specific race
condition hazard known as a read-modify-write. This is a classic cause of bugs in real time systems. In the main loop
MicroPython reads the value of t.counter, adds 1 to it, and writes it back. On rare occasions the interrupt occurs
after the read and before the write. The interrupt modifies t.counter but its change is overwritten by the main loop
when the ISR returns. In a real system this could lead to rare, unpredictable failures.

As mentioned above, care should be taken if an instance of a Python built in type is modified in the main code and that
instance is accessed in an ISR. The code performing the modification should be regarded as a critical section to ensure
that the instance is in a valid state when the ISR runs.

Particular care needs to be taken if a dataset is shared between different ISR’s. The hazard here is that the higher
priority interrupt may occur when the lower priority one has partially updated the shared data. Dealing with this
situation is an advanced topic beyond the scope of this introduction other than to note that mutex objects described
below can sometimes be used.

Disabling interrupts for the duration of a critical section is the usual and simplest way to proceed, but it disables all
interrupts rather than merely the one with the potential to cause problems. It is generally undesirable to disable an
interrupt for long. In the case of timer interrupts it introduces variability to the time when a callback occurs. In the
case of device interrupts, it can lead to the device being serviced too late with possible loss of data or overrun errors
in the device hardware. Like ISR’s, a critical section in the main code should have a short, predictable duration.

An approach to dealing with critical sections which radically reduces the time for which interrupts are disabled is to
use an object termed a mutex (name derived from the notion of mutual exclusion). The main program locks the mutex
before running the critical section and unlocks it at the end. The ISR tests whether the mutex is locked. If it is, it avoids
the critical section and returns. The design challenge is defining what the ISR should do in the event that access to the
critical variables is denied. A simple example of a mutex may be found here. Note that the mutex code does disable
interrupts, but only for the duration of eight machine instructions: the benefit of this approach is that other interrupts
are virtually unaffected.

Interrupts and the REPL

Interrupt handlers, such as those associated with timers, can continue to run after a program terminates. This may
produce unexpected results where you might have expected the object raising the callback to have gone out of scope.
For example on the Pyboard:
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def bar():
foo = pyb.Timer(2, freq=4, callback=lambda t: print('.', end=''))

bar()

This continues to run until the timer is explicitly disabled or the board is reset with ctrl D.

5.4 Maximising MicroPython Speed

Contents

• Maximising MicroPython Speed
– Designing for speed

* Algorithms
* RAM Allocation
* Buffers
* Floating Point
* Arrays

– Identifying the slowest section of code
– MicroPython code improvements

* The const() declaration
* Caching object references
* Controlling garbage collection

– The Native code emitter
– The Viper code emitter
– Accessing hardware directly

This tutorial describes ways of improving the performance of MicroPython code. Optimisations involving other lan-
guages are covered elsewhere, namely the use of modules written in C and the MicroPython inline assembler.

The process of developing high performance code comprises the following stages which should be performed in the
order listed.

• Design for speed.

• Code and debug.

Optimisation steps:

• Identify the slowest section of code.

• Improve the efficiency of the Python code.

• Use the native code emitter.

• Use the viper code emitter.

• Use hardware-specific optimisations.

5.4.1 Designing for speed

Performance issues should be considered at the outset. This involves taking a view on the sections of code which are
most performance critical and devoting particular attention to their design. The process of optimisation begins when
the code has been tested: if the design is correct at the outset optimisation will be straightforward and may actually be
unnecessary.
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Algorithms

The most important aspect of designing any routine for performance is ensuring that the best algorithm is employed.
This is a topic for textbooks rather than for a MicroPython guide but spectacular performance gains can sometimes be
achieved by adopting algorithms known for their efficiency.

RAM Allocation

To design efficient MicroPython code it is necessary to have an understanding of the way the interpreter allocates
RAM. When an object is created or grows in size (for example where an item is appended to a list) the necessary
RAM is allocated from a block known as the heap. This takes a significant amount of time; further it will on occasion
trigger a process known as garbage collection which can take several milliseconds.

Consequently the performance of a function or method can be improved if an object is created once only and not
permitted to grow in size. This implies that the object persists for the duration of its use: typically it will be instantiated
in a class constructor and used in various methods.

This is covered in further detail Controlling garbage collection below.

Buffers

An example of the above is the common case where a buffer is required, such as one used for communication with
a device. A typical driver will create the buffer in the constructor and use it in its I/O methods which will be called
repeatedly.

The MicroPython libraries typically provide support for pre-allocated buffers. For example, objects which support
stream interface (e.g., file or UART) provide read() method which allocates new buffer for read data, but also a
readinto() method to read data into an existing buffer.

Floating Point

Some MicroPython ports allocate floating point numbers on heap. Some other ports may lack dedicated floating-point
coprocessor, and perform arithmetic operations on them in “software” at considerably lower speed than on integers.
Where performance is important, use integer operations and restrict the use of floating point to sections of the code
where performance is not paramount. For example, capture ADC readings as integers values to an array in one quick
go, and only then convert them to floating-point numbers for signal processing.

Arrays

Consider the use of the various types of array classes as an alternative to lists. The array module supports various
element types with 8-bit elements supported by Python’s built in bytes and bytearray classes. These data struc-
tures all store elements in contiguous memory locations. Once again to avoid memory allocation in critical code these
should be pre-allocated and passed as arguments or as bound objects.

When passing slices of objects such as bytearray instances, Python creates a copy which involves allocation of
the size proportional to the size of slice. This can be alleviated using a memoryview object. memoryview itself is
allocated on heap, but is a small, fixed-size object, regardless of the size of slice it points too.

ba = bytearray(10000) # big array
func(ba[30:2000]) # a copy is passed, ~2K new allocation
mv = memoryview(ba) # small object is allocated
func(mv[30:2000]) # a pointer to memory is passed
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A memoryview can only be applied to objects supporting the buffer protocol - this includes arrays but not lists.
Small caveat is that while memoryview object is live, it also keeps alive the original buffer object. So, a memoryview
isn’t a universal panacea. For instance, in the example above, if you are done with 10K buffer and just need those
bytes 30:2000 from it, it may be better to make a slice, and let the 10K buffer go (be ready for garbage collection),
instead of making a long-living memoryview and keeping 10K blocked for GC.

Nonetheless, memoryview is indispensable for advanced preallocated buffer management. readinto() method
discussed above puts data at the beginning of buffer and fills in entire buffer. What if you need to put data in the middle
of existing buffer? Just create a memoryview into the needed section of buffer and pass it to readinto().

5.4.2 Identifying the slowest section of code

This is a process known as profiling and is covered in textbooks and (for standard Python) supported by various
software tools. For the type of smaller embedded application likely to be running on MicroPython platforms the
slowest function or method can usually be established by judicious use of the timing ticks group of functions
documented in utime. Code execution time can be measured in ms, us, or CPU cycles.

The following enables any function or method to be timed by adding an @timed_function decorator:

def timed_function(f, *args, **kwargs):
myname = str(f).split(' ')[1]
def new_func(*args, **kwargs):

t = utime.ticks_us()
result = f(*args, **kwargs)
delta = utime.ticks_diff(utime.ticks_us(), t)
print('Function {} Time = {:6.3f}ms'.format(myname, delta/1000))
return result

return new_func

5.4.3 MicroPython code improvements

The const() declaration

MicroPython provides a const() declaration. This works in a similar way to #define in C in that when the code
is compiled to bytecode the compiler substitutes the numeric value for the identifier. This avoids a dictionary lookup
at runtime. The argument to const() may be anything which, at compile time, evaluates to an integer e.g. 0x100
or 1 << 8.

Caching object references

Where a function or method repeatedly accesses objects performance is improved by caching the object in a local
variable:

class foo(object):
def __init__(self):

ba = bytearray(100)
def bar(self, obj_display):

ba_ref = self.ba
fb = obj_display.framebuffer
# iterative code using these two objects

This avoids the need repeatedly to look up self.ba and obj_display.framebuffer in the body of the method
bar().
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Controlling garbage collection

When memory allocation is required, MicroPython attempts to locate an adequately sized block on the heap. This may
fail, usually because the heap is cluttered with objects which are no longer referenced by code. If a failure occurs, the
process known as garbage collection reclaims the memory used by these redundant objects and the allocation is then
tried again - a process which can take several milliseconds.

There may be benefits in pre-empting this by periodically issuing gc.collect(). Firstly doing a collection before
it is actually required is quicker - typically on the order of 1ms if done frequently. Secondly you can determine the
point in code where this time is used rather than have a longer delay occur at random points, possibly in a speed critical
section. Finally performing collections regularly can reduce fragmentation in the heap. Severe fragmentation can lead
to non-recoverable allocation failures.

5.4.4 The Native code emitter

This causes the MicroPython compiler to emit native CPU opcodes rather than bytecode. It covers the bulk of the
MicroPython functionality, so most functions will require no adaptation (but see below). It is invoked by means of a
function decorator:

@micropython.native
def foo(self, arg):

buf = self.linebuf # Cached object
# code

There are certain limitations in the current implementation of the native code emitter.

• Context managers are not supported (the with statement).

• Generators are not supported.

• If raise is used an argument must be supplied.

The trade-off for the improved performance (roughly twices as fast as bytecode) is an increase in compiled code size.

5.4.5 The Viper code emitter

The optimisations discussed above involve standards-compliant Python code. The Viper code emitter is not fully
compliant. It supports special Viper native data types in pursuit of performance. Integer processing is non-compliant
because it uses machine words: arithmetic on 32 bit hardware is performed modulo 2**32.

Like the Native emitter Viper produces machine instructions but further optimisations are performed, substantially
increasing performance especially for integer arithmetic and bit manipulations. It is invoked using a decorator:

@micropython.viper
def foo(self, arg: int) -> int:

# code

As the above fragment illustrates it is beneficial to use Python type hints to assist the Viper optimiser. Type hints
provide information on the data types of arguments and of the return value; these are a standard Python language
feature formally defined here PEP0484. Viper supports its own set of types namely int, uint (unsigned integer),
ptr, ptr8, ptr16 and ptr32. The ptrX types are discussed below. Currently the uint type serves a single
purpose: as a type hint for a function return value. If such a function returns 0xffffffff Python will interpret the
result as 2**32 -1 rather than as -1.

In addition to the restrictions imposed by the native emitter the following constraints apply:

• Functions may have up to four arguments.
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• Default argument values are not permitted.

• Floating point may be used but is not optimised.

Viper provides pointer types to assist the optimiser. These comprise

• ptr Pointer to an object.

• ptr8 Points to a byte.

• ptr16 Points to a 16 bit half-word.

• ptr32 Points to a 32 bit machine word.

The concept of a pointer may be unfamiliar to Python programmers. It has similarities to a Python memoryview
object in that it provides direct access to data stored in memory. Items are accessed using subscript notation, but slices
are not supported: a pointer can return a single item only. Its purpose is to provide fast random access to data stored in
contiguous memory locations - such as data stored in objects which support the buffer protocol, and memory-mapped
peripheral registers in a microcontroller. It should be noted that programming using pointers is hazardous: bounds
checking is not performed and the compiler does nothing to prevent buffer overrun errors.

Typical usage is to cache variables:

@micropython.viper
def foo(self, arg: int) -> int:

buf = ptr8(self.linebuf) # self.linebuf is a bytearray or bytes object
for x in range(20, 30):

bar = buf[x] # Access a data item through the pointer
# code omitted

In this instance the compiler “knows” that buf is the address of an array of bytes; it can emit code to rapidly com-
pute the address of buf[x] at runtime. Where casts are used to convert objects to Viper native types these should
be performed at the start of the function rather than in critical timing loops as the cast operation can take several
microseconds. The rules for casting are as follows:

• Casting operators are currently: int, bool, uint, ptr, ptr8, ptr16 and ptr32.

• The result of a cast will be a native Viper variable.

• Arguments to a cast can be a Python object or a native Viper variable.

• If argument is a native Viper variable, then cast is a no-op (i.e. costs nothing at runtime) that just changes the
type (e.g. from uint to ptr8) so that you can then store/load using this pointer.

• If the argument is a Python object and the cast is int or uint, then the Python object must be of integral type
and the value of that integral object is returned.

• The argument to a bool cast must be integral type (boolean or integer); when used as a return type the viper
function will return True or False objects.

• If the argument is a Python object and the cast is ptr, ptr, ptr16 or ptr32, then the Python object must
either have the buffer protocol with read-write capabilities (in which case a pointer to the start of the buffer is
returned) or it must be of integral type (in which case the value of that integral object is returned).

The following example illustrates the use of a ptr16 cast to toggle pin X1 n times:

BIT0 = const(1)
@micropython.viper
def toggle_n(n: int):

odr = ptr16(stm.GPIOA + stm.GPIO_ODR)
for _ in range(n):

odr[0] ^= BIT0

A detailed technical description of the three code emitters may be found on Kickstarter here Note 1 and here Note 2
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5.4.6 Accessing hardware directly

Note: Code examples in this section are given for the Pyboard. The techniques described however may be applied to
other MicroPython ports too.

This comes into the category of more advanced programming and involves some knowledge of the target MCU.
Consider the example of toggling an output pin on the Pyboard. The standard approach would be to write

mypin.value(mypin.value() ^ 1) # mypin was instantiated as an output pin

This involves the overhead of two calls to the Pin instance’s value() method. This overhead can be eliminated by
performing a read/write to the relevant bit of the chip’s GPIO port output data register (odr). To facilitate this the stm
module provides a set of constants providing the addresses of the relevant registers. A fast toggle of pin P4 (CPU pin
A14) - corresponding to the green LED - can be performed as follows:

import machine
import stm

BIT14 = const(1 << 14)
machine.mem16[stm.GPIOA + stm.GPIO_ODR] ^= BIT14

5.5 MicroPython on Microcontrollers

MicroPython is designed to be capable of running on microcontrollers. These have hardware limitations which may
be unfamiliar to programmers more familiar with conventional computers. In particular the amount of RAM and non-
volatile “disk” (flash memory) storage is limited. This tutorial offers ways to make the most of the limited resources.
Because MicroPython runs on controllers based on a variety of architectures, the methods presented are generic: in
some cases it will be necessary to obtain detailed information from platform specific documentation.

5.5.1 Flash Memory

On the Pyboard the simple way to address the limited capacity is to fit a micro SD card. In some cases this is
impractical, either because the device does not have an SD card slot or for reasons of cost or power consumption;
hence the on-chip flash must be used. The firmware including the MicroPython subsystem is stored in the onboard
flash. The remaining capacity is available for use. For reasons connected with the physical architecture of the flash
memory part of this capacity may be inaccessible as a filesystem. In such cases this space may be employed by
incorporating user modules into a firmware build which is then flashed to the device.

There are two ways to achieve this: frozen modules and frozen bytecode. Frozen modules store the Python source
with the firmware. Frozen bytecode uses the cross compiler to convert the source to bytecode which is then stored
with the firmware. In either case the module may be accessed with an import statement:

import mymodule

The procedure for producing frozen modules and bytecode is platform dependent; instructions for building the
firmware can be found in the README files in the relevant part of the source tree.

In general terms the steps are as follows:

• Clone the MicroPython repository.

• Acquire the (platform specific) toolchain to build the firmware.

• Build the cross compiler.
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• Place the modules to be frozen in a specified directory (dependent on whether the module is to be frozen as
source or as bytecode).

• Build the firmware. A specific command may be required to build frozen code of either type - see the platform
documentation.

• Flash the firmware to the device.

5.5.2 RAM

When reducing RAM usage there are two phases to consider: compilation and execution. In addition to memory
consumption, there is also an issue known as heap fragmentation. In general terms it is best to minimise the repeated
creation and destruction of objects. The reason for this is covered in the section covering the heap.

Compilation Phase

When a module is imported, MicroPython compiles the code to bytecode which is then executed by the MicroPython
virtual machine (VM). The bytecode is stored in RAM. The compiler itself requires RAM, but this becomes available
for use when the compilation has completed.

If a number of modules have already been imported the situation can arise where there is insufficient RAM to run the
compiler. In this case the import statement will produce a memory exception.

If a module instantiates global objects on import it will consume RAM at the time of import, which is then unavailable
for the compiler to use on subsequent imports. In general it is best to avoid code which runs on import; a better
approach is to have initialisation code which is run by the application after all modules have been imported. This
maximises the RAM available to the compiler.

If RAM is still insufficient to compile all modules one solution is to precompile modules. MicroPython has a cross
compiler capable of compiling Python modules to bytecode (see the README in the mpy-cross directory). The result-
ing bytecode file has a .mpy extension; it may be copied to the filesystem and imported in the usual way. Alternatively
some or all modules may be implemented as frozen bytecode: on most platforms this saves even more RAM as the
bytecode is run directly from flash rather than being stored in RAM.

Execution Phase

There are a number of coding techniques for reducing RAM usage.

Constants

MicroPython provides a const keyword which may be used as follows:

from micropython import const
ROWS = const(33)
_COLS = const(0x10)
a = ROWS
b = _COLS

In both instances where the constant is assigned to a variable the compiler will avoid coding a lookup to the name
of the constant by substituting its literal value. This saves bytecode and hence RAM. However the ROWS value will
occupy at least two machine words, one each for the key and value in the globals dictionary. The presence in the
dictionary is necessary because another module might import or use it. This RAM can be saved by prepending the
name with an underscore as in _COLS: this symbol is not visible outside the module so will not occupy RAM.

The argument to const() may be anything which, at compile time, evaluates to an integer e.g. 0x100 or 1 << 8.
It can even include other const symbols that have already been defined, e.g. 1 << BIT.
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Constant data structures

Where there is a substantial volume of constant data and the platform supports execution from Flash, RAM may be
saved as follows. The data should be located in Python modules and frozen as bytecode. The data must be defined as
bytes objects. The compiler ‘knows’ that bytes objects are immutable and ensures that the objects remain in flash
memory rather than being copied to RAM. The ustruct module can assist in converting between bytes types and
other Python built-in types.

When considering the implications of frozen bytecode, note that in Python strings, floats, bytes, integers and complex
numbers are immutable. Accordingly these will be frozen into flash. Thus, in the line

mystring = "The quick brown fox"

the actual string “The quick brown fox” will reside in flash. At runtime a reference to the string is assigned to the
variable mystring. The reference occupies a single machine word. In principle a long integer could be used to store
constant data:

bar = 0xDEADBEEF0000DEADBEEF

As in the string example, at runtime a reference to the arbitrarily large integer is assigned to the variable bar. That
reference occupies a single machine word.

It might be expected that tuples of integers could be employed for the purpose of storing constant data with minimal
RAM use. With the current compiler this is ineffective (the code works, but RAM is not saved).

foo = (1, 2, 3, 4, 5, 6, 100000)

At runtime the tuple will be located in RAM. This may be subject to future improvement.

Needless object creation

There are a number of situations where objects may unwittingly be created and destroyed. This can reduce the usability
of RAM through fragmentation. The following sections discuss instances of this.

String concatenation

Consider the following code fragments which aim to produce constant strings:

var = "foo" + "bar"
var1 = "foo" "bar"
var2 = """\
foo\
bar"""

Each produces the same outcome, however the first needlessly creates two string objects at runtime, allocates more
RAM for concatenation before producing the third. The others perform the concatenation at compile time which is
more efficient, reducing fragmentation.

Where strings must be dynamically created before being fed to a stream such as a file it will save RAM if this is done
in a piecemeal fashion. Rather than creating a large string object, create a substring and feed it to the stream before
dealing with the next.

The best way to create dynamic strings is by means of the string format method:

var = "Temperature {:5.2f} Pressure {:06d}\n".format(temp, press)

Buffers

When accessing devices such as instances of UART, I2C and SPI interfaces, using pre-allocated buffers avoids the
creation of needless objects. Consider these two loops:
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while True:
var = spi.read(100)
# process data

buf = bytearray(100)
while True:

spi.readinto(buf)
# process data in buf

The first creates a buffer on each pass whereas the second re-uses a pre-allocated buffer; this is both faster and more
efficient in terms of memory fragmentation.

Bytes are smaller than ints

On most platforms an integer consumes four bytes. Consider the two calls to the function foo():

def foo(bar):
for x in bar:

print(x)
foo((1, 2, 0xff))
foo(b'\1\2\xff')

In the first call a tuple of integers is created in RAM. The second efficiently creates a bytes object consuming the
minimum amount of RAM. If the module were frozen as bytecode, the bytes object would reside in flash.

Strings Versus Bytes

Python3 introduced Unicode support. This introduced a distinction between a string and an array of bytes. MicroPy-
thon ensures that Unicode strings take no additional space so long as all characters in the string are ASCII (i.e. have
a value < 126). If values in the full 8-bit range are required bytes and bytearray objects can be used to ensure
that no additional space will be required. Note that most string methods (e.g. str.strip()) apply also to bytes
instances so the process of eliminating Unicode can be painless.

s = 'the quick brown fox' # A string instance
b = b'the quick brown fox' # A bytes instance

Where it is necessary to convert between strings and bytes the str.encode() and the bytes.decode()methods
can be used. Note that both strings and bytes are immutable. Any operation which takes as input such an object and
produces another implies at least one RAM allocation to produce the result. In the second line below a new bytes
object is allocated. This would also occur if foo were a string.

foo = b' empty whitespace'
foo = foo.lstrip()

Runtime compiler execution

The Python funcitons eval and exec invoke the compiler at runtime, which requires significant amounts of RAM.
Note that the pickle library from micropython-lib employs exec. It may be more RAM efficient to use the
ujson library for object serialisation.

Storing strings in flash

Python strings are immutable hence have the potential to be stored in read only memory. The compiler can place in
flash strings defined in Python code. As with frozen modules it is necessary to have a copy of the source tree on the PC
and the toolchain to build the firmware. The procedure will work even if the modules have not been fully debugged,
so long as they can be imported and run.

After importing the modules, execute:

micropython.qstr_info(1)
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Then copy and paste all the Q(xxx) lines into a text editor. Check for and remove lines which are obviously invalid.
Open the file qstrdefsport.h which will be found in stmhal (or the equivalent directory for the architecture in use).
Copy and paste the corrected lines at the end of the file. Save the file, rebuild and flash the firmware. The outcome can
be checked by importing the modules and again issuing:

micropython.qstr_info(1)

The Q(xxx) lines should be gone.

5.5.3 The Heap

When a running program instantiates an object the necessary RAM is allocated from a fixed size pool known as the
heap. When the object goes out of scope (in other words becomes inaccessible to code) the redundant object is known
as “garbage”. A process known as “garbage collection” (GC) reclaims that memory, returning it to the free heap. This
process runs automatically, however it can be invoked directly by issuing gc.collect().

The discourse on this is somewhat involved. For a ‘quick fix’ issue the following periodically:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

Fragmentation

Say a program creates an object foo, then an object bar. Subsequently foo goes out of scope but bar remains. The
RAM used by foo will be reclaimed by GC. However if bar was allocated to a higher address, the RAM reclaimed
from foo will only be of use for objects no bigger than foo. In a complex or long running program the heap can
become fragmented: despite there being a substantial amount of RAM available, there is insufficient contiguous space
to allocate a particular object, and the program fails with a memory error.

The techniques outlined above aim to minimise this. Where large permanent buffers or other objects are required it is
best to instantiate these early in the process of program execution before fragmentation can occur. Further improve-
ments may be made by monitoring the state of the heap and by controlling GC; these are outlined below.

Reporting

A number of library functions are available to report on memory allocation and to control GC. These are to be found
in the gc and micropython modules. The following example may be pasted at the REPL (ctrl e to enter paste
mode, ctrl d to run it).

import gc
import micropython
gc.collect()
micropython.mem_info()
print('-----------------------------')
print('Initial free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
def func():

a = bytearray(10000)
gc.collect()
print('Func definition: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
func()
print('Func run free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
gc.collect()
print('Garbage collect free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc()))
print('-----------------------------')
micropython.mem_info(1)
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Methods employed above:

• gc.collect() Force a garbage collection. See footnote.

• micropython.mem_info() Print a summary of RAM utilisation.

• gc.mem_free() Return the free heap size in bytes.

• gc.mem_alloc() Return the number of bytes currently allocated.

• micropython.mem_info(1) Print a table of heap utilisation (detailed below).

The numbers produced are dependent on the platform, but it can be seen that declaring the function uses a small
amount of RAM in the form of bytecode emitted by the compiler (the RAM used by the compiler has been reclaimed).
Running the function uses over 10KiB, but on return a is garbage because it is out of scope and cannot be referenced.
The final gc.collect() recovers that memory.

The final output produced by micropython.mem_info(1) will vary in detail but may be interpreted as follows:

Symbol Meaning
. free block
h head block
= tail block
m marked head block
T tuple
L list
D dict
F float
B byte code
M module

Each letter represents a single block of memory, a block being 16 bytes. So each line of the heap dump represents
0x400 bytes or 1KiB of RAM.

Control of Garbage Collection

A GC can be demanded at any time by issuing gc.collect(). It is advantageous to do this at intervals, firstly to
pre-empt fragmentation and secondly for performance. A GC can take several milliseconds but is quicker when there
is little work to do (about 1ms on the Pyboard). An explicit call can minimise that delay while ensuring it occurs at
points in the program when it is acceptable.

Automatic GC is provoked under the following circumstances. When an attempt at allocation fails, a GC is performed
and the allocation re-tried. Only if this fails is an exception raised. Secondly an automatic GC will be triggered if the
amount of free RAM falls below a threshold. This threshold can be adapted as execution progresses:

gc.collect()
gc.threshold(gc.mem_free() // 4 + gc.mem_alloc())

This will provoke a GC when more than 25% of the currently free heap becomes occupied.

In general modules should instantiate data objects at runtime using constructors or other initialisation functions. The
reason is that if this occurs on initialisation the compiler may be starved of RAM when subsequent modules are
imported. If modules do instantiate data on import then gc.collect() issued after the import will ameliorate the
problem.
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5.5.4 String Operations

MicroPython handles strings in an efficient manner and understanding this can help in designing applications to run
on microcontrollers. When a module is compiled, strings which occur multiple times are stored once only, a process
known as string interning. In MicroPython an interned string is known as a qstr. In a module imported normally
that single instance will be located in RAM, but as described above, in modules frozen as bytecode it will be located
in flash.

String comparisons are also performed efficiently using hashing rather than character by character. The penalty for
using strings rather than integers may hence be small both in terms of performance and RAM usage - a fact which may
come as a surprise to C programmers.

5.5.5 Postscript

MicroPython passes, returns and (by default) copies objects by reference. A reference occupies a single machine word
so these processes are efficient in RAM usage and speed.

Where variables are required whose size is neither a byte nor a machine word there are standard libraries which can
assist in storing these efficiently and in performing conversions. See the array , ustruct and uctypes modules.

Footnote: gc.collect() return value

On Unix and Windows platforms the gc.collect() method returns an integer which signifies the number of
distinct memory regions that were reclaimed in the collection (more precisely, the number of heads that were turned
into frees). For efficiency reasons bare metal ports do not return this value.
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CHAPTER

SIX

MICROPYTHON DIFFERENCES FROM CPYTHON

The operations listed in this section produce conflicting results in MicroPython when compared to standard Python.

6.1 Syntax

Generated Wed 23 Aug 2017 02:12:03 UTC

6.1.1 Spaces

uPy requires spaces between literal numbers and keywords, CPy doesn’t

Sample code:

try:
print(eval('1and 0'))

except SyntaxError:
print('Should have worked')

try:
print(eval('1or 0'))

except SyntaxError:
print('Should have worked')

try:
print(eval('1if 1else 0'))

except SyntaxError:
print('Should have worked')

CPy output: uPy output:

0
1
1

Should have worked
Should have worked
Should have worked

6.1.2 Unicode

Unicode name escapes are not implemented

Sample code:

print("\N{LATIN SMALL LETTER A}")
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CPy output: uPy output:

a NotImplementedError: unicode name escapes

6.2 Core Language

Generated Wed 23 Aug 2017 02:12:03 UTC

6.2.1 Classes

Special method __del__ not implemented for user-defined classes

Sample code:

import gc

class Foo():
def __del__(self):

print('__del__')

f = Foo()
del f

gc.collect()

CPy output: uPy output:

__del__

Method Resolution Order (MRO) is not compliant with CPython

Cause: Depth first non-exhaustive method resolution order

Workaround: Avoid complex class hierarchies with multiple inheritance and complex method overrides. Keep in
mind that many languages don’t support multiple inheritance at all.

Sample code:

class Foo:
def __str__(self):

return "Foo"

class C(tuple, Foo):
pass

t = C((1, 2, 3))
print(t)

CPy output: uPy output:

Foo (1, 2, 3)
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When inheriting from multiple classes super() only calls one class

Cause: See Method Resolution Order (MRO) is not compliant with CPython

Workaround: See Method Resolution Order (MRO) is not compliant with CPython

Sample code:

class A:
def __init__(self):

print("A.__init__")

class B(A):
def __init__(self):

print("B.__init__")
super().__init__()

class C(A):
def __init__(self):

print("C.__init__")
super().__init__()

class D(B,C):
def __init__(self):

print("D.__init__")
super().__init__()

D()

CPy output: uPy output:

D.__init__
B.__init__
C.__init__
A.__init__

D.__init__
B.__init__
A.__init__

Calling super() getter property in subclass will return a property object, not the value

Sample code:

class A:
@property
def p(self):

return {"a":10}

class AA(A):
@property
def p(self):

return super().p

a = AA()
print(a.p)

CPy output: uPy output:

{'a': 10} <property>
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6.2.2 Functions

Error messages for methods may display unexpected argument counts

Cause: MicroPython counts “self” as an argument.

Workaround: Interpret error messages with the information above in mind.

Sample code:

try:
[].append()

except Exception as e:
print(e)

CPy output: uPy output:

append() takes exactly one argument (0 given)function takes 2 positional arguments but 1 were given

Unpacking function arguments in non-last position isn’t detected as an error

Workaround: The syntax below is invalid, never use it in applications.

Sample code:

print(*(1, 2), 3)

CPy output: uPy output:

1 2 3 Traceback (most recent call last):
File "<stdin>", line 7, in <module>

SyntaxError: non-keyword arg after */**

User-defined attributes for functions are not supported

Cause: MicroPython is highly optimized for memory usage.

Workaround: Use external dictionary, e.g. FUNC_X[f] = 0.

Sample code:

def f():
pass

f.x = 0
print(f.x)

CPy output: uPy output:

0 Traceback (most recent call last):
File "<stdin>", line 10, in <module>

AttributeError: 'function' object has no attribute 'x'
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6.2.3 Generator

Context manager __exit__() not called in a generator which does not run to completion

Sample code:

class foo(object):
def __enter__(self):

print('Enter')
def __exit__(self, *args):

print('Exit')

def bar(x):
with foo():

while True:
x += 1
yield x

def func():
g = bar(0)
for _ in range(3):

print(next(g))

func()

CPy output: uPy output:

Enter
1
2
3
Exit

Enter
1
2
3

6.2.4 import

__path__ attribute of a package has a different type (single string instead of list of strings) in Mi-
croPython

Cause: MicroPython does’t support namespace packages split across filesystem. Beyond that, MicroPython’s import
system is highly optimized for minimal memory usage.

Workaround: Details of import handling is inherently implementation dependent. Don’t rely on such details in
portable applications.

Sample code:

import modules

print(modules.__path__)

CPy output: uPy output:

['/home/micropython/micropython-docs/tests/cpydiff/modules']../tests/cpydiff//modules
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Failed to load modules are still registered as loaded

Cause: To make module handling more efficient, it’s not wrapped with exception handling.

Workaround: Test modules before production use; during development, use del sys.modules["name"], or
just soft or hard reset the board.

Sample code:

import sys

try:
from modules import foo

except NameError as e:
print(e)

try:
from modules import foo
print('Should not get here')

except NameError as e:
print(e)

CPy output: uPy output:

foo
name 'xxx' is not defined
foo
name 'xxx' is not defined

foo
name 'xxx' is not defined
Should not get here

MicroPython does’t support namespace packages split across filesystem.

Cause: MicroPython’s import system is highly optimized for simplicity, minimal memory usage, and minimal filesys-
tem search overhead.

Workaround: Don’t install modules belonging to the same namespace package in different directories. For MicroPy-
thon, it’s recommended to have at most 3-component module search paths: for your current application, per-user
(writable), system-wide (non-writable).

Sample code:

import sys
sys.path.append(sys.path[1] + "/modules")
sys.path.append(sys.path[1] + "/modules2")

import subpkg.foo
import subpkg.bar

print("Two modules of a split namespace package imported")

CPy output: uPy output:

Two modules of a split namespace package importedTraceback (most recent call last):
File "<stdin>", line 12, in <module>

ImportError: no module named 'subpkg.bar'
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6.3 Builtin Types

Generated Wed 23 Aug 2017 02:12:03 UTC

6.3.1 Exception

Exception chaining not implemented

Sample code:

try:
raise TypeError

except TypeError:
raise ValueError

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 8, in <module>

TypeError

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 10, in <module>

ValueError

Traceback (most recent call last):
File "<stdin>", line 10, in <module>

ValueError:

User-defined attributes for builtin exceptions are not supported

Cause: MicroPython is highly optimized for memory usage.

Workaround: Use user-defined exception subclasses.

Sample code:

e = Exception()
e.x = 0
print(e.x)

CPy output: uPy output:

0 Traceback (most recent call last):
File "<stdin>", line 8, in <module>

AttributeError: 'Exception' object has no attribute 'x'

Exception in while loop condition may have unexpected line number

Cause: Condition checks are optimized to happen at the end of loop body, and that line number is reported.

Sample code:
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l = ["-foo", "-bar"]

i = 0
while l[i][0] == "-":

print("iter")
i += 1

CPy output: uPy output:

iter
iter
Traceback (most recent call last):

File "<stdin>", line 10, in <module>
IndexError: list index out of range

iter
iter
Traceback (most recent call last):
File "<stdin>", line 12, in <module>

IndexError: list index out of range

Exception.__init__ raises TypeError if overridden and called by subclass

Sample code:

class A(Exception):
def __init__(self):

Exception.__init__(self)

a = A()

CPy output: uPy output:

Traceback (most recent call last):
File "<stdin>", line 11, in <module>
File "<stdin>", line 9, in __init__

TypeError: argument should be a 'Exception' not a 'A'

6.3.2 bytearray

Array slice assignment with unsupported RHS

Sample code:

b = bytearray(4)
b[0:1] = [1, 2]
print(b)

CPy output: uPy output:

bytearray(b'\x01\x02\x00\x00\x00') Traceback (most recent call last):
File "<stdin>", line 8, in <module>

NotImplementedError: array/bytes required on right side
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6.3.3 bytes

bytes() with keywords not implemented

Workaround: Pass the encoding as a positional paramter, e.g. print(bytes(’abc’, ’utf-8’))

Sample code:

print(bytes('abc', encoding='utf8'))

CPy output: uPy output:

b'abc' Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: keyword argument(s) not yet implemented - use normal args instead

Bytes subscription with step != 1 not implemented

Cause: MicroPython is highly optimized for memory usage.

Workaround: Use explicit loop for this very rare operation.

Sample code:

print(b'123'[0:3:2])

CPy output: uPy output:

b'13' Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: only slices with step=1 (aka None) are supported

6.3.4 float

uPy and CPython outputs formats may differ

Sample code:

print('%.1g' % -9.9)
print('%.1e' % 9.99)
print('%.1e' % 0.999)

CPy output: uPy output:

-1e+01
1.0e+01
1.0e+00

-10
1.0e+01
1.0e+00
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6.3.5 int

No int conversion for int-derived types available

Workaround: Avoid subclassing builtin types unless really needed. Prefer
https://en.wikipedia.org/wiki/Composition_over_inheritance .

Sample code:

class A(int):
__add__ = lambda self, other: A(int(self) + other)

a = A(42)
print(a+a)

CPy output: uPy output:

84 Traceback (most recent call last):
File "<stdin>", line 11, in <module>
File "<stdin>", line 8, in <lambda>

TypeError: can't convert A to int

Incorrect error message when passing float into to_bytes

Sample code:

try:
int('1').to_bytes(1.0)

except TypeError as e:
print(e)

CPy output: uPy output:

integer argument expected, got float function missing 1 required positional arguments

6.3.6 list

List delete with step != 1 not implemented

Workaround: Use explicit loop for this rare operation.

Sample code:

l = [1, 2, 3, 4]
del l[0:4:2]
print(l)

CPy output: uPy output:

[2, 4] Traceback (most recent call last):
File "<stdin>", line 8, in <module>

NotImplementedError:
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List slice-store with non-iterable on RHS is not implemented

Cause: RHS is restricted to be a tuple or list

Workaround: Use list(<iter>) on RHS to convert the iterable to a list

Sample code:

l = [10, 20]
l[0:1] = range(4)
print(l)

CPy output: uPy output:

[0, 1, 2, 3, 20] Traceback (most recent call last):
File "<stdin>", line 8, in <module>

TypeError: object 'range' is not a tuple or list

List store with step != 1 not implemented

Workaround: Use explicit loop for this rare operation.

Sample code:

l = [1, 2, 3, 4]
l[0:4:2] = [5, 6]
print(l)

CPy output: uPy output:

[5, 2, 6, 4] Traceback (most recent call last):
File "<stdin>", line 8, in <module>

NotImplementedError:

6.3.7 str

UnicodeDecodeError not raised when expected

Sample code:

try:
print(repr(str(b"\xa1\x80", 'utf8')))
print('Should not get here')

except UnicodeDecodeError:
print('UnicodeDecodeError')

CPy output: uPy output:

UnicodeDecodeError '\u0840'
Should not get here

Start/end indices such as str.endswith(s, start) not implemented

Sample code:
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print('abc'.endswith('c', 1))

CPy output: uPy output:

True Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: start/end indices

Attributes/subscr not implemented

Sample code:

print('{a[0]}'.format(a=[1, 2]))

CPy output: uPy output:

1 Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: attributes not supported yet

str(...) with keywords not implemented

Workaround: Input the encoding format directly. eg print(bytes(’abc’, ’utf-8’))

Sample code:

print(str(b'abc', encoding='utf8'))

CPy output: uPy output:

abc Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: keyword argument(s) not yet implemented - use normal args instead

str.ljust() and str.rjust() not implemented

Cause: MicroPython is highly optimized for memory usage. Easy workarounds available.

Workaround: Instead of s.ljust(10) use "%-10s" % s, instead of s.rjust(10) use "% 10s" % s.
Alternatively, "{:<10}".format(s) or "{:>10}".format(s).

Sample code:

print('abc'.ljust(10))

CPy output: uPy output:

abc Traceback (most recent call last):
File "<stdin>", line 7, in <module>

AttributeError: 'str' object has no attribute 'ljust'
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None as first argument for rsplit such as str.rsplit(None, n) not implemented

Sample code:

print('a a a'.rsplit(None, 1))

CPy output: uPy output:

['a a', 'a'] Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: rsplit(None,n)

Instance of a subclass of str cannot be compared for equality with an instance of a str

Sample code:

class S(str):
pass

s = S('hello')
print(s == 'hello')

CPy output: uPy output:

True False

Subscript with step != 1 is not yet implemented

Sample code:

print('abcdefghi'[0:9:2])

CPy output: uPy output:

acegi Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: only slices with step=1 (aka None) are supported

6.3.8 tuple

Tuple load with step != 1 not implemented

Sample code:

print((1, 2, 3, 4)[0:4:2])

CPy output: uPy output:

(1, 3) Traceback (most recent call last):
File "<stdin>", line 7, in <module>

NotImplementedError: only slices with step=1 (aka None) are supported

6.3. Builtin Types 105



MicroPython Documentation, Release 1.9.2

6.4 Modules

Generated Wed 23 Aug 2017 02:12:03 UTC

6.4.1 array

Looking for integer not implemented

Sample code:

import array
print(1 in array.array('B', b'12'))

CPy output: uPy output:

False Traceback (most recent call last):
File "<stdin>", line 8, in <module>

NotImplementedError:

Array deletion not implemented

Sample code:

import array
a = array.array('b', (1, 2, 3))
del a[1]
print(a)

CPy output: uPy output:

array('b', [1, 3]) Traceback (most recent call last):
File "<stdin>", line 9, in <module>

TypeError: 'array' object does not support item deletion

Subscript with step != 1 is not yet implemented

Sample code:

import array
a = array.array('b', (1, 2, 3))
print(a[3:2:2])

CPy output: uPy output:

array('b') Traceback (most recent call last):
File "<stdin>", line 9, in <module>

NotImplementedError: only slices with step=1 (aka None) are supported
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6.4.2 deque

Deque not implemented

Workaround: Use regular lists. micropython-lib has implementation of collections.deque.

Sample code:

import collections
D = collections.deque()
print(D)

CPy output: uPy output:

deque([]) Traceback (most recent call last):
File "<stdin>", line 8, in <module>

AttributeError: 'module' object has no attribute 'deque'

6.4.3 json

JSON module does not throw exception when object is not serialisable

Sample code:

import json
a = bytes(x for x in range(256))
try:

z = json.dumps(a)
x = json.loads(z)
print('Should not get here')

except TypeError:
print('TypeError')

CPy output: uPy output:

TypeError Should not get here

6.4.4 struct

Struct pack with too few args, not checked by uPy

Sample code:

import struct
try:

print(struct.pack('bb', 1))
print('Should not get here')

except:
print('struct.error')

CPy output: uPy output:

struct.error b'\x01\x00'
Should not get here
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Struct pack with too many args, not checked by uPy

Sample code:

import struct
try:

print(struct.pack('bb', 1, 2, 3))
print('Should not get here')

except:
print('struct.error')

CPy output: uPy output:

struct.error b'\x01\x02'
Should not get here

6.4.5 sys

Overriding sys.stdin, sys.stdout and sys.stderr not possible

Cause: They are stored in read-only memory.

Sample code:

import sys
sys.stdin = None
print(sys.stdin)

CPy output: uPy output:

None Traceback (most recent call last):
File "<stdin>", line 8, in <module>

AttributeError: 'module' object has no attribute 'stdin'
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SEVEN

MICROPYTHON LICENSE INFORMATION

The MIT License (MIT)

Copyright (c) 2013-2017 Damien P. George, and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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