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Abstract

Experimental mathematics is now a well accepted genre of study. It is a field in which
computer-assisted experimentation — the generation of numbers, sequences, graphs and so
on, using powerful software — combined with theoretical study can yield a great deal. Though
this sounds revolutionary, it isn’t. Indeed, using numerical and graphical experimentation as a
means to arrive at conjectures has been a standard mode of operation used by mathematicians
for centuries. The only difference is that today vastly stronger technology is available to us.

In this talk we describe three problems in which substantial progress is accomplished when
computer software is used: (i) a problem from number theory, featuring an iteration with an
unusual conclusion; (ii) a problem dealing with the enumeration of integer-sided triangles;
(iii) a problem where we study the variation in a function defined on the space of all triangles.
We also give solutions to the problems.

1 A two-term number theoretic iteration

Iterations in number theory often yield surprising results of great beauty. The present one is no
exception.

Let a, b be two numbers. Define a sequence un such that un = (un−1 + un−2)/2, the starting
values being u1 = a and u2 = b (so the recurrence holds for n > 2). For example, with a = 1 and
b = 4 this leads to the sequence
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and it is easy to show that the sequence converges to a limiting value of (a+2b)/3. Note that this
is a weighted mean of a, b.



Now let us alter the recurrence just a bit. Let a, b be two odd positive integers, and let vn be
a sequence such that v1 = a, v2 = b and for n > 2,

vn = the largest odd divisor of vn−1 + vn−2. (1)

Hence vn is of the form (vn−1 + vn−2)/2
k where 2k is a suitable power of 2 (specifically, the largest

power of 2 that divides vn−1 + vn−2). Stated this way, the similarity to the earlier iteration is easy
to see (and, similarly, a distant resemblance to the Fibonacci recurrence); but the results are very
different. Here are some data.

• If the starting numbers are 1 and 3, the sequence goes: 1, 3, 1, 1, 1, 1, . . ..

• If the starting numbers are 1 and 5, the sequence goes: 1, 5, 3, 1, 1, 1, 1, . . ..

• If the starting numbers are 9 and 13, the sequence goes: 9, 13, 11, 3, 7, 5, 3, 1, 1, 1, 1, . . ..

It is easy to see that the v-sequence consists only of odd positive integers, and if two successive
values of v are equal, then the sequence stays fixed at that value from that point on. Observe that
in each instance (above) the sequence converged to a fixed value. Will this always be the case?
The data suggest it is so. Assuming it is so, exactly how does this fixed value depend on the initial
values? This is the question we study here. The pattern is not obvious, so it helps to generate data
using a computer and then to look for patterns. We use the well known Mathematica package.
Here are the commands:

ClearAll[f, g];

g[n_] := If[OddQ[n], n, g[n/2]];

(* The function g computes the largest odd divisor of the integer n. *)

f[a_, b_] := (ClearAll[v];

SetAttributes[v, Listable];

v[1] = a; v[2] = b;

v[n_] := v[n] = g[v[n - 1] + v[n - 2]];

(* The function v generates the sequence under study. *)

c = 1;

While[v[c] != v[c + 1], c++];

c++;

v[Range[1, c]])

1.1 Notes

The function g computes the largest odd divisor of a given positive integer n, using recursion: if
n is odd then g(n) = n, and if n is even then g(n) = g(n/2). In the commands defining f , we
first define the sequence v, then find the point at which two successive v-values are equal, and
finally display all the v-values till that point. The fixed point is thus the last number in the string.
Note that the code implicitly assumes that the v-sequence always reaches a fixed point! But as
the initial experimentation has supported this belief we have gone ahead and set up the code as
shown, without inserting any ‘safety valve’ — i.e., without any exit condition in case the program
does not terminate.



1.2 Results

Here are the data generated by the above commands, for different pairs of starting numbers.
(Do not forget that the numbers are supposed to be odd.) We shall use the symbol L(a, b) to
denote the limiting fixed value when the initial two numbers are a and b (in that order). We shall
simultaneously derive an expression for L(a, b) and show that it is well defined. Note that the
sequence generated by a, b is not the same as the sequence generated by b, a, so it is not clear at
the outset whether or not L(a, b) equals L(b, a). Here are our findings:

• L(a, a) = a for all odd a.

• L(1, a) = 1 for all odd a.

• L(3, a) = 1 when a = 1, 5, 7, 11, 13, 17, . . ., and L(3, a) = 3 when a = 3, 9, 15, 21, 27, . . ..

• L(5, a) = 1 when a = 1, 3, 7, 9, 11, 13, 17, . . ., and L(5, a) = 5 when a = 5, 15, 25, 35, . . ..

1.3 Conjecture

After some experimentation we are led to the following guess:

Conjecture 1 If a, b are odd positive integers, then L(a, b) equals the greatest common divisor of

a, b. That is, L(a, b) = gcd(a, b).

The conjecture is correct, and we now provide a proof. We make use of the following observation:
If L(a, b) = c then L(ka, kb) = kc for any odd positive integer k.

1.4 Proof

In view of the observation made above, we may suppose with no loss that the initial odd numbers
a and b are coprime; for, if gcd(a, b) = d then d will be a divisor of every member of the v-sequence
and hence may simply be divided out from the sequence. Hence what we need to show is: If a, b
are two coprime odd positive integers, then L(a, b) = 1. The proof is as argued out below.

Step 1: For odd positive integers r, s, the greatest odd divisor of r+s is at most equal to (r+s)/2
and therefore at most equal to max(r, s). Hence if v1 = a and v2 = b then vn is bounded
above by max(a, b). Therefore vn can take only finitely many values.

Step 2: Therefore the number of possibilities for pairs of successive values of the v-sequence is
finite. It follows that after some point, a pair of successive values will recur. From this point
onwards the v-sequence will necessarily be periodic.

Step 3: Therefore for any choice of the two starting odd numbers (a and b) the v-sequence will
ultimately settle into a periodic cycle.



Step 4: In the periodic cycle, let r be the largest number, and let s be the number immediately
following it. If s = r then the sequence from this point will be r, r, r, . . .. Now consider the
consequence of s < r. In this case the number following s will be at most (r+s)/2 and hence
strictly less than r. But with two consecutive numbers strictly less than r, every number
after that will be strictly less than r, so there is no possibility of the sequence ever reaching
r again. But this contradicts the very notion of a cycle! Hence all the numbers in the cycle
are the same, which actually means that the cycle consists of just one number.

Step 5: It follows that for any choice of the two starting odd numbers (a and b) the v-sequence
does ultimately reach some fixed value L(a, b) = c, say. That is, from some point on, the
v-sequence reads c, c, . . . (here c is an odd number). Let the last number before the fixed
value is reached be d; by definition, d 6= c. (It cannot be that all numbers in the sequence are
equal, so the number d does exist.) Hence we have the following three consecutive terms of
the v-sequence: d, c, c. This means that c is the largest odd divisor of d+ c. But this implies
that c is a divisor of d. It is easy now to deduce inductively that c divides every member
of the v-sequence; in particular, that c divides a and b. But we had assumed at the start
that a and b are coprime. Hence c = 1. It follows that L(a, b) = 1. This conclusion is valid
provided a, b are coprime. We have shown what we set out to show.

Step 6: In general, therefore, L(a, b) = gcd(a, b) for any pair of odd positive integers a, b.

2 Counting triangles

From number theory we switch to combinatorics, though this too is a problem with a number
theoretic flavour. Now we count triangles! The problem is easily stated:

Problem 2 Find the number f(n) of integer-sided triangles with perimeter n.

We have: f(1) = f(2) = 0, f(3) = 1, f(4) = 0. The last equality comes as a surprise, and shows
that f is not monotone as might have been expected.

Let the lengths of the sides be a, b, c. To avoid duplication we impose the condition a ≥ b ≥ c.
Invoking the fact that any two sides of a triangle exceed the third one we see that f(n) is equal to
the number of positive integer solutions to the following system:







a+ b+ c = n,
a ≥ b ≥ c,
b+ c > a.

(2)

This can be recast using only two variables by using the fact that c = n− a− b. We then see that
f(n) equals the number of positive integer pairs (a, b) such that















a ≥ b,
a+ 2b ≥ n,
a+ b ≤ n− 1,
a < n/2.

(3)



It is easy to write the Mathematica code that will generate values of f . The code for formulation
(2) is the following:

ClearAll[t, f];

t[n_] := t[n] = (s = {};

Do[If[a + b + c == n, s = Append[s, {a, b, c}]],

{a, 1, Floor[n/2]}, {b, 1, a}, {c, a - b + 1, b}];

s);

f[n_] := f[n] = Length[t[n]];

SetAttributes[{t, f}, Listable]

Here is the code for formulation (3); it generates exactly the same results as the one above, but is
significantly faster in its operation:

ClearAll[t, f];

t[n_] := (s = {};

Do[If[a + 2 b >= n, s = Append[s, {a, b, n - a - b}]],

{a, 1, Floor[(n - 1)/2]}, {b, 1, a}];

s);

f[n_] := Length[t[n]];

SetAttributes[{t, f}, Listable]

2.1 Notes

t(n) computes the strings (a, b, c) corresponding to the side lengths of the triangles with perimeter
n, while f(n) counts their number. For example, for n = 11 we get the following strings: (4, 4, 3),
(5, 3, 3), (5, 4, 2), (5, 5, 1). These give the four integer-sided triangles with perimeter 11.

2.2 Results

Here is a list (obtained after executing the above code) of the first hundred values of f , i.e., the
values f(1), f(2), f(3), . . . , f(100):

0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21,
19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65,
61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120, 114,
127, 120, 133, 127, 140, 133, 147, 140, 154, 147, 161, 154, 169, 161, 176, 169, 184, 176,
192, 184, 200, 192, 208, 200, 217, 208.

Note the non-monotonicity! The irregularity would seem to make the task of finding a neat formula
for f quite a challenge.

Figure 1 shows a plot of the points (n, f(n)) for n = 1, 2, 3, . . . , 100. It is indeed a very curious
looking graph.
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Figure 1: A strange looking graph



The appearance of two overlaid curves suggests that the formula for f(n) will depend on the
class of n relative to some modulus. The shape of the curve(s) suggests a quadratic relationship.
A simple way of getting a handle on the relationship is to examine the values of r(n) := n2/f(n)
for a few values of n. Here’s what we find: r(90) ≈ 47.9, r(100) ≈ 48.1. The evidence strongly
suggests that f(n) is close to n2/48. Once this is noticed, it is easy to see why it must be so. We
had found earlier that f(n) is the number of positive integer pairs (a, b) such that a ≥ b, a+2b ≥ n,
a + b ≤ n − 1 and a < n/2. The last condition may be replaced by a ≤ ⌊n/2⌋. If we plot these
inequalities on a graph, we get the shape shown in Figure 2.
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Figure 2: The region produced by the four inequalities

The coordinates of the vertices P,Q,R, S of quadrilateral PQRS are:

{
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(4)

If we approximate ⌊x⌋ by x (true for large x) then we may replace these by:

{
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(5)

The number of lattice points in this region (which is the quantity f(n) for which we want a formula)
is approximately equal to the area of the quadrilateral. Using determinants to compute area, we



find that the area of triangle PQR is n(n− 4)/48, and that of triangle QRS is (n− 4)/16. Hence
the area of PQRS is

n(n− 4)

48
+

n− 4

16
=

(n+ 3)(n− 4)

48
, (6)

and to a first approximation this is equal to n2/48.

2.3 Curious relationships

Noting the irregularity of the sequence, let us study some subsequences of {f(n)}, corresponding
to some modular classes. Here are the values of f(1), f(3), f(5), . . . :

0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, . . . .

And here are the values of f(2), f(4), f(6), . . . :

0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, . . . .

The two sequences are completely identical, except for the initial 0 in the second sequence which
produces a one-term offset. How curious. Is it possible, then, that f(n) = f(n + 3), identically?
Well, not quite. Let’s run the following Mathematica code:

s1 = {};

Do[If[f[n] == f[n + 3], s1 = Append[s1, n]], {n, 1, 100}];

s1

Here is the output:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49,
51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95,
97, 99.

Precisely the set of odd numbers! So we arrive at a most surprising finding:

Conjecture 3 The equality f(n) = f(n + 3) is true for every odd positive integer n. Otherwise

expressed, we have: f(2n− 3) = f(2n) for every positive integer n.

We shall prove the conjecture presently. If we study more such classes (every 3-rd term, every 4-th
term, . . . ) we find that choosing a modulus of 12 yields dividends: by picking every 12-th term
we find very pleasing patterns. Thus, the values of f(1), f(13), f(25), f(37), . . . are:

0, 5, 16, 33, 56, 85, 120, 161, 208, . . . ;

the values of f(2), f(14), f(26), f(38), . . . are:

0, 4, 14, 30, 52, 80, 114, 154, 200, . . . ;



the values of f(3), f(15), f(27), f(39), . . . are:

1, 7, 19, 37, 61, 91, 127, 169, 217, . . . ;

and the values of f(4), f(16), f(28), f(40), . . . are:

0, 5, 16, 33, 56, 85, 120, 161, 208, . . . .

For each subsequence, all the second differences are equal to 6. From this observation emerges
another one:

Conjecture 4 For all positive integers n we have:

f(n+ 24)− 2f(n+ 12) + f(n) = 6.

The fact that the subsequences have constant second difference allows us to find the formula we
seek, though it will actually be a collection of different quadratic formulas (one for each class mod
12; the formulas will all have the same second degree term). Consider the values f(1), f(13),
f(25), f(37), . . . :

0, 5, 16, 33, 56, 85, 120, 161, 208, . . . .

Let ak = f(12k + 1); the leading term in the formula for ak will be 3k2 as the constant second
difference (= 6) is 3 times the constant second difference for the sequence of squares. Subtracting
3k2 from ak we get the sequence 0, 2, 4, 6, . . .whose k-th term is 2k. (The first term here corresponds
to k = 0.) Hence ak = 3k2 +2k, and we can check that this fits. Going through each class mod 12
and repeating this analysis we readily obtain the following:



































































































f(12k) = 3k2,

f(12k + 1) = 3k2 + 2k,

f(12k + 2) = 3k2 + k,

f(12k + 3) = 3k2 + 3k + 1,

f(12k + 4) = 3k2 + 2k,

f(12k + 5) = 3k2 + 4k + 1,

f(12k + 6) = 3k2 + 3k + 1,

f(12k + 7) = 3k2 + 5k + 2,

f(12k + 8) = 3k2 + 4k + 1,

f(12k + 9) = 3k2 + 6k + 3,

f(12k + 10) = 3k2 + 5k + 2,

f(12k + 11) = 3k2 + 7k + 4.

(7)

These are the formulas found empirically, using the values of f(n) generated by Mathematica.
As such they cannot be considered as mathematically proved — not till we have also supplied a
proper theoretical analysis. This can be done in various ways, but we do not include the analysis
in this paper.



2.4 Another formula for f

Before closing we mention the following curious formula which has been found:

f(n) =



















Integer closest to
n2

48
, if n is even,

Integer closest to
(n+ 3)2

48
, if n is odd.

(8)

Example: f(5) = 1, as the integer closest to 64/48 is 1.

2.5 Generating function for f

By making use of the recurrence relations for {f(n)} it is possible to prove the following remarkable
formula which gives the generating function for the sequence:

1 + f(1)x+ f(2)x2 + f(3)x3 + f(4)x4 + · · · =
x3

(1− x2)(1− x3)(1− x4)
. (9)

2.6 Proof of conjecture 3

We shall now prove that f(2n − 3) = f(2n) for all n. Let a, b, c be the sides of an integer-sided
triangle with perimeter 2n− 3, labeled so that a ≥ b ≥ c; then a+ b+ c = 2n− 3, and b+ c > a.
Let a′ = a + 1, b′ = b + 1, c′ = c + 1; then a′ + b′ + c′ = 2n, a′ ≥ b′ ≥ c′, and b′ + c′ > a′. This
yields an integer-sided triangle with perimeter 2n.

Conversely, given an integer-sided triangle with perimeter 2n, let its sides be labeled a, b, c so
that a ≥ b ≥ c; then a + b + c = 2n, and b + c > a. Let a′ = a − 1, b′ = b − 1, c′ = c − 1; then
a′ + b′ + c′ = 2n− 3, a′ ≥ b′ ≥ c′, and b′ + c′ ≥ a′. Can equality hold in the relation b′ + c′ ≥ a′?
No, precisely because a′ + b′ + c′ = 2n − 3, and 2n − 3 is odd (equality would make the sum
a′ + b′ + c′ an even number). So strict inequality holds, b′ + c′ > a′, and thus a′, b′, c′ are the sides
of an integer-sided triangle with perimeter 2n− 3, labeled the ‘right’ way.

It follows that f(2n− 3) = f(2n), as stated.

2.7 Proof of conjecture 4

We prove that f(n + 24) − 2f(n + 12) + f(n) = 6 through the following sequence of simpler
results (‘lemmas’). For each n, let I(n) denote the number of isosceles integer-sided triangles with
perimeter n (note that ‘isosceles’ includes ‘equilateral’).

Claim: The number of scalene integer-sided triangles with perimeter n is equal to the number of

integer-sided triangles with perimeter n− 6.

For example, take n = 9. There is just one integer-sided triangle with perimeter 3 (sides
1, 1, 1) and just one scalene integer-sided triangle with perimeter 9 (sides 2, 3, 4).



Proof: We shall exhibit a one to one correspondence between the set of scalene integer-sided
triangles with perimeter n and the set of integer-sided triangles with perimeter n− 6.

Let a, b, c be the sides of a scalene integer-sided triangle with perimeter n, with a > b > c;
then a+b+c = n and b+c > a. Let a′ = a−3, b′ = b−2, c′ = c−1. Then a′+b′+c′ = n−6,
a′ ≥ b′ ≥ c′ and b′ + c′ − a′ = b + c − a > 0; hence a′, b′, c′ are the sides of an integer-sided
triangle with perimeter n− 6. The mapping is clearly reversible, and establishes the desired
correspondence.

Corollary: From the above it follows that f(n) = f(n− 6) + I(n) for all positive integers n.

Claim: I(n) = the number of integers strictly between n/4 and n/2.

Proof: Let the sides of the triangle be a, a, n − 2a. Then we must have a + a > n − 2a (hence
a > n/4) and a+ (n− 2a) > a (hence a < n/2). So I(n) must equal the number of integers
lying strictly between n/4 and n/2.

Claim: I(n+ 12)− I(n) = 3 for all n.

Proof: I(n + 12) = the number of integers strictly between (n + 12)/4 and (n + 12)/2, i.e.,
between 3 + n/4 and 6 + n/2. This will clearly exceed by 3 the number of integers strictly
between n/4 and n/2, i.e., it will exceed I(n) by 3. Hence I(n+ 12)− I(n) = 3.

Claim: f(n+ 24)− 2f(n+ 12) + f(n) = 6 for all positive integers n.

Proof: Since f(n)− f(n− 6) = I(n) for all n, it follows that

f(n+ 12)− f(n) =
(

f(n+ 12)− f(n+ 6)
)

+
(

f(n+ 6)− f(n)
)

= I(n+ 12) + I(n+ 6).

Hence:

f(n+ 24)− f(n+ 12) = I(n+ 24) + I(n + 18),

f(n+ 12)− f(n) = I(n+ 12) + I(n + 6).

By subtraction we get:

f(n+ 24)− 2f(n+ 12) + f(n) =
(

I(n+ 24)− I(n+ 12)
)

+
(

I(n+ 18)− I(n+ 6)
)

= 3 + 3 = 6,

as required.

As this property is now established, the formulas found earlier for f are valid.
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3 Characterization of a right-angled triangle

In this section we explore a surprising characterization of an important class of triangles. The
story we present deals with a natural looking question:

To explore the variation of the quantity

f(A,B,C) := cos2A+ cos2B + cos2C

over the space of all possible triangles ABC.

The question is not only about the extreme values that f can take but also about the ‘in-between’
values. It seems natural to do the exploration using GeoGebra. What do we find? Something
curious!

The extreme values

• Guessing the ‘upper end’ is easy: if A → 0, B → 0 and C → π, then f(A,B,C) → 3. This
is clearly the supremum. It is achieved only by a degenerate triangle with angles 0, 0, π.

• The infimum is achieved by an equilateral triangle, with f -value 3/4. To see why, consider
the function φ(x) := cos2 x + cos2(k − x) where k is a constant, 0 < k < π. What is the
infimum of φ for 0 ≤ x ≤ k? The use of derivatives shows that if k < π/2, then x = k/2
yields a global minimum for φ, and if π/2 < k < π, then x = 0 yields a global minimum for
φ. Hence φ(x) ≥ 2 cos2 k/2 = 1 + cos k if k < π/2, and φ(x) ≥ 1 + cos2 k if π/2 ≤ k < π.
It follows that f(A,B,C) ≥ 1 − cosC + cos2C if C < π/2, and f(A,B,C) ≥ 1 + 2 cos2C
if C > π/2. Using derivatives once again we see that f(A,B,C) ≥ 3/4 if C < π/2, and



f(A,B,C) ≥ 1 if C ≥ π/2. It follows that f(A,B,C) ≥ 3/4 in all cases. As the value of 3/4
is actually achieved by an equilateral triangle, it follows that this is the global infimum.

An observation

It appears as though the following is true; if so it yields a surprising characterization of a right-
angled triangle:

cos2A + cos2B + cos2C = 1 precisely when the triangle is right-angled!

To show that “If the triangle is right-angled, then cos2A + cos2B + cos2C = 1” is trivial. But
why should the converse be true? This is far from clear.

Remark

What makes the problem challenging is that 1 is not an extreme value for cos2A+cos2B+cos2 C.
Some common methods of proof fail precisely for this reason.

(Example: Suppose we want to determine the conditions under which real numbers x, y, z satisfy
the relation x2+ y2+ z2 = xy+ yz+ zx. Here in studying the quantity x2+ y2+ z2−xy− yz− zx,
we discover that x2 + y2 + z2 − xy − yz − zx ≥ 0, with equality just when x = y = z; this follows
when we write x2+ y2+ z2−xy− yz− zx = [(x− y)2 + (y − z)2 + (z − x)2] /2. But this approach
does not work here because (as noted) 1 is not an extreme value for cos2A + cos2B + cos2C.)

A CAS proof

The relation cos2A + cos2B + cos2C = 1 leads (via the cosine formula) to:

(

b2 + c2 − a2

2bc

)2

+

(

c2 + a2 − b2

2ca

)2

+

(

a2 + b2 − c2

2ab

)2

= 1.

This leads in turn to:

a2
(

b2 + c2 − a2
)2

+ b2
(

c2 + a2 − b2
)2

+ c2
(

a2 + b2 − c2
)2

= 4a2b2c2.

Now we must factorize ‘left side minus right side’. This is rather easy to do using a CAS! Here’s
what Derive and Mathematica tell us:

a2
(

b2 + c2 − a2
)2

+ b2
(

c2 + a2 − b2
)2

+ c2
(

a2 + b2 − c2
)2

− 4a2b2c2

= −
(

a2 + b2 − c2
)

·
(

b2 + c2 − a2
)

·
(

c2 + a2 − b2
)

.

And that finishes the problem most decisively, for the last expression is 0 just when the sum of the
squares of some two sides equals the square of the third side, i.e., when the triangle is right-angled.



A paper-and-pencil proof

Write x = a2, y = b2, z = c2. Then from

a2
(

b2 + c2 − a2
)2

+ b2
(

c2 + a2 − b2
)2

+ c2
(

a2 + b2 − c2
)2

= 4a2b2c2

we get:
x(y + z − x)2 + y(z + x− y)2 + z(x+ y − z)2 − 4xyz = 0.

As a trial let us put y + z − x = 0, i.e., x = y + z. On the left side we get:

y(2z)2 + z(2y)2 − 4(y + z)yz = y
(

4z2
)

+ z
(

4y2
)

− 4yz(y + z) = 0,

identically. Hence y + z − x is a factor of the expression. By symmetry, z + x − y and x + y − z
too are factors.

Hence the equality cos2A+ cos2B + cos2C = 1 leads to:

(y + z − x) · (z + x− y) · (x+ y − z) = 0,

i.e.,
(

b2 + c2 − a2
)

·
(

c2 + a2 − b2
)

·
(

a2 + b2 − c2
)

= 0.

The proof concludes as earlier.

4 Further remarks

Each of the explorations used computers in a basic and important way. However further remarks
can be made in the individual cases.

Two-term iteration The ability of a computer to rapidly generate the terms of a recursively
defined sequence is put to good use. The recursive rule here is easy to program. Without
a good data-base of results it is difficult to anticipate what the iteration is ‘doing’, but the
computer makes this much easier. Once the result is known, the proof is not hard to find.

Counting triangles by perimeter The ability of a computer to do a large number of operations
and to sort data in well-defined ways at great speed is used most effectively. It is difficult to
generate by hand values of f(n) beyond, say, n = 25. With the computer we are able with
ease to go up to n = 200, and then to display various subsequences of the main sequence.
Finding by eye alone a parity based pattern is not difficult; nor one based on modulo 3
categories. But finding a pattern based on modulo 12 categories is difficult to spot! Here we
are able to find a pattern and then prove it using ‘old-fashioned’ mathematical reasoning.

Right-angled triangle This is a problem for which intuition does not easily yield an answer.
Exploration using GeoGebra strongly suggests a particular answer, and analysis then confirms
the answer. Use of a high-powered CAS brings forth a quick answer, but it is possible to
devise a paper-and-pencil proof which would satisfy a purist.
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