Version-Based Recovery DLD

Mike Pershin

2008-04-15

1 Requirements

1. aserver only replays a client update request when thet@péfacts exactly the same versions of objects as it diddn th
original execution;

2. aclient is guaranteed that all information that it hasot#d from the server is present after recovery;
3. delayed recovery possibility;

4. disconnected operations support.

2 Functional Specification

2.1 Definitions:

version: {epoch, transno} pair labeling objects (MDT inodes, OST objects), whegech is boot cycle sequence number
andtransno is last transaction of the object.

preop-version: the version of the inodes when it have just been locked.
postop-version: the version of the inodes as set by the operation

primary recovery stage: first recovery stage, when server waits for all clients tmrneect and tries to replay them in trans-
action order (used now as only recovery way)

delayed recovery stage:recovery of clients which weren't able to reconnect in time doing that later.

commit-on-sharing: technique that helps to avoid dependencies during recdwedoing commit if some info is going to
be shared between two nodes.

2.2 Basic structures
2.2.1 \ersion

Version of object iserver maintained pair {epoch, transaction}. It is stored au64 value where the epoch is highest 32 bits
and transno is lowest 32 bit.

#define LU_EPOCH_BITS 32
#define lu_ver_epoch(a) (a >> LU_EPOCH_BITS)
#define lu_ver_transno(a) (a & (OUL >> LU_EPOCH_BITS)

1

2.2.2 Set/get version

There are two methods in Lustre for getting/setting inodsioes:
__ub4 fsfilt_ext3_get_version(struct inode *inode);
__ub4 fsfilt_ext3_set_version(struct inode *inode, __u64 new_version);

The Lustre 1.8 will need the similar method to support inodesion handling in OSD and new method in lu_device API for
that.

2.2.3 RPC buffers

New buffer is added to several RPCs to provide version supjtozontains preop and postop versions for objects invblve
in operation. There is only one post version because allctbjavolved in operation were updated in the same trarmsacti
therefore they have the same postop version.

struct lu_versions {
__u64 lv_post_version;
__u64 lv_pre_versions[4];
};

extern void lustre_swab_version(struct lu_version *1v);

Reply message contains additional buffer with versions.

These versions are saved to original request for replay.sirhplest way is to add additional buffer at the end of reqeest
we don’'t need to allocate it after reply for replay. MDC coiesld be modified with adding new buffer for reint requestd an
open.

2.2.4 Last_rcvd

Client data inlast_rcvd contains not only last_transno (which is actually postopsie& now) but also preop version to
reconstruct reply fully:

struct mds_client_data {
__u8 mcd_uuid[40]; /* client UUID */
__u64 mcd_last_version; /* last completed version */
__u64 mcd_pre_versions[4]; /* preop versions for objects in last operation */
__u64 mcd_last_xid; /* xid for the last transaction */

__u8 mcd_padding[LR_CLIENT_SIZE - 120];
};
2.3 Version handling

2.3.1 \Version and epoch maintaining

The epoch is maintained by server:

e the server data in thast_rcvdfile contains thaast_version instead oflast_transno;
e the epoch is got fromast_version and increased upon each boot cycleda_init_server_data();

e the server transno is started from 1 after each epoch ireréass allows to don’t know the last used transaction before
recovery and server doesn’t depend on disconnectezzd clients

2.3.2 Updating the version

The versions of objects involved in operation are get dudpgration and stored in reply buffer. The new version is the
transaction assigned for current operation, thereforbamlsl be set duringds_finish_transno () but before the transaction
is stopped.

Themds_finish_transno() should be changed to receive as parameter not only one inb@# modes involved in operation
so their versions can be updated under the same lock as ugeméat transaction:

static inline void mds_versions_set(struct obd_device *obd,

struct inode **inodes, __u64 version)
{
if (inodes == NULL)
return;
fsfilt_set_version(obd, inodes[0], version);
fsfilt_set_version(obd, inodes[1], version);
fsfilt_set_version(obd, inodes[2], version);
fsfilt_set_version(obd, inodes[3], version);
}

static inline void mds_versions_get(struct obd_device *obd,
struct lu_version *lv,
struct inode **inodes)

{
if (inodes == NULL)
return;
lv->1v_pre_ver[0] = fsfilt_get_version(obd, inodes[0]);
lv->1v_pre_ver[1] = fsfilt_get_version(obd, inodes[1]);
lv->1v_pre_ver[2] = fsfilt_get_version(obd, inodes[2]);
lv->1v_pre_ver[3] = fsfilt_get_version(obd, inodes[3]);
}

int mds_finish_transno(struct mds_obd *mds, struct inode **inodes, void *handle,
struct ptlrpc_request *req, int rc, __u32 op_data)

{
spin_lock (&mds->mds_transno_lock) ;
transno = ++mds->mds_last_transno;
/* versions */
lv->1lv_post_ver = transno;
if (op_data == 0) /* not open */
mds_versions_set(obd, lv, inodes, transno);
spin_unlock (&mds->mds_transno_lock) ;
/* save versions in last_rcvd for reconstruct */
if (1v) {
mcd->mcd_last_version = cpu_to_le64(lv->1lv_post_ver);
mcd->mcd_pre_versions[0] = cpu_to_le64(lv->lv_pre_ver[0]);
mcd->mcd_pre_versions[1] = cpu_to_le64(lv->1lv_pre_ver[1]);
mcd->mcd_pre_versions[2] = cpu_to_le64(lv->lv_pre_ver[2]);
mcd->mcd_pre_versions[3] = cpu_to_le64(lv->1lv_pre_ver[3]);
}
}

Note: fsfilt_set_version() should markinode dirty to ensure that changes will be coteuhit

Note: getting the versions can be done natda_finish_transno () butin caller function though we us@s_finish_transno ()
just to avoid code duplicating across reint functions.

Lustre 1.8 The new version is set iadt_txn_stop_cb(). Right before setting new version the old one should be saged
preop version in reply. This is important for parentgireytmostly because it can be used by several threads at once

due to pdirops feature, therefore the only way to get copesp version is reading it right before writting the new one
because that is serialized.

2.4 \ersion based recovery

The two requirements should be met:

1. During replay of requests version-based recovery wolatlients to replay if and only if the objects the client sing
have exactly the same version as during the original exatuti

2. After replay, recovery can complete successfully if tagadlientsobtained from servers before recovery is assured to
be present and not to have rolled back. A key issue, subjguxdltoy is if, clientdesignates thelient Lustre file system
or client applicationausing the file system.

If both conditions can be met jobs can continue without etrdirthe conditions cannot be met, eviction will be the norma
result, but more relaxed recovery options can be made alaia the client.

2.4.1 Normal operations
1. For any operation with transaction the server does thewWolg:

(a) the preop versions of objects are writtertduct lu_version in extra reply buffer
(b) the new version is set after assigning the transno améddstostruct lu_version also
(c) last_rcvd record is updated with versions too

Note: open shouldn’t set new version upon getting new transnostomtld get preop versions and save them in reply
for version checking. Close() doesn'’t get or set versions.

2. For all other operations the server determineshiipest_used_version - the biggest one for objects involved in
operation - and send it back to the client. It will be used ttedaine does client depends on gap or not.

3. server replies to the client with version info

4. Client gets reply and:

(a) inafter_reply() client saves thel_version into the original request for replay
(b) comparegaighest_version from reply with clienthighest_version value to determine new value.

2.4.2 Version checking

Each replayed operation checks version. That should be aftereall involved objects are locked, the preop versioesgat
here also:

static inline int mds_version_get_check(struct ptlrpc_request *req,
struct inode *inode,
__ub4 ver_old,
__ub4 *ver_new)

struct obd_device *obd = req->rq_export->exp_obd;

LASSERT (inode) ;

*xver_new = fsfilt_get_version(obd, inode);

if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) {
if (ver_old '= *ver_new) 4

RETURN (-ENOTSYNC) ;

}
RETURN (0) ;
}
mds_reint_setattr()
{
rc = mds_version_get_check(req, inode, rec->ur_lv->1lv_pre_ver[0],
&lv->1v_pre_ver[0]);
if (rc)
GOTO(cleanup, rc);
}

2.4.3 Primary recovery phase

1.

server completes its initialization and starts to accepnesting request from clients. The server, as before gaes in
recovery mode if old exports are found.

. server checks the last_committed epoch per export taldésit stale export or it was participating in previous gpoc

. server wait9BD_RECOVERY_TIMEOUTSeconds to allow clients to connect, those clients whiclneoted with server are

counted as normal recovery clients. Each time a client ccisitiee recovery connect window is grown up to a maximum
value target_start_recovery_timer () Should extend timeout upon each new connection.

. In the connection handshake the server reports to the elieat the last transaction is that it has committed.

. The server begins to receive replay requests from clidrttsg transno of the request is in the right order it continoes

process it.

theprocess_recovery_queue () wait for next transno and upon timeout don't abort recoveryvrite down the gap
info and do the following:

(a) waits at leasébd_timeout to allow other clients to join in and close the gap

(b) the replay continues with version checking for integrmat Mismatched replays will be answered with -ENOTSYNC
but all replays from client should be processed in any case.

when server completes recovery all obd_exports for digitonnected clients are retained with the last_tranmacti
committed value and gap informanion for delayed replay.

Optional: the server can avoid ordering all clients by transactionstelad it can allow client to replay out-of-order if there
is version match. Otherwise if version is smaller than ndeatien server put this request to the waiting queue until eged
transaction will be replayed. That can lead to faster regove

Note:

1.

2.

While no gap has been encountered it is not necessary to ¢eesions, but it is not harmful and Lustre will check
versions always.

Optional: If a process has an open file handle or active file system lodk/arsions for the inodes do not match, then
the client can kill the process if it receives an -ENOTSYNGssagye.

2.4.4 Delayed recovery phase

1. A client connects to the server which has already completeovery.

2. the server do the following:

(a) finds an export for the client;
(b) set connection flagsG_CONNECT _DELAYED;

(c) answer with last_version value and the gap informafipnasent. The last_version is actual last committed value
for that client, the obd_last_committed cannot be usechdwtelayed connection.

3. The clients sends its replay requests.

4. All the replay requests will replay based on version chegkiRequests will get NEW server transaction numbers but
versions in reply remain unchanged.

5. Server don't usearget_queue_recovery_request() but process requests directly, because this recoveryns drdy
one client and all requests are already ordered by transno.

6. Client doesn'’t replay locks.

7. The last_committed is not sent to the client during replagse. Only the last_version is reported during connect as
transno to start replay with.

8. The client performs an eviction in case of version mismaarecompletes recovery.

Problem: delayed client will not be able to open unlinked files becabsg will be deleted after primary recovery phase, so
orphans shouldn’t be cleared while any delayed export ptese

Problem: during recovery all operations are serialized, so recoeede rely on that but it will be not so during delayed
recovery phase. Recovery code paths should be reviewethkadpt in mind

2.4.5 Aborted delayed recovery

If delayed recovery was aborted due to server failure themlient will have request from old epoch and from new one @ th
replay queue. These requests shouldn’t be dropped by tastnitted at the next recovery attempt. This can be avoided by
using both version and transaction

version - original version of operation to be replayed. This is usathbirdering the replays and stored as version of object at
server.

transaction - transaction number used during replay. This is needed ¢ovkmhen we should remove this request from
replay queue.

Client replay queue states can be represented by next tarian

1. all replays are from the same epoch.

2. with old replays there are also several new which got régply server during aborted recovery
Replay process during primary recovery phase:

1. Gotlast_committed_transno and last_committed_vefsam server during connect.
2. drop all replays with version less than last_committeasion because they were committed

3. replay all requests with transno >= last_committed swahese requests were replayed at last time and othetsclien
may depend on them.

4. all remaining requests are old, from some previous epodishould be replayed as delayed recovery replays after main

recovery will finish. 5

2.4.6 Gap handling

1.

2.

The server maintains therst_gap_transno which is updated after each replay and supply the client witluring
recovery.

(a) For any unconnected clients in primary phase the serigesagap info into corresponding records in last_rcvd
file when primary phase is complete, so client will be ableriow gap data during delayed recovery.

(b) During recovering of such client the gap can be shrankstwodild be updated for remaining disconnected clients.
It is possible that after several failures there can be gays @lifferent epochs, so only gaps with the same value
of epoch should be updated.

Every client maintains theighest_used_transno and compare it withirst_gap_transno. [fthehighest_used_transno
is earlier than theéirst_gap_transno, the client is up to date fully.

Otherwise:
(a) the client compares that each of its cached objects niaprthefirst_gap_transno. If their versions are equal
or newer then client can recover completely.
(b) Finally the client can purge its cache and repeat theipus\step for the cached objects that are in use. If this test
succeed the client performgeak file system recovery.
Optionally the client can request eviction if full node recovery or fil# system recovery cannot succeed.

Optionally - If the client can record in each process what the newest bisjetat the process may have depended on in
a system call, then the client can determine which procdssesseen stale data, although processes may have exitec
already and seen stale data. Optionally all processesaliatdeen stale data could be killed.

2.4.7 obd_export maintenance

To maintainiast_committedfor not-connected clients the info about non-connectir@ntishould be retained.

o & w nhpoPR

2.5

Export information for disconnected clients can be cleargdy an Ictl command

If a client at a NID connects with a new UUID any old export canckeaned up

no more thamAx_DISCONN_EXPORTSOf disconnected exports are retained

Until there is disconnected exports the orphans shoufitéserved to keep open-unlink inodes intact

Each export keep information about gap info in the lastchpehen this client was connected. Also export keep
information about recovery stage type - primary or delayedetermine what kind of recovery should be done.

Compatibility

Version recovery with commit on sharing should appear ihhatstre 1.6 and 1.8. Considering their differences in many
areas the current design has some limits and restrictions.

2.5.1 Pdirops and preop version

Pdirops feature allows many threads to access the sameadyréased on locking per name_hash. That means that preop
version can be the same for two concurrent process if vessioataken before any of process write new versions. In Hs& ¢
the preop version can be taken right before setting new aigist done under transno lock and serialized for all coramirr
threads.

3 Use Cases

3.1 Versions
3.1.1 Version setting

New version should be set in following operations:

create - for parent and new child

link - for parent and child

unlink - for parent and child

setattr(setxattr) - for object, except changing time and si

rename - for all objects involved

3.1.2 Version getting

The version of objects should be get before operation andred to the caller in reply.

For getattr/open operations the version of objects inwineoperation should be returned too, so client can knowatest
‘used’ version (so the transaction)

3.1.3 Version checking
Versions should be checked during replay:

e during primary recovery phase if gap is encountered

e during delayed recovery phase

3.2 Primary recovery phase
3.2.1 Normal recovery, all clients are connected in time

Versions are checked during normal recovery and there dhmuhot version mismatches

3.2.2 One client is not connected and gap presents

1. clients has bothast_committed_transno andhighest_used_trasno Which are less thadirst_gap_transno and
should recover fully

2. clientlast_committed_transno lessthan thaﬂirst_gap_transno buthighest_used_transno is bigger thaﬁirst_gap_trans
Such client should recover without errors but

(a) all objects with version higher thairst_gap_transno should be dropped from cache and client can complete
recovery.

(b) if some of them are in use than client should evict
3. client’'slast_committed_transno iS bigger tharfirst_gap_transno. Recovery proceed with version checking

(a) client encounters no version mismatches and completeeey as described in step 2 above.
(b) client found version mismatch but recovery shguld firdsl client should evict at the end.

3.3 Delayed recovery phase
3.3.1 Export and recovery data states

All information about client should be preserved on serd@rarimary recovery phase - latest export data and gajprimdton

3.3.2 Replay stage

Committed open replay should work is version is matchetuaninked orphans should be available
All replays have version matched and client is recovenity same process as in primary phase

version mismatch leads to client eviction after recovery

A w0 bR

locks are not replayed but canceled

3.3.3 Delayed client reconnects during primary recovery pase

The timeout occurred and primary recovery has been starithdgap and version checking, then delayed client recolsnect
while primary recovery is still in progress. The new cliehbald be integrated in recovery process.

3.3.4 Version getting

The preop version can’t be got after locking because it cahésame for different threads

4 Logic Specification

4.1 Version handling
4.1.1 mds_versions_get

Get current version

static inline void mds_versions_get(struct obd_device *obd,
struct lu_version *lv,
struct inode **inodes)

{
if (inodes == NULL)
return;
lv->1v_pre_ver[0] = fsfilt_get_version(obd, inodes[0]);
lv->1v_pre_ver[1] = fsfilt_get_version(obd, inodes[1]);
lv->1v_pre_ver[2] = fsfilt_get_version(obd, inodes[2]);
lv->1v_pre_ver[3] = fsfilt_get_version(obd, inodes[3]);
}

4.1.2 mds_versions_set

static inline void mds_versions_set(struct obd_device *obd,

struct inode **inodes, __u64 version)

if (inodes == NULL)

return;
fsfilt_set_version(obd, inodes[0], version);
fsfilt_set_version(obd, inodes[1], version);
fsfilt_set_version(obd, inodes[2], version);
fsfilt_set_version(obd, inodes[3], version);

4.1.3 mds_versions_get_check

static inline int mds_version_get_check(struct ptlrpc_request *req,

struct inode *inode,
__ub4 ver_old,
__ub4 *ver_new)

struct obd_device *obd = req->rq_export->exp_obd;
LASSERT (inode) ;
xver_new = fsfilt_get_version(obd, inode);
if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) {
if (ver_old != *ver_new)
RETURN (-EOVERFLOW) ;
}
RETURN (0) ;

4.1.4 mds_finish_transno

int mds_finish_transno(struct mds_obd *mds, struct inode **inodes, void *handle,

{

struct ptlrpc_request *req, int rc, __u32 op_data)

struct inode *inode = inodes 7 inodes[0] : NULL;
struct lu_version *1lv = NULL;
int version_set = handle 7 1 : O;

/* Version Based Recovery */
if (inodes)
lv = mds_rep2ver(req);

transno = lustre_msg_get_transno(req->rq_reqmsg) ;
if (rc !'=0) {

} else if (tramsmo == 0) {
spin_lock(&mds->mds_transno_lock) ;
transno = ++mds->mds_last_transno;
/* versions */
if (1v) {
lv->1v_post_ver = transno;
if (version_set)
mds_versions_set (obd, inodes, transno);

10

spin_unlock (&mds->mds_transno_lock) ;
} else {
spin_lock (&mds->mds_transno_lock) ;
if (transno > mds->mds_last_transno)
mds->mds_last_transno = transno;
/* replay case. So preop versions are checked already
* and 1lv is filled from request too. Set new versions only */
mds_versions_set (obd, inodes, transno);
spin_unlock (&mds->mds_transno_lock) ;
}
req->rq_transno = transno;
lustre_msg_set_transno(req->rq_repmsg, transno);
if (lustre_msg_get_opc(req->rq_reqmsg) == MDS_CLOSE) {
prev_transno = le64_to_cpu(mcd->mcd_last_close_transno) ;
mcd->mcd_last_close_transno = cpu_to_le64(transno);
mcd->mcd_last_close_xid = cpu_to_le64(req->rq_xid);
mcd->mcd_last_close_result = cpu_to_le32(rc);
mcd->mcd_last_close_data = cpu_to_le32(op_data);
} else {
prev_transno = le64_to_cpu(mcd->mcd_last_transno);
/* save versions in last_rcvd for reconstruct */
if (Av) {
mcd->mcd_last_version = cpu_to_le64(lv->1lv_post_ver);
mcd->mcd_pre_versions[0] = cpu_to_le64(lv->1lv_pre_ver[0]);
mcd->mcd_pre_versions[1] = cpu_to_le64(lv->lv_pre_ver[1]);
mcd->mcd_pre_versions[2] = cpu_to_le64(lv->lv_pre_ver[2]);
mcd->mcd_pre_versions[3] = cpu_to_le64(lv->1lv_pre_ver[3]);
}
mcd->mcd_last_transno = cpu_to_le64(transno);
mcd->mcd_last_xid = cpu_to_le64(req->rq_xid);
mcd->mcd_last_result = cpu_to_le32(rc);
mcd->mcd_last_data = cpu_to_le32(op_data);

4.2 \Versions in RPCs
4.2.1 pack versions

Each operation that need versions is changed to keep atlitimiffer in both request and reply. There is example with
setattrOZ

int mdc_setattr(struct obd_export *exp, struct mdc_op_data *data,
struct iattr *iattr, void *ea, int ealen, void *ea2, int ea2len,
struct ptlrpc_request **request)

int size[5] = { sizeof(struct ptlrpc_body),
sizeof (¥rec), ealen, ea2len };
int bufcount = 2, rc;

/* version recovery */

size[bufcount++] = sizeof(struct lu_version);

req = ptlrpc_prep_req(class_exp2cliimp(exp), LUSTRE_MDS_VERSION,
MDS_REINT, bufcount, size, NULL);

11

size [REPLY_REC_OFF] = sizeof (struct mds_body) ;

/* versions of objects */

size[REPLY_REC_OFF + 1] = sizeof(struct lu_version);
ptlrpc_req_set_repsize(req, 3, size);

rc = mdc_reint(req, rpc_lock, LUSTRE_IMP_FULL);

4.2.2 unpack versions

Versions are unpacked and save@ds_update_record. This is needed only for recovery so replay flag is checked.

static inline int mds_version_unpack(struct ptlrpc_request *req, int offset,
struct mds_update_record *r)

{
if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) {
if (lustre_msg_bufcount(req->rq_reqmsg) <= offset) {
CERROR("No versions in replay\n");
RETURN (-EFAULT) ;
}
r->ur_lv = lustre_swab_reqgbuf (req, offset,
sizeof (struct lu_version),
lustre_swab_version) ;
if (r->ur_lv == NULL) {
CDEBUG(D_ERROR, '"no version\n");
RETURN (-EFAULT) ;
}
}
RETURN (0);
}

4.2.3 getversions buffer in reply

static inline struct lu_version #*mds_rep2ver(struct ptlrpc_request *req)

{
struct lu_version *1lv = NULL;
int offset = lustre_msg_bufcount(req->rq_repmsg) - 1;
if (lustre_msg_buflen(req->rq_repmsg, offset) > 0) {
LASSERT (lustre_msg_buflen(req->rq_repmsg, offset) ==
sizeof (struct lu_version));
CWARN("Version buf offset is %i\n", offset);
lv = lustre_msg_buf (req->rq_repmsg, offset,
sizeof (struct lu_version));
}
return 1lv;
}

4.2.4 save versions from reply in request for replay

static void ptlrpc_save_versions (struct ptlrpc_request *req)
{

struct lustre_msg *repmsg = req->rq_repmsg;

struct lustre_msg *reqmsg = req->rq_reqmsg;

int rq_off = lustre_msg_bufcount(reqmsg) - 1;

int rp_off = lustre_msg_bufcount(repmsg) - 1;

struct lu_version *1lv, *lvp;

12

ENTRY;

if (lustre_msg_buflen(reqmsg, rq_off) != sizeof (struct lu_version)) {

DEBUG_REQ(D_ERROR, req,
"Wrong buffer %i (/i vs %i) for version to save\n",
rq_off, lustre_msg_buflen(reqmsg, rq_off),
sizeof (struct lu_version));

return;
}
if (lustre_msg_buflen(repmsg, rp_off) != sizeof (struct lu_version)) {
DEBUG_REQ (D_ERROR, req,
"Wrong buffer %i (4i vs %i) with versioms\n",
rp_off, lustre_msg_buflen(repmsg, rp_off),
sizeof (struct lu_version));
return;
}

lv = lustre_msg_buf (reqmsg, rq_off, sizeof (struct lu_version));

lustre_msg_buf (repmsg, rp_off, sizeof(struct lu_version));

*1vp;

static int after_reply(struct ptlrpc_request *req)

/* Store transno in reqmsg for replay. */
req->rq_transno = lustre_msg_get_transno(req->rq_repmsg) ;
lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);

if (req->rq_import->imp_replayable) {

lvp =
*lv =
EXIT;

}

{

}

4.3 Recovery

spin_lock (&imp->imp_lock) ;
/* no point in adding already-committed requests to the replay
* list, we will just remove them immediately. b=9829 */
if (req->rq_transno !'= 0 &%
(req->rq_transno >
lustre_msg_get_last_committed(req->rq_repmsg) ||
req->rq_replay))
/* version recovery */
ptlrpc_save_versions(req) ;
ptlrpc_retain_replayable_request(req, imp);
else if (req->rq_commit_cb !'= NULL) {

}

4.3.1 Primary recovery phase

static void target_recovery_expired(unsigned long castmeharder)

{

struct obd_device *obd = (struct obd_device *)castmeharder;
CERROR ("%s: recovery timed out, aborting\n", obd->obd_name);
spin_lock_bh(&obd->obd_processing_task_lock) ;

/* version recovery */
if (obd->obd_recovering) {

}

obd->obd_version_recovery = 1;
obd->obd_gap_transno = obd->obd_next_recovery_transno;

cfs_waitq_signal (,obd->obd_next_transno_waitq) ;

13

spin_unlock_bh(&obd->obd_processing_task_lock) ;

}
static int check_for_next_transno(struct obd_device *obd)
{
struct ptlrpc_request *req;
CDEBUG(D_HA,"max: %d, connected: %d, completed: %d, queue_len: J%d, "
"req_transno: "LPU64", next_transno: "LPU64"\n",
max, connected, completed, queue_len, req_transno, next_transno);
if (obd->obd_abort_recovery) {
} else if (obd->obd_version_recovery) {
/* skip checking for next_transno,
* just take next one in queue */
obd->obd_next_recovery_transno = req_transno;
wake_up = 1;
}
spin_unlock_bh (&obd->obd_processing_task_lock) ;
LASSERT (lustre_msg_get_transno (req->rq_reqmsg) >= next_transno);
return wake_up;
}

4.3.2 Delayed recovery phase

int target_handle_connect(struct ptlrpc_request *req, svc_handler_t handler)

{

/* for delayed connections say they should start recovery */

if (export->exp_delayed) {
lustre_msg_add_op_flags (req->rq_repmsg, MSG_CONNECT_DELAYED) ;
target_start_recovery_timer(target, handler) ;

}
int 1dlm_replay_locks(struct obd_import *imp)
{
struct ldlm_namespace *ns = imp->imp_obd->obd_namespace;
struct list_head list;
struct 1ldlm_lock *lock, *next;
int rc = 0;
ENTRY;
CFS_INIT_LIST_HEAD(&list);
LASSERT (atomic_read (&imp->imp_replay_inflight) == 0);
/* ensure this doesn’t fall to O before all have been queued */
atomic_inc(&imp->imp_replay_inflight);
(void)1ldlm_namespace_foreach(ns, ldlm_chain_lock_for_replay, &list);
list_for_each_entry_safe(lock, next, &list, 1_pending_chain) {
list_del_init(&lock->1_pending_chain);
if (imp->imp_delayed_recovery) {
1dlm_lock_cancel (lock);
continue;
}
if (rc)
continue; /* or try to do the rest? */
rc = replay_one_lock(imp, lock);
}
atomic_dec (&imp->imp_replay_inflight);
RETURN (rc) ;

14

4.4 Example of version handling/checking

4.4.1 Unlink operation

static int mds_reint_unlink(struct mds_update_record *rec, int offset,
struct ptlrpc_request *req,
struct lustre_handle *1h)

struct inode *inodes[4];
struct lu_version *lv = mds_rep2ver(req);

rc = mds_get_parent_child_locked(obd, mds, rec->ur_fidl,
&parent_lockh, &dparent, LCK_EX,
MDS_INODELOCK_UPDATE,
rec->ur_name, rec->ur_namelen,
&child_lockh, &dchild, LCK_EX,
MDS_INODELOCK_FULL) ;
if (rc)
GOTO(cleanup, rc);
cleanup_phase = 1; /* dchild, dparent, locks */
/* version recovery check for parent */
LASSERT (1v) ;
LASSERT (rec->ur_1v) ;
rc = mds_version_get_check(req, dparent->d_inode,
rec->ur_lv->1v_pre_ver[0],
&lv->1v_pre_ver[0]);
if (rc)
GOTO(cleanup, rc);
dget (dchild) ;
child_inode = dchild->d_inode;
if (child_inode == NULL) {
CDEBUG(D_INODE, "child doesn’t exist (dir %lu, name %s)\n",
dparent->d_inode->i_ino, rec->ur_name);
GOTO(cleanup, rc = -ENOENT);
}

/* version recovery check */

LASSERT (1v) ;

LASSERT (rec->ur_1v);

rc = mds_version_get_check(req, child_inode,
rec->ur_lv->lv_pre_ver[1],
&lv->1v_pre_ver[1]);

if (rc)

GOTO(cleanup, rc);

cleanup:
if (rc == 0) {
struct iattr iattr;

int err;
iattr.ia_valid = ATTR_MTIME | ATTR_CTIME;
LTIME_S(iattr.ia_mtime) = rec->ur_time;

LTIME_S(iattr.ia_ctime) = rec->ur_time;
err = fsfilt_setattr(obd, dparent, handle, &iattr, 0);
if (err)
CERROR ("error on parent setattr: rc = %d\n", err);
}
inodes[0] = dparent 7 dparent->d_inode : NULL;
15

inodes[1] child_inode;

inodes[2] = NULL;

inodes[3] = NULL;

rc = mds_finish_transno(mds, inodes, handle, req, rc, 0);
if ('rc)

(void)obd_set_info_async(mds->mds_osc_exp, strlen("unlinked"),
"unlinked", 0, NULL, NULL);

5 State Management

5.1 Recovery changes

New recovery stage is added - delayed recovery which mak&tpeshe full or partial recovery of liblustre clients anaya
others. Primary doesn't stop if gap in transactions occodd@ep stale exports untouched

5.2 Disk format changes

Inode will store version on disk, it is scope of another HLD

5.3 Wire format changes

Request and reply structures are changed and should ceetsion fields for all objects involved in operation

5.4 0Old clients compatibility

Old clients are able to connect but will be unable to recoedaykd - they don’t provide versions in reply so delayedvecp
will fail. Another bad effect of old clients is more otherefits will fail to recover if they dependent on operationsrirold
client. The version recovery will fail too. Therefore theyside-effect of old clients is less possibility to recogeccessfully
for other clients.

16

