
Lustre* Software Release 2.x

Operations Manual



Lustre* Software Release 2.x: Operations Manual
Copyright © 2010, 2011 Oracle and/or its affiliates. (The original version of this Operations Manual without the Intel
modifications.)
Copyright © 2011, 2017 Intel Corporation. (Intel modifications to the original version of this Operations Manual.)

Notwithstanding Intel's ownership of the copyright in the modifications to the original version of this Operations Manual, as between Intel and
Oracle, Oracle and/or its affiliates retain sole ownership of the copyright in the unmodified portions of this Operations Manual.

Important Notice from Intel

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or
death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS,
AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY,
OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or go to: https://www.intel.com/content/www/us/en/design/resource-design-center.html

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. Lustre is a registered trademark of Oracle Corporation.

*Other names and brands may be claimed as the property of others.

THE ORIGINAL LUSTRE 2.x FILESYSTEM: OPERATIONS MANUAL HAS BEEN MODIFIED: THIS OPERATIONS MANUAL IS A
MODIFIED VERSION OF, AND IS DERIVED FROM, THE LUSTRE 2.0 FILESYSTEM: OPERATIONS MANUAL PUBLISHED BY
ORACLE AND AVAILABLE AT [http://www.lustre.org/]. MODIFICATIONS (collectively, the “Modifications”) HAVE BEEN MADE BY
INTEL CORPORATION (“Intel”). ORACLE AND ITS AFFILIATES HAVE NOT REVIEWED, APPROVED, SPONSORED, OR ENDORSED
THIS MODIFIED OPERATIONS MANUAL, OR ENDORSED INTEL, AND ORACLE AND ITS AFFILIATES ARE NOT RESPONSIBLE OR
LIABLE FOR ANY MODIFICATIONS THAT INTEL HAS MADE TO THE ORIGINAL OPERATIONS MANUAL.

NOTHING IN THIS MODIFIED OPERATIONS MANUAL IS INTENDED TO AFFECT THE NOTICE PROVIDED BY ORACLE BELOW IN
RESPECT OF THE ORIGINAL OPERATIONS MANUAL AND SUCH ORACLE NOTICE CONTINUES TO APPLY TO THIS MODIFIED
OPERATIONS MANUAL EXCEPT FOR THE MODIFICATIONS; THIS INTEL NOTICE SHALL APPLY ONLY TO MODIFICATIONS
MADE BY INTEL. AS BETWEEN YOU AND ORACLE: (I) NOTHING IN THIS INTEL NOTICE IS INTENDED TO AFFECT THE TERMS
OF THE ORACLE NOTICE BELOW; AND (II) IN THE EVENT OF ANY CONFLICT BETWEEN THE TERMS OF THIS INTEL NOTICE
AND THE TERMS OF THE ORACLE NOTICE, THE ORACLE NOTICE SHALL PREVAIL.

Your use of any Intel software shall be governed by separate license terms containing restrictions on use and disclosure and are protected by
intellectual property laws.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license and obtain more
information about Creative Commons licensing, visit  Creative Commons Attribution-Share Alike 3.0 United States [http://creativecommons.org/
licenses/by-sa/3.0/us] or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California 94105, USA.

http://creativecommons.org/licenses/by-sa/3.0/us
http://creativecommons.org/licenses/by-sa/3.0/us
http://creativecommons.org/licenses/by-sa/3.0/us


Important Notice from Oracle

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel
Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Copyright © 2011, Oracle et/ou ses affiliés. Tous droits réservés.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis
à des restrictions d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire,
traduire, diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque
forme et par quelque procédé que ce soit. Par ailleurs, il est interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le
décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles
soient exemptes d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la
licence de ce logiciel ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est
pas conçu ni n’est destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si
vous utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours,
de sauvegarde, de redondance et autres mesures nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses
affiliés déclinent toute responsabilité quant aux dommages causés par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés.Tout autre nom mentionné peut correspondre à des marques
appartenant à d’autres propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro Devices. Intel et Intel Xeon
sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. UNIX est une marque déposée concédée sous licence par X/Open Company, Ltd.



Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des
produits et des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus,
produits ou services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies,
des coûts occasionnés ou des dommages causés par l’accès à des contenus, produits ou services tiers, ou à leur utilisation.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license and obtain more
information about Creative Commons licensing, visit Creative Commons Attribution-Share Alike 3.0 United States [http://creativecommons.org/
licenses/by-sa/3.0/us] or send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California 94105, USA.

http://creativecommons.org/licenses/by-sa/3.0/us
http://creativecommons.org/licenses/by-sa/3.0/us
http://creativecommons.org/licenses/by-sa/3.0/us


v

Table of Contents
Preface .........................................................................................................................  xxiii

1. About this Document ..........................................................................................  xxiii
1.1. UNIX* Commands ...................................................................................  xxiii
1.2. Shell Prompts ..........................................................................................  xxiii
1.3. Related Documentation .............................................................................  xxiv
1.4. Documentation and Support .......................................................................  xxiv

2. Revisions ..........................................................................................................  xxiv
I. Introducing the Lustre* File System ....................................................................................  1

1. Understanding Lustre Architecture .........................................................................  3
1.1. What a Lustre File System Is (and What It Isn't) ................................................  3

1.1.1. Lustre Features ..................................................................................  3
1.2. Lustre Components .......................................................................................  6

1.2.1. Management Server (MGS) .................................................................  7
1.2.2. Lustre File System Components ............................................................  7
1.2.3. Lustre Networking (LNet) ...................................................................  8
1.2.4. Lustre Cluster .................................................................................... 8

1.3. Lustre File System Storage and I/O .................................................................  9
1.3.1. Lustre File System and Striping ..........................................................  11

2. Understanding Lustre Networking (LNet) ..............................................................  14
2.1. Introducing LNet ........................................................................................  14
2.2. Key Features of LNet ..................................................................................  14
2.3. Lustre Networks .........................................................................................  14
2.4. Supported Network Types ............................................................................  15

3. Understanding Failover in a Lustre File System ......................................................  16
3.1. What is Failover? .......................................................................................  16

3.1.1. Failover Capabilities .........................................................................  16
3.1.2. Types of Failover Configurations ........................................................  17

3.2. Failover Functionality in a Lustre File System ..................................................  17
3.2.1. MDT Failover Configuration (Active/Passive) ........................................ 18
3.2.2. MDT Failover Configuration (Active/Active) .........................................  18
3.2.3. OST Failover Configuration (Active/Active) ..........................................  19

II. Installing and Configuring Lustre ....................................................................................  21
4. Installation Overview ...........................................................................................  24

4.1. Steps to Installing the Lustre Software ............................................................  24
5. Determining Hardware Configuration Requirements and Formatting Options ............  25

5.1. Hardware Considerations ..............................................................................  25
5.1.1. MGT and MDT Storage Hardware Considerations ..................................  26
5.1.2. OST Storage Hardware Considerations .................................................  27

5.2. Determining Space Requirements ................................................................... 27
5.2.1. Determining MGT Space Requirements ................................................  28
5.2.2. Determining MDT Space Requirements ................................................  28
5.2.3. Determining OST Space Requirements .................................................  29

5.3. Setting ldiskfs File System Formatting Options ................................................  29
5.3.1. Setting Formatting Options for an ldiskfs MDT ......................................  30
5.3.2. Setting Formatting Options for an ldiskfs OST .......................................  31

5.4. File and File System Limits ..........................................................................  31
5.5. Determining Memory Requirements ...............................................................  35

5.5.1. Client Memory Requirements .............................................................  35
5.5.2. MDS Memory Requirements ..............................................................  35
5.5.3. OSS Memory Requirements ...............................................................  36

5.6. Implementing Networks To Be Used by the Lustre File System ...........................  37



Lustre* Software Release 2.x

vi

6. Configuring Storage on a Lustre File System ..........................................................  39
6.1. Selecting Storage for the MDT and OSTs ........................................................ 39

6.1.1. Metadata Target (MDT) ....................................................................  39
6.1.2. Object Storage Server (OST) ..............................................................  39

6.2. Reliability Best Practices ..............................................................................  40
6.3. Performance Tradeoffs .................................................................................  40
6.4. Formatting Options for ldiskfs RAID Devices ..................................................  40

6.4.1. Computing file system parameters for mkfs ...........................................  41
6.4.2. Choosing Parameters for an External Journal .........................................  41

6.5. Connecting a SAN to a Lustre File System ......................................................  42
7. Setting Up Network Interface Bonding ...................................................................  43

7.1. Network Interface Bonding Overview .............................................................  43
7.2. Requirements .............................................................................................  43
7.3. Bonding Module Parameters .........................................................................  44
7.4. Setting Up Bonding ....................................................................................  45

7.4.1. Examples ........................................................................................  47
7.5. Configuring a Lustre File System with Bonding ...............................................  48
7.6. Bonding References ....................................................................................  48

8. Installing the Lustre Software ...............................................................................  50
8.1. Preparing to Install the Lustre Software ..........................................................  50

8.1.1. Software Requirements ......................................................................  50
8.1.2. Environmental Requirements ..............................................................  52

8.2. Lustre Software Installation Procedure ............................................................  52
9. Configuring Lustre Networking (LNet) ..................................................................  55

9.1. Configuring LNet via lnetctl ...........................................................  L 2.7 55
9.1.1. Configuring LNet .............................................................................  56
9.1.2. Displaying Global Settings .................................................................  56
9.1.3. Adding, Deleting and Showing Networks ..............................................  56
9.1.4. Manual Adding, Deleting and Showing Peers ...............................  L 2.10 58
9.1.5. Dynamic Peer Discovery ..........................................................  L 2.11 60
9.1.6. Adding, Deleting and Showing routes ..................................................  61
9.1.7. Enabling and Disabling Routing ..........................................................  62
9.1.8. Showing routing information ..............................................................  62
9.1.9. Configuring Routing Buffers ..............................................................  62
9.1.10. Asymmetrical Routes .............................................................  L 2.13 63
9.1.11. Importing YAML Configuration File ..................................................  64
9.1.12. Exporting Configuration in YAML format ...........................................  64
9.1.13. Showing LNet Traffic Statistics .........................................................  64
9.1.14. YAML Syntax ...............................................................................  64

9.2. Overview of LNet Module Parameters ............................................................  66
9.2.1. Using a Lustre Network Identifier (NID) to Identify a Node ......................  66

9.3. Setting the LNet Module networks Parameter ...................................................  67
9.3.1. Multihome Server Example ................................................................  68

9.4. Setting the LNet Module ip2nets Parameter .....................................................  68
9.5. Setting the LNet Module routes Parameter ....................................................... 70

9.5.1. Routing Example .............................................................................. 70
9.6. Testing the LNet Configuration .....................................................................  70
9.7. Configuring the Router Checker ....................................................................  71
9.8. Best Practices for LNet Options ....................................................................  72

9.8.1. Escaping commas with quotes ............................................................  72
9.8.2. Including comments ..........................................................................  72

10. Configuring a Lustre File System ........................................................................  73
10.1. Configuring a Simple Lustre File System ....................................................... 73

10.1.1. Simple Lustre Configuration Example ................................................  76



Lustre* Software Release 2.x

vii

10.2. Additional Configuration Options .................................................................  81
10.2.1. Scaling the Lustre File System ..........................................................  81
10.2.2. Changing Striping Defaults ...............................................................  81
10.2.3. Using the Lustre Configuration Utilities ..............................................  82

11. Configuring Failover in a Lustre File System ........................................................  83
11.1. Setting Up a Failover Environment ...............................................................  83

11.1.1. Selecting Power Equipment ..............................................................  83
11.1.2. Selecting Power Management Software ...............................................  83
11.1.3. Selecting High-Availability (HA) Software ..........................................  84

11.2. Preparing a Lustre File System for Failover ...................................................  84
11.3. Administering Failover in a Lustre File System ...............................................  85

III. Administering Lustre ....................................................................................................  86
12. Monitoring a Lustre File System .......................................................................... 94

12.1. Lustre Changelogs .....................................................................................  94
12.1.1. Working with Changelogs ................................................................  95
12.1.2. Changelog Examples .......................................................................  96
12.1.3. Audit with Changelogs ..........................................................  L 2.11 98

12.2. Lustre Jobstats ........................................................................................  100
12.2.1. How Jobstats Works ......................................................................  101
12.2.2. Enable/Disable Jobstats ..................................................................  102
12.2.3. Check Job Stats ............................................................................  103
12.2.4. Clear Job Stats .............................................................................  104
12.2.5. Configure Auto-cleanup Interval ......................................................  104
12.2.6. Identifying Top Jobs ............................................................  L 2.14 105

12.3. Lustre Monitoring Tool (LMT) ..................................................................  105
12.4. CollectL ............................................................................................  105
12.5. Other Monitoring Options .........................................................................  105

13. Lustre Operations ............................................................................................  107
13.1. Mounting by Label ..................................................................................  107
13.2. Starting Lustre ........................................................................................  107
13.3. Mounting a Server ...................................................................................  108
13.4. Stopping the Filesystem ............................................................................  108
13.5. Unmounting a Specific Target on a Server ...................................................  110
13.6. Specifying Failout/Failover Mode for OSTs ..................................................  110
13.7. Handling Degraded OST RAID Arrays ........................................................  111
13.8. Running Multiple Lustre File Systems .........................................................  111
13.9. Creating a sub-directory on a specific MDT .................................................  113
13.10. Creating a directory striped across multiple MDTs ...............................  L 2.8 114

13.10.1. Directory creation by space/inode usage .................................  L 2.13 114
13.10.2. Filesystem-wide default directory striping ...............................  L 2.14 115

13.11. Default Dir Stripe Policy .........................................................................  116
13.12. Setting and Retrieving Lustre Parameters ...................................................  116

13.12.1. Setting Tunable Parameters with mkfs.lustre ..............................  117
13.12.2. Setting Parameters with tunefs.lustre ......................................  117
13.12.3. Setting Parameters with lctl .......................................................  117

13.13. Specifying NIDs and Failover ..................................................................  120
13.14. Erasing a File System .............................................................................  121
13.15. Reclaiming Reserved Disk Space ..............................................................  122
13.16. Replacing an Existing OST or MDT ..........................................................  122
13.17. Identifying To Which Lustre File an OST Object Belongs .............................. 122

14. Lustre Maintenance ..........................................................................................  124
14.1. Working with Inactive OSTs .....................................................................  124
14.2. Finding Nodes in the Lustre File System ...................................................... 125
14.3. Mounting a Server Without Lustre Service ...................................................  125



Lustre* Software Release 2.x

viii

14.4. Regenerating Lustre Configuration Logs ......................................................  126
14.5. Changing a Server NID ............................................................................  127
14.6. Clearing configuration ....................................................................  L 2.11 128
14.7. Adding a New MDT to a Lustre File System ................................................  129
14.8. Adding a New OST to a Lustre File System .................................................  129
14.9. Removing and Restoring MDTs and OSTs ...................................................  130

14.9.1. Removing an MDT from the File System ..........................................  131
14.9.2. Working with Inactive MDTs ..........................................................  131
14.9.3. Removing an OST from the File System ............................................ 131
14.9.4. Backing Up OST Configuration Files ................................................  133
14.9.5. Restoring OST Configuration Files ...................................................  134
14.9.6. Returning a Deactivated OST to Service ............................................  135

14.10. Aborting Recovery .................................................................................  135
14.11. Determining Which Machine is Serving an OST ..........................................  135
14.12. Changing the Address of a Failover Node ................................................... 136
14.13. Separate a combined MGS/MDT ..............................................................  136
14.14. Set an MDT to read-only ...............................................................  L 2.13 137
14.15. Tune Fallocate for ldiskfs ..............................................................  L 2.14 137

15. Managing Lustre Networking (LNet) ..................................................................  139
15.1. Updating the Health Status of a Peer or Router .............................................  139
15.2. Starting and Stopping LNet .......................................................................  139

15.2.1. Starting LNet ...............................................................................  139
15.2.2. Stopping LNet ..............................................................................  140

15.3. Hardware Based Multi-Rail Configurations with LNet ....................................  141
15.4. Load Balancing with an InfiniBand* Network ...............................................  141

15.4.1. Setting Up lustre.conf for Load Balancing ..................................  141
15.5. Dynamically Configuring LNet Routes ........................................................  143

15.5.1. lustre_routes_config ..........................................................  143
15.5.2. lustre_routes_conversion ..................................................  144
15.5.3. Route Configuration Examples ..........................................  144

16. LNet Software Multi-Rail ........................................................................  L 2.10 145
16.1. Multi-Rail Overview ................................................................................  145
16.2. Configuring Multi-Rail .............................................................................  145

16.2.1. Configure Multiple Interfaces on the Local Node ................................  145
16.2.2. Deleting Network Interfaces ............................................................  147
16.2.3. Adding Remote Peers that are Multi-Rail Capable ...............................  147
16.2.4. Deleting Remote Peers ...................................................................  148

16.3. Notes on routing with Multi-Rail ................................................................  149
16.3.1. Multi-Rail Cluster Example ............................................................  149
16.3.2. Utilizing Router Resiliency .............................................................  151
16.3.3. Mixed Multi-Rail/Non-Multi-Rail Cluster ..........................................  151

16.4. Multi-Rail Routing with LNet Health ................................................  L 2.13 152
16.4.1. Configuration ...............................................................................  152
16.4.2. Router Health ...............................................................................  153
16.4.3. Discovery ....................................................................................  153
16.4.4. Route Aliveness Criteria .................................................................  153

16.5. LNet Health .................................................................................  L 2.12 154
16.5.1. Health Value ................................................................................  154
16.5.2. Failure Types and Behavior ............................................................  154
16.5.3. User Interface ...............................................................................  155
16.5.4. Displaying Information ..................................................................  157
16.5.5. Initial Settings Recommendations .....................................................  159

17. Upgrading a Lustre File System .........................................................................  161
17.1. Release Interoperability and Upgrade Requirements .......................................  161



Lustre* Software Release 2.x

ix

17.2. Upgrading to Lustre Software Release 2.x (Major Release) ..............................  161
17.3. Upgrading to Lustre Software Release 2.x.y (Minor Release) ...........................  165

18. Backing Up and Restoring a File System .............................................................  167
18.1. Backing up a File System .........................................................................  167

18.1.1. Lustre_rsync ................................................................................. 168
18.2. Backing Up and Restoring an MDT or OST (ldiskfs Device Level) ...................  170
18.3. Backing Up an OST or MDT (Backend File System Level) .............................  171

18.3.1. Backing Up an OST or MDT (Backend File System Level) ..........  L 2.11 171
18.3.2. Backing Up an OST or MDT ..........................................................  172

18.4. Restoring a File-Level Backup ...................................................................  174
18.5. Using LVM Snapshots with the Lustre File System ........................................  176

18.5.1. Creating an LVM-based Backup File System ......................................  176
18.5.2. Backing up New/Changed Files to the Backup File System ....................  178
18.5.3. Creating Snapshot Volumes ............................................................  178
18.5.4. Restoring the File System From a Snapshot ........................................ 178
18.5.5. Deleting Old Snapshots ..................................................................  180
18.5.6. Changing Snapshot Volume Size .....................................................  180

18.6. Migration Between ZFS and ldiskfs Target Filesystems .........................  L 2.11 180
18.6.1. Migrate from a ZFS to an ldiskfs based filesystem ...............................  180
18.6.2. Migrate from an ldiskfs to a ZFS based filesystem ...............................  180

19. Managing File Layout (Striping) and Free Space .................................................  182
19.1. How Lustre File System Striping Works ......................................................  182
19.2. Lustre File Layout (Striping) Considerations .................................................  182

19.2.1. Choosing a Stripe Size ...................................................................  183
19.3. Setting the File Layout/Striping Configuration (lfs setstripe) ..................  184

19.3.1. Specifying a File Layout (Striping Pattern) for a Single File ................... 185
19.3.2. Setting the Striping Layout for a Directory .........................................  186
19.3.3. Setting the Striping Layout for a File System ...................................... 186
19.3.4. Per File System Stripe Count Limit ..................................................  186
19.3.5. Creating a File on a Specific OST ....................................................  187

19.4. Retrieving File Layout/Striping Information (getstripe) .............................  187
19.4.1. Displaying the Current Stripe Size .................................................... 187
19.4.2. Inspecting the File Tree ..................................................................  188
19.4.3. Locating the MDT for a remote directory ..........................................  188

19.5. Progressive File Layout(PFL) ........................................................... L 2.10 188
19.5.1. lfs setstripe .......................................................................  190
19.5.2. lfs migrate ...........................................................................  197
19.5.3. lfs getstripe .......................................................................  201
19.5.4. lfs find .................................................................................  205

19.6. Self-Extending Layout (SEL) ...........................................................  L 2.13 206
19.6.1. lfs setstripe .......................................................................  207
19.6.2. lfs getstripe .......................................................................  209
19.6.3. lfs find .................................................................................  216

19.7. Foreign Layout .............................................................................  L 2.13 217
19.7.1. lfs set[dir]stripe .............................................................. 217
19.7.2. lfs get[dir]stripe .............................................................. 218
19.7.3. lfs find .................................................................................  218

19.8. Managing Free Space ...............................................................................  219
19.8.1. Checking File System Free Space ....................................................  219
19.8.2. Stripe Allocation Methods ..............................................................  221
19.8.3. Adjusting the Weighting Between Free Space and Location ...................  222

19.9. Lustre Striping Internals ...........................................................................  222
20. Data on MDT (DoM) ..............................................................................  L 2.11 224

20.1. Introduction to Data on MDT (DoM) ..........................................................  224



Lustre* Software Release 2.x

x

20.2. User Commands ......................................................................................  224
20.2.1. lfs setstripe for DoM files ...............................................................  224
20.2.2. Setting a default DoM layout to an existing directory ...........................  226
20.2.3. DoM Stripe Size Restrictions ..........................................................  228
20.2.4. lfs getstripe for DoM files ..............................................................  228
20.2.5. lfs find for DoM files ....................................................................  229
20.2.6. The dom_stripesize parameter .........................................................  230
20.2.7. Disable DoM ................................................................................ 231

21. Lazy Size on MDT (LSoM) ......................................................................  L 2.12 232
21.1. Introduction to Lazy Size on MDT (LSoM) ..................................................  232
21.2. Enable LSoM .........................................................................................  232
21.3. User Commands ......................................................................................  233

21.3.1. lfs getsom for LSoM data ...............................................................  233
21.3.2. Syncing LSoM data .......................................................................  233

22. File Level Redundancy (FLR) ..................................................................  L 2.11 235
22.1. Introduction ............................................................................................  235
22.2. Operations ..............................................................................................  235

22.2.1. Creating a Mirrored File or Directory ................................................ 235
22.2.2. Extending a Mirrored File ............................................................... 240
22.2.3. Splitting a Mirrored File .................................................................  244
22.2.4. Resynchronizing out-of-sync Mirrored File(s) .....................................  249
22.2.5. Verifying Mirrored File(s) ..............................................................  253
22.2.6. Finding Mirrored File(s) .................................................................  255

22.3. Interoperability ........................................................................................  256
23. Managing the File System and I/O .....................................................................  258

23.1. Handling Full OSTs .................................................................................  258
23.1.1. Checking OST Space Usage ............................................................  258
23.1.2. Disabling creates on a Full OST ......................................................  259
23.1.3. Migrating Data within a File System .................................................  259
23.1.4. Returning an Inactive OST Back Online ............................................  259
23.1.5. Migrating Metadata within a Filesystem ............................................  259

23.2. Creating and Managing OST Pools .............................................................  261
23.2.1. Working with OST Pools ...............................................................  262
23.2.2. Tips for Using OST Pools ..............................................................  264

23.3. Adding an OST to a Lustre File System ....................................................... 264
23.4. Performing Direct I/O ..............................................................................  265

23.4.1. Making File System Objects Immutable ............................................  265
23.5. Other I/O Options ....................................................................................  265

23.5.1. Lustre Checksums .........................................................................  265
23.5.2. PtlRPC Client Thread Pool .............................................................  266

24. Lustre File System Failover and Multiple-Mount Protection ..................................  268
24.1. Overview of Multiple-Mount Protection .......................................................  268
24.2. Working with Multiple-Mount Protection .....................................................  268

25. Configuring and Managing Quotas ..................................................................... 270
25.1. Working with Quotas ...............................................................................  270
25.2. Enabling Disk Quotas ..............................................................................  270

25.2.1. Quota Verification .........................................................................  272
25.3. Quota Administration ...............................................................................  273
25.4. Default Quota ...............................................................................  L 2.12 275

25.4.1. Usage .........................................................................................  275
25.5. Quota Allocation .....................................................................................  277
25.6. Quotas and Version Interoperability ............................................................  278
25.7. Granted Cache and Quota Limits ................................................................  278
25.8. Lustre Quota Statistics ..............................................................................  279



Lustre* Software Release 2.x

xi

25.8.1. Interpreting Quota Statistics ............................................................  280
25.9. Pool Quotas ..................................................................................  L 2.14 280

25.9.1. DOM and MDT pools .................................................................... 281
25.9.2. Lfs quota/setquota options to setup quota pools ...................................  281
25.9.3. Quota pools interoperability ............................................................  281
25.9.4. Pool Quotas Hard Limit setup example .............................................  281
25.9.5. Pool Quotas Soft Limit setup example ..............................................  282

26. Hierarchical Storage Management (HSM) ...................................................  L 2.5 283
26.1. Introduction ............................................................................................  283
26.2. Setup .....................................................................................................  283

26.2.1. Requirements ...............................................................................  283
26.2.2. Coordinator ..................................................................................  284
26.2.3. Agents ........................................................................................  284

26.3. Agents and copytool ................................................................................  284
26.3.1. Archive ID, multiple backends ........................................................  284
26.3.2. Registered agents ..........................................................................  285
26.3.3. Timeout ....................................................................................... 285

26.4. Requests ................................................................................................  285
26.4.1. Commands ...................................................................................  286
26.4.2. Automatic restore ..........................................................................  286
26.4.3. Request monitoring .......................................................................  286

26.5. File states ............................................................................................... 286
26.6. Tuning ...................................................................................................  287

26.6.1. hsm_controlpolicy ................................................................  287
26.6.2. max_requests ..........................................................................  287
26.6.3. policy ......................................................................................  287
26.6.4. grace_delay ............................................................................  288

26.7. change logs ............................................................................................  288
26.8. Policy engine ..........................................................................................  288

26.8.1. Robinhood ...................................................................................  289
27. Persistent Client Cache (PCC) .................................................................  L 2.13 290

27.1. Introduction ............................................................................................  290
27.2. Design ...................................................................................................  290

27.2.1. Lustre Read-Write PCC Caching ......................................................  290
27.2.2. Rule-based Persistent Client Cache ...................................................  291

27.3. PCC Command Line Tools .......................................................................  291
27.3.1. Add a PCC backend on a client .......................................................  291
27.3.2. Delete a PCC backend from a client .................................................  293
27.3.3. Remove all PCC backends on a client ...............................................  293
27.3.4. List all PCC backends on a client .....................................................  293
27.3.5. Attach given files into PCC ............................................................  294
27.3.6. Attach given files into PCC by FID(s) ............................................... 294
27.3.7. Detach given files from PCC ...........................................................  294
27.3.8. Detach given files from PCC by FID(s) .............................................  295
27.3.9. Display the PCC state for given files ................................................  295

27.4. PCC Configuration Example ......................................................................  296
28. Mapping UIDs and GIDs with Nodemap .....................................................  L 2.9 297

28.1. Setting a Mapping ...................................................................................  297
28.1.1. Defining Terms ............................................................................  297
28.1.2. Deciding on NID Ranges ................................................................  297
28.1.3. Defining a Servers Specific Group ...................................................  298
28.1.4. Describing and Deploying a Sample Mapping ..................................... 298
28.1.5. Mapping Project IDs ............................................................  L 2.15 300

28.2. Removing Nodemaps ...............................................................................  300



Lustre* Software Release 2.x

xii

28.3. Altering Properties ...................................................................................  300
28.3.1. Managing the Properties .................................................................  301
28.3.2. Mixing Properties .......................................................................... 302

28.4. Enabling the Feature ................................................................................  303
28.5. default Nodemap ................................................................................  303
28.6. Verifying Settings ....................................................................................  304
28.7. Ensuring Consistency ...............................................................................  304

29. Configuring Shared-Secret Key (SSK) Security ............................................  L 2.9 306
29.1. SSK Security Overview ............................................................................  306

29.1.1. Key features .................................................................................  306
29.2. SSK Security Flavors ...............................................................................  306

29.2.1. Secure RPC Rules .........................................................................  307
29.3. SSK Key Files ........................................................................................  309

29.3.1. Key File Management ....................................................................  310
29.4. Lustre GSS Keyring .................................................................................  313

29.4.1. Setup ..........................................................................................  313
29.4.2. Server Setup ................................................................................  313
29.4.3. Debugging GSS Keyring ................................................................  315
29.4.4. Revoking Keys .............................................................................  316

29.5. Role of Nodemap in SSK .........................................................................  316
29.6. SSK Examples ........................................................................................  317

29.6.1. Securing Client to Server Communications ........................................  317
29.6.2. Securing MGS Communications ......................................................  318
29.6.3. Securing Server to Server Communications ........................................  319

29.7. Viewing Secure PtlRPC Contexts ...............................................................  320
30. Managing Security in a Lustre File System .........................................................  321

30.1. Using ACLs ...........................................................................................  321
30.1.1. How ACLs Work ..........................................................................  321
30.1.2. Using ACLs with the Lustre Software ...............................................  321
30.1.3. Examples .....................................................................................  322

30.2. Using Root Squash ..................................................................................  322
30.3. Isolating Clients to a Sub-directory Tree ......................................................  323

30.3.1. Identifying Clients .........................................................................  323
30.3.2. Configuring Isolation .....................................................................  323
30.3.3. Making Isolation Permanent ............................................................  324

30.4. Checking SELinux Policy Enforced by Lustre Clients ...........................  L 2.13 324
30.4.1. Determining SELinux Policy Info ....................................................  324
30.4.2. Enforcing SELinux Policy Check .....................................................  325
30.4.3. Making SELinux Policy Check Permanent .........................................  325
30.4.4. Sending SELinux Status Info from Clients .........................................  325

30.5. Encrypting files and directories ........................................................  L 2.14 326
30.5.1. Client-side encryption access semantics .............................................  326
30.5.2. Client-side encryption key hierarchy .................................................  328
30.5.3. Client-side encryption modes and usage ............................................  328
30.5.4. Client-side encryption threat model ..................................................  329
30.5.5. Manage encryption on directories .....................................................  330

30.6. Configuring Kerberos (KRB) Security .........................................................  332
30.6.1. What Is Kerberos? ........................................................................  333
30.6.2. Security Flavor .............................................................................  333
30.6.3. Kerberos Setup .............................................................................  334
30.6.4. Networking ..................................................................................  335
30.6.5. Required packages ........................................................................  336
30.6.6. Build Lustre .................................................................................  336
30.6.7. Running ......................................................................................  336



Lustre* Software Release 2.x

xiii

30.6.8. Secure MGS connection .................................................................  338
31. Lustre ZFS Snapshots .............................................................................  L 2.10 339

31.1. Introduction ............................................................................................  339
31.1.1. Requirements ...............................................................................  339

31.2. Configuration ..........................................................................................  339
31.3. Snapshot Operations ................................................................................. 341

31.3.1. Creating a Snapshot .......................................................................  341
31.3.2. Delete a Snapshot .........................................................................  341
31.3.3. Mounting a Snapshot .....................................................................  341
31.3.4. Unmounting a Snapshot .................................................................  342
31.3.5. List Snapshots ..............................................................................  343
31.3.6. Modify Snapshot Attributes ............................................................  343

31.4. Global Write Barriers ...............................................................................  343
31.4.1. Impose Barrier .............................................................................. 344
31.4.2. Remove Barrier ............................................................................  344
31.4.3. Query Barrier ...............................................................................  344
31.4.4. Rescan Barrier ..............................................................................  345

31.5. Snapshot Logs ........................................................................................  345
31.6. Lustre Configuration Logs ........................................................................  346

IV. Tuning a Lustre File System for Performance .................................................................  347
32. Testing Lustre Network Performance (LNet Self-Test) ..........................................  350

32.1. LNet Self-Test Overview ..........................................................................  350
32.1.1. Prerequisites .................................................................................  351

32.2. Using LNet Self-Test ...............................................................................  351
32.2.1. Creating a Session .........................................................................  351
32.2.2. Setting Up Groups ........................................................................  352
32.2.3. Defining and Running the Tests .......................................................  352
32.2.4. Sample Script ...............................................................................  353

32.3. LNet Self-Test Command Reference ...........................................................  354
32.3.1. Session Commands ........................................................................ 354
32.3.2. Group Commands .........................................................................  355
32.3.3. Batch and Test Commands .............................................................  357
32.3.4. Other Commands ..........................................................................  360

33. Benchmarking Lustre File System Performance (Lustre I/O Kit) ...........................  363
33.1. Using Lustre I/O Kit Tools .......................................................................  363

33.1.1. Contents of the Lustre I/O Kit .........................................................  363
33.1.2. Preparing to Use the Lustre I/O Kit ..................................................  363

33.2. Testing I/O Performance of Raw Hardware (sgpdd-survey) ........................  364
33.2.1. Tuning Linux Storage Devices ......................................................... 365
33.2.2. Running sgpdd-survey .................................................................... 365

33.3. Testing OST Performance (obdfilter-survey) ....................................... 366
33.3.1. Testing Local Disk Performance ......................................................  367
33.3.2. Testing Network Performance .........................................................  369
33.3.3. Testing Remote Disk Performance ...................................................  370
33.3.4. Output Files .................................................................................  371

33.4. Testing OST I/O Performance (ost-survey) .............................................  372
33.5. Testing MDS Performance (mds-survey) .................................................  373

33.5.1. Output Files .................................................................................  374
33.5.2. Script Output ................................................................................ 374

33.6. Collecting Application Profiling Information ( stats-collect) ...................  375
33.6.1. Using stats-collect ...............................................................  375

34. Tuning a Lustre File System ..............................................................................  377
34.1. Optimizing the Number of Service Threads ..................................................  377

34.1.1. Specifying the OSS Service Thread Count .........................................  378



Lustre* Software Release 2.x

xiv

34.1.2. Specifying the MDS Service Thread Count ........................................  378
34.2. Binding MDS Service Thread to CPU Partitions ............................................  379
34.3. Tuning LNet Parameters ...........................................................................  379

34.3.1. Transmit and Receive Buffer Size ....................................................  379
34.3.2. Hardware Interrupts ( enable_irq_affinity) .............................  379
34.3.3. Binding Network Interface Against CPU Partitions ..............................  380
34.3.4. Network Interface Credits ...............................................................  380
34.3.5. Router Buffers ..............................................................................  380
34.3.6. Portal Round-Robin .......................................................................  381
34.3.7. LNet Peer Health ..........................................................................  382

34.4. libcfs Tuning ..........................................................................................  384
34.4.1. CPU Partition String Patterns ..........................................................  384

34.5. LND Tuning ...........................................................................................  385
34.5.1. ko2iblnd Tuning ...........................................................................  385

34.6. Network Request Scheduler (NRS) Tuning ...................................................  387
34.6.1. First In, First Out (FIFO) policy ......................................................  390
34.6.2. Client Round-Robin over NIDs (CRR-N) policy .................................. 390
34.6.3. Object-based Round-Robin (ORR) policy ..........................................  391
34.6.4. Target-based Round-Robin (TRR) policy ...........................................  394
34.6.5. Token Bucket Filter (TBF) policy ............................................  L 2.6 394
34.6.6. Delay policy ....................................................................... L 2.10 401

34.7. Lockless I/O Tunables ..............................................................................  403
34.8. Server-Side Advice and Hinting .........................................................  L 2.9 404

34.8.1. Overview .....................................................................................  404
34.8.2. Examples .....................................................................................  405

34.9. Large Bulk IO (16MB RPC) .............................................................  L 2.9 406
34.9.1. Overview .....................................................................................  406
34.9.2. Usage .........................................................................................  406

34.10. Improving Lustre I/O Performance for Small Files .......................................  407
34.11. Understanding Why Write Performance is Better Than Read Performance .........  407

V. Troubleshooting a Lustre File System .............................................................................  408
35. Lustre File System Troubleshooting ...................................................................  410

35.1. Lustre Error Messages ..............................................................................  410
35.1.1. Error Numbers .............................................................................. 410
35.1.2. Viewing Error Messages ................................................................  411

35.2. Reporting a Lustre File System Bug ............................................................  411
35.2.1. Searching Jira*for Duplicate Tickets .................................................  412

35.3. Common Lustre File System Problems ........................................................  412
35.3.1. OST Object is Missing or Damaged .................................................  413
35.3.2. OSTs Become Read-Only ...............................................................  413
35.3.3. Identifying a Missing OST ..............................................................  414
35.3.4. Fixing a Bad LAST_ID on an OST ..................................................  415
35.3.5. Handling/Debugging "Bind: Address already in use" Error ...  415
35.3.6. Handling/Debugging Error "- 28" .....................................................  416
35.3.7. Triggering Watchdog for PID NNN ..................................................  418
35.3.8. Handling Timeouts on Initial Lustre File System Setup .........................  418
35.3.9. Handling/Debugging "LustreError: xxx went back in time" ....................  419
35.3.10. Lustre Error: "Slow Start_Page_Write" .................................  419
35.3.11. Drawbacks in Doing Multi-client O_APPEND Writes ......................... 419
35.3.12. Slowdown Occurs During Lustre File System Startup .........................  420
35.3.13. Log Message 'Out of Memory' on OST .....................................  420
35.3.14. Setting SCSI I/O Sizes .................................................................  420

36. Troubleshooting Recovery .................................................................................  421
36.1. Recovering from Errors or Corruption on a Backing ldiskfs File System .............  421



Lustre* Software Release 2.x

xv

36.2. Recovering from Corruption in the Lustre File System ....................................  422
36.2.1. Working with Orphaned Objects ......................................................  422

36.3. Recovering from an Unavailable OST .........................................................  422
36.4. Checking the file system with LFSCK .........................................................  423

36.4.1. LFSCK switch interface .................................................................  424
36.4.2. Check the LFSCK global status ...............................................  L 2.9 426
36.4.3. LFSCK status interface ..................................................................  427
36.4.4. LFSCK adjustment interface ...........................................................  433

37. Debugging a Lustre File System .........................................................................  435
37.1. Diagnostic and Debugging Tools ................................................................  435

37.1.1. Lustre Debugging Tools .................................................................  435
37.1.2. External Debugging Tools ..............................................................  436

37.2. Lustre Debugging Procedures ....................................................................  437
37.2.1. Understanding the Lustre Debug Messaging Format .............................  437
37.2.2. Using the lctl Tool to View Debug Messages .....................................  439
37.2.3. Dumping the Buffer to a File (debug_daemon) ................................  440
37.2.4. Controlling Information Written to the Kernel Debug Log .....................  441
37.2.5. Troubleshooting with strace ........................................................  442
37.2.6. Looking at Disk Content ................................................................  442
37.2.7. Finding the Lustre UUID of an OST .................................................  443
37.2.8. Printing Debug Messages to the Console ...........................................  444
37.2.9. Tracing Lock Traffic .....................................................................  444
37.2.10. Controlling Console Message Rate Limiting .....................................  444

37.3. Lustre Debugging for Developers ...............................................................  444
37.3.1. Adding Debugging to the Lustre Source Code ....................................  444
37.3.2. Accessing the ptlrpc Request History ............................................  447
37.3.3. Finding Memory Leaks Using leak_finder.pl .............................  448

VI. Reference .................................................................................................................  449
38. Lustre File System Recovery .............................................................................  455

38.1. Recovery Overview .................................................................................  455
38.1.1. Client Failure ...............................................................................  455
38.1.2. Client Eviction .............................................................................  456
38.1.3. MDS Failure (Failover) ..................................................................  456
38.1.4. OST Failure (Failover) ...................................................................  457
38.1.5. Network Partition ..........................................................................  457
38.1.6. Failed Recovery ............................................................................  458

38.2. Metadata Replay .....................................................................................  458
38.2.1. XID Numbers ...............................................................................  458
38.2.2. Transaction Numbers .....................................................................  458
38.2.3. Replay and Resend ........................................................................  459
38.2.4. Client Replay List .........................................................................  459
38.2.5. Server Recovery ...........................................................................  459
38.2.6. Request Replay .............................................................................  460
38.2.7. Gaps in the Replay Sequence ..........................................................  460
38.2.8. Lock Recovery .............................................................................  460
38.2.9. Request Resend ............................................................................  461

38.3. Reply Reconstruction ...............................................................................  461
38.3.1. Required State ..............................................................................  461
38.3.2. Reconstruction of Open Replies .......................................................  461
38.3.3. Multiple Reply Data per Client ................................................  L 2.8 462

38.4. Version-based Recovery ...........................................................................  462
38.4.1. VBR Messages .............................................................................  463
38.4.2. Tips for Using VBR ......................................................................  463

38.5. Commit on Share ....................................................................................  463



Lustre* Software Release 2.x

xvi

38.5.1. Working with Commit on Share ......................................................  463
38.5.2. Tuning Commit On Share ...............................................................  464

38.6. Imperative Recovery ................................................................................  464
38.6.1. MGS role ....................................................................................  464
38.6.2. Tuning Imperative Recovery ...........................................................  465
38.6.3. Configuration Suggestions for Imperative Recovery .............................  467

38.7. Suppressing Pings ....................................................................................  468
38.7.1. "suppress_pings" Kernel Module Parameter .......................................  468
38.7.2. Client Death Notification ................................................................  468

39. Lustre Parameters ............................................................................................  469
39.1. Introduction to Lustre Parameters ...............................................................  469

39.1.1. Identifying Lustre File Systems and Servers .......................................  470
39.2. Tuning Multi-Block Allocation (mballoc) .....................................................  472
39.3. Monitoring Lustre File System I/O .............................................................  473

39.3.1. Monitoring the Client RPC Stream ...................................................  474
39.3.2. Monitoring Client Activity ..............................................................  475
39.3.3. Monitoring Client Read-Write Offset Statistics ...................................  477
39.3.4. Monitoring Client Read-Write Extent Statistics ...................................  478
39.3.5. Monitoring the OST Block I/O Stream ..............................................  480

39.4. Tuning Lustre File System I/O ...................................................................  482
39.4.1. Tuning the Client I/O RPC Stream ...................................................  482
39.4.2. Tuning File Readahead and Directory Statahead ..................................  484
39.4.3. Tuning Server Read Cache .............................................................  485
39.4.4. Enabling OSS Asynchronous Journal Commit ....................................  488
39.4.5. Tuning the Client Metadata RPC Stream .................................... L 2.8 489

39.5. Configuring Timeouts in a Lustre File System ..............................................  490
39.5.1. Configuring Adaptive Timeouts .......................................................  491
39.5.2. Setting Static Timeouts ..................................................................  493

39.6. Monitoring LNet .....................................................................................  495
39.7. Allocating Free Space on OSTs .................................................................. 496
39.8. Configuring Locking ................................................................................  497
39.9. Setting MDS and OSS Thread Counts .........................................................  498
39.10. Enabling and Interpreting Debugging Logs .................................................  499

39.10.1. Interpreting OST Statistics ............................................................  501
39.10.2. Interpreting MDT Statistics ...........................................................  503

40. User Utilities ....................................................................................................  504
40.1. lfs ......................................................................................................  504

40.1.1. Synopsis ......................................................................................  504
40.1.2. Description ..................................................................................  505
40.1.3. Options .......................................................................................  505
40.1.4. Examples .....................................................................................  510
40.1.5. See Also ...................................................................................... 512

40.2. lfs_migrate ......................................................................................  512
40.2.1. Synopsis ......................................................................................  512
40.2.2. Description ..................................................................................  512
40.2.3. Options .......................................................................................  513
40.2.4. Examples .....................................................................................  514
40.2.5. See Also ...................................................................................... 514

40.3. filefrag ............................................................................................  514
40.3.1. Synopsis ......................................................................................  514
40.3.2. Description ..................................................................................  514
40.3.3. Options .......................................................................................  515
40.3.4. Examples .....................................................................................  515

40.4. mount ..................................................................................................  516



Lustre* Software Release 2.x

xvii

40.5. Handling Timeouts ..................................................................................  516
41. Programming Interfaces ....................................................................................  518

41.1. User/Group Upcall ...................................................................................  518
41.1.1. Synopsis ......................................................................................  518
41.1.2. Description ..................................................................................  518
41.1.3. Data Structures .............................................................................  519

42. Setting Lustre Properties in a C Program (llapi) ..............................................  520
42.1. llapi_file_create ........................................................................... 520

42.1.1. Synopsis ......................................................................................  520
42.1.2. Description ..................................................................................  520
42.1.3. Examples .....................................................................................  521

42.2. llapi_file_get_stripe ..................................................................................  521
42.2.1. Synopsis ......................................................................................  521
42.2.2. Description ..................................................................................  522
42.2.3. Return Values ..............................................................................  523
42.2.4. Errors .........................................................................................  523
42.2.5. Examples .....................................................................................  523

42.3. llapi_file_open ..............................................................................  524
42.3.1. Synopsis ......................................................................................  524
42.3.2. Description ..................................................................................  524
42.3.3. Return Values ..............................................................................  525
42.3.4. Errors .........................................................................................  525
42.3.5. Example ......................................................................................  525

42.4. llapi_quotactl ................................................................................  526
42.4.1. Synopsis ......................................................................................  526
42.4.2. Description ..................................................................................  526
42.4.3. Return Values ..............................................................................  527
42.4.4. Errors .........................................................................................  527

42.5. llapi_path2fid ................................................................................  528
42.5.1. Synopsis ......................................................................................  528
42.5.2. Description ..................................................................................  528
42.5.3. Return Values ..............................................................................  528

42.6. llapi_ladvise ..........................................................................  L 2.9 528
42.6.1. Synopsis ......................................................................................  528
42.6.2. Description ..................................................................................  529
42.6.3. Return Values ..............................................................................  530
42.6.4. Errors .........................................................................................  530

42.7. Example Using the llapi Library .............................................................  530
42.7.1. See Also ...................................................................................... 534

43. Configuration Files and Module Parameters ........................................................  535
43.1. Introduction ............................................................................................  535
43.2. Module Options ......................................................................................  535

43.2.1. LNet Options ...............................................................................  536
43.2.2. SOCKLND Kernel TCP/IP LND .......................................................  539

44. System Configuration Utilities ...........................................................................  542
44.1. l_getidentity ...........................................................................................  542

44.1.1. Synopsis ......................................................................................  542
44.1.2. Description ..................................................................................  542
44.1.3. Options .......................................................................................  543
44.1.4. Files ...........................................................................................  543

44.2. lctl ........................................................................................................  543
44.2.1. Synopsis ......................................................................................  543
44.2.2. Description ..................................................................................  543
44.2.3. Setting Parameters with lctl ............................................................. 543



Lustre* Software Release 2.x

xviii

44.2.4. Options .......................................................................................  548
44.2.5. Examples .....................................................................................  548
44.2.6. See Also ...................................................................................... 548

44.3. ll_decode_filter_fid ..................................................................................  548
44.3.1. Synopsis ......................................................................................  548
44.3.2. Description ..................................................................................  548
44.3.3. Examples .....................................................................................  549

44.4. llobdstat .................................................................................................  549
44.4.1. Synopsis ......................................................................................  549
44.4.2. Description ..................................................................................  549
44.4.3. Example ......................................................................................  549
44.4.4. Files ...........................................................................................  550

44.5. llog_reader .............................................................................................  550
44.5.1. Synopsis ......................................................................................  550
44.5.2. Description ..................................................................................  550
44.5.3. See Also ...................................................................................... 550

44.6. llstat ......................................................................................................  550
44.6.1. Synopsis ......................................................................................  550
44.6.2. Description ..................................................................................  550
44.6.3. Options .......................................................................................  551
44.6.4. Example ......................................................................................  551
44.6.5. Files ...........................................................................................  551

44.7. llverdev .................................................................................................  551
44.7.1. Synopsis ......................................................................................  551
44.7.2. Description ..................................................................................  551
44.7.3. Options .......................................................................................  552
44.7.4. Examples .....................................................................................  552

44.8. lshowmount ............................................................................................  553
44.8.1. Synopsis ......................................................................................  553
44.8.2. Description ..................................................................................  553
44.8.3. Options .......................................................................................  553
44.8.4. Files ...........................................................................................  553

44.9. lst .........................................................................................................  553
44.9.1. Synopsis ......................................................................................  553
44.9.2. Description ..................................................................................  554
44.9.3. Modules ......................................................................................  554
44.9.4. Utilities .......................................................................................  554
44.9.5. Example Script .............................................................................  554

44.10. lustre_rmmod.sh ....................................................................................  555
44.11. lustre_rsync ..........................................................................................  555

44.11.1. Synopsis ....................................................................................  555
44.11.2. Description .................................................................................  555
44.11.3. Options ......................................................................................  556
44.11.4. Examples ...................................................................................  557
44.11.5. See Also ....................................................................................  557

44.12. mkfs.lustre ............................................................................................  558
44.12.1. Synopsis ....................................................................................  558
44.12.2. Description .................................................................................  558
44.12.3. Examples ...................................................................................  560
44.12.4. See Also ....................................................................................  560

44.13. mount.lustre ..........................................................................................  560
44.13.1. Synopsis ....................................................................................  560
44.13.2. Description .................................................................................  560
44.13.3. Options ......................................................................................  561



Lustre* Software Release 2.x

xix

44.13.4. Examples ...................................................................................  564
44.13.5. See Also ....................................................................................  565

44.14. routerstat ..............................................................................................  565
44.14.1. Synopsis ....................................................................................  565
44.14.2. Description .................................................................................  565
44.14.3. Output .......................................................................................  565
44.14.4. Example ....................................................................................  566
44.14.5. Files ..........................................................................................  566

44.15. tunefs.lustre ..........................................................................................  566
44.15.1. Synopsis ....................................................................................  566
44.15.2. Description .................................................................................  566
44.15.3. Options ......................................................................................  567
44.15.4. Examples ...................................................................................  569
44.15.5. See Also ....................................................................................  569

44.16. Additional System Configuration Utilities ...................................................  569
44.16.1. More Statistics for Application Profiling ..........................................  569
44.16.2. Testing / Debugging Utilities .........................................................  569
44.16.3. Fileset Feature ....................................................................  L 2.9 570

45. LNet Configuration C-API ................................................................................  573
45.1. General API Information ........................................................................... 573

45.1.1. API Return Code ..........................................................................  573
45.1.2. API Common Input Parameters .......................................................  573
45.1.3. API Common Output Parameters .....................................................  573

45.2. The LNet Configuration C-API ..................................................................  575
45.2.1. Configuring LNet ..........................................................................  575
45.2.2. Enabling and Disabling Routing ....................................................... 575
45.2.3. Adding Routes .............................................................................. 576
45.2.4. Deleting Routes ............................................................................  577
45.2.5. Showing Routes ............................................................................  577
45.2.6. Adding a Network Interface ............................................................  578
45.2.7. Deleting a Network Interface ........................................................... 579
45.2.8. Showing Network Interfaces ...........................................................  580
45.2.9. Adjusting Router Buffer Pools .........................................................  581
45.2.10. Showing Routing information ........................................................  582
45.2.11. Showing LNet Traffic Statistics .....................................................  583
45.2.12. Adding/Deleting/Showing Parameters through a YAML Block .............  584
45.2.13. Adding a route code example ........................................................  585

Glossary ........................................................................................................................  588
Index ............................................................................................................................  595



xx

List of Figures
1.1. Lustre file system components in a basic cluster ................................................................  6
1.2. Lustre cluster at scale ...................................................................................................  9
1.3. Layout EA on MDT pointing to file data on OSTs ............................................................  10
1.4. Lustre client requesting file data ....................................................................................  10
1.5. File striping on a Lustre file system ...............................................................................  12
3.1. Lustre failover configuration for a active/passive MDT ......................................................  18
3.2. Lustre failover configuration for a active/active MDTs ......................................................  19
3.3. Lustre failover configuration for an OSTs .......................................................................  19
16.1. Routing Configuration with Multi-Rail ........................................................................  150
19.1. PFL object mapping diagram .....................................................................................  189
19.2. Example: create a composite file ................................................................................  190
19.3. Example: add a component to an existing composite file .................................................  193
19.4. Example: delete a component from an existing file ........................................................  195
19.5. Example: migrate normal to composite ........................................................................  198
19.6. Example: migrate composite to composite .................................................................... 199
19.7. Example: migrate composite to normal ........................................................................  201
19.8. Example: create a SEL file ........................................................................................ 207
19.9. Example: an extension of a SEL file ...........................................................................  210
19.10. Example: a spillover in a SEL file ............................................................................  212
19.11. Example: repeat a SEL component ............................................................................ 213
19.12. Example: forced extension in a SEL file ....................................................................  214
19.13. LOV/LMV foreign format .......................................................................................  217
19.14. Example: create a foreign file ..................................................................................  218
20.1. Resulting file layout .................................................................................................  225
22.1. FLR Delayed Write .................................................................................................  235
26.1. Overview of the Lustre file system HSM .....................................................................  283
27.1. Overview of PCC-RW Architecture ............................................................................  290
34.1. One of Two Connections to o2ib0 Down .....................................................................  383
34.2. Both Connections to o2ib0 Down ...............................................................................  383
34.3. Connection to o2ib1 Down .......................................................................................  383
34.4. Connection to o2ib1 Never Came Up ..........................................................................  383
34.5. The internal structure of TBF policy ...........................................................................  394
44.1. Lustre fileset ..........................................................................................................  571



xxi

List of Tables
1.1. Lustre File System Scalability and Performance .................................................................  4
1.2. Storage and hardware requirements for Lustre file system components .................................... 8
5.1. Default Inode Ratios Used for Newly Formatted OSTs ......................................................  31
5.2. File and file system limits ............................................................................................  32
8.1. Packages Installed on Lustre Servers ..............................................................................  50
8.2. Packages Installed on Lustre Clients ..............................................................................  51
8.3. Network Types Supported by Lustre LNDs .....................................................................  51
10.1. Default stripe pattern .................................................................................................  81
16.1. Configuring Module Parameters .................................................................................  152
29.1. SSK Security Flavor Protections ................................................................................  307
29.2. lgss_sk Parameters ...................................................................................................  310
29.3. lsvcgssd Parameters .................................................................................................  313
29.4. Key Descriptions .....................................................................................................  314
31.1. Write Barrier Status .................................................................................................  345



xxii

List of Examples
34.1. lustre.conf ..............................................................................................................  379



xxiii

Preface
The Lustre*Software Release 2.x Operations Manual provides detailed information and procedures to
install, configure and tune a Lustre file system. The manual covers topics such as failover, quotas, striping,
and bonding. This manual also contains troubleshooting information and tips to improve the operation and
performance of a Lustre file system.

1. About this Document
This document is maintained by Whamcloud in Docbook format. The canonical version is available at
https://wiki.whamcloud.com/display/PUB/Documentation  [https://wiki.whamcloud.com/display/PUB/
Documentation].

1.1. UNIX* Commands

This document does not contain information about basic UNIX* operating system commands and
procedures such as shutting down the system, booting the system, and configuring devices. Refer to the
following for this information:

• Software documentation that you received with your system

• Red Hat* Enterprise Linux* documentation, which is at:  https://docs.redhat.com/docs/en-US/index.html
[https://docs.redhat.com/docs/en-US/index.html]

Note

The Lustre client module is available for many different Linux* versions and distributions.
The Red Hat Enterprise Linux distribution is the best supported and tested platform for Lustre
servers.

1.2. Shell Prompts

The shell prompt used in the example text indicates whether a command can or should be executed by a
regular user, or whether it requires superuser permission to run. Also, the machine type is often included
in the prompt to indicate whether the command should be run on a client node, on an MDS node, an OSS
node, or the MGS node.

Some examples are listed below, but other prompt combinations are also used as needed for the example.

Shell Prompt

Regular user machine$

Superuser (root) machine#

Regular user on the client client$

Superuser on the MDS mds#

Superuser on the OSS oss#

Superuser on the MGS mgs#

https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://docs.redhat.com/docs/en-US/index.html
https://docs.redhat.com/docs/en-US/index.html


Preface

xxiv

1.3. Related Documentation

Application Title Format Location

Latest information Lustre Software Release
2.x Change Logs

Wiki page Online at https://
wiki.whamcloud.com/display/
PUB/Documentation

Service Lustre Software Release
2.x Operations Manual

PDF

HTML

Online at https://
wiki.whamcloud.com/display/
PUB/Documentation

1.4. Documentation and Support
These web sites provide additional resources:

• Documentation  https://wiki.whamcloud.com/display/PUB/Documentation [https://
wiki.whamcloud.com/display/PUB/Documentation] https://www.lustre.org

• Support https://jira.whamcloud.com/

2. Revisions
The Lustre* File System Release 2.x Operations Manual is a community maintained work. Versions of
the manual are continually built as suggestions for changes and improvements arrive. Suggestions for
improvements can be submitted through the ticketing system maintained at  https://jira.whamcloud.com/
browse/LUDOC [https://jira.whamcloud.com/browse/LUDOC]. Instructions for providing a patch to the
existing manual are available at:  http://wiki.lustre.org/Lustre_Manual_Changes [http://wiki.lustre.org/
Lustre_Manual_Changes].

Introduced in Lustre 2.5

This manual covers a range of Lustre 2.x software releases, currently starting with the 2.5 release. Features
specific to individual releases are identified within the table of contents using a shorthand notation (e.g.
this paragraph is tagged as a Lustre 2.5 specific feature so that it will be updated when the 2.5-specific
tagging is removed), and within the text using a distinct box.

Which version am I running?

The current version of Lustre that is in use on the node can be found using the command lctl
get_param version on any Lustre client or server, for example:

$ lctl get_param version
version=2.10.5

Only the latest revision of this document is made readily available because changes are continually
arriving. The current and latest revision of this manual is available from links maintained at:  http://
lustre.opensfs.org/documentation/ [http://lustre.opensfs.org/documentation/].
Revision History
Revision 0 Built on 20 August 2024 01:58:00ZIntel Corporation
Continuous build of Manual.

https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://wiki.whamcloud.com/display/PUB/Documentation
https://www.lustre.org
https://jira.whamcloud.com/
https://jira.whamcloud.com/browse/LUDOC
https://jira.whamcloud.com/browse/LUDOC
https://jira.whamcloud.com/browse/LUDOC
http://wiki.lustre.org/Lustre_Manual_Changes
http://wiki.lustre.org/Lustre_Manual_Changes
http://wiki.lustre.org/Lustre_Manual_Changes
http://lustre.opensfs.org/documentation/
http://lustre.opensfs.org/documentation/
http://lustre.opensfs.org/documentation/


Part I. Introducing the
Lustre* File System

Part I provides background information to help you understand the Lustre file system architecture and how the major
components fit together. You will find information in this section about:

• Understanding Lustre Architecture

• Understanding Lustre Networking (LNet)

• Understanding Failover in a Lustre File System



2

Table of Contents
1. Understanding Lustre Architecture .................................................................................  3

1.1. What a Lustre File System Is (and What It Isn't) ........................................................  3
1.1.1. Lustre Features ..........................................................................................  3

1.2. Lustre Components ...............................................................................................  6
1.2.1. Management Server (MGS) .........................................................................  7
1.2.2. Lustre File System Components .................................................................... 7
1.2.3. Lustre Networking (LNet) ...........................................................................  8
1.2.4. Lustre Cluster ............................................................................................ 8

1.3. Lustre File System Storage and I/O .........................................................................  9
1.3.1. Lustre File System and Striping ..................................................................  11

2. Understanding Lustre Networking (LNet) ......................................................................  14
2.1. Introducing LNet ................................................................................................  14
2.2. Key Features of LNet ..........................................................................................  14
2.3. Lustre Networks .................................................................................................  14
2.4. Supported Network Types ....................................................................................  15

3. Understanding Failover in a Lustre File System ..............................................................  16
3.1. What is Failover? ...............................................................................................  16

3.1.1. Failover Capabilities .................................................................................  16
3.1.2. Types of Failover Configurations ................................................................  17

3.2. Failover Functionality in a Lustre File System .........................................................  17
3.2.1. MDT Failover Configuration (Active/Passive) ...............................................  18
3.2.2. MDT Failover Configuration (Active/Active) ................................................. 18
3.2.3. OST Failover Configuration (Active/Active) ..................................................  19



3

Chapter 1. Understanding Lustre
Architecture

This chapter describes the Lustre architecture and features of the Lustre file system. It includes the
following sections:

• Section 1.1, “ What a Lustre File System Is (and What It Isn't)”

• Section 1.2, “ Lustre Components”

• Section 1.3, “ Lustre File System Storage and I/O”

1.1.  What a Lustre File System Is (and What It
Isn't)

The Lustre architecture is a storage architecture for clusters. The central component of the Lustre
architecture is the Lustre file system, which is supported on the Linux operating system and provides a
POSIX *standard-compliant UNIX file system interface.

The Lustre storage architecture is used for many different kinds of clusters. It is best known for powering
many of the largest high-performance computing (HPC) clusters worldwide, with tens of thousands
of client systems, petabytes (PiB) of storage and hundreds of gigabytes per second (GB/sec) of I/O
throughput. Many HPC sites use a Lustre file system as a site-wide global file system, serving dozens
of clusters.

The ability of a Lustre file system to scale capacity and performance for any need reduces the need to
deploy many separate file systems, such as one for each compute cluster. Storage management is simplified
by avoiding the need to copy data between compute clusters. In addition to aggregating storage capacity
of many servers, the I/O throughput is also aggregated and scales with additional servers. Moreover,
throughput and/or capacity can be easily increased by adding servers dynamically.

While a Lustre file system can function in many work environments, it is not necessarily the best choice for
all applications. It is best suited for uses that exceed the capacity that a single server can provide, though
in some use cases, a Lustre file system can perform better with a single server than other file systems due
to its strong locking and data coherency.

A Lustre file system is currently not particularly well suited for "peer-to-peer" usage models where clients
and servers are running on the same node, each sharing a small amount of storage, due to the lack of data
replication at the Lustre software level. In such uses, if one client/server fails, then the data stored on that
node will not be accessible until the node is restarted.

1.1.1.  Lustre Features
Lustre file systems run on a variety of vendor's kernels. For more details, see the Lustre Test Matrix
Section 8.1, “ Preparing to Install the Lustre Software”.

A Lustre installation can be scaled up or down with respect to the number of client nodes, disk storage and
bandwidth. Scalability and performance are dependent on available disk and network bandwidth and the
processing power of the servers in the system. A Lustre file system can be deployed in a wide variety of
configurations that can be scaled well beyond the size and performance observed in production systems
to date.



Understanding Lustre Architecture

4

Table 1.1, “Lustre File System Scalability and Performance” shows some of the scalability and
performance characteristics of a Lustre file system. For a full list of Lustre file and filesystem limits see
Table 5.2, “File and file system limits”.

Table 1.1. Lustre File System Scalability and Performance

Feature Current Practical Range Known Production Usage

Client
Scalability

100-100000 50000+ clients, many in the 10000 to 20000 range

Client
Performance

Single client:

I/O 90% of network bandwidth

Aggregate:

50 TB/sec I/O, 50M IOPS

Single client:

15 GB/sec I/O (HDR IB), 50000 IOPS

Aggregate:

10 TB/sec I/O, 10M IOPS

OSS
Scalability

Single OSS:

1-32 OSTs per OSS

Single OST:

500M objects, 1024TiB per OST

OSS count:

1000 OSSs, 4000 OSTs

Single OSS:

4 OSTs per OSS

Single OST:

1024TiB OSTs

OSS count:

450 OSSs with 900 750TiB HDD OSTs + 450
25TiB NVMe OSTs

1024 OSSs with 1024 72TiB OSTs

OSS
Performance

Single OSS:

15 GB/sec, 1.5M IOPS

Aggregate:

50 TB/sec, 50M IOPS

Single OSS:

10 GB/sec, 1.5M IOPS

Aggregate:

20 TB/sec, 20M IOPS

MDS
Scalability

Single MDS:

1-4 MDTs per MDS

Single MDT:

4 billion files, 16TiB per MDT
(ldiskfs)

64 billion files, 64TiB per MDT
(ZFS)

MDS count:

256 MDSs, up to 256 MDTs

Single MDS:

4 billion files

MDS count:

40 MDS with 40 4TiB MDTs in production

256 MDS with 256 64GiB MDTs in testing

MDS
Performance

1M/s create operations

2M/s stat operations

100k/s create operations,

200k/s metadata stat operations



Understanding Lustre Architecture

5

Feature Current Practical Range Known Production Usage

File system
Scalability

Single File:

32 PiB max file size (ldiskfs)

2^63 bytes (ZFS)

Aggregate:

512 PiB space, 1 trillion files

Single File:

multi-TiB max file size

Aggregate:

700 PiB space, 25 billion files

Other Lustre software features are:

• Performance-enhanced ext4 file system:The Lustre file system uses an improved version of the ext4
journaling file system to store data and metadata. This version, called  ldiskfs , has been enhanced
to improve performance and provide additional functionality needed by the Lustre file system.

• It is also possible to use ZFS as the backing filesystem for Lustre for the MDT, OST, and MGS storage.
This allows Lustre to leverage the scalability and data integrity features of ZFS for individual storage
targets.

• POSIX standard compliance:The full POSIX test suite passes in an identical manner to a local ext4
file system, with limited exceptions on Lustre clients. In a cluster, most operations are atomic so that
clients never see stale data or metadata. The Lustre software supports mmap() file I/O.

• High-performance heterogeneous networking:The Lustre software supports a variety of high
performance, low latency networks and permits Remote Direct Memory Access (RDMA) for InfiniBand
*(utilizing OpenFabrics Enterprise Distribution (OFED*), Intel OmniPath®, and other advanced
networks for fast and efficient network transport. Multiple RDMA networks can be bridged using Lustre
routing for maximum performance. The Lustre software also includes integrated network diagnostics.

• High-availability:The Lustre file system supports active/active failover using shared storage partitions
for OSS targets (OSTs), and for MDS targets (MDTs). The Lustre file system can work with a variety of
high availability (HA) managers to allow automated failover and has no single point of failure (NSPF).
This allows application transparent recovery. Multiple mount protection (MMP) provides integrated
protection from errors in highly-available systems that would otherwise cause file system corruption.

• Security:By default TCP connections are only allowed from privileged ports. UNIX group membership
is verified on the MDS.

• Access control list (ACL), extended attributes:the Lustre security model follows that of a UNIX file
system, enhanced with POSIX ACLs. Noteworthy additional features include root squash.

• Interoperability:The Lustre file system runs on a variety of CPU architectures and mixed-endian
clusters and is interoperable between successive major Lustre software releases.

• Object-based architecture:Clients are isolated from the on-disk file structure enabling upgrading of
the storage architecture without affecting the client.

• Byte-granular file and fine-grained metadata locking:Many clients can read and modify the same file
or directory concurrently. The Lustre distributed lock manager (LDLM) ensures that files are coherent
between all clients and servers in the file system. The MDT LDLM manages locks on inode permissions
and pathnames. Each OST has its own LDLM for locks on file stripes stored thereon, which scales the
locking performance as the file system grows.

• Quotas:User and group quotas are available for a Lustre file system.



Understanding Lustre Architecture

6

• Capacity growth:The size of a Lustre file system and aggregate cluster bandwidth can be increased
without interruption by adding new OSTs and MDTs to the cluster.

• Controlled file layout:The layout of files across OSTs can be configured on a per file, per directory,
or per file system basis. This allows file I/O to be tuned to specific application requirements within a
single file system. The Lustre file system uses RAID-0 striping and balances space usage across OSTs.

• Network data integrity protection:A checksum of all data sent from the client to the OSS protects
against corruption during data transfer.

• MPI I/O:The Lustre architecture has a dedicated MPI ADIO layer that optimizes parallel I/O to match
the underlying file system architecture.

• NFS and CIFS export:Lustre files can be re-exported using NFS (via Linux knfsd or Ganesha) or CIFS
(via Samba), enabling them to be shared with non-Linux clients such as Microsoft*Windows, *Apple
*Mac OS X *, and others.

• Disaster recovery tool:The Lustre file system provides an online distributed file system check (LFSCK)
that can restore consistency between storage components in case of a major file system error. A Lustre
file system can operate even in the presence of file system inconsistencies, and LFSCK can run while the
filesystem is in use, so LFSCK is not required to complete before returning the file system to production.

• Performance monitoring:The Lustre file system offers a variety of mechanisms to examine
performance and tuning.

• Open source:The Lustre software is licensed under the GPL 2.0 license for use with the Linux operating
system.

1.2.  Lustre Components
An installation of the Lustre software includes a management server (MGS) and one or more Lustre file
systems interconnected with Lustre networking (LNet).

A basic configuration of Lustre file system components is shown in Figure 1.1, “Lustre file system
components in a basic cluster”.

Figure 1.1. Lustre file system components in a basic cluster



Understanding Lustre Architecture

7

1.2.1.  Management Server (MGS)
The MGS stores configuration information for all the Lustre file systems in a cluster and provides this
information to other Lustre components. Each Lustre target contacts the MGS to provide information, and
Lustre clients contact the MGS to retrieve information.

It is preferable that the MGS have its own storage space so that it can be managed independently. However,
the MGS can be co-located and share storage space with an MDS as shown in Figure 1.1, “Lustre file
system components in a basic cluster”.

1.2.2. Lustre File System Components
Each Lustre file system consists of the following components:

• Metadata Servers (MDS)- The MDS makes metadata stored in one or more MDTs available to Lustre
clients. Each MDS manages the names and directories in the Lustre file system(s) and provides network
request handling for one or more local MDTs.

• Metadata Targets (MDT) - Each filesystem has at least one MDT, which holds the root directory. The
MDT stores metadata (such as filenames, directories, permissions and file layout) on storage attached
to an MDS. Each file system has one MDT. An MDT on a shared storage target can be available to
multiple MDSs, although only one can access it at a time. If an active MDS fails, a second MDS node
can serve the MDT and make it available to clients. This is referred to as MDS failover.

Multiple MDTs are supported with the Distributed Namespace Environment (Distributed Namespace
Environment (DNE)). In addition to the primary MDT that holds the filesystem root, it is possible to
add additional MDS nodes, each with their own MDTs, to hold sub-directory trees of the filesystem.

Introduced in Lustre 2.8

Since Lustre software release 2.8, DNE also allows the filesystem to distribute files of a single directory
over multiple MDT nodes. A directory which is distributed across multiple MDTs is known as a Striped
Directory.

• Object Storage Servers (OSS): The OSS provides file I/O service and network request handling for
one or more local OSTs. Typically, an OSS serves between two and eight OSTs, up to 16 TiB each.
A typical configuration is an MDT on a dedicated node, two or more OSTs on each OSS node, and a
client on each of a large number of compute nodes.

• Object Storage Target (OST): User file data is stored in one or more objects, each object on a separate
OST in a Lustre file system. The number of objects per file is configurable by the user and can be tuned
to optimize performance for a given workload.

• Lustre clients: Lustre clients are computational, visualization or desktop nodes that are running Lustre
client software, allowing them to mount the Lustre file system.

The Lustre client software provides an interface between the Linux virtual file system and the Lustre
servers. The client software includes a management client (MGC), a metadata client (MDC), and multiple
object storage clients (OSCs), one corresponding to each OST in the file system.

A logical object volume (LOV) aggregates the OSCs to provide transparent access across all the OSTs.
Thus, a client with the Lustre file system mounted sees a single, coherent, synchronized namespace. Several
clients can write to different parts of the same file simultaneously, while, at the same time, other clients
can read from the file.



Understanding Lustre Architecture

8

A logical metadata volume (LMV) aggregates the MDCs to provide transparent access across all the MDTs
in a similar manner as the LOV does for file access. This allows the client to see the directory tree on
multiple MDTs as a single coherent namespace, and striped directories are merged on the clients to form
a single visible directory to users and applications.

Table 1.2, “ Storage and hardware requirements for Lustre file system components”provides the
requirements for attached storage for each Lustre file system component and describes desirable
characteristics of the hardware used.

Table 1.2.  Storage and hardware requirements for Lustre file system components

Required attached storage Desirable hardware characteristics

MDSs 1-2% of file system capacity Adequate CPU power, plenty of memory,
fast disk storage.

OSSs 1-128 TiB per OST, 1-8 OSTs per OSS Good bus bandwidth. Recommended that
storage be balanced evenly across OSSs and
matched to network bandwidth.

Clients No local storage needed Low latency, high bandwidth network.

For additional hardware requirements and considerations, see Chapter 5, Determining Hardware
Configuration Requirements and Formatting Options.

1.2.3.  Lustre Networking (LNet)

Lustre Networking (LNet) is a custom networking API that provides the communication infrastructure
that handles metadata and file I/O data for the Lustre file system servers and clients. For more information
about LNet, see Chapter 2, Understanding Lustre Networking (LNet).

1.2.4.  Lustre Cluster

At scale, a Lustre file system cluster can include hundreds of OSSs and thousands of clients (see Figure 1.2,
“ Lustre cluster at scale”). More than one type of network can be used in a Lustre cluster. Shared
storage between OSSs enables failover capability. For more details about OSS failover, see Chapter 3,
Understanding Failover in a Lustre File System.



Understanding Lustre Architecture

9

Figure 1.2.  Lustre cluster at scale

1.3.   Lustre File System Storage and I/O
Lustre File IDentifiers (FIDs) are used internally for identifying files or objects, similar to inode numbers
in local filesystems. A FID is a 128-bit identifier, which contains a unique 64-bit sequence number (SEQ),
a 32-bit object ID (OID), and a 32-bit version number. The sequence number is unique across all Lustre
targets in a file system (OSTs and MDTs). This allows multiple MDTs and OSTs to uniquely identify
objects without depending on identifiers in the underlying filesystem (e.g. inode numbers) that are likely
to be duplicated between targets. The FID SEQ number also allows mapping a FID to a particular MDT
or OST.

The LFSCK file system consistency checking tool provides functionality that enables FID-in-dirent for
existing files. It includes the following functionality:

• Verifies the FID stored with each directory entry and regenerates it from the inode if it is invalid or
missing.

• Verifies the linkEA entry for each inode and regenerates it if invalid or missing. The linkEA stores the
file name and parent FID. It is stored as an extended attribute in each inode. Thus, the linkEA can be
used to reconstruct the full path name of a file from only the FID.

Information about where file data is located on the OST(s) is stored as an extended attribute called layout
EA in an MDT object identified by the FID for the file (see Figure 1.3, “Layout EA on MDT pointing to
file data on OSTs”). If the file is a regular file (not a directory or symbol link), the MDT object points to 1-
to-N OST object(s) on the OST(s) that contain the file data. If the MDT file points to one object, all the file
data is stored in that object. If the MDT file points to more than one object, the file data is striped across
the objects using RAID 0, and each object is stored on a different OST. (For more information about how
striping is implemented in a Lustre file system, see Section 1.3.1, “ Lustre File System and Striping”.



Understanding Lustre Architecture

10

Figure 1.3. Layout EA on MDT pointing to file data on OSTs

When a client wants to read from or write to a file, it first fetches the layout EA from the MDT object for the
file. The client then uses this information to perform I/O on the file, directly interacting with the OSS nodes
where the objects are stored. This process is illustrated in Figure 1.4, “Lustre client requesting file data” .

Figure 1.4. Lustre client requesting file data

The available bandwidth of a Lustre file system is determined as follows:

• The network bandwidth equals the aggregated bandwidth of the OSSs to the targets.



Understanding Lustre Architecture

11

• The disk bandwidth equals the sum of the disk bandwidths of the storage targets (OSTs) up to the limit
of the network bandwidth.

• The aggregate bandwidth equals the minimum of the disk bandwidth and the network bandwidth.

• The available file system space equals the sum of the available space of all the OSTs.

1.3.1.   Lustre File System and Striping

One of the main factors leading to the high performance of Lustre file systems is the ability to stripe data
across multiple OSTs in a round-robin fashion. Users can optionally configure for each file the number
of stripes, stripe size, and OSTs that are used.

Striping can be used to improve performance when the aggregate bandwidth to a single file exceeds the
bandwidth of a single OST. The ability to stripe is also useful when a single OST does not have enough
free space to hold an entire file. For more information about benefits and drawbacks of file striping, see
Section 19.2, “ Lustre File Layout (Striping) Considerations”.

Striping allows segments or 'chunks' of data in a file to be stored on different OSTs, as shown in Figure 1.5,
“File striping on a Lustre file system”. In the Lustre file system, a RAID 0 pattern is used in which
data is "striped" across a certain number of objects. The number of objects in a single file is called the
stripe_count.

Each object contains a chunk of data from the file. When the chunk of data being written to a particular
object exceeds the stripe_size, the next chunk of data in the file is stored on the next object.

Default values for stripe_count and stripe_size are set for the file system. The default value
for stripe_count is 1 stripe for file and the default value for stripe_size is 1MB. The user may
change these values on a per directory or per file basis. For more details, see Section 19.3, “Setting the
File Layout/Striping Configuration (lfs setstripe)”.

Figure 1.5, “File striping on a Lustre file system”, the stripe_size for File C is larger than
the stripe_size for File A, allowing more data to be stored in a single stripe for File C. The
stripe_count for File A is 3, resulting in data striped across three objects, while the stripe_count
for File B and File C is 1.

No space is reserved on the OST for unwritten data. File A in Figure 1.5, “File striping on a Lustre file
system”.



Understanding Lustre Architecture

12

Figure 1.5. File striping on a Lustre file system

The maximum file size is not limited by the size of a single target. In a Lustre file system, files can be
striped across multiple objects (up to 2000), and each object can be up to 16 TiB in size with ldiskfs, or up
to 256PiB with ZFS. This leads to a maximum file size of 31.25 PiB for ldiskfs or 8EiB with ZFS. Note
that a Lustre file system can support files up to 2^63 bytes (8EiB), limited only by the space available
on the OSTs.

Note

ldiskfs filesystems without the ea_inode feature limit the maximum stripe count for a single
file to 160 OSTs.

Although a single file can only be striped over 2000 objects, Lustre file systems can have thousands of
OSTs. The I/O bandwidth to access a single file is the aggregated I/O bandwidth to the objects in a file,
which can be as much as a bandwidth of up to 2000 servers. On systems with more than 2000 OSTs, clients
can do I/O using multiple files to utilize the full file system bandwidth.

For more information about striping, see Chapter 19, Managing File Layout (Striping) and Free Space.

Extended Attributes(xattrs)

Lustre uses lov_user_md_v1/lov_user_md_v3 data-structures to maintain its file striping information
under xattrs. Extended attributes are created when files and directory are created. Lustre uses trusted
extended attributes to store its parameters which are root-only accessible. The parameters are:

• trusted.lov: Holds layout for a regular file, or default file layout stored on a directory (also
accessible as lustre.lov for non-root users).

• trusted.lma: Holds FID and extra state flags for current file

• trusted.lmv: Holds layout for a striped directory (DNE 2), not present otherwise

• trusted.link: Holds parent directory FID + filename for each link to a file (for lfs fid2path)

xattr which are stored and present in the file could be verify using:



Understanding Lustre Architecture

13

# getfattr -d -m - /mnt/testfs/file>



14

Chapter 2. Understanding Lustre
Networking (LNet)

This chapter introduces Lustre networking (LNet). It includes the following sections:

• Section 2.1, “ Introducing LNet”

• Section 2.2, “Key Features of LNet”

• Section 2.3, “Lustre Networks”

• Section 2.4, “Supported Network Types”

2.1.  Introducing LNet
In a cluster using one or more Lustre file systems, the network communication infrastructure required by
the Lustre file system is implemented using the Lustre networking (LNet) feature.

LNet supports many commonly-used network types, such as InfiniBand and IP networks, and allows
simultaneous availability across multiple network types with routing between them. Remote direct memory
access (RDMA) is permitted when supported by underlying networks using the appropriate Lustre network
driver (LND). High availability and recovery features enable transparent recovery in conjunction with
failover servers.

An LND is a pluggable driver that provides support for a particular network type, for example ksocklnd
is the driver which implements the TCP Socket LND that supports TCP networks. LNDs are loaded into
the driver stack, with one LND for each network type in use.

For information about configuring LNet, see Chapter 9, Configuring Lustre Networking (LNet).

For information about administering LNet, see Part III, “Administering Lustre”.

2.2. Key Features of LNet
Key features of LNet include:

• RDMA, when supported by underlying networks

• Support for many commonly-used network types

• High availability and recovery

• Support of multiple network types simultaneously

• Routing among disparate networks

LNet permits end-to-end read/write throughput at or near peak bandwidth rates on a variety of network
interconnects.

2.3. Lustre Networks
A Lustre network is comprised of clients and servers running the Lustre software. It need not be confined
to one LNet subnet but can span several networks provided routing is possible between the networks. In
a similar manner, a single network can have multiple LNet subnets.



Understanding Lustre
Networking (LNet)

15

The Lustre networking stack is comprised of two layers, the LNet code module and the LND. The LNet
layer operates above the LND layer in a manner similar to the way the network layer operates above
the data link layer. LNet layer is connectionless, asynchronous and does not verify that data has been
transmitted while the LND layer is connection oriented and typically does verify data transmission.

LNets are uniquely identified by a label comprised of a string corresponding to an LND and a number,
such as tcp0, o2ib0, or o2ib1, that uniquely identifies each LNet. Each node on an LNet has at least one
network identifier (NID). A NID is a combination of the address of the network interface and the LNet
label in the form:address@LNet_label.

Examples:

192.168.1.2@tcp0
10.13.24.90@o2ib1

In certain circumstances it might be desirable for Lustre file system traffic to pass between multiple LNets.
This is possible using LNet routing. It is important to realize that LNet routing is not the same as network
routing. For more details about LNet routing, see Chapter 9, Configuring Lustre Networking (LNet)

2.4. Supported Network Types
The LNet code module includes LNDs to support many network types including:

• InfiniBand: OpenFabrics OFED (o2ib)

• TCP (any network carrying TCP traffic, including GigE, 10GigE, and IPoIB)

• RapidArray: ra

• Quadrics: Elan



16

Chapter 3. Understanding Failover in a
Lustre File System

This chapter describes failover in a Lustre file system. It includes:

• Section 3.1, “ What is Failover?”

• Section 3.2, “ Failover Functionality in a Lustre File System”

3.1.  What is Failover?
In a high-availability (HA) system, unscheduled downtime is minimized by using redundant hardware and
software components and software components that automate recovery when a failure occurs. If a failure
condition occurs, such as the loss of a server or storage device or a network or software fault, the system's
services continue with minimal interruption. Generally, availability is specified as the percentage of time
the system is required to be available.

Availability is accomplished by replicating hardware and/or software so that when a primary server fails or
is unavailable, a standby server can be switched into its place to run applications and associated resources.
This process, called failover, is automatic in an HA system and, in most cases, completely application-
transparent.

A failover hardware setup requires a pair of servers with a shared resource (typically a physical storage
device, which may be based on SAN, NAS, hardware RAID, SCSI or Fibre Channel (FC) technology).
The method of sharing storage should be essentially transparent at the device level; the same physical
logical unit number (LUN) should be visible from both servers. To ensure high availability at the physical
storage level, we encourage the use of RAID arrays to protect against drive-level failures.

Note

The Lustre software does not provide redundancy for data; it depends exclusively on redundancy
of backing storage devices. The backing OST storage should be RAID 5 or, preferably, RAID 6
storage. MDT storage should be RAID 1 or RAID 10.

3.1.1.  Failover Capabilities
To establish a highly-available Lustre file system, power management software or hardware and high
availability (HA) software are used to provide the following failover capabilities:

• Resource fencing- Protects physical storage from simultaneous access by two nodes.

• Resource management- Starts and stops the Lustre resources as a part of failover, maintains the cluster
state, and carries out other resource management tasks.

• Health monitoring- Verifies the availability of hardware and network resources and responds to health
indications provided by the Lustre software.

These capabilities can be provided by a variety of software and/or hardware solutions. For more
information about using power management software or hardware and high availability (HA) software
with a Lustre file system, see Chapter 11, Configuring Failover in a Lustre File System.



Understanding Failover
in a Lustre File System

17

HA software is responsible for detecting failure of the primary Lustre server node and controlling the
failover.The Lustre software works with any HA software that includes resource (I/O) fencing. For proper
resource fencing, the HA software must be able to completely power off the failed server or disconnect
it from the shared storage device. If two active nodes have access to the same storage device, data may
be severely corrupted.

3.1.2.  Types of Failover Configurations
Nodes in a cluster can be configured for failover in several ways. They are often configured in pairs (for
example, two OSTs attached to a shared storage device), but other failover configurations are also possible.
Failover configurations include:

• Active/passive pair - In this configuration, the active node provides resources and serves data, while
the passive node is usually standing by idle. If the active node fails, the passive node takes over and
becomes active.

• Active/active pair - In this configuration, both nodes are active, each providing a subset of resources.
In case of a failure, the second node takes over resources from the failed node.

If there is a single MDT in a filesystem, two MDSes can be configured as an active/passive pair, while pairs
of OSSes can be deployed in an active/active configuration that improves OST availability without extra
overhead. Often the standby MDS is the active MDS for another Lustre file system or the MGS, so no nodes
are idle in the cluster. If there are multiple MDTs in a filesystem, active-active failover configurations are
available for MDSs that serve MDTs on shared storage.

3.2.  Failover Functionality in a Lustre File
System

The failover functionality provided by the Lustre software can be used for the following failover scenario.
When a client attempts to do I/O to a failed Lustre target, it continues to try until it receives an answer
from any of the configured failover nodes for the Lustre target. A user-space application does not detect
anything unusual, except that the I/O may take longer to complete.

Failover in a Lustre file system requires that two nodes be configured as a failover pair, which must share
one or more storage devices. A Lustre file system can be configured to provide MDT or OST failover.

• For MDT failover, two MDSs can be configured to serve the same MDT. Only one MDS node can
serve any MDT at one time. By placing two or more MDT devices on storage shared by two MDSs,
one MDS can fail and the remaining MDS can begin serving the unserved MDT. This is described as
an active/active failover pair.

• For OST failover, multiple OSS nodes can be configured to be able to serve the same OST. However,
only one OSS node can serve the OST at a time. An OST can be moved between OSS nodes that have
access to the same storage device using umount/mount commands.

The --servicenode option is used to set up nodes in a Lustre file system for failover at creation time
(using mkfs.lustre) or later when the Lustre file system is active (using tunefs.lustre). For
explanations of these utilities, see Section 44.12, “ mkfs.lustre”and Section 44.15, “ tunefs.lustre”.

Failover capability in a Lustre file system can be used to upgrade the Lustre software between successive
minor versions without cluster downtime. For more information, see Chapter 17, Upgrading a Lustre File
System.

For information about configuring failover, see Chapter 11, Configuring Failover in a Lustre File System.



Understanding Failover
in a Lustre File System

18

Note

The Lustre software provides failover functionality only at the file system level. In a complete
failover solution, failover functionality for system-level components, such as node failure
detection or power control, must be provided by a third-party tool.

Caution

OST failover functionality does not protect against corruption caused by a disk failure. If the
storage media (i.e., physical disk) used for an OST fails, it cannot be recovered by functionality
provided in the Lustre software. We strongly recommend that some form of RAID be used for
OSTs. Lustre functionality assumes that the storage is reliable, so it adds no extra reliability
features.

3.2.1.  MDT Failover Configuration (Active/Passive)
Two MDSs are typically configured as an active/passive failover pair as shown in Figure 3.1, “Lustre
failover configuration for a active/passive MDT”. Note that both nodes must have access to shared storage
for the MDT(s) and the MGS. The primary (active) MDS manages the Lustre system metadata resources.
If the primary MDS fails, the secondary (passive) MDS takes over these resources and serves the MDTs
and the MGS.

Note

In an environment with multiple file systems, the MDSs can be configured in a quasi active/active
configuration, with each MDS managing metadata for a subset of the Lustre file system.

Figure 3.1. Lustre failover configuration for a active/passive MDT

3.2.2.  MDT Failover Configuration (Active/Active)
MDTs can be configured as an active/active failover configuration. A failover cluster is built from two
MDSs as shown in Figure 3.2, “Lustre failover configuration for a active/active MDTs”.



Understanding Failover
in a Lustre File System

19

Figure 3.2. Lustre failover configuration for a active/active MDTs

3.2.3.  OST Failover Configuration (Active/Active)

OSTs are usually configured in a load-balanced, active/active failover configuration. A failover cluster is
built from two OSSs as shown in Figure 3.3, “Lustre failover configuration for an OSTs”.

Note

OSSs configured as a failover pair must have shared disks/RAID.

Figure 3.3. Lustre failover configuration for an OSTs

In an active configuration, 50% of the available OSTs are assigned to one OSS and the remaining OSTs
are assigned to the other OSS. Each OSS serves as the primary node for half the OSTs and as a failover
node for the remaining OSTs.



Understanding Failover
in a Lustre File System

20

In this mode, if one OSS fails, the other OSS takes over all of the failed OSTs. The clients attempt to connect
to each OSS serving the OST, until one of them responds. Data on the OST is written synchronously, and
the clients replay transactions that were in progress and uncommitted to disk before the OST failure.

For more information about configuring failover, see Chapter 11, Configuring Failover in a Lustre File
System.



Part II. Installing and
Configuring Lustre

Part II describes how to install and configure a Lustre file system. You will find information in this section about:

• Installation Overview

• Determining Hardware Configuration Requirements and Formatting Options

• Configuring Storage on a Lustre File System

• Setting Up Network Interface Bonding

• Installing the Lustre Software

• Configuring Lustre Networking (LNet)

• Configuring a Lustre File System

• Configuring Failover in a Lustre File System



22

Table of Contents
4. Installation Overview ...................................................................................................  24

4.1. Steps to Installing the Lustre Software ....................................................................  24
5. Determining Hardware Configuration Requirements and Formatting Options ....................  25

5.1. Hardware Considerations ...................................................................................... 25
5.1.1. MGT and MDT Storage Hardware Considerations ..........................................  26
5.1.2. OST Storage Hardware Considerations .........................................................  27

5.2. Determining Space Requirements ..........................................................................  27
5.2.1. Determining MGT Space Requirements ........................................................  28
5.2.2. Determining MDT Space Requirements ........................................................  28
5.2.3. Determining OST Space Requirements .........................................................  29

5.3. Setting ldiskfs File System Formatting Options ........................................................  29
5.3.1. Setting Formatting Options for an ldiskfs MDT ..............................................  30
5.3.2. Setting Formatting Options for an ldiskfs OST ...............................................  31

5.4. File and File System Limits ..................................................................................  31
5.5. Determining Memory Requirements .......................................................................  35

5.5.1. Client Memory Requirements .....................................................................  35
5.5.2. MDS Memory Requirements ......................................................................  35
5.5.3. OSS Memory Requirements .......................................................................  36

5.6. Implementing Networks To Be Used by the Lustre File System ...................................  37
6. Configuring Storage on a Lustre File System ..................................................................  39

6.1. Selecting Storage for the MDT and OSTs ...............................................................  39
6.1.1. Metadata Target (MDT) ............................................................................  39
6.1.2. Object Storage Server (OST) ......................................................................  39

6.2. Reliability Best Practices ...................................................................................... 40
6.3. Performance Tradeoffs .........................................................................................  40
6.4. Formatting Options for ldiskfs RAID Devices ..........................................................  40

6.4.1. Computing file system parameters for mkfs ...................................................  41
6.4.2. Choosing Parameters for an External Journal .................................................  41

6.5. Connecting a SAN to a Lustre File System ..............................................................  42
7. Setting Up Network Interface Bonding ........................................................................... 43

7.1. Network Interface Bonding Overview .....................................................................  43
7.2. Requirements .....................................................................................................  43
7.3. Bonding Module Parameters .................................................................................  44
7.4. Setting Up Bonding ............................................................................................  45

7.4.1. Examples ................................................................................................  47
7.5. Configuring a Lustre File System with Bonding .......................................................  48
7.6. Bonding References ............................................................................................  48

8. Installing the Lustre Software .......................................................................................  50
8.1. Preparing to Install the Lustre Software ..................................................................  50

8.1.1. Software Requirements ..............................................................................  50
8.1.2. Environmental Requirements ......................................................................  52

8.2. Lustre Software Installation Procedure ....................................................................  52
9. Configuring Lustre Networking (LNet) ..........................................................................  55

9.1. Configuring LNet via lnetctl ...................................................................  L 2.7 55
9.1.1. Configuring LNet .....................................................................................  56
9.1.2. Displaying Global Settings .........................................................................  56
9.1.3. Adding, Deleting and Showing Networks ......................................................  56
9.1.4. Manual Adding, Deleting and Showing Peers .......................................  L 2.10 58
9.1.5. Dynamic Peer Discovery .................................................................. L 2.11 60
9.1.6. Adding, Deleting and Showing routes ..........................................................  61
9.1.7. Enabling and Disabling Routing ..................................................................  62



Installing and Configuring Lustre

23

9.1.8. Showing routing information ......................................................................  62
9.1.9. Configuring Routing Buffers ......................................................................  62
9.1.10. Asymmetrical Routes ..................................................................... L 2.13 63
9.1.11. Importing YAML Configuration File ..........................................................  64
9.1.12. Exporting Configuration in YAML format ...................................................  64
9.1.13. Showing LNet Traffic Statistics .................................................................  64
9.1.14. YAML Syntax .......................................................................................  64

9.2. Overview of LNet Module Parameters ....................................................................  66
9.2.1. Using a Lustre Network Identifier (NID) to Identify a Node .............................  66

9.3. Setting the LNet Module networks Parameter ..........................................................  67
9.3.1. Multihome Server Example ........................................................................  68

9.4. Setting the LNet Module ip2nets Parameter .............................................................  68
9.5. Setting the LNet Module routes Parameter ..............................................................  70

9.5.1. Routing Example ...................................................................................... 70
9.6. Testing the LNet Configuration .............................................................................  70
9.7. Configuring the Router Checker ............................................................................  71
9.8. Best Practices for LNet Options ............................................................................  72

9.8.1. Escaping commas with quotes ....................................................................  72
9.8.2. Including comments ..................................................................................  72

10. Configuring a Lustre File System ................................................................................  73
10.1. Configuring a Simple Lustre File System ..............................................................  73

10.1.1. Simple Lustre Configuration Example ........................................................  76
10.2. Additional Configuration Options .........................................................................  81

10.2.1. Scaling the Lustre File System ..................................................................  81
10.2.2. Changing Striping Defaults .......................................................................  81
10.2.3. Using the Lustre Configuration Utilities ......................................................  82

11. Configuring Failover in a Lustre File System ................................................................  83
11.1. Setting Up a Failover Environment ....................................................................... 83

11.1.1. Selecting Power Equipment ......................................................................  83
11.1.2. Selecting Power Management Software ....................................................... 83
11.1.3. Selecting High-Availability (HA) Software ..................................................  84

11.2. Preparing a Lustre File System for Failover ...........................................................  84
11.3. Administering Failover in a Lustre File System ......................................................  85



24

Chapter 4. Installation Overview
This chapter provides on overview of the procedures required to set up, install and configure a Lustre file
system.

Note

If the Lustre file system is new to you, you may find it helpful to refer to Part I, “Introducing
the Lustre* File System” for a description of the Lustre architecture, file system components and
terminology before proceeding with the installation procedure.

4.1.   Steps to Installing the Lustre Software
To set up Lustre file system hardware and install and configure the Lustre software, refer the the chapters
below in the order listed:

1. (Required) Set up your Lustre file system hardware.

See Chapter 5, Determining Hardware Configuration Requirements and Formatting Options - Provides
guidelines for configuring hardware for a Lustre file system including storage, memory, and networking
requirements.

2. (Optional - Highly Recommended) Configure storage on Lustre storage devices.

See Chapter 6, Configuring Storage on a Lustre File System - Provides instructions for setting up
hardware RAID on Lustre storage devices.

3. (Optional) Set up network interface bonding.

See Chapter 7, Setting Up Network Interface Bonding - Describes setting up network interface bonding
to allow multiple network interfaces to be used in parallel to increase bandwidth or redundancy.

4. (Required) Install Lustre software.

See Chapter 8, Installing the Lustre Software - Describes preparation steps and a procedure for installing
the Lustre software.

5. (Optional) Configure Lustre Networking (LNet).

See Chapter 9, Configuring Lustre Networking (LNet) - Describes how to configure LNet if the default
configuration is not sufficient. By default, LNet will use the first TCP/IP interface it discovers on a
system. LNet configuration is required if you are using InfiniBand or multiple Ethernet interfaces.

6. (Required) Configure the Lustre file system.

See Chapter 10, Configuring a Lustre File System - Provides an example of a simple Lustre
configuration procedure and points to tools for completing more complex configurations.

7. (Optional) Configure Lustre failover.

See Chapter 11, Configuring Failover in a Lustre File System - Describes how to configure Lustre
failover.



25

Chapter 5. Determining Hardware
Configuration Requirements and
Formatting Options

This chapter describes hardware configuration requirements for a Lustre file system including:

• Section 5.1, “ Hardware Considerations”

• Section 5.2, “ Determining Space Requirements”

• Section 5.3, “ Setting ldiskfs File System Formatting Options ”

• Section 5.5, “Determining Memory Requirements”

• Section 5.6, “Implementing Networks To Be Used by the Lustre File System”

5.1.    Hardware Considerations
A Lustre file system can utilize any kind of block storage device such as single disks, software RAID,
hardware RAID, or a logical volume manager. In contrast to some networked file systems, the block
devices are only attached to the MDS and OSS nodes in a Lustre file system and are not accessed by the
clients directly.

Since the block devices are accessed by only one or two server nodes, a storage area network (SAN) that is
accessible from all the servers is not required. Expensive switches are not needed because point-to-point
connections between the servers and the storage arrays normally provide the simplest and best attachments.
(If failover capability is desired, the storage must be attached to multiple servers.)

For a production environment, it is preferable that the MGS have separate storage to allow future expansion
to multiple file systems. However, it is possible to run the MDS and MGS on the same machine and have
them share the same storage device.

For best performance in a production environment, dedicated clients are required. For a non-production
Lustre environment or for testing, a Lustre client and server can run on the same machine. However,
dedicated clients are the only supported configuration.

Warning

Performance and recovery issues can occur if you put a client on an MDS or OSS:

• Running the OSS and a client on the same machine can cause issues with low memory and
memory pressure. If the client consumes all the memory and then tries to write data to the file
system, the OSS will need to allocate pages to receive data from the client but will not be able
to perform this operation due to low memory. This can cause the client to hang.

• Running the MDS and a client on the same machine can cause recovery and deadlock issues
and impact the performance of other Lustre clients.

Only servers running on 64-bit CPUs are tested and supported. 64-bit CPU clients are typically used for
testing to match expected customer usage and avoid limitations due to the 4 GB limit for RAM size, 1
GB low-memory limitation, and 16 TB file size limit of 32-bit CPUs. Also, due to kernel API limitations,



Determining Hardware Configuration
Requirements and Formatting Options

26

performing backups of Lustre filesystems on 32-bit clients may cause backup tools to confuse files that
report the same 32-bit inode number, if the backup tools depend on the inode number for correct operation.

The storage attached to the servers typically uses RAID to provide fault tolerance and can optionally be
organized with logical volume management (LVM), which is then formatted as a Lustre file system. Lustre
OSS and MDS servers read, write and modify data in the format imposed by the file system.

The Lustre file system uses journaling file system technology on both the MDTs and OSTs. For a MDT,
as much as a 20 percent performance gain can be obtained by placing the journal on a separate device.

The MDS can effectively utilize a lot of CPU cycles. A minimum of four processor cores are recommended.
More are advisable for files systems with many clients.

Note

Lustre clients running on different CPU architectures is supported. One limitation is that the
PAGE_SIZE kernel macro on the client must be as large as the PAGE_SIZE of the server. In
particular, ARM or PPC clients with large pages (up to 64kB pages) can run with x86 servers
(4kB pages).

5.1.1.  MGT and MDT Storage Hardware Considerations
MGT storage requirements are small (less than 100 MB even in the largest Lustre file systems), and the data
on an MGT is only accessed on a server/client mount, so disk performance is not a consideration. However,
this data is vital for file system access, so the MGT should be reliable storage, preferably mirrored RAID1.

MDS storage is accessed in a database-like access pattern with many seeks and read-and-writes of small
amounts of data. Storage types that provide much lower seek times, such as SSD or NVMe is strongly
preferred for the MDT, and high-RPM SAS is acceptable.

For maximum performance, the MDT should be configured as RAID1 with an internal journal and two
disks from different controllers.

If you need a larger MDT, create multiple RAID1 devices from pairs of disks, and then make a RAID0 array
of the RAID1 devices. For ZFS, use mirror VDEVs for the MDT. This ensures maximum reliability
because multiple disk failures only have a small chance of hitting both disks in the same RAID1 device.

Doing the opposite (RAID1 of a pair of RAID0 devices) has a 50% chance that even two disk failures
can cause the loss of the whole MDT device. The first failure disables an entire half of the mirror and the
second failure has a 50% chance of disabling the remaining mirror.

If multiple MDTs are going to be present in the system, each MDT should be specified for the anticipated
usage and load. For details on how to add additional MDTs to the filesystem, see Section 14.7, “Adding
a New MDT to a Lustre File System”.

Warning

MDT0000 contains the root of the Lustre file system. If MDT0000 is unavailable for any reason,
the file system cannot be used.

Note

Using the DNE feature it is possible to dedicate additional MDTs to sub-directories off the file
system root directory stored on MDT0000, or arbitrarily for lower-level subdirectories, using
the lfs mkdir -i mdt_index command. If an MDT serving a subdirectory becomes



Determining Hardware Configuration
Requirements and Formatting Options

27

unavailable, any subdirectories on that MDT and all directories beneath it will also become
inaccessible. This is typically useful for top-level directories to assign different users or projects
to separate MDTs, or to distribute other large working sets of files to multiple MDTs.

Introduced in Lustre 2.8

Note

Starting in the 2.8 release it is possible to spread a single large directory across multiple MDTs
using the DNE striped directory feature by specifying multiple stripes (or shards) at creation time
using the lfs mkdir -c stripe_count command, where stripe_count is often the
number of MDTs in the filesystem. Striped directories should not be used for all directories in the
filesystem, since this incurs extra overhead compared to unstriped directories. This is indended
for specific applications where many output files are being created in one large directory (over
50k entries).

5.1.2. OST Storage Hardware Considerations
The data access pattern for the OSS storage is a streaming I/O pattern that is dependent on the access
patterns of applications being used. Each OSS can manage multiple object storage targets (OSTs), one for
each volume with I/O traffic load-balanced between servers and targets. An OSS should be configured to
have a balance between the network bandwidth and the attached storage bandwidth to prevent bottlenecks
in the I/O path. Depending on the server hardware, an OSS typically serves between 2 and 8 targets, with
each target between 24-48TB, but may be up to 256 terabytes (TBs) in size.

Lustre file system capacity is the sum of the capacities provided by the targets. For example, 64 OSSs, each
with two 8 TB OSTs, provide a file system with a capacity of nearly 1 PB. If each OST uses ten 1 TB SATA
disks (8 data disks plus 2 parity disks in a RAID-6 configuration), it may be possible to get 50 MB/sec
from each drive, providing up to 400 MB/sec of disk bandwidth per OST. If this system is used as storage
backend with a system network, such as the InfiniBand network, that provides a similar bandwidth, then
each OSS could provide 800 MB/sec of end-to-end I/O throughput. (Although the architectural constraints
described here are simple, in practice it takes careful hardware selection, benchmarking and integration
to obtain such results.)

5.2.   Determining Space Requirements
The desired performance characteristics of the backing file systems on the MDT and OSTs are independent
of one another. The size of the MDT backing file system depends on the number of inodes needed in the
total Lustre file system, while the aggregate OST space depends on the total amount of data stored on the
file system. If MGS data is to be stored on the MDT device (co-located MGT and MDT), add 100 MB
to the required size estimate for the MDT.

Each time a file is created on a Lustre file system, it consumes one inode on the MDT and one OST object
over which the file is striped. Normally, each file's stripe count is based on the system-wide default stripe
count. However, this can be changed for individual files using the lfs setstripe option. For more
details, see Chapter 19, Managing File Layout (Striping) and Free Space.

In a Lustre ldiskfs file system, all the MDT inodes and OST objects are allocated when the file system
is first formatted. When the file system is in use and a file is created, metadata associated with that file
is stored in one of the pre-allocated inodes and does not consume any of the free space used to store file
data. The total number of inodes on a formatted ldiskfs MDT or OST cannot be easily changed. Thus,
the number of inodes created at format time should be generous enough to anticipate near term expected
usage, with some room for growth without the effort of additional storage.



Determining Hardware Configuration
Requirements and Formatting Options

28

By default, the ldiskfs file system used by Lustre servers to store user-data objects and system data reserves
5% of space that cannot be used by the Lustre file system. Additionally, an ldiskfs Lustre file system
reserves up to 400 MB on each OST, and up to 4GB on each MDT for journal use and a small amount
of space outside the journal to store accounting data. This reserved space is unusable for general storage.
Thus, at least this much space will be used per OST before any file object data is saved.

With a ZFS backing filesystem for the MDT or OST, the space allocation for inodes and file data is
dynamic, and inodes are allocated as needed. A minimum of 4kB of usable space (before mirroring)
is needed for each inode, exclusive of other overhead such as directories, internal log files, extended
attributes, ACLs, etc. ZFS also reserves approximately 3% of the total storage space for internal and
redundant metadata, which is not usable by Lustre. Since the size of extended attributes and ACLs is highly
dependent on kernel versions and site-specific policies, it is best to over-estimate the amount of space
needed for the desired number of inodes, and any excess space will be utilized to store more inodes.

5.2.1.   Determining MGT Space Requirements
Less than 100 MB of space is typically required for the MGT. The size is determined by the total number
of servers in the Lustre file system cluster(s) that are managed by the MGS.

5.2.2.   Determining MDT Space Requirements
When calculating the MDT size, the important factor to consider is the number of files to be stored in the
file system, which depends on at least 2 KiB per inode of usable space on the MDT. Since MDTs typically
use RAID-1+0 mirroring, the total storage needed will be double this.

Please note that the actual used space per MDT depends on the number of files per directory, the number
of stripes per file, whether files have ACLs or user xattrs, and the number of hard links per file. The storage
required for Lustre file system metadata is typically 1-2 percent of the total file system capacity depending
upon file size. If the Chapter 20, Data on MDT (DoM) feature is in use for Lustre 2.11 or later, MDT space
should typically be 5 percent or more of the total space, depending on the distribution of small files within
the filesystem and the lod.*.dom_stripesize limit on the MDT and file layout used.

For ZFS-based MDT filesystems, the number of inodes created on the MDT and OST is dynamic, so there
is less need to determine the number of inodes in advance, though there still needs to be some thought
given to the total MDT space compared to the total filesystem size.

For example, if the average file size is 5 MiB and you have 100 TiB of usable OST space, then you can
calculate the minimum total number of inodes for MDTs and OSTs as follows:

(500 TB * 1000000 MB/TB) / 5 MB/inode = 100M inodes

It is recommended that the MDT(s) have at least twice the minimum number of inodes to allow for future
expansion and allow for an average file size smaller than expected. Thus, the minimum space for ldiskfs
MDT(s) should be approximately:

2 KiB/inode x 100 million inodes x 2 = 400 GiB ldiskfs MDT

For details about formatting options for ldiskfs MDT and OST file systems, see Section 5.3.1, “Setting
Formatting Options for an ldiskfs MDT”.

Note

If the median file size is very small, 4 KB for example, the MDT would use as much space for
each file as the space used on the OST, so the use of Data-on-MDT is strongly recommended



Determining Hardware Configuration
Requirements and Formatting Options

29

in that case. The MDT space per inode should be increased correspondingly to account for the
extra data space usage for each inode:

6 KiB/inode x 100 million inodes x 2 = 1200 GiB ldiskfs MDT

Note

If the MDT has too few inodes, this can cause the space on the OSTs to be inaccessible since no
new files can be created. In this case, the lfs df -i and df -i commands will limit the number
of available inodes reported for the filesystem to match the total number of available objects
on the OSTs. Be sure to determine the appropriate MDT size needed to support the filesystem
before formatting. It is possible to increase the number of inodes after the file system is formatted,
depending on the storage. For ldiskfs MDT filesystems the resize2fs tool can be used if the
underlying block device is on a LVM logical volume and the underlying logical volume size
can be increased. For ZFS new (mirrored) VDEVs can be added to the MDT pool to increase
the total space available for inode storage. Inodes will be added approximately in proportion to
space added.

Note

Note that the number of total and free inodes reported by lfs df -i for ZFS MDTs and
OSTs is estimated based on the current average space used per inode. When a ZFS filesystem
is first formatted, this free inode estimate will be very conservative (low) due to the high ratio
of directories to regular files created for internal Lustre metadata storage, but this estimate will
improve as more files are created by regular users and the average file size will better reflect
actual site usage.

Note

Using the DNE remote directory feature it is possible to increase the total number of inodes of
a Lustre filesystem, as well as increasing the aggregate metadata performance, by configuring
additional MDTs into the filesystem, see Section 14.7, “Adding a New MDT to a Lustre File
System” for details.

5.2.3.   Determining OST Space Requirements

For the OST, the amount of space taken by each object depends on the usage pattern of the users/
applications running on the system. The Lustre software defaults to a conservative estimate for the average
object size (between 64 KiB per object for 10 GiB OSTs, and 1 MiB per object for 16 TiB and larger
OSTs). If you are confident that the average file size for your applications will be different than this, you
can specify a different average file size (number of total inodes for a given OST size) to reduce file system
overhead and minimize file system check time. See Section 5.3.2, “Setting Formatting Options for an
ldiskfs OST” for more details.

5.3.    Setting ldiskfs File System Formatting
Options

By default, the mkfs.lustre utility applies these options to the Lustre backing file system used to
store data and metadata in order to enhance Lustre file system performance and scalability. These options
include:



Determining Hardware Configuration
Requirements and Formatting Options

30

• flex_bg - When the flag is set to enable this flexible-block-groups feature, block and inode bitmaps
for multiple groups are aggregated to minimize seeking when bitmaps are read or written and to reduce
read/modify/write operations on typical RAID storage (with 1 MiB RAID stripe widths). This flag is
enabled on both OST and MDT file systems. On MDT file systems the flex_bg factor is left at the
default value of 16. On OSTs, the flex_bg factor is set to 256 to allow all of the block or inode bitmaps
in a single flex_bg to be read or written in a single 1MiB I/O typical for RAID storage.

• huge_file - Setting this flag allows files on OSTs to be larger than 2 TiB in size.

• lazy_journal_init - This extended option is enabled to prevent a full overwrite to zero out the
large journal that is allocated by default in a Lustre file system (up to 400 MiB for OSTs, up to 4GiB
for MDTs), to reduce the formatting time.

To override the default formatting options, use arguments to mkfs.lustre to pass formatting options
to the backing file system:

--mkfsoptions='backing fs options'

For other mkfs.lustre options, see the Linux man page for mke2fs(8).

5.3.1. Setting Formatting Options for an ldiskfs MDT
The number of inodes on the MDT is determined at format time based on the total size of the file system to
be created. The default bytes-per-inode ratio ("inode ratio") for an ldiskfs MDT is optimized at one inode
for every 2560 bytes of file system space.

This setting takes into account the space needed for additional ldiskfs filesystem-wide metadata, such as
the journal (up to 4 GB), bitmaps, and directories, as well as files that Lustre uses internally to maintain
cluster consistency. There is additional per-file metadata such as file layout for files with a large number
of stripes, Access Control Lists (ACLs), and user extended attributes.

Introduced in Lustre 2.11

Starting in Lustre 2.11, the Chapter 20, Data on MDT (DoM) (DoM) feature allows storing small files
on the MDT to take advantage of high-performance flash storage, as well as reduce space and network
overhead. If you are planning to use the DoM feature with an ldiskfs MDT, it is recommended to increase
the bytes-per-inode ratio to have enough space on the MDT for small files, as described below.

It is possible to change the recommended default of 2560 bytes per inode for an ldiskfs MDT when it is first
formatted by adding the --mkfsoptions="-i bytes-per-inode" option to mkfs.lustre.
Decreasing the inode ratio tunable bytes-per-inode will create more inodes for a given MDT size,
but will leave less space for extra per-file metadata and is not recommended. The inode ratio must always
be strictly larger than the MDT inode size, which is 1024 bytes by default. It is recommended to use an
inode ratio at least 1536 bytes larger than the inode size to ensure the MDT does not run out of space.
Increasing the inode ratio with enough space for the most commonly file size (e.g. 5632 or 66560 bytes if
4KB or 64KB files are widely used) is recommended for DoM.

The size of the inode may be changed at format time by adding the --stripe-count-hint=N to
have mkfs.lustre automatically calculate a reasonable inode size based on the default stripe count that
will be used by the filesystem, or directly by specifying the --mkfsoptions="-I inode-size"
option. Increasing the inode size will provide more space in the inode for a larger Lustre file layout, ACLs,
user and system extended attributes, SELinux and other security labels, and other internal metadata and
DoM data. However, if these features or other in-inode xattrs are not needed, a larger inode size may hurt
metadata performance as 2x, 4x, or 8x as much data would be read or written for each MDT inode access.



Determining Hardware Configuration
Requirements and Formatting Options

31

5.3.2. Setting Formatting Options for an ldiskfs OST
When formatting an OST file system, it can be beneficial to take local file system usage into account,
for example by running df and df -i on a current filesystem to get the used bytes and used inodes
respectively, then computing the average bytes-per-inode value. When deciding on the ratio for a new
filesystem, try to avoid having too many inodes on each OST, while keeping enough margin to allow for
future usage of smaller files. This helps reduce the format and e2fsck time and makes more space available
for data.

The table below shows the default bytes-per-inode ratio ("inode ratio") used for OSTs of various sizes
when they are formatted.

Table 5.1. Default Inode Ratios Used for Newly Formatted OSTs

LUN/OST size Default Inode ratio Total inodes

under 10GiB 1 inode/16KiB 640 - 655k

10GiB - 1TiB 1 inode/68KiB 153k - 15.7M

1TiB - 8TiB 1 inode/256KiB 4.2M - 33.6M

over 8TiB 1 inode/1MiB 8.4M - 268M

In environments with few small files, the default inode ratio may result in far too many inodes for the
average file size. In this case, performance can be improved by increasing the number of bytes-per-
inode. To set the inode ratio, use the --mkfsoptions="-i bytes-per-inode" argument to
mkfs.lustre to specify the expected average (mean) size of OST objects. For example, to create an
OST with an expected average object size of 8 MiB run:

[oss#] mkfs.lustre --ost --mkfsoptions="-i $((8192 * 1024))" ...

Note

OSTs formatted with ldiskfs should preferably have fewer than 320 million objects per MDT,
and up to a maximum of 4 billion inodes. Specifying a very small bytes-per-inode ratio for a large
OST that exceeds this limit can cause either premature out-of-space errors and prevent the full
OST space from being used, or will waste space and slow down e2fsck more than necessary. The
default inode ratios are chosen to ensure the total number of inodes remain below this limit.

Note

File system check time on OSTs is affected by a number of variables in addition to the number
of inodes, including the size of the file system, the number of allocated blocks, the distribution
of allocated blocks on the disk, disk speed, CPU speed, and the amount of RAM on the server.
Reasonable file system check times for valid filesystems are 5-30 minutes per TiB, but may
increase significantly if substantial errors are detected and need to be repaired.

For further details about optimizing MDT and OST file systems, see Section 6.4, “ Formatting Options
for ldiskfs RAID Devices”.

5.4. File and File System Limits
Table 5.2, “File and file system limits” describes current known limits of Lustre. These limits may be
imposed by either the Lustre architecture or the Linux virtual file system (VFS) and virtual memory



Determining Hardware Configuration
Requirements and Formatting Options

32

subsystems. In a few cases, a limit is defined within the code Lustre based on tested values and could be
changed by editing and re-compiling the Lustre software. In these cases, the indicated limit was used for
testing of the Lustre software.

Table 5.2. File and file system limits

Limit Value Description

Maximum number of MDTs 256 A single MDS can host one or more MDTs,
either for separate filesystems, or aggregated
into a single namespace. Each filesystem
requires a separate MDT for the filesystem
root directory. Up to 255 more MDTs can
be added to the filesystem and are attached
into the filesystem namespace with creation of
DNE remote or striped directories.

Maximum number of OSTs 8150 The maximum number of OSTs is a constant
that can be changed at compile time. Lustre
file systems with up to 4000 OSTs have been
configured in the past. Multiple OST targets
can be configured on a single OSS node.

Maximum OST size 1024TiB (ldiskfs),
1024TiB (ZFS)

This is not a hard limit. Larger OSTs are
possible, but most production systems do
not typically go beyond the stated limit
per OST because Lustre can add capacity
and performance with additional OSTs, and
having more OSTs improves aggregate I/
O performance, minimizes contention, and
allows parallel recovery (e2fsck for ldiskfs
OSTs, scrub for ZFS OSTs).

With 32-bit kernels, due to page cache limits,
16TB is the maximum block device size,
which in turn applies to the size of OST. It
is strongly recommended to run Lustre clients
and servers with 64-bit kernels.

Maximum number of clients 131072 The maximum number of clients is a constant
that can be changed at compile time. Up to
30000 clients have been used in production
accessing a single filesystem.

Maximum size of a single file
system

2EiB or larger Each OST can have a file system up to
the "Maximum OST size" limit, and the
Maximum number of OSTs can be combined
into a single filesystem.

Maximum stripe count 2000 This limit is imposed by the size of the
layout that needs to be stored on disk and
sent in RPC requests, but is not a hard limit
of the protocol. The number of OSTs in the
filesystem can exceed the stripe count, but this
is the maximum number of OSTs on which a
single file can be striped.

Introduced in Lustre 2.13



Determining Hardware Configuration
Requirements and Formatting Options

33

Limit Value Description

Note

Before 2.13, the default for ldiskfs
MDTs the maximum stripe count
for a single file is limited
to 160 OSTs. In order to
increase the maximum file stripe
count, use --mkfsoptions="-
O ea_inode" when formatting
the MDT, or use tune2fs -O
ea_inode to enable it after the
MDT has been formatted.

Maximum stripe size < 4 GiB The amount of data written to each object
before moving on to next object.

Minimum stripe size 64 KiB Due to the use of 64 KiB PAGE_SIZE on
some CPU architectures such as ARM and
POWER, the minimum stripe size is 64 KiB
so that a single page is not split over multiple
servers. This is also the minimum Data-on-
MDT component size that can be specified.

Maximum single object size 16TiB (ldiskfs),
256TiB (ZFS)

The amount of data that can be stored in
a single object. An object corresponds to a
stripe. The ldiskfs limit of 16 TB for a single
object applies. For ZFS the limit is the size of
the underlying OST. Files can consist of up
to 2000 stripes, each stripe can be up to the
maximum object size.

Maximum file size 16 TiB on 32-bit
systems

31.25 PiB on 64-bit
ldiskfs systems, 8EiB
on 64-bit ZFS systems

Individual files have a hard limit of nearly 16
TiB on 32-bit systems imposed by the kernel
memory subsystem. On 64-bit systems this
limit does not exist. Hence, files can be 2^63
bits (8EiB) in size if the backing filesystem
can support large enough objects and/or the
files are sparse.

A single file can have a maximum of 2000
stripes, which gives an upper single file
data capacity of 31.25 PiB for 64-bit ldiskfs
systems. The actual amount of data that can
be stored in a file depends upon the amount
of free space in each OST on which the file is
striped.

Maximum number of files or
subdirectories in a single directory

600M-3.8B files
(ldiskfs), 16T (ZFS)

The Lustre software uses the ldiskfs hashed
directory code, which has a limit of at least
600 million files, depending on the length of
the file name. The limit on subdirectories is
the same as the limit on regular files.

Introduced in Lustre 2.8



Determining Hardware Configuration
Requirements and Formatting Options

34

Limit Value Description

Note

Starting in the 2.8 release it is
possible to exceed this limit by
striping a single directory over
multiple MDTs with the lfs
mkdir -c command, which
increases the single directory limit by
a factor of the number of directory
stripes used.

Introduced in Lustre 2.12

Note

In the 2.12 release, the large_dir
feature of ldiskfs was added to allow
the use of directories over 10M
entries, but not enabled by default.

Introduced in Lustre 2.14

Note

Starting in the 2.14 release, the
large_dir feature is enabled by
default.

Maximum number of files in the
file system

4 billion (ldiskfs),
256 trillion (ZFS) per
MDT

The ldiskfs filesystem imposes an upper
limit of 4 billion inodes per filesystem. By
default, the MDT filesystem is formatted
with one inode per 2KB of space, meaning
512 million inodes per TiB of MDT space.
This can be increased initially at the time
of MDT filesystem creation. For more
information, see Chapter 5, Determining
Hardware Configuration Requirements and
Formatting Options.

The ZFS filesystem dynamically allocates
inodes and does not have a fixed ratio of
inodes per unit of MDT space, but consumes
approximately 4KiB of mirrored space per
inode, depending on the configuration.

Each additional MDT can hold up to
the above maximum number of additional
files, depending on available space and
the distribution directories and files in the
filesystem.



Determining Hardware Configuration
Requirements and Formatting Options

35

Limit Value Description

Maximum length of a filename 255 bytes (filename) This limit is 255 bytes for a single filename,
the same as the limit in the underlying
filesystems.

Maximum length of a pathname 4096 bytes
(pathname)

The Linux VFS imposes a full pathname
length of 4096 bytes.

Maximum number of open files
for a Lustre file system

No limit The Lustre software does not impose a
maximum for the number of open files, but the
practical limit depends on the amount of RAM
on the MDS. No "tables" for open files exist
on the MDS, as they are only linked in a list
to a given client's export. Each client process
has a limit of several thousands of open files
which depends on its ulimit.

5.5. Determining Memory Requirements
This section describes the memory requirements for each Lustre file system component.

5.5.1.   Client Memory Requirements
A minimum of 2 GB RAM is recommended for clients.

5.5.2. MDS Memory Requirements
MDS memory requirements are determined by the following factors:

• Number of clients

• Size of the directories

• Load placed on server

The amount of memory used by the MDS is a function of how many clients are on the system, and how
many files they are using in their working set. This is driven, primarily, by the number of locks a client
can hold at one time. The number of locks held by clients varies by load and memory availability on the
server. Interactive clients can hold in excess of 10,000 locks at times. On the MDS, memory usage is
approximately 2 KB per file, including the Lustre distributed lock manager (LDLM) lock and kernel data
structures for the files currently in use. Having file data in cache can improve metadata performance by a
factor of 10x or more compared to reading it from storage.

MDS memory requirements include:

• File system metadata: A reasonable amount of RAM needs to be available for file system metadata.
While no hard limit can be placed on the amount of file system metadata, if more RAM is available,
then the disk I/O is needed less often to retrieve the metadata.

• Network transport: If you are using TCP or other network transport that uses system memory for send/
receive buffers, this memory requirement must also be taken into consideration.



Determining Hardware Configuration
Requirements and Formatting Options

36

• Journal size: By default, the journal size is 4096 MB for each MDT ldiskfs file system. This can pin
up to an equal amount of RAM on the MDS node per file system.

• Failover configuration: If the MDS node will be used for failover from another node, then the RAM
for each journal should be doubled, so the backup server can handle the additional load if the primary
server fails.

5.5.2.1. Calculating MDS Memory Requirements

By default, 4096 MB are used for the ldiskfs filesystem journal. Additional RAM is used for caching file
data for the larger working set, which is not actively in use by clients but should be kept "hot" for improved
access times. Approximately 1.5 KB per file is needed to keep a file in cache without a lock.

For example, for a single MDT on an MDS with 1,024 compute nodes, 12 interactive login nodes, and a
20 million file working set (of which 9 million files are cached on the clients at one time):

Operating system overhead = 4096 MB (RHEL8)

File system journal = 4096 MB

1024 * 32-core clients * 256 files/core * 2KB = 16384 MB

12 interactive clients * 100,000 files * 2KB = 2400 MB

20 million file working set * 1.5KB/file = 30720 MB

Thus, a reasonable MDS configuration for this workload is at least 60 GB of RAM. For active-active
DNE MDT failover pairs, each MDS should have at least 96 GB of RAM. The additional memory can be
used during normal operation to allow more metadata and locks to be cached and improve performance,
depending on the workload.

For directories containing 1 million or more files, more memory can provide a significant benefit. For
example, in an environment where clients randomly a single directory with 10 million files can consume
as much as 35GB of RAM on the MDS.

5.5.3. OSS Memory Requirements
When planning the hardware for an OSS node, consider the memory usage of several components in the
Lustre file system (i.e., journal, service threads, file system metadata, etc.). Also, consider the effect of the
OSS read cache feature, which consumes memory as it caches data on the OSS node.

In addition to the MDS memory requirements mentioned above, the OSS requirements also include:

• Service threads: The service threads on the OSS node pre-allocate an RPC-sized MB I/O buffer for each
ost_io service thread, so these large buffers do not need to be allocated and freed for each I/O request.

• OSS read cache: OSS read cache provides read-only caching of data on an HDD-based OSS, using
the regular Linux page cache to store the data. Just like caching from a regular file system in the Linux
operating system, OSS read cache uses as much physical memory as is available.

The same calculation applies to files accessed from the OSS as for the MDS, but the load is typically
distributed over more OSS nodes, so the amount of memory required for locks, inode cache, etc. listed for
the MDS is spread out over the OSS nodes.

Because of these memory requirements, the following calculations should be taken as determining the
minimum RAM required in an OSS node.



Determining Hardware Configuration
Requirements and Formatting Options

37

5.5.3.1. Calculating OSS Memory Requirements

The minimum recommended RAM size for an OSS with eight OSTs, handling objects for 1/4 of the active
files for the MDS:

Linux kernel and userspace daemon memory = 4096 MB

Network send/receive buffers (16 MB * 512 threads) = 8192 MB

1024 MB ldiskfs journal size * 8 OST devices = 8192 MB

16 MB read/write buffer per OST IO thread * 512 threads = 8192 MB

2048 MB file system read cache * 8 OSTs = 16384 MB

1024 * 32-core clients * 64 objects/core * 2KB/object = 4096 MB

12 interactive clients * 25,000 objects * 2KB/object = 600 MB

5 million object working set * 1.5KB/object = 7500 MB

For a non-failover configuration, the minimum RAM would be about 60 GB for an OSS node with eight
OSTs. Additional memory on the OSS will improve the performance of reading smaller, frequently-
accessed files.

For a failover configuration, the minimum RAM would be about 90 GB, as some of the memory is per-
node. When the OSS is not handling any failed-over OSTs the extra RAM will be used as a read cache.

As a reasonable rule of thumb, about 24 GB of base memory plus 4 GB per OST can be used. In failover
configurations, about 8 GB per primary OST is needed.

5.6. Implementing Networks To Be Used by the
Lustre File System

As a high performance file system, the Lustre file system places heavy loads on networks. Thus, a network
interface in each Lustre server and client is commonly dedicated to Lustre file system traffic. This is often
a dedicated TCP/IP subnet, although other network hardware can also be used.

A typical Lustre file system implementation may include the following:

• A high-performance backend network for the Lustre servers, typically an InfiniBand (IB) network.

• A larger client network.

• Lustre routers to connect the two networks.

Lustre networks and routing are configured and managed by specifying parameters to the Lustre
Networking (lnet) module in /etc/modprobe.d/lustre.conf.

To prepare to configure Lustre networking, complete the following steps:

1. Identify all machines that will be running Lustre software and the network interfaces they will
use to run Lustre file system traffic. These machines will form the Lustre network .

A network is a group of nodes that communicate directly with one another. The Lustre software
includes Lustre network drivers (LNDs) to support a variety of network types and hardware (see



Determining Hardware Configuration
Requirements and Formatting Options

38

Chapter 2, Understanding Lustre Networking (LNet) for a complete list). The standard rules for
specifying networks applies to Lustre networks. For example, two TCP networks on two different
subnets (tcp0 and tcp1) are considered to be two different Lustre networks.

2. If routing is needed, identify the nodes to be used to route traffic between networks.

If you are using multiple network types, then you will need a router. Any node with appropriate
interfaces can route Lustre networking (LNet) traffic between different network hardware types or
topologies --the node may be a server, a client, or a standalone router. LNet can route messages between
different network types (such as TCP-to-InfiniBand) or across different topologies (such as bridging
two InfiniBand or TCP/IP networks). Routing will be configured in Chapter 9, Configuring Lustre
Networking (LNet).

3. Identify the network interfaces to include in or exclude from LNet.

If not explicitly specified, LNet uses either the first available interface or a pre-defined default for a
given network type. Interfaces that LNet should not use (such as an administrative network or IP-over-
IB), can be excluded.

Network interfaces to be used or excluded will be specified using the lnet kernel module parameters
networks and ip2nets as described in Chapter 9, Configuring Lustre Networking (LNet).

4. To ease the setup of networks with complex network configurations, determine a cluster-wide
module configuration.

For large clusters, you can configure the networking setup for all nodes by using a single, unified set
of parameters in the lustre.conf file on each node. Cluster-wide configuration is described in
Chapter 9, Configuring Lustre Networking (LNet).

Note

We recommend that you use 'dotted-quad' notation for IP addresses rather than host names to
make it easier to read debug logs and debug configurations with multiple interfaces.



39

Chapter 6. Configuring Storage on a
Lustre File System

This chapter describes best practices for storage selection and file system options to optimize performance
on RAID, and includes the following sections:

• Section 6.1, “ Selecting Storage for the MDT and OSTs”

• Section 6.2, “Reliability Best Practices”

• Section 6.3, “Performance Tradeoffs”

• Section 6.4, “ Formatting Options for ldiskfs RAID Devices”

• Section 6.5, “Connecting a SAN to a Lustre File System”

Note

It is strongly recommended that storage used in a Lustre file system be configured with
hardware RAID. The Lustre software does not support redundancy at the file system level and
RAID is required to protect against disk failure.

6.1.   Selecting Storage for the MDT and OSTs
The Lustre architecture allows the use of any kind of block device as backend storage. The characteristics
of such devices, particularly in the case of failures, vary significantly and have an impact on configuration
choices.

This section describes issues and recommendations regarding backend storage.

6.1.1. Metadata Target (MDT)
I/O on the MDT is typically mostly reads and writes of small amounts of data. For this reason, we
recommend that you use RAID 1 for MDT storage. If you require more capacity for an MDT than one
disk provides, we recommend RAID 1 + 0 or RAID 10.

6.1.2. Object Storage Server (OST)
A quick calculation makes it clear that without further redundancy, RAID 6 is required for large clusters
and RAID 5 is not acceptable:

For a 2 PB file system (2,000 disks of 1 TB capacity) assume the mean time to failure
(MTTF) of a disk is about 1,000 days. This means that the expected failure rate is
2000/1000 = 2 disks per day. Repair time at 10% of disk bandwidth is 1000 GB at 10MB/
sec = 100,000 sec, or about 1 day.

For a RAID 5 stripe that is 10 disks wide, during 1 day of rebuilding, the chance that
a second disk in the same array will fail is about 9/1000 or about 1% per day. After 50
days, you have a 50% chance of a double failure in a RAID 5 array leading to data loss.

Therefore, RAID 6 or another double parity algorithm is needed to provide sufficient
redundancy for OST storage.



Configuring Storage on
a Lustre File System

40

For better performance, we recommend that you create RAID sets with 4 or 8 data disks plus one or two
parity disks. Using larger RAID sets will negatively impact performance compared to having multiple
independent RAID sets.

To maximize performance for small I/O request sizes, storage configured as RAID 1+0 can yield much
better results but will increase cost or reduce capacity.

6.2. Reliability Best Practices
RAID monitoring software is recommended to quickly detect faulty disks and allow them to be replaced
to avoid double failures and data loss. Hot spare disks are recommended so that rebuilds happen without
delays.

Backups of the metadata file systems are recommended. For details, see Chapter 18, Backing Up and
Restoring a File System.

6.3. Performance Tradeoffs
A writeback cache in a RAID storage controller can dramatically increase write performance on many
types of RAID arrays if the writes are not done at full stripe width. Unfortunately, unless the RAID array
has battery-backed cache (a feature only found in some higher-priced hardware RAID arrays), interrupting
the power to the array may result in out-of-sequence or lost writes, and corruption of RAID parity and/
or filesystem metadata, resulting in data loss.

Having a read or writeback cache onboard a PCI adapter card installed in an MDS or OSS is NOT SAFE
in a high-availability (HA) failover configuration, as this will result in inconsistencies between nodes and
immediate or eventual filesystem corruption. Such devices should not be used, or should have the onboard
cache disabled.

If writeback cache is enabled, a file system check is required after the array loses power. Data may also
be lost because of this.

Therefore, we recommend against the use of writeback cache when data integrity is critical. You should
carefully consider whether the benefits of using writeback cache outweigh the risks.

6.4.  Formatting Options for ldiskfs RAID
Devices

When formatting an ldiskfs file system on a RAID device, it can be beneficial to ensure that I/O requests are
aligned with the underlying RAID geometry. This ensures that Lustre RPCs do not generate unnecessary
disk operations which may reduce performance dramatically. Use the --mkfsoptions parameter to
specify additional parameters when formatting the OST or MDT.

For RAID 5, RAID 6, or RAID 1+0 storage, specifying the following option to the --mkfsoptions
parameter option improves the layout of the file system metadata, ensuring that no single disk contains
all of the allocation bitmaps:

-E stride = chunk_blocks 

The chunk_blocks variable is in units of 4096-byte blocks and represents the amount of contiguous
data written to a single disk before moving to the next disk. This is alternately referred to as the RAID
stripe size. This is applicable to both MDT and OST file systems.



Configuring Storage on
a Lustre File System

41

For more information on how to override the defaults while formatting MDT or OST file systems, see
Section 5.3, “ Setting ldiskfs File System Formatting Options ”.

6.4.1. Computing file system parameters for mkfs
For best results, use RAID 5 with 5 or 9 disks or RAID 6 with 6 or 10 disks, each on a different controller.
The stripe width is the optimal minimum I/O size. Ideally, the RAID configuration should allow 1 MB
Lustre RPCs to fit evenly on a single RAID stripe without an expensive read-modify-write cycle. Use
this formula to determine the stripe_width, where number_of_data_disks does not include the
RAID parity disks (1 for RAID 5 and 2 for RAID 6):

stripe_width_blocks = chunk_blocks * number_of_data_disks = 1 MB 

If the RAID configuration does not allow chunk_blocks to fit evenly into 1 MB, select
stripe_width_blocks, such that is close to 1 MB, but not larger.

The stripe_width_blocks value must equal chunk_blocks * number_of_data_disks.
Specifying the stripe_width_blocks parameter is only relevant for RAID 5 or RAID 6, and is not
needed for RAID 1 plus 0.

Run --reformat on the file system device (/dev/sdc), specifying the RAID geometry to the
underlying ldiskfs file system, where:

--mkfsoptions "other_options -E stride=chunk_blocks, stripe_width=stripe_width_blocks"

A RAID 6 configuration with 6 disks has 4 data and 2 parity disks. The chunk_blocks <= 1024KB/4
= 256KB.

Because the number of data disks is equal to the power of 2, the stripe width is equal to 1 MB.

--mkfsoptions "other_options -E stride=chunk_blocks, stripe_width=stripe_width_blocks"...

6.4.2. Choosing Parameters for an External Journal
If you have configured a RAID array and use it directly as an OST, it contains both data and metadata.
For better performance, we recommend putting the OST journal on a separate device, by creating a small
RAID 1 array and using it as an external journal for the OST.

In a typical Lustre file system, the default OST journal size is up to 1GB, and the default MDT journal size
is up to 4GB, in order to handle a high transaction rate without blocking on journal flushes. Additionally,
a copy of the journal is kept in RAM. Therefore, make sure you have enough RAM on the servers to hold
copies of all journals.

The file system journal options are specified to mkfs.lustre using the --mkfsoptions parameter.
For example:

--mkfsoptions "other_options -j -J device=/dev/mdJ" 

To create an external journal, perform these steps for each OST on the OSS:

1. Create a 400 MB (or larger) journal partition (RAID 1 is recommended).

In this example, /dev/sdb is a RAID 1 device.

2. Create a journal device on the partition. Run:



Configuring Storage on
a Lustre File System

42

oss# mke2fs -b 4096 -O journal_dev /dev/sdb journal_size

The value of journal_size is specified in units of 4096-byte blocks. For example, 262144 for a
1 GB journal size.

3. Create the OST.

In this example, /dev/sdc is the RAID 6 device to be used as the OST, run:

[oss#] mkfs.lustre --ost ... \
--mkfsoptions="-J device=/dev/sdb1" /dev/sdc

4. Mount the OST as usual.

6.5. Connecting a SAN to a Lustre File System
Depending on your cluster size and workload, you may want to connect a SAN to a Lustre file system.
Before making this connection, consider the following:

• In many SAN file systems, clients allocate and lock blocks or inodes individually as they are updated.
The design of the Lustre file system avoids the high contention that some of these blocks and inodes
may have.

• The Lustre file system is highly scalable and can have a very large number of clients. SAN switches
do not scale to a large number of nodes, and the cost per port of a SAN is generally higher than other
networking.

• File systems that allow direct-to-SAN access from the clients have a security risk because clients can
potentially read any data on the SAN disks, and misbehaving clients can corrupt the file system for
many reasons like improper file system, network, or other kernel software, bad cabling, bad memory,
and so on. The risk increases with increase in the number of clients directly accessing the storage.



43

Chapter 7. Setting Up Network
Interface Bonding

This chapter describes how to use multiple network interfaces in parallel to increase bandwidth and/or
redundancy. Topics include:

• Section 7.1, “Network Interface Bonding Overview”

• Section 7.2, “Requirements”

• Section 7.3, “Bonding Module Parameters”

• Section 7.4, “Setting Up Bonding”

• Section 7.5, “Configuring a Lustre File System with Bonding”

• Section 7.6, “Bonding References”

Note

Using network interface bonding is optional.

7.1. Network Interface Bonding Overview
Bonding, also known as link aggregation, trunking and port trunking, is a method of aggregating multiple
physical network links into a single logical link for increased bandwidth.

Several different types of bonding are available in the Linux distribution. All these types are referred to
as 'modes', and use the bonding kernel module.

Modes 0 to 3 allow load balancing and fault tolerance by using multiple interfaces. Mode 4 aggregates a
group of interfaces into a single virtual interface where all members of the group share the same speed
and duplex settings. This mode is described under IEEE spec 802.3ad, and it is referred to as either 'mode
4' or '802.3ad.'

7.2. Requirements
The most basic requirement for successful bonding is that both endpoints of the connection must be capable
of bonding. In a normal case, the non-server endpoint is a switch. (Two systems connected via crossover
cables can also use bonding.) Any switch used must explicitly handle 802.3ad Dynamic Link Aggregation.

The kernel must also be configured with bonding. All supported Lustre kernels have bonding functionality.
The network driver for the interfaces to be bonded must have the ethtool functionality to determine slave
speed and duplex settings. All recent network drivers implement it.

To verify that your interface works with ethtool, run:

# which ethtool
/sbin/ethtool
 
# ethtool eth0



Setting Up Network Interface Bonding

44

Settings for eth0:
           Supported ports: [ TP MII ]
           Supported link modes:   10baseT/Half 10baseT/Full
                                   100baseT/Half 100baseT/Full
           Supports auto-negotiation: Yes
           Advertised link modes:  10baseT/Half 10baseT/Full
                                   100baseT/Half 100baseT/Full
           Advertised auto-negotiation: Yes
           Speed: 100Mb/s
           Duplex: Full
           Port: MII
           PHYAD: 1
           Transceiver: internal
           Auto-negotiation: on
           Supports Wake-on: pumbg
           Wake-on: d
           Current message level: 0x00000001 (1)
           Link detected: yes
 
# ethtool eth1
 
Settings for eth1:
   Supported ports: [ TP MII ]
   Supported link modes:   10baseT/Half 10baseT/Full
                           100baseT/Half 100baseT/Full
   Supports auto-negotiation: Yes
   Advertised link modes:  10baseT/Half 10baseT/Full
   100baseT/Half 100baseT/Full
   Advertised auto-negotiation: Yes
   Speed: 100Mb/s
   Duplex: Full
   Port: MII
   PHYAD: 32
   Transceiver: internal
   Auto-negotiation: on
   Supports Wake-on: pumbg
   Wake-on: d
   Current message level: 0x00000007 (7)
   Link detected: yes
   To quickly check whether your kernel supports bonding, run:     
   # grep ifenslave /sbin/ifup
   # which ifenslave
   /sbin/ifenslave

7.3. Bonding Module Parameters
Bonding module parameters control various aspects of bonding.

Outgoing traffic is mapped across the slave interfaces according to the transmit hash policy. We
recommend that you set the xmit_hash_policy option to the layer3+4 option for bonding. This policy
uses upper layer protocol information if available to generate the hash. This allows traffic to a particular
network peer to span multiple slaves, although a single connection does not span multiple slaves.

$ xmit_hash_policy=layer3+4



Setting Up Network Interface Bonding

45

The miimon option enables users to monitor the link status. (The parameter is a time interval in
milliseconds.) It makes an interface failure transparent to avoid serious network degradation during link
failures. A reasonable default setting is 100 milliseconds; run:

$ miimon=100

For a busy network, increase the timeout.

7.4. Setting Up Bonding
To set up bonding:

1. Create a virtual 'bond' interface by creating a configuration file:

# vi /etc/sysconfig/network-scripts/ifcfg-bond0

2. Append the following lines to the file.

DEVICE=bond0
IPADDR=192.168.10.79 # Use the free IP Address of your network
NETWORK=192.168.10.0
NETMASK=255.255.255.0
USERCTL=no
BOOTPROTO=none
ONBOOT=yes

3. Attach one or more slave interfaces to the bond interface. Modify the eth0 and eth1 configuration files
(using a VI text editor).

a. Use the VI text editor to open the eth0 configuration file.

# vi /etc/sysconfig/network-scripts/ifcfg-eth0

b. Modify/append the eth0 file as follows:

DEVICE=eth0
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

c. Use the VI text editor to open the eth1 configuration file.

# vi /etc/sysconfig/network-scripts/ifcfg-eth1

d. Modify/append the eth1 file as follows:

DEVICE=eth1
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

4. Set up the bond interface and its options in /etc/modprobe.d/bond.conf. Start the slave
interfaces by your normal network method.



Setting Up Network Interface Bonding

46

# vi /etc/modprobe.d/bond.conf

a. Append the following lines to the file.

alias bond0 bonding
options bond0 mode=balance-alb miimon=100

b. Load the bonding module.

# modprobe bonding
# ifconfig bond0 up
# ifenslave bond0 eth0 eth1

5. Start/restart the slave interfaces (using your normal network method).

Note

You must modprobe the bonding module for each bonded interface. If you wish to create
bond0 and bond1, two entries in bond.conf file are required.

The examples below are from systems running Red Hat Enterprise Linux. For setup use: /etc/
sysconfig/networking-scripts/ifcfg-* The website referenced below includes detailed
instructions for other configuration methods, instructions to use DHCP with bonding, and other setup
details. We strongly recommend you use this website.

http://www.linuxfoundation.org/networking/bonding [https://wiki.linuxfoundation.org/networking/
bonding]

6. Check /proc/net/bonding to determine status on bonding. There should be a file there for each bond
interface.

# cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v3.0.3 (March 23, 2006)
 
Bonding Mode: load balancing (round-robin)
MII Status: up
MII Polling Interval (ms): 0
Up Delay (ms): 0
Down Delay (ms): 0
 
Slave Interface: eth0
MII Status: up
Link Failure Count: 0
Permanent HW addr: 4c:00:10:ac:61:e0
 
Slave Interface: eth1
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:14:2a:7c:40:1d

7. Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded interface as 'bond0.'

ifconfig
bond0      Link encap:Ethernet  HWaddr 4C:00:10:AC:61:E0
   inet addr:192.168.10.79  Bcast:192.168.10.255 \     Mask:255.255.255.0

https://wiki.linuxfoundation.org/networking/bonding
https://wiki.linuxfoundation.org/networking/bonding
https://wiki.linuxfoundation.org/networking/bonding


Setting Up Network Interface Bonding

47

   inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link
   UP BROADCAST RUNNING MASTER MULTICAST  MTU:1500 Metric:1
   RX packets:3091 errors:0 dropped:0 overruns:0 frame:0
   TX packets:880 errors:0 dropped:0 overruns:0 carrier:0
   collisions:0 txqueuelen:0
   RX bytes:314203 (306.8 KiB)  TX bytes:129834 (126.7 KiB)
 
eth0       Link encap:Ethernet  HWaddr 4C:00:10:AC:61:E0
   inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link
   UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500 Metric:1
   RX packets:1581 errors:0 dropped:0 overruns:0 frame:0
   TX packets:448 errors:0 dropped:0 overruns:0 carrier:0
   collisions:0 txqueuelen:1000
   RX bytes:162084 (158.2 KiB)  TX bytes:67245 (65.6 KiB)
   Interrupt:193 Base address:0x8c00
 
eth1       Link encap:Ethernet  HWaddr 4C:00:10:AC:61:E0
   inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link
   UP BROADCAST RUNNING SLAVE MULTICAST  MTU:1500 Metric:1
   RX packets:1513 errors:0 dropped:0 overruns:0 frame:0
   TX packets:444 errors:0 dropped:0 overruns:0 carrier:0
   collisions:0 txqueuelen:1000
   RX bytes:152299 (148.7 KiB)  TX bytes:64517 (63.0 KiB)
   Interrupt:185 Base address:0x6000

7.4.1. Examples
This is an example showing bond.conf entries for bonding Ethernet interfaces eth1 and eth2 to
bond0:

# cat /etc/modprobe.d/bond.conf
alias eth0 8139too
alias eth1 via-rhine
alias bond0 bonding
options bond0 mode=balance-alb miimon=100
 
# cat /etc/sysconfig/network-scripts/ifcfg-bond0
DEVICE=bond0
BOOTPROTO=none
NETMASK=255.255.255.0
IPADDR=192.168.10.79 # (Assign here the IP of the bonded interface.)
ONBOOT=yes
USERCTL=no
 
ifcfg-ethx 
# cat /etc/sysconfig/network-scripts/ifcfg-eth0
TYPE=Ethernet
DEVICE=eth0
HWADDR=4c:00:10:ac:61:e0
BOOTPROTO=none
ONBOOT=yes
USERCTL=no
IPV6INIT=no
PEERDNS=yes



Setting Up Network Interface Bonding

48

MASTER=bond0
SLAVE=yes

In the following example, the bond0 interface is the master (MASTER) while eth0 and eth1 are slaves
(SLAVE).

Note

All slaves of bond0 have the same MAC address (Hwaddr) - bond0. All modes, except TLB
and ALB, have this MAC address. TLB and ALB require a unique MAC address for each slave.

$ /sbin/ifconfig
 
bond0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4
inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING MASTER MULTICAST MTU:1500  Metric:1
RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0
TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0
collisions:0 txqueuelen:0
 
eth0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4
inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500  Metric:1
RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0
TX packets:1643167 errors:1 dropped:0 overruns:1 carrier:0
collisions:0 txqueuelen:100
Interrupt:10 Base address:0x1080
 
eth1Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4
inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500  Metric:1
RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0
TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:9 Base address:0x1400

7.5. Configuring a Lustre File System with
Bonding

The Lustre software uses the IP address of the bonded interfaces and requires no special configuration.
The bonded interface is treated as a regular TCP/IP interface. If needed, specify bond0 using the Lustre
networks parameter in /etc/modprobe.

options lnet networks=tcp(bond0)

7.6. Bonding References
We recommend the following bonding references:

• In the Linux kernel source tree, see documentation/networking/bonding.txt

• http://linux-ip.net/html/ether-bonding.html [http://linux-ip.net/html/ether-bonding.html].

http://linux-ip.net/html/ether-bonding.html
http://linux-ip.net/html/ether-bonding.html


Setting Up Network Interface Bonding

49

• Linux Foundation bonding website:  https://www.linuxfoundation.org/networking/bonding [https://
www.linuxfoundation.org/networking/bonding]. This is the most extensive reference and we highly
recommend it. This website includes explanations of more complicated setups, including the use of
DHCP with bonding.

https://www.linuxfoundation.org/networking/bonding
https://www.linuxfoundation.org/networking/bonding
https://www.linuxfoundation.org/networking/bonding


50

Chapter 8. Installing the Lustre
Software

This chapter describes how to install the Lustre software from RPM packages. It includes:

• Section 8.1, “ Preparing to Install the Lustre Software”

• Section 8.2, “Lustre Software Installation Procedure”

For hardware and system requirements and hardware configuration information, see Chapter 5,
Determining Hardware Configuration Requirements and Formatting Options.

8.1.  Preparing to Install the Lustre Software
You can install the Lustre software from downloaded packages (RPMs) or directly from the source code.
This chapter describes how to install the Lustre RPM packages. Instructions to install from source code
are beyond the scope of this document, and can be found elsewhere online.

The Lustre RPM packages are tested on current versions of Linux enterprise distributions at the time they
are created. See the release notes for each version for specific details.

8.1.1. Software Requirements
To install the Lustre software from RPMs, the following are required:

• Lustre server packages . The required packages for Lustre 2.9 EL7 servers are listed in the table
below, where ver refers to the Lustre release and kernel version (e.g., 2.9.0-1.el7) and arch refers
to the processor architecture (e.g., x86_64). These packages are available in the  Lustre Releases
[https://wiki.whamcloud.com/display/PUB/Lustre+Releases] repository, and may differ depending on
your distro and version.

Table 8.1. Packages Installed on Lustre Servers

Package Name Description

kernel-ver_lustre.arch Linux kernel with Lustre software patches
(often referred to as "patched kernel")

lustre-ver.arch Lustre software command line tools

kmod-lustre-ver.arch Lustre-patched kernel modules

kmod-lustre-osd-ldiskfs-ver.arch Lustre back-end file system tools for ldiskfs-
based servers.

lustre-osd-ldiskfs-mount-ver.arch Helper library for mount.lustre and
mkfs.lustre for ldiskfs-based servers.

kmod-lustre-osd-zfs-ver.arch Lustre back-end file system tools for ZFS.
This is an alternative to lustre-osd-
ldiskfs (kmod-spl and kmod-zfs available
separately).

lustre-osd-zfs-mount-ver.arch Helper library for mount.lustre and
mkfs.lustre for ZFS-based servers (zfs
utilities available separately).

https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases


Installing the Lustre Software

51

Package Name Description

e2fsprogs Utilities to maintain Lustre ldiskfs back-end
file system(s)

lustre-tests-ver_lustre.arch Scripts and programs used for running
regression tests for Lustre, but likely only of
interest to Lustre developers or testers.

• Lustre client packages . The required packages for Lustre 2.9 EL7 clients are listed in the table below,
where ver refers to the Linux distribution (e.g., 3.6.18-348.1.1.el5). These packages are available in
the  Lustre Releases [https://wiki.whamcloud.com/display/PUB/Lustre+Releases] repository.

Table 8.2. Packages Installed on Lustre Clients

Package Name Description

kmod-lustre-client-ver.arch Patchless kernel modules for client

lustre-client-ver.arch Client command line tools

lustre-client-dkms-ver.arch Alternate client RPM to kmod-lustre-client
with Dynamic Kernel Module Support (DKMS)
installation. This avoids the need to install a new
RPM for each kernel update, but requires a full
build environment on the client.

Note

The version of the kernel running on a Lustre client must be the same as the version of
the kmod-lustre-client-ver package being installed, unless the DKMS package is
installed. If the kernel running on the client is not compatible, a kernel that is compatible must
be installed on the client before the Lustre file system software is used.

• Lustre LNet network driver (LND) . The Lustre LNDs provided with the Lustre software are listed
in the table below. For more information about Lustre LNet, see Chapter 2, Understanding Lustre
Networking (LNet).

Table 8.3. Network Types Supported by Lustre LNDs

Supported Network Types Notes

TCP Any network carrying TCP traffic, including GigE, 10GigE, and
IPoIB

InfiniBand network OpenFabrics OFED (o2ib)

gni Gemini (Cray)

Note

The InfiniBand and TCP Lustre LNDs are routinely tested during release cycles. The other LNDs
are maintained by their respective owners

• High availability software . If needed, install third party high-availability software. For more
information, see Section 11.2, “Preparing a Lustre File System for Failover”.

https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases


Installing the Lustre Software

52

• Optional packages. Optional packages provided in the  Lustre Releases [https://wiki.whamcloud.com/
display/PUB/Lustre+Releases] repository may include the following (depending on the operating
system and platform):

• kernel-debuginfo, kernel-debuginfo-common, lustre-debuginfo, lustre-
osd-ldiskfs-debuginfo- Versions of required packages with debugging symbols and other
debugging options enabled for use in troubleshooting.

• kernel-devel, - Portions of the kernel tree needed to compile third party modules, such as
network drivers.

• kernel-firmware- Standard Red Hat Enterprise Linux distribution that has been recompiled to
work with the Lustre kernel.

• kernel-headers- Header files installed under /user/include and used when compiling user-space,
kernel-related code.

• lustre-source- Lustre software source code.

• (Recommended) perf, perf-debuginfo, python-perf, python-perf-debuginfo-
Linux performance analysis tools that have been compiled to match the Lustre kernel version.

8.1.2. Environmental Requirements
Before installing the Lustre software, make sure the following environmental requirements are met.

• (Required)  Use the same user IDs (UID) and group IDs (GID) on all clients. If use of supplemental
groups is required, see Section 41.1, “User/Group Upcall” for information about supplementary user
and group cache upcall (identity_upcall).

• (Recommended)  Provide remote shell access to clients. It is recommended that all cluster nodes have
remote shell client access to facilitate the use of Lustre configuration and monitoring scripts. Parallel
Distributed SHell (pdsh) is preferable, although Secure SHell (SSH) is acceptable.

• (Recommended)  Ensure client clocks are synchronized. The Lustre file system uses client clocks for
timestamps. If clocks are out of sync between clients, files will appear with different time stamps when
accessed by different clients. Drifting clocks can also cause problems by, for example, making it difficult
to debug multi-node issues or correlate logs, which depend on timestamps. We recommend that you
use Network Time Protocol (NTP) to keep client and server clocks in sync with each other. For more
information about NTP, see: https://www.ntp.org [https://www.ntp.org/].

• (Recommended)  Make sure security extensions  (such as the Novell AppArmor *security system) and
network packet filtering tools  (such as iptables) do not interfere with the Lustre software.

8.2. Lustre Software Installation Procedure
Caution

Before installing the Lustre software, back up ALL data. The Lustre software contains kernel
modifications that interact with storage devices and may introduce security issues and data loss
if not installed, configured, or administered properly.

To install the Lustre software from RPMs, complete the steps below.

1. Verify that all Lustre installation requirements have been met.

https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://www.ntp.org/
https://www.ntp.org/


Installing the Lustre Software

53

• For hardware requirements, see Chapter 5, Determining Hardware Configuration Requirements and
Formatting Options.

• For software and environmental requirements, see the section Section 8.1, “ Preparing to Install the
Lustre Software”above.

2. Download the e2fsprogs RPMs for your platform from the  Lustre Releases [https://
wiki.whamcloud.com/display/PUB/Lustre+Releases] repository.

3. Download the Lustre server RPMs for your platform from the  Lustre Releases [https://
wiki.whamcloud.com/display/PUB/Lustre+Releases] repository. See Table 8.1, “Packages Installed on
Lustre Servers”for a list of required packages.

4. Install the Lustre server and e2fsprogs packages on all Lustre servers (MGS, MDSs, and OSSs).

a. Log onto a Lustre server as the root user

b. Use the yum command to install the packages:

# yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

c. Verify the packages are installed correctly:

rpm -qa|egrep "lustre|wc"|sort

d. Reboot the server.

e. Repeat these steps on each Lustre server.

5. Download the Lustre client RPMs for your platform from the  Lustre Releases [https://
wiki.whamcloud.com/display/PUB/Lustre+Releases] repository. See Table 8.2, “Packages Installed on
Lustre Clients”for a list of required packages.

6. Install the Lustre client packages on all Lustre clients.

Note

The version of the kernel running on a Lustre client must be the same as the version of the
lustre-client-modules- ver package being installed. If not, a compatible kernel
must be installed on the client before the Lustre client packages are installed.

a. Log onto a Lustre client as the root user.

b. Use the yum command to install the packages:

# yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

c. Verify the packages were installed correctly:

# rpm -qa|egrep "lustre|kernel"|sort

d. Reboot the client.

https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases


Installing the Lustre Software

54

e. Repeat these steps on each Lustre client.

To configure LNet, go to Chapter 9, Configuring Lustre Networking (LNet). If default settings will be used
for LNet, go to Chapter 10, Configuring a Lustre File System.



55

Chapter 9. Configuring Lustre
Networking (LNet)

This chapter describes how to configure Lustre Networking (LNet). It includes the following sections:

• Section 9.1, “Configuring LNet via lnetctl”

• Section 9.2, “ Overview of LNet Module Parameters”

• Section 9.3, “Setting the LNet Module networks Parameter”

• Section 9.4, “Setting the LNet Module ip2nets Parameter”

• Section 9.5, “Setting the LNet Module routes Parameter”

• Section 9.6, “Testing the LNet Configuration”

• Section 9.7, “Configuring the Router Checker”

• Section 9.8, “Best Practices for LNet Options”

Note

Configuring LNet is optional.

LNet will use the first TCP/IP interface it discovers on a system (eth0) if it's loaded using the
lctl network up. If this network configuration is sufficient, you do not need to configure
LNet. LNet configuration is required if you are using Infiniband or multiple Ethernet interfaces.

Introduced in Lustre 2.7

The lnetctl utility can be used to initialize LNet without bringing up any network
interfaces. Network interfaces can be added after configuring LNet via lnetctl. lnetctl
can also be used to manage an operational LNet. However, if it wasn't initialized by
lnetctl then lnetctl lnet configure must be invoked before lnetctl can be
used to manage LNet.

Introduced in Lustre 2.7

DLC also introduces a C-API to enable configuring LNet programatically. See Chapter 45,
LNet Configuration C-API

Introduced in Lustre 2.7

9.1. Configuring LNet via lnetctl
The lnetctl utility can be used to initialize and configure the LNet kernel module after it has been
loaded via modprobe. In general the lnetctl format is as follows:

lnetctl cmd subcmd [options]

The following configuration items are managed by the tool:

• Configuring/unconfiguring LNet



Configuring Lustre
Networking (LNet)

56

• Adding/removing/showing Networks

• Adding/removing/showing Routes

• Enabling/Disabling routing

• Configuring Router Buffer Pools

9.1.1. Configuring LNet
After LNet has been loaded via modprobe, lnetctl utility can be used to configure LNet without
bringing up networks which are specified in the module parameters. It can also be used to configure
network interfaces specified in the module prameters by providing the --all option.

lnetctl lnet configure [--all]
# --all: load NI configuration from module parameters

The lnetctl utility can also be used to unconfigure LNet.

lnetctl lnet unconfigure

9.1.2. Displaying Global Settings
The active LNet global settings can be displayed using the lnetctl command shown below:

lnetctl global show

For example:

# lnetctl global show
        global:
        numa_range: 0
        max_intf: 200
        discovery: 1
        drop_asym_route: 0

9.1.3. Adding, Deleting and Showing Networks
Networks can be added, deleted, or shown after the LNet kernel module is loaded.

The lnetctl net add  command is used to add networks:

lnetctl net add: add a network
        --net: net name (ex tcp0)
        --if: physical interface (ex eth0)
        --peer_timeout: time to wait before declaring a peer dead
        --peer_credits: defines the max number of inflight messages
        --peer_buffer_credits: the number of buffer credits per peer
        --credits: Network Interface credits
        --cpts: CPU Partitions configured net uses
        --help: display this help text

Example:
lnetctl net add --net tcp2 --if eth0



Configuring Lustre
Networking (LNet)

57

                --peer_timeout 180 --peer_credits 8

Introduced in Lustre 2.10

Note

With the addition of Software based Multi-Rail in Lustre 2.10, the following should be noted:

• --net: no longer needs to be unique since multiple interfaces can be added to the same network.

• --if: The same interface per network can be added only once, however, more than one interface
can now be specified (separated by a comma) for a node. For example: eth0,eth1,eth2.

For examples on adding multiple interfaces via lnetctl net add and/or YAML, please see
Section 16.2, “Configuring Multi-Rail”

Networks can be deleted with the lnetctl net del command:

net del: delete a network
        --net: net name (ex tcp0)
        --if:  physical inerface (e.g. eth0)

Example:
lnetctl net del --net tcp2

Introduced in Lustre 2.10

Note

In a Software Multi-Rail configuration, specifying only the --net argument will delete the entire
network and all interfaces under it. The new --if switch should also be used in conjunction
with --net to specify deletion of a specific interface.

All or a subset of the configured networks can be shown with the lnetctl net show command. The
output can be non-verbose or verbose.

net show: show networks
        --net: net name (ex tcp0) to filter on
        --verbose: display detailed output per network

Examples:
lnetctl net show
lnetctl net show --verbose
lnetctl net show --net tcp2 --verbose

Below are examples of non-detailed and detailed network configuration show.

# non-detailed show
> lnetctl net show --net tcp2
net:
    - nid: 192.168.205.130@tcp2
      status: up
      interfaces:
          0: eth3



Configuring Lustre
Networking (LNet)

58

# detailed show
> lnetctl net show --net tcp2 --verbose
net:
    - nid: 192.168.205.130@tcp2
      status: up
      interfaces:
          0: eth3
      tunables:
          peer_timeout: 180
          peer_credits: 8
          peer_buffer_credits: 0
          credits: 256

Introduced in Lustre 2.10

9.1.4. Manual Adding, Deleting and Showing Peers
The lnetctl peer add  command is used to manually add a remote peer to a software multi-rail
configuration. For the dynamic peer discovery capability introduced in Lustre Release 2.11.0, please see
Section 9.1.5, “Dynamic Peer Discovery”.

When configuring peers, use the –-prim_nid option to specify the key or primary nid of the peer node.
Then follow that with the --nid option to specify a set of comma separated NIDs.

peer add: add a peer
            --prim_nid: primary NID of the peer
            --nid: comma separated list of peer nids (e.g. 10.1.1.2@tcp0)
            --non_mr: if specified this interface is created as a non mulit-rail
            capable peer. Only one NID can be specified in this case.

For example:

            lnetctl peer add --prim_nid 10.10.10.2@tcp --nid 10.10.3.3@tcp1,10.4.4.5@tcp2
        

The --prim-nid (primary nid for the peer node) can go unspecified. In this case, the first listed NID in
the --nid option becomes the primary nid of the peer. For example:

            lnetctl peer_add --nid 10.10.10.2@tcp,10.10.3.3@tcp1,10.4.4.5@tcp2

YAML can also be used to configure peers:

peer:
            - primary nid: <key or primary nid>
            Multi-Rail: True
            peer ni:
            - nid: <nid 1>
            - nid: <nid 2>
            - nid: <nid n>

As with all other commands, the result of the lnetctl peer show command can be used to gather
information to aid in configuring or deleting a peer:



Configuring Lustre
Networking (LNet)

59

lnetctl peer show -v

Example output from the lnetctl peer show command:

peer:
            - primary nid: 192.168.122.218@tcp
            Multi-Rail: True
            peer ni:
            - nid: 192.168.122.218@tcp
            state: NA
            max_ni_tx_credits: 8
            available_tx_credits: 8
            available_rtr_credits: 8
            min_rtr_credits: -1
            tx_q_num_of_buf: 0
            send_count: 6819
            recv_count: 6264
            drop_count: 0
            refcount: 1
            - nid: 192.168.122.78@tcp
            state: NA
            max_ni_tx_credits: 8
            available_tx_credits: 8
            available_rtr_credits: 8
            min_rtr_credits: -1
            tx_q_num_of_buf: 0
            send_count: 7061
            recv_count: 6273
            drop_count: 0
            refcount: 1
            - nid: 192.168.122.96@tcp
            state: NA
            max_ni_tx_credits: 8
            available_tx_credits: 8
            available_rtr_credits: 8
            min_rtr_credits: -1
            tx_q_num_of_buf: 0
            send_count: 6939
            recv_count: 6286
            drop_count: 0
            refcount: 1

Use the following lnetctl command to delete a peer:

peer del: delete a peer
            --prim_nid: Primary NID of the peer
            --nid: comma separated list of peer nids (e.g. 10.1.1.2@tcp0)

prim_nid should always be specified. The prim_nid identifies the peer. If the prim_nid is the only
one specified, then the entire peer is deleted.

Example of deleting a single nid of a peer (10.10.10.3@tcp):

lnetctl peer del --prim_nid 10.10.10.2@tcp --nid 10.10.10.3@tcp

Example of deleting the entire peer:



Configuring Lustre
Networking (LNet)

60

lnetctl peer del --prim_nid 10.10.10.2@tcp

Introduced in Lustre 2.11

9.1.5. Dynamic Peer Discovery

9.1.5.1. Overview

Dynamic Discovery (DD) is a feature that allows nodes to dynamically discover a peer's interfaces without
having to explicitly configure them. This is very useful for Multi-Rail (MR) configurations. In large
clusters, there could be hundreds of nodes and having to configure MR peers on each node becomes error
prone. Dynamic Discovery is enabled by default and uses a new protocol based on LNet pings to discover
the interfaces of the remote peers on first message.

9.1.5.2. Protocol

When LNet on a node is requested to send a message to a peer it first attempts to ping the peer. The reply
to the ping contains the peer's NIDs as well as a feature bit outlining what the peer supports. Dynamic
Discovery adds a Multi-Rail feature bit. If the peer is Multi-Rail capable, it sets the MR bit in the ping
reply. When the node receives the reply it checks the MR bit, and if it is set it then pushes its own list of
NIDs to the peer using a new PUT message, referred to as a "push ping". After this brief protocol, both
the peer and the node will have each other's list of interfaces. The MR algorithm can then proceed to use
the list of interfaces of the corresponding peer.

If the peer is not MR capable, it will not set the MR feature bit in the ping reply. The node will understand
that the peer is not MR capable and will only use the interface provided by upper layers for sending
messages.

9.1.5.3. Dynamic Discovery and User-space Configuration

It is possible to configure the peer manually while Dynamic Discovery is running. Manual peer
configuration always takes precedence over Dynamic Discovery. If there is a discrepancy between the
manual configuration and the dynamically discovered information, a warning is printed.

9.1.5.4. Configuration

Dynamic Discovery is very light on the configuration side. It can only be turned on or turned off. To turn
the feature on or off, the following command is used:

lnetctl set discovery [0 | 1]

To check the current discovery setting, the lnetctl global show command can be used as
shown in Section 9.1.2, “Displaying Global Settings”.

9.1.5.5. Initiating Dynamic Discovery on Demand

It is possible to initiate the Dynamic Discovery protocol on demand without having to wait for a message
to be sent to the peer. This can be done with the following command:

lnetctl discover <peer_nid> [<peer_nid> ...]



Configuring Lustre
Networking (LNet)

61

9.1.6. Adding, Deleting and Showing routes
A set of routes can be added to identify how LNet messages are to be routed.

lnetctl route add: add a route
        --net: net name (ex tcp0) LNet message is destined to.
               The can not be a local network.
        --gateway: gateway node nid (ex 10.1.1.2@tcp) to route
                   all LNet messaged destined for the identified
                   network
        --hop: number of hops to final destination
               (1 <= hops <= 255) (optional)
        --priority: priority of route (0 - highest prio) (optional)

Example:
lnetctl route add --net tcp2 --gateway 192.168.205.130@tcp1 --hop 2 --prio 1

Routes can be deleted via the following lnetctl command.

lnetctl route del: delete a route
        --net: net name (ex tcp0)
        --gateway: gateway nid (ex 10.1.1.2@tcp)

Example:
lnetctl route del --net tcp2 --gateway 192.168.205.130@tcp1

Configured routes can be shown via the following lnetctl command.

lnetctl route show: show routes
        --net: net name (ex tcp0) to filter on
        --gateway: gateway nid (ex 10.1.1.2@tcp) to filter on
        --hop: number of hops to final destination
               (1 <= hops <= 255) to filter on (-1 default)
        --priority: priority of route (0 - highest prio)
                    to filter on (0 default)
        --verbose: display detailed output per route

Examples:
# non-detailed show
lnetctl route show

# detailed show
lnetctl route show --verbose

When showing routes the --verbose option outputs more detailed information. All show and error
output are in YAML format. Below are examples of both non-detailed and detailed route show output.

#Non-detailed output
> lnetctl route show
route:
    - net: tcp2
      gateway: 192.168.205.130@tcp1

#detailed output



Configuring Lustre
Networking (LNet)

62

> lnetctl route show --verbose
route:
    - net: tcp2
      gateway: 192.168.205.130@tcp1
      hop: 2
      priority: 1
      state: down

9.1.7. Enabling and Disabling Routing
When an LNet node is configured as a router it will route LNet messages not destined to itself. This feature
can be enabled or disabled as follows.

lnetctl set routing [0 | 1]
# 0 - disable routing feature
# 1 - enable routing feature

9.1.8. Showing routing information
When routing is enabled on a node, the tiny, small and large routing buffers are allocated. See Section 34.3,
“ Tuning LNet Parameters” for more details on router buffers. This information can be shown as follows:

lnetctl routing show: show routing information

Example:
lnetctl routing show

An example of the show output:

> lnetctl routing show
routing:
    - cpt[0]:
          tiny:
              npages: 0
              nbuffers: 2048
              credits: 2048
              mincredits: 2048
          small:
              npages: 1
              nbuffers: 16384
              credits: 16384
              mincredits: 16384
          large:
              npages: 256
              nbuffers: 1024
              credits: 1024
              mincredits: 1024
    - enable: 1

9.1.9. Configuring Routing Buffers
The routing buffers values configured specify the number of buffers in each of the tiny, small and large
groups.



Configuring Lustre
Networking (LNet)

63

It is often desirable to configure the tiny, small and large routing buffers to some values other than the
default. These values are global values, when set they are used by all configured CPU partitions. If routing
is enabled then the values set take effect immediately. If a larger number of buffers is specified, then
buffers are allocated to satisfy the configuration change. If fewer buffers are configured then the excess
buffers are freed as they become unused. If routing is not set the values are not changed. The buffer values
are reset to default if routing is turned off and on.

The lnetctl 'set' command can be used to set these buffer values. A VALUE greater than 0 will set the
number of buffers accordingly. A VALUE of 0 will reset the number of buffers to system defaults.

set tiny_buffers:
      set tiny routing buffers
               VALUE must be greater than or equal to 0

set small_buffers: set small routing buffers
        VALUE must be greater than or equal to 0

set large_buffers: set large routing buffers
        VALUE must be greater than or equal to 0

Usage examples:

> lnetctl set tiny_buffers 4096
> lnetctl set small_buffers 8192
> lnetctl set large_buffers 2048

The buffers can be set back to the default values as follows:

> lnetctl set tiny_buffers 0
> lnetctl set small_buffers 0
> lnetctl set large_buffers 0

Introduced in Lustre 2.13

9.1.10. Asymmetrical Routes

9.1.10.1. Overview

An asymmetrical route is when a message from a remote peer is coming through a router that is not known
by this node to reach the remote peer.

Asymmetrical routes can be an issue when debugging network, and allowing them also opens the door to
attacks where hostile clients inject data to the servers.

So it is possible to activate a check in LNet, that will detect any asymmetrical route message and drop it.

9.1.10.2. Configuration

In order to switch asymmetric route detection on or off, the following command is used:

lnetctl set drop_asym_route [0 | 1]

This command works on a per-node basis. This means each node in a Lustre cluster can decide whether
it accepts asymmetrical route messages.



Configuring Lustre
Networking (LNet)

64

To check the current drop_asym_route setting, the lnetctl global show command can be
used as shown in Section 9.1.2, “Displaying Global Settings”.

By default, asymmetric route detection is off.

9.1.11. Importing YAML Configuration File
Configuration can be described in YAML format and can be fed into the lnetctl utility. The lnetctl
utility parses the YAML file and performs the specified operation on all entities described there in. If no
operation is defined in the command as shown below, the default operation is 'add'. The YAML syntax
is described in a later section.

lnetctl import FILE.yaml
lnetctl import < FILE.yaml

The 'lnetctl import' command provides three optional parameters to define the operation to be
performed on the configuration items described in the YAML file.

# if no options are given to the command the "add" command is assumed
              # by default.
lnetctl import --add FILE.yaml
lnetctl import --add < FILE.yaml

# to delete all items described in the YAML file
lnetctl import --del FILE.yaml
lnetctl import --del < FILE.yaml

# to show all items described in the YAML file
lnetctl import --show FILE.yaml
lnetctl import --show < FILE.yaml

9.1.12. Exporting Configuration in YAML format
lnetctl utility provides the 'export' command to dump current LNet configuration in YAML format

lnetctl export FILE.yaml
lnetctl export > FILE.yaml

9.1.13. Showing LNet Traffic Statistics
lnetctl utility can dump the LNet traffic statistiscs as follows

lnetctl stats show

9.1.14. YAML Syntax
The lnetctl utility can take in a YAML file describing the configuration items that need to be operated
on and perform one of the following operations: add, delete or show on the items described there in.

Net, routing and route YAML blocks are all defined as a YAML sequence, as shown in the following
sections. The stats YAML block is a YAML object. Each sequence item can take a seq_no field. This
seq_no field is returned in the error block. This allows the caller to associate the error with the item that



Configuring Lustre
Networking (LNet)

65

caused the error. The lnetctl utilty does a best effort at configuring items defined in the YAML file.
It does not stop processing the file at the first error.

Below is the YAML syntax describing the various configuration elements which can be operated on
via DLC. Not all YAML elements are required for all operations (add/delete/show). The system ignores
elements which are not pertinent to the requested operation.

9.1.14.1. Network Configuration

net:
   - net: <network.  Ex: tcp or o2ib>
     interfaces:
         0: <physical interface>
     detail: <This is only applicable for show command.  1 - output detailed info.  0 - basic output>
     tunables:
        peer_timeout: <Integer. Timeout before consider a peer dead>
        peer_credits: <Integer. Transmit credits for a peer>
        peer_buffer_credits: <Integer. Credits available for receiving messages>
        credits: <Integer.  Network Interface credits>
 SMP: <An array of integers of the form: "[x,y,...]", where each
 integer represents the CPT to associate the network interface
 with> seq_no: <integer.  Optional.  User generated, and is
 passed back in the YAML error block>

Both seq_no and detail fields do not appear in the show output.

9.1.14.2. Enable Routing and Adjust Router Buffer
Configuration

routing:
    - tiny: <Integer. Tiny buffers>
      small: <Integer. Small buffers>
      large: <Integer. Large buffers>
      enable: <0 - disable routing.  1 - enable routing>
      seq_no: <Integer.  Optional.  User generated, and is passed back in the YAML error block>

The seq_no field does not appear in the show output

9.1.14.3. Show Statistics

statistics:
    seq_no: <Integer. Optional.  User generated, and is passed back in the YAML error block>

The seq_no field does not appear in the show output

9.1.14.4. Route Configuration

route:
  - net: <network. Ex: tcp or o2ib>
    gateway: <nid of the gateway in the form <ip>@<net>: Ex: 192.168.29.1@tcp>



Configuring Lustre
Networking (LNet)

66

    hop: <an integer between 1 and 255. Optional>
    detail: <This is only applicable for show commands.  1 - output detailed info.  0. basic output>
    seq_no: <integer. Optional. User generated, and is passed back in the YAML error block>

Both seq_no and detail fields do not appear in the show output.

9.2.  Overview of LNet Module Parameters
LNet kernel module (lnet) parameters specify how LNet is to be configured to work with Lustre, including
which NICs will be configured to work with Lustre and the routing to be used with Lustre.

Parameters for LNet can be specified in the /etc/modprobe.d/lustre.conf file. In some cases
the parameters may have been stored in /etc/modprobe.conf, but this has been deprecated since
before RHEL5 and SLES10, and having a separate /etc/modprobe.d/lustre.conf file simplifies
administration and distribution of the Lustre networking configuration. This file contains one or more
entries with the syntax:

options lnet parameter=value

To specify the network interfaces that are to be used for Lustre, set either the networks parameter or the
ip2nets parameter (only one of these parameters can be used at a time):

• networks - Specifies the networks to be used.

• ip2nets - Lists globally-available networks, each with a range of IP addresses. LNet then identifies
locally-available networks through address list-matching lookup.

See Section 9.3, “Setting the LNet Module networks Parameter” and Section 9.4, “Setting the LNet Module
ip2nets Parameter” for more details.

To set up routing between networks, use:

• routes - Lists networks and the NIDs of routers that forward to them.

See Section 9.5, “Setting the LNet Module routes Parameter” for more details.

A router checker can be configured to enable Lustre nodes to detect router health status, avoid routers
that appear dead, and reuse those that restore service after failures. See Section 9.7, “Configuring the
Router Checker” for more details.

For a complete reference to the LNet module parameters, see Chapter 43, Configuration Files and Module
ParametersLNet Options.

Note

We recommend that you use 'dotted-quad' notation for IP addresses rather than host names to
make it easier to read debug logs and debug configurations with multiple interfaces.

9.2.1. Using a Lustre Network Identifier (NID) to Identify a
Node

A Lustre network identifier (NID) is used to uniquely identify a Lustre network endpoint by node ID and
network type. The format of the NID is:



Configuring Lustre
Networking (LNet)

67

network_id@network_type

Examples are:

10.67.73.200@tcp0
10.67.75.100@o2ib

The first entry above identifies a TCP/IP node, while the second entry identifies an InfiniBand node.

When a mount command is run on a client, the client uses the NID of the MDS to retrieve configuration
information. If an MDS has more than one NID, the client should use the appropriate NID for its local
network.

To determine the appropriate NID to specify in the mount command, use the lctl command. To display
MDS NIDs, run on the MDS :

lctl list_nids

To determine if a client can reach the MDS using a particular NID, run on the client:

lctl which_nid MDS_NID

9.3. Setting the LNet Module networks
Parameter

If a node has more than one network interface, you'll typically want to dedicate a specific interface to
Lustre. You can do this by including an entry in the lustre.conf file on the node that sets the LNet
module networks parameter:

options lnet networks=comma-separated list of
    networks

This example specifies that a Lustre node will use a TCP/IP interface and an InfiniBand interface:

options lnet networks=tcp0(eth0),o2ib(ib0)

This example specifies that the Lustre node will use the TCP/IP interface eth1:

options lnet networks=tcp0(eth1)

Depending on the network design, it may be necessary to specify explicit interfaces. To explicitly specify
that interface eth2 be used for network tcp0 and eth3 be used for tcp1 , use this entry:

options lnet networks=tcp0(eth2),tcp1(eth3)

When more than one interface is available during the network setup, Lustre chooses the best route based on
the hop count. Once the network connection is established, Lustre expects the network to stay connected. In
a Lustre network, connections do not fail over to another interface, even if multiple interfaces are available
on the same node.

Note

LNet lines in lustre.conf are only used by the local node to determine what to call its
interfaces. They are not used for routing decisions.



Configuring Lustre
Networking (LNet)

68

9.3.1. Multihome Server Example
If a server with multiple IP addresses (multihome server) is connected to a Lustre network, certain
configuration setting are required. An example illustrating these setting consists of a network with the
following nodes:

• Server svr1 with three TCP NICs (eth0, eth1, and eth2) and an InfiniBand NIC.

• Server svr2 with three TCP NICs (eth0, eth1, and eth2) and an InfiniBand NIC. Interface eth2 will
not be used for Lustre networking.

• TCP clients, each with a single TCP interface.

• InfiniBand clients, each with a single Infiniband interface and a TCP/IP interface for administration.

To set the networks option for this example:

• On each server, svr1 and svr2, include the following line in the lustre.conf file:

options lnet networks=tcp0(eth0),tcp1(eth1),o2ib

• For TCP-only clients, the first available non-loopback IP interface is used for tcp0. Thus, TCP clients
with only one interface do not need to have options defined in the lustre.conf file.

• On the InfiniBand clients, include the following line in the lustre.conf file:

options lnet networks=o2ib

Note

By default, Lustre ignores the loopback (lo0) interface. Lustre does not ignore IP addresses
aliased to the loopback. If you alias IP addresses to the loopback interface, you must specify all
Lustre networks using the LNet networks parameter.

Note

If the server has multiple interfaces on the same subnet, the Linux kernel will send all traffic
using the first configured interface. This is a limitation of Linux, not Lustre. In this case, network
interface bonding should be used. For more information about network interface bonding, see
Chapter 7, Setting Up Network Interface Bonding.

9.4. Setting the LNet Module ip2nets Parameter
The ip2nets option is typically used when a single, universal lustre.conf file is run on all servers
and clients. Each node identifies the locally available networks based on the listed IP address patterns that
match the node's local IP addresses.

Note that the IP address patterns listed in the ip2nets option are only used to identify the networks that
an individual node should instantiate. They are not used by LNet for any other communications purpose.

For the example below, the nodes in the network have these IP addresses:

• Server svr1: eth0 IP address 192.168.0.2, IP over Infiniband (o2ib) address 132.6.1.2.

• Server svr2: eth0 IP address 192.168.0.4, IP over Infiniband (o2ib) address 132.6.1.4.



Configuring Lustre
Networking (LNet)

69

• TCP clients have IP addresses 192.168.0.5-255.

• Infiniband clients have IP over Infiniband (o2ib) addresses 132.6.[2-3].2, .4, .6, .8.

The following entry is placed in the lustre.conf file on each server and client:

options lnet 'ip2nets="tcp0(eth0) 192.168.0.[2,4]; \
tcp0 192.168.0.*; o2ib0 132.6.[1-3].[2-8/2]"'

Each entry in ip2nets is referred to as a 'rule'.

The order of LNet entries is important when configuring servers. If a server node can be reached using
more than one network, the first network specified in lustre.conf will be used.

Because svr1 and svr2 match the first rule, LNet uses eth0 for tcp0 on those machines. (Although
svr1 and svr2 also match the second rule, the first matching rule for a particular network is used).

The [2-8/2] format indicates a range of 2-8 stepped by 2; that is 2,4,6,8. Thus, the clients at
132.6.3.5 will not find a matching o2ib network.

Introduced in Lustre 2.10

Note

Multi-rail deprecates the kernel parsing of ip2nets. ip2nets patterns are matched in user space and
translated into Network interfaces to be added into the system.

The first interface that matches the IP pattern will be used when adding a network interface.

If an interface is explicitly specified as well as a pattern, the interface matched using the IP pattern
will be sanitized against the explicitly-defined interface.

For example, tcp(eth0) 192.168.*.3 and there exists in the system eth0 ==
192.158.19.3 and eth1 == 192.168.3.3, then the configuration will fail, because the
pattern contradicts the interface specified.

A clear warning will be displayed if inconsistent configuration is encountered.

You could use the following command to configure ip2nets:

lnetctl import < ip2nets.yaml

For example:

ip2nets:
  - net-spec: tcp1
    interfaces:
         0: eth0
         1: eth1
    ip-range:
         0: 192.168.*.19
         1: 192.168.100.105
  - net-spec: tcp2
    interfaces:
         0: eth2
    ip-range:



Configuring Lustre
Networking (LNet)

70

         0: 192.168.*.*

9.5. Setting the LNet Module routes Parameter
The LNet module routes parameter is used to identify routers in a Lustre configuration. These parameters
are set in modprobe.conf on each Lustre node.

Routes are typically set to connect to segregated subnetworks or to cross connect two different types of
networks such as tcp and o2ib

The LNet routes parameter specifies a colon-separated list of router definitions. Each route is defined as
a network number, followed by a list of routers:

routes=net_type router_NID(s)

This example specifies bi-directional routing in which TCP clients can reach Lustre resources on the IB
networks and IB servers can access the TCP networks:

options lnet 'ip2nets="tcp0 192.168.0.*; \
  o2ib0(ib0) 132.6.1.[1-128]"' 'routes="tcp0   132.6.1.[1-8]@o2ib0; \
  o2ib0 192.16.8.0.[1-8]@tcp0"'

All LNet routers that bridge two networks are equivalent. They are not configured as primary or secondary,
and the load is balanced across all available routers.

The number of LNet routers is not limited. Enough routers should be used to handle the required file
serving bandwidth plus a 25 percent margin for headroom.

9.5.1. Routing Example
On the clients, place the following entry in the lustre.conf file

lnet networks="tcp" routes="o2ib0 192.168.0.[1-8]@tcp0"

On the router nodes, use:

lnet networks="tcp o2ib" forwarding=enabled 

On the MDS, use the reverse as shown below:

lnet networks="o2ib0" routes="tcp0 132.6.1.[1-8]@o2ib0" 

To start the routers, run:

modprobe lnet
lctl network configure

9.6. Testing the LNet Configuration
After configuring Lustre Networking, it is highly recommended that you test your LNet configuration
using the LNet Self-Test provided with the Lustre software. For more information about using LNet Self-
Test, see Chapter 32, Testing Lustre Network Performance (LNet Self-Test).



Configuring Lustre
Networking (LNet)

71

9.7. Configuring the Router Checker
In a Lustre configuration in which different types of networks, such as a TCP/IP network and an Infiniband
network, are connected by routers, a router checker can be run on the clients and servers in the routed
configuration to monitor the status of the routers. In a multi-hop routing configuration, router checkers
can be configured on routers to monitor the health of their next-hop routers.

A router checker is configured by setting LNet parameters in lustre.conf by including an entry in
this form:

options lnet
    router_checker_parameter=value

The router checker parameters are:

• live_router_check_interval - Specifies a time interval in seconds after which the router
checker will ping the live routers. The default value is 0, meaning no checking is done. To set the value
to 60, enter:

options lnet live_router_check_interval=60

• dead_router_check_interval - Specifies a time interval in seconds after which the router
checker will check for dead routers. The default value is 0, meaning no checking is done. To set the
value to 60, enter:

options lnet dead_router_check_interval=60

• auto_down - Enables/disables (1/0) the automatic marking of router state as up or down. The default
value is 1. To disable router marking, enter:

options lnet auto_down=0

• router_ping_timeout - Specifies a timeout for the router checker when it checks live or
dead routers. The router checker sends a ping message to each dead or live router once every
dead_router_check_interval or live_router_check_interval respectively. The default value is 50. To set
the value to 60, enter:

options lnet router_ping_timeout=60

Note

The router_ping_timeout is consistent with the default LND timeouts. You may have
to increase it on very large clusters if the LND timeout is also increased. For larger clusters,
we suggest increasing the check interval.

• check_routers_before_use - Specifies that routers are to be checked before use. Set to off by
default. If this parameter is set to on, the dead_router_check_interval parameter must be given a positive
integer value.

options lnet check_routers_before_use=on

The router checker obtains the following information from each router:

• Time the router was disabled

• Elapsed disable time



Configuring Lustre
Networking (LNet)

72

If the router checker does not get a reply message from the router within router_ping_timeout seconds,
it considers the router to be down.

If a router is marked 'up' and responds to a ping, the timeout is reset.

If 100 packets have been sent successfully through a router, the sent-packets counter for that router will
have a value of 100.

9.8. Best Practices for LNet Options
For the networks, ip2nets, and routes options, follow these best practices to avoid configuration
errors.

9.8.1. Escaping commas with quotes
Depending on the Linux distribution, commas may need to be escaped using single or double quotes. In
the extreme case, the options entry would look like this:

options
      lnet'networks="tcp0,elan0"'
      'routes="tcp [2,10]@elan0"'

Added quotes may confuse some distributions. Messages such as the following may indicate an issue
related to added quotes:

lnet: Unknown parameter 'networks'

A 'Refusing connection - no matching NID' message generally points to an error in the
LNet module configuration.

9.8.2. Including comments
Place the semicolon terminating a comment immediately after the comment. LNet silently ignores
everything between the # character at the beginning of the comment and the next semicolon.

In this incorrect example, LNet silently ignores pt11 192.168.0.[92,96], resulting in these nodes
not being properly initialized. No error message is generated.

options lnet ip2nets="pt10 192.168.0.[89,93]; # comment
      with semicolon BEFORE comment \ pt11 192.168.0.[92,96];

This correct example shows the required syntax:

options lnet ip2nets="pt10 192.168.0.[89,93] \
# comment with semicolon AFTER comment; \
pt11 192.168.0.[92,96] # comment

Do not add an excessive number of comments. The Linux kernel limits the length of character strings used
in module options (usually to 1KB, but this may differ between vendor kernels). If you exceed this limit,
errors result and the specified configuration may not be processed correctly.



73

Chapter 10. Configuring a Lustre File
System

This chapter shows how to configure a simple Lustre file system comprised of a combined MGS/MDT,
an OST and a client. It includes:

• Section 10.1, “ Configuring a Simple Lustre File System”

• Section 10.2, “ Additional Configuration Options”

10.1.  Configuring a Simple Lustre File System
A Lustre file system can be set up in a variety of configurations by using the administrative utilities
provided with the Lustre software. The procedure below shows how to configure a simple Lustre file
system consisting of a combined MGS/MDS, one OSS with two OSTs, and a client. For an overview of
the entire Lustre installation procedure, see Chapter 4, Installation Overview.

This configuration procedure assumes you have completed the following:

• Set up and configured your hardware . For more information about hardware requirements, see
Chapter 5, Determining Hardware Configuration Requirements and Formatting Options.

• Downloaded and installed the Lustre software.For more information about preparing for and
installing the Lustre software, see Chapter 8, Installing the Lustre Software.

The following optional steps should also be completed, if needed, before the Lustre software is configured:

• Set up a hardware or software RAID on block devices to be used as OSTs or MDTs.For information
about setting up RAID, see the documentation for your RAID controller or Chapter 6, Configuring
Storage on a Lustre File System.

• Set up network interface bonding on Ethernet interfaces.For information about setting up network
interface bonding, see Chapter 7, Setting Up Network Interface Bonding.

• Set lnet module parameters to specify how Lustre Networking (LNet) is to be configured to work with a
Lustre file system and test the LNet configuration.LNet will, by default, use the first TCP/IP interface
it discovers on a system. If this network configuration is sufficient, you do not need to configure LNet.
LNet configuration is required if you are using InfiniBand or multiple Ethernet interfaces.

For information about configuring LNet, see Chapter 9, Configuring Lustre Networking (LNet). For
information about testing LNet, see Chapter 32, Testing Lustre Network Performance (LNet Self-Test).

• Run the benchmark script sgpdd-survey to determine baseline performance of your
hardware.Benchmarking your hardware will simplify debugging performance issues that are unrelated
to the Lustre software and ensure you are getting the best possible performance with your installation.
For information about running sgpdd-survey, see Chapter 33, Benchmarking Lustre File System
Performance (Lustre I/O Kit).

Note

The sgpdd-survey script overwrites the device being tested so it must be run before the OSTs
are configured.

To configure a simple Lustre file system, complete these steps:



Configuring a Lustre File System

74

1. Create a combined MGS/MDT file system on a block device. On the MDS node, run:

mkfs.lustre --fsname=
fsname --mgs --mdt --index=0 
/dev/block_device

The default file system name ( fsname) is lustre.

Note

If you plan to create multiple file systems, the MGS should be created separately on its own
dedicated block device, by running:

mkfs.lustre --fsname=
fsname --mgs 
/dev/block_device

See Section 13.8, “ Running Multiple Lustre File Systems”for more details.

2. Optionally add in additional MDTs.

mkfs.lustre --fsname=
fsname --mgsnode=
nid --mdt --index=1 
/dev/block_device

Note

Up to 4095 additional MDTs can be added.

3. Mount the combined MGS/MDT file system on the block device. On the MDS node, run:

mount -t lustre 
/dev/block_device 
/mount_point

Note

If you have created an MGS and an MDT on separate block devices, mount them both.

4. Create the OST. On the OSS node, run:

mkfs.lustre --fsname=
fsname --mgsnode=
MGS_NID --ost --index=
OST_index 
/dev/block_device

When you create an OST, you are formatting a ldiskfs or ZFS file system on a block storage device
like you would with any local file system.



Configuring a Lustre File System

75

You can have as many OSTs per OSS as the hardware or drivers allow. For more information about
storage and memory requirements for a Lustre file system, see Chapter 5, Determining Hardware
Configuration Requirements and Formatting Options.

You can only configure one OST per block device. You should create an OST that uses the raw block
device and does not use partitioning.

You should specify the OST index number at format time in order to simplify translating the OST
number in error messages or file striping to the OSS node and block device later on.

If you are using block devices that are accessible from multiple OSS nodes, ensure that you mount the
OSTs from only one OSS node at at time. It is strongly recommended that multiple-mount protection
be enabled for such devices to prevent serious data corruption. For more information about multiple-
mount protection, see Chapter 24, Lustre File System Failover and Multiple-Mount Protection.

Note

The Lustre software currently supports block devices up to 128 TB on Red Hat Enterprise
Linux 5 and 6 (up to 8 TB on other distributions). If the device size is only slightly larger
that 16 TB, it is recommended that you limit the file system size to 16 TB at format time.
We recommend that you not place DOS partitions on top of RAID 5/6 block devices due to
negative impacts on performance, but instead format the whole disk for the file system.

5. Mount the OST. On the OSS node where the OST was created, run:

mount -t lustre 
/dev/block_device 
/mount_point

Note

To create additional OSTs, repeat Step 4and Step 5, specifying the next higher OST index
number.

6. Mount the Lustre file system on the client. On the client node, run:

mount -t lustre 
MGS_node:/
fsname 
/mount_point 

Note

To mount the filesystem on additional clients, repeat Step 6.

Note

If you have a problem mounting the file system, check the syslogs on the client and all the
servers for errors and also check the network settings. A common issue with newly-installed
systems is that hosts.deny or firewall rules may prevent connections on port 988.



Configuring a Lustre File System

76

7. Verify that the file system started and is working correctly. Do this by running lfs df, dd and ls
commands on the client node.

8. (Optional)Run benchmarking tools to validate the performance of hardware and software layers in the
cluster. Available tools include:

• obdfilter-survey- Characterizes the storage performance of a Lustre file system. For details,
see Section 33.3, “Testing OST Performance (obdfilter-survey) ”.

• ost-survey- Performs I/O against OSTs to detect anomalies between otherwise identical disk
subsystems. For details, see Section 33.4, “ Testing OST I/O Performance (ost-survey)”.

10.1.1.  Simple Lustre Configuration Example
To see the steps to complete for a simple Lustre file system configuration, follow this example in which a
combined MGS/MDT and two OSTs are created to form a file system called temp. Three block devices
are used, one for the combined MGS/MDS node and one for each OSS node. Common parameters used
in the example are listed below, along with individual node parameters.

Common Parameters Value Description

MGS node 10.2.0.1@tcp0 Node for the combined MGS/
MDS

file system temp Name of the Lustre file system

network type TCP/IP Network type used for Lustre file
system temp

Node Parameters Value Description

MGS/MDS node

MGS/MDS node mdt0 MDS in Lustre file
system temp

block device /dev/sdb Block device for the
combined MGS/MDS
node

mount point /mnt/mdt Mount point for the
mdt0 block device ( /
dev/sdb) on the MGS/
MDS node

First OSS node

OSS node oss0 First OSS node in Lustre
file system temp

OST ost0 First OST in Lustre file
system temp

block device /dev/sdc Block device for the first
OSS node ( oss0)

mount point /mnt/ost0 Mount point for the
ost0 block device ( /
dev/sdc) on the oss1
node



Configuring a Lustre File System

77

Node Parameters Value Description

Second OSS node

OSS node oss1 Second OSS node in
Lustre file system temp

OST ost1 Second OST in Lustre
file system temp

block device /dev/sdd Block device for the
second OSS node (oss1)

mount point /mnt/ost1 Mount point for the
ost1 block device ( /
dev/sdd) on the oss1
node

Client node

client node client1 Client in Lustre file
system temp

mount point /lustre Mount point for Lustre
file system temp on the
client1 node

Note

We recommend that you use 'dotted-quad' notation for IP addresses rather than host names to
make it easier to read debug logs and debug configurations with multiple interfaces.

For this example, complete the steps below:

1. Create a combined MGS/MDT file system on the block device. On the MDS node, run:

[root@mds /]# mkfs.lustre --fsname=temp --mgs --mdt --index=0 /dev/sdb

This command generates this output:

    Permanent disk data:
Target:            temp-MDT0000
Index:             0
Lustre FS: temp
Mount type:        ldiskfs
Flags:             0x75
   (MDT MGS first_time update )
Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
Parameters: mdt.identity_upcall=/usr/sbin/l_getidentity
 
checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdb
   target name             temp-MDTffff
   4k blocks               0
   options                 -i 4096 -I 512 -q -O dir_index,uninit_groups -F



Configuring a Lustre File System

78

mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-MDTffff  -i 4096 -I 512 -q -O 
dir_index,uninit_groups -F /dev/sdb
Writing CONFIGS/mountdata 

2. Mount the combined MGS/MDT file system on the block device. On the MDS node, run:

[root@mds /]# mount -t lustre /dev/sdb /mnt/mdt

This command generates this output:

Lustre: temp-MDT0000: new disk, initializing 
Lustre: 3009:0:(lproc_mds.c:262:lprocfs_wr_identity_upcall()) temp-MDT0000:
group upcall set to /usr/sbin/l_getidentity
Lustre: temp-MDT0000.mdt: set parameter identity_upcall=/usr/sbin/l_getidentity
Lustre: Server temp-MDT0000 on device /dev/sdb has started 

3. Create and mount ost0.

In this example, the OSTs ( ost0 and ost1) are being created on different OSS nodes ( oss0 and
oss1 respectively).

a. Create ost0. On oss0 node, run:

[root@oss0 /]# mkfs.lustre --fsname=temp --mgsnode=10.2.0.1@tcp0 --ost
--index=0 /dev/sdc

The command generates this output:

    Permanent disk data:
Target:            temp-OST0000
Index:             0
Lustre FS: temp
Mount type:        ldiskfs
Flags:             0x72
(OST first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp
 
checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdc
   target name             temp-OST0000
   4k blocks               0
   options                 -I 256 -q -O dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OST0000  -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata 

b. Mount ost0 on the OSS on which it was created. On oss0 node, run:



Configuring a Lustre File System

79

root@oss0 /] mount -t lustre /dev/sdc /mnt/ost0

The command generates this output:

LDISKFS-fs: file extents enabled 
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0000: new disk, initializing
Lustre: Server temp-OST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0000: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting orphans 

4. Create and mount ost1.

a. Create ost1. On oss1 node, run:

[root@oss1 /]# mkfs.lustre --fsname=temp --mgsnode=10.2.0.1@tcp0 \
           --ost --index=1 /dev/sdd

The command generates this output:

    Permanent disk data:
Target:            temp-OST0001
Index:             1
Lustre FS: temp
Mount type:        ldiskfs
Flags:             0x72
(OST first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp
 
checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdd
   target name             temp-OST0001
   4k blocks               0
   options                 -I 256 -q -O dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OST0001  -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata 

b. Mount ost1 on the OSS on which it was created. On oss1 node, run:

root@oss1 /] mount -t lustre /dev/sdd /mnt/ost1 

The command generates this output:



Configuring a Lustre File System

80

LDISKFS-fs: file extents enabled 
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0001: new disk, initializing
Lustre: Server temp-OST0001 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0001: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0001_UUID now active, resetting orphans 

5. Mount the Lustre file system on the client. On the client node, run:

root@client1 /] mount -t lustre 10.2.0.1@tcp0:/temp /lustre 

This command generates this output:

Lustre: Client temp-client has started

6. Verify that the file system started and is working by running the df, dd and ls commands on the
client node.

a. Run the lfs df -h command:

[root@client1 /] lfs df -h 

The lfs df -h command lists space usage per OST and the MDT in human-readable format.
This command generates output similar to this:

UUID               bytes      Used      Available   Use%    Mounted on
temp-MDT0000_UUID  8.0G      400.0M       7.6G        0%      /lustre[MDT:0]
temp-OST0000_UUID  800.0G    400.0M     799.6G        0%      /lustre[OST:0]
temp-OST0001_UUID  800.0G    400.0M     799.6G        0%      /lustre[OST:1]
filesystem summary:  1.6T    800.0M       1.6T        0%      /lustre

b. Run the lfs df -ih command.

[root@client1 /] lfs df -ih

The lfs df -ih command lists inode usage per OST and the MDT. This command generates
output similar to this:

UUID              Inodes      IUsed       IFree   IUse%     Mounted on
temp-MDT0000_UUID   2.5M        32         2.5M      0%       /lustre[MDT:0]
temp-OST0000_UUID   5.5M        54         5.5M      0%       /lustre[OST:0]
temp-OST0001_UUID   5.5M        54         5.5M      0%       /lustre[OST:1]
filesystem summary: 2.5M        32         2.5M      0%       /lustre

c. Run the dd command:



Configuring a Lustre File System

81

[root@client1 /] cd /lustre
[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M count=2

The dd command verifies write functionality by creating a file containing all zeros ( 0s). In this
command, an 8 MB file is created. This command generates output similar to this:

2+0 records in
2+0 records out
8388608 bytes (8.4 MB) copied, 0.159628 seconds, 52.6 MB/s

d. Run the ls command:

[root@client1 /lustre] ls -lsah

The ls -lsah command lists files and directories in the current working directory. This command
generates output similar to this:

total 8.0M
4.0K drwxr-xr-x  2 root root 4.0K Oct 16 15:27 .
8.0K drwxr-xr-x 25 root root 4.0K Oct 16 15:27 ..
8.0M -rw-r--r--  1 root root 8.0M Oct 16 15:27 zero.dat 
 

Once the Lustre file system is configured, it is ready for use.

10.2.  Additional Configuration Options
This section describes how to scale the Lustre file system or make configuration changes using the Lustre
configuration utilities.

10.2.1.  Scaling the Lustre File System
A Lustre file system can be scaled by adding OSTs or clients. For instructions on creating additional OSTs
repeat Step 3and Step 5above. For mounting additional clients, repeat Step 6for each client.

10.2.2.  Changing Striping Defaults
The default settings for the file layout stripe pattern are shown in Table 10.1, “Default stripe pattern”.

Table 10.1. Default stripe pattern

File Layout Parameter Default Description

stripe_size 1 MB Amount of data to write to one
OST before moving to the next
OST.

stripe_count 1 The number of OSTs to use for a
single file.

start_ost -1 The first OST where objects are
created for each file. The default
-1 allows the MDS to choose the



Configuring a Lustre File System

82

starting index based on available
space and load balancing. It's
strongly recommended not to
change the default for this
parameter to a value other than
-1.

Use the lfs setstripe command described in Chapter 19, Managing File Layout (Striping) and Free
Spaceto change the file layout configuration.

10.2.3.  Using the Lustre Configuration Utilities
If additional configuration is necessary, several configuration utilities are available:

• mkfs.lustre- Use to format a disk for a Lustre service.

• tunefs.lustre- Use to modify configuration information on a Lustre target disk.

• lctl- Use to directly control Lustre features via an ioctl interface, allowing various configuration,
maintenance and debugging features to be accessed.

• mount.lustre- Use to start a Lustre client or target service.

For examples using these utilities, see the topic Chapter 44, System Configuration Utilities

The lfs utility is useful for configuring and querying a variety of options related to files. For more
information, see Chapter 40, User Utilities.

Note

Some sample scripts are included in the directory where the Lustre software is installed. If
you have installed the Lustre source code, the scripts are located in the lustre/tests sub-
directory. These scripts enable quick setup of some simple standard Lustre configurations.



83

Chapter 11. Configuring Failover in a
Lustre File System

This chapter describes how to configure failover in a Lustre file system. It includes:

• Section 11.1, “Setting Up a Failover Environment”

• Section 11.2, “Preparing a Lustre File System for Failover”

• Section 11.3, “Administering Failover in a Lustre File System”

For an overview of failover functionality in a Lustre file system, see Chapter 3, Understanding Failover
in a Lustre File System.

11.1. Setting Up a Failover Environment
The Lustre software provides failover mechanisms only at the layer of the Lustre file system. No failover
functionality is provided for system-level components such as failing hardware or applications, or even
for the entire failure of a node, as would typically be provided in a complete failover solution. Failover
functionality such as node monitoring, failure detection, and resource fencing must be provided by external
HA software, such as PowerMan or the open source Corosync and Pacemaker packages provided by Linux
operating system vendors. Corosync provides support for detecting failures, and Pacemaker provides the
actions to take once a failure has been detected.

11.1.1. Selecting Power Equipment
Failover in a Lustre file system requires the use of a remote power control (RPC) mechanism, which comes
in different configurations. For example, Lustre server nodes may be equipped with IPMI/BMC devices
that allow remote power control. In the past, software or even “sneakerware” has been used, but these are
not recommended. For recommended devices, refer to the list of supported RPC devices on the website
for the PowerMan cluster power management utility:

https://linux.die.net/man/7/powerman-devices [https://linux.die.net/man/7/powerman-devices]

11.1.2. Selecting Power Management Software
Lustre failover requires RPC and management capability to verify that a failed node is shut down before I/
O is directed to the failover node. This avoids double-mounting the two nodes and the risk of unrecoverable
data corruption. A variety of power management tools will work. Two packages that have been commonly
used with the Lustre software are PowerMan and Linux-HA (aka. STONITH ).

The PowerMan cluster power management utility is used to control RPC devices from a central location.
PowerMan provides native support for several RPC varieties and Expect-like configuration simplifies the
addition of new devices. The latest versions of PowerMan are available at:

https://github.com/chaos/powerman [https://github.com/chaos/powerman]

STONITH, or “Shoot The Other Node In The Head”, is a set of power management tools provided with
the Linux-HA package prior to Red Hat Enterprise Linux 6. Linux-HA has native support for many power
control devices, is extensible (uses Expect scripts to automate control), and provides the software to detect
and respond to failures. With Red Hat Enterprise Linux 6, Linux-HA is being replaced in the open source

https://linux.die.net/man/7/powerman-devices
https://linux.die.net/man/7/powerman-devices
https://github.com/chaos/powerman
https://github.com/chaos/powerman


Configuring Failover
in a Lustre File System

84

community by the combination of Corosync and Pacemaker. For Red Hat Enterprise Linux subscribers,
cluster management using CMAN is available from Red Hat.

11.1.3. Selecting High-Availability (HA) Software
The Lustre file system must be set up with high-availability (HA) software to enable a complete Lustre
failover solution. Except for PowerMan, the HA software packages mentioned above provide both power
management and cluster management. For information about setting up failover with Pacemaker, see:

• Pacemaker Project website: https://clusterlabs.org/  [https://clusterlabs.org/]

• Article Using Pacemaker with a Lustre File System :  https://wiki.whamcloud.com/
display/PUB/Using+Pacemaker+with+a+Lustre+File+System [https://wiki.whamcloud.com/display/
PUB/Using+Pacemaker+with+a+Lustre+File+System]

11.2. Preparing a Lustre File System for
Failover

To prepare a Lustre file system to be configured and managed as an HA system by a third-party HA
application, each storage target (MGT, MGS, OST) must be associated with a second node to create a
failover pair. This configuration information is then communicated by the MGS to a client when the client
mounts the file system.

The per-target configuration is relayed to the MGS at mount time. Some rules related to this are:

• When a target is initially mounted, the MGS reads the configuration information from the target (such
as mgt vs. ost, failnode, fsname) to configure the target into a Lustre file system. If the MGS is reading
the initial mount configuration, the mounting node becomes that target's “primary” node.

• When a target is subsequently mounted, the MGS reads the current configuration from the target and,
as needed, will reconfigure the MGS database target information

When the target is formatted using the mkfs.lustre command, the failover service node(s) for the
target are designated using the --servicenode option. In the example below, an OST with index 0 in
the file system testfs is formatted with two service nodes designated to serve as a failover pair:

mkfs.lustre --reformat --ost --fsname testfs --mgsnode=192.168.10.1@o3ib \  
              --index=0 --servicenode=192.168.10.7@o2ib \
              --servicenode=192.168.10.8@o2ib \  
              /dev/sdb

More than two potential service nodes can be designated for a target. The target can then be mounted on
any of the designated service nodes.

When HA is configured on a storage target, the Lustre software enables multi-mount protection (MMP)
on that storage target. MMP prevents multiple nodes from simultaneously mounting and thus corrupting
the data on the target. For more about MMP, see Chapter 24, Lustre File System Failover and Multiple-
Mount Protection.

If the MGT has been formatted with multiple service nodes designated, this information must be conveyed
to the Lustre client in the mount command used to mount the file system. In the example below, NIDs for
two MGSs that have been designated as service nodes for the MGT are specified in the mount command
executed on the client:

https://clusterlabs.org/
https://clusterlabs.org/
https://wiki.whamcloud.com/display/PUB/Using+Pacemaker+with+a+Lustre+File+System
https://wiki.whamcloud.com/display/PUB/Using+Pacemaker+with+a+Lustre+File+System
https://wiki.whamcloud.com/display/PUB/Using+Pacemaker+with+a+Lustre+File+System
https://wiki.whamcloud.com/display/PUB/Using+Pacemaker+with+a+Lustre+File+System


Configuring Failover
in a Lustre File System

85

mount -t lustre 10.10.120.1@tcp1:10.10.120.2@tcp1:/testfs /lustre/testfs

When a client mounts the file system, the MGS provides configuration information to the client for the
MDT(s) and OST(s) in the file system along with the NIDs for all service nodes associated with each target
and the service node on which the target is mounted. Later, when the client attempts to access data on a
target, it will try the NID for each specified service node until it connects to the target.

11.3. Administering Failover in a Lustre File
System

For additional information about administering failover features in a Lustre file system, see:

• Section 13.6, “ Specifying Failout/Failover Mode for OSTs”

• Section 13.13, “ Specifying NIDs and Failover”

• Section 14.12, “ Changing the Address of a Failover Node”

• Section 44.12, “ mkfs.lustre”



Part III. Administering Lustre
Part III provides information about tools and procedures to use to administer a Lustre file system. You will find
information in this section about:

• Monitoring a Lustre File System

• Lustre Maintenance

• Managing Lustre Networking (LNet)

• Upgrading a Lustre File System

• Backing Up and Restoring a File System

• Managing File Layout (Striping) and Free Space

• Managing the File System and I/O

• Lustre File System Failover and Multiple-Mount Protection

• Configuring and Managing Quotas

• Hierarchical Storage Management (HSM)

• Mapping UIDs and GIDs with Nodemap

• Configuring Shared-Secret Key (SSK) Security

• Managing Security in a Lustre File System

• Lustre ZFS Snapshots

Tip

The starting point for administering a Lustre file system is to monitor all logs and console logs for system
health:

- Monitor logs on all servers and all clients.

- Invest in tools that allow you to condense logs from multiple systems.

- Use the logging resources provided in the Linux distribution.



87

Table of Contents
12. Monitoring a Lustre File System .................................................................................  94

12.1. Lustre Changelogs .............................................................................................  94
12.1.1. Working with Changelogs ........................................................................  95
12.1.2. Changelog Examples ...............................................................................  96
12.1.3. Audit with Changelogs ..................................................................  L 2.11 98

12.2. Lustre Jobstats ................................................................................................  100
12.2.1. How Jobstats Works ..............................................................................  101
12.2.2. Enable/Disable Jobstats ..........................................................................  102
12.2.3. Check Job Stats ....................................................................................  103
12.2.4. Clear Job Stats .....................................................................................  104
12.2.5. Configure Auto-cleanup Interval ..............................................................  104
12.2.6. Identifying Top Jobs ....................................................................  L 2.14 105

12.3. Lustre Monitoring Tool (LMT) ..........................................................................  105
12.4. CollectL ....................................................................................................  105
12.5. Other Monitoring Options .................................................................................  105

13. Lustre Operations ....................................................................................................  107
13.1. Mounting by Label ..........................................................................................  107
13.2. Starting Lustre ................................................................................................  107
13.3. Mounting a Server ...........................................................................................  108
13.4. Stopping the Filesystem ....................................................................................  108
13.5. Unmounting a Specific Target on a Server ...........................................................  110
13.6. Specifying Failout/Failover Mode for OSTs .......................................................... 110
13.7. Handling Degraded OST RAID Arrays ................................................................  111
13.8. Running Multiple Lustre File Systems .................................................................  111
13.9. Creating a sub-directory on a specific MDT .........................................................  113
13.10. Creating a directory striped across multiple MDTs .......................................  L 2.8 114

13.10.1. Directory creation by space/inode usage .........................................  L 2.13 114
13.10.2. Filesystem-wide default directory striping ....................................... L 2.14 115

13.11. Default Dir Stripe Policy .................................................................................  116
13.12. Setting and Retrieving Lustre Parameters ...........................................................  116

13.12.1. Setting Tunable Parameters with mkfs.lustre ......................................  117
13.12.2. Setting Parameters with tunefs.lustre .............................................. 117
13.12.3. Setting Parameters with lctl ...............................................................  117

13.13. Specifying NIDs and Failover ..........................................................................  120
13.14. Erasing a File System .....................................................................................  121
13.15. Reclaiming Reserved Disk Space ......................................................................  122
13.16. Replacing an Existing OST or MDT .................................................................. 122
13.17. Identifying To Which Lustre File an OST Object Belongs .....................................  122

14. Lustre Maintenance ..................................................................................................  124
14.1. Working with Inactive OSTs .............................................................................  124
14.2. Finding Nodes in the Lustre File System .............................................................  125
14.3. Mounting a Server Without Lustre Service ...........................................................  125
14.4. Regenerating Lustre Configuration Logs ..............................................................  126
14.5. Changing a Server NID ....................................................................................  127
14.6. Clearing configuration ............................................................................  L 2.11 128
14.7. Adding a New MDT to a Lustre File System ........................................................  129
14.8. Adding a New OST to a Lustre File System .........................................................  129
14.9. Removing and Restoring MDTs and OSTs ...........................................................  130

14.9.1. Removing an MDT from the File System ..................................................  131
14.9.2. Working with Inactive MDTs ..................................................................  131
14.9.3. Removing an OST from the File System ...................................................  131



Administering Lustre

88

14.9.4. Backing Up OST Configuration Files .......................................................  133
14.9.5. Restoring OST Configuration Files ...........................................................  134
14.9.6. Returning a Deactivated OST to Service ....................................................  135

14.10. Aborting Recovery .........................................................................................  135
14.11. Determining Which Machine is Serving an OST ..................................................  135
14.12. Changing the Address of a Failover Node ..........................................................  136
14.13. Separate a combined MGS/MDT ......................................................................  136
14.14. Set an MDT to read-only ....................................................................... L 2.13 137
14.15. Tune Fallocate for ldiskfs ......................................................................  L 2.14 137

15. Managing Lustre Networking (LNet) ..........................................................................  139
15.1. Updating the Health Status of a Peer or Router .....................................................  139
15.2. Starting and Stopping LNet ...............................................................................  139

15.2.1. Starting LNet .......................................................................................  139
15.2.2. Stopping LNet ......................................................................................  140

15.3. Hardware Based Multi-Rail Configurations with LNet ............................................  141
15.4. Load Balancing with an InfiniBand* Network .......................................................  141

15.4.1. Setting Up lustre.conf for Load Balancing ..........................................  141
15.5. Dynamically Configuring LNet Routes ................................................................  143

15.5.1. lustre_routes_config ..................................................................  143
15.5.2. lustre_routes_conversion ..........................................................  144
15.5.3. Route Configuration Examples .................................................  144

16. LNet Software Multi-Rail ................................................................................  L 2.10 145
16.1. Multi-Rail Overview ........................................................................................  145
16.2. Configuring Multi-Rail .....................................................................................  145

16.2.1. Configure Multiple Interfaces on the Local Node ........................................  145
16.2.2. Deleting Network Interfaces ....................................................................  147
16.2.3. Adding Remote Peers that are Multi-Rail Capable .......................................  147
16.2.4. Deleting Remote Peers ...........................................................................  148

16.3. Notes on routing with Multi-Rail ........................................................................  149
16.3.1. Multi-Rail Cluster Example ....................................................................  149
16.3.2. Utilizing Router Resiliency .....................................................................  151
16.3.3. Mixed Multi-Rail/Non-Multi-Rail Cluster ..................................................  151

16.4. Multi-Rail Routing with LNet Health ........................................................  L 2.13 152
16.4.1. Configuration .......................................................................................  152
16.4.2. Router Health .......................................................................................  153
16.4.3. Discovery ............................................................................................  153
16.4.4. Route Aliveness Criteria .........................................................................  153

16.5. LNet Health .........................................................................................  L 2.12 154
16.5.1. Health Value ........................................................................................  154
16.5.2. Failure Types and Behavior ....................................................................  154
16.5.3. User Interface .......................................................................................  155
16.5.4. Displaying Information ..........................................................................  157
16.5.5. Initial Settings Recommendations .............................................................  159

17. Upgrading a Lustre File System .................................................................................  161
17.1. Release Interoperability and Upgrade Requirements ...............................................  161
17.2. Upgrading to Lustre Software Release 2.x (Major Release) ......................................  161
17.3. Upgrading to Lustre Software Release 2.x.y (Minor Release) ...................................  165

18. Backing Up and Restoring a File System ..................................................................... 167
18.1. Backing up a File System .................................................................................  167

18.1.1. Lustre_rsync ........................................................................................  168
18.2. Backing Up and Restoring an MDT or OST (ldiskfs Device Level) ...........................  170
18.3. Backing Up an OST or MDT (Backend File System Level) .....................................  171

18.3.1. Backing Up an OST or MDT (Backend File System Level) ..................  L 2.11 171
18.3.2. Backing Up an OST or MDT ..................................................................  172



Administering Lustre

89

18.4. Restoring a File-Level Backup ...........................................................................  174
18.5. Using LVM Snapshots with the Lustre File System ................................................ 176

18.5.1. Creating an LVM-based Backup File System .............................................  176
18.5.2. Backing up New/Changed Files to the Backup File System ...........................  178
18.5.3. Creating Snapshot Volumes ....................................................................  178
18.5.4. Restoring the File System From a Snapshot ...............................................  178
18.5.5. Deleting Old Snapshots ..........................................................................  180
18.5.6. Changing Snapshot Volume Size .............................................................  180

18.6. Migration Between ZFS and ldiskfs Target Filesystems .................................  L 2.11 180
18.6.1. Migrate from a ZFS to an ldiskfs based filesystem ....................................... 180
18.6.2. Migrate from an ldiskfs to a ZFS based filesystem ....................................... 180

19. Managing File Layout (Striping) and Free Space .........................................................  182
19.1. How Lustre File System Striping Works ..............................................................  182
19.2. Lustre File Layout (Striping) Considerations .........................................................  182

19.2.1. Choosing a Stripe Size ...........................................................................  183
19.3. Setting the File Layout/Striping Configuration (lfs setstripe) ..........................  184

19.3.1. Specifying a File Layout (Striping Pattern) for a Single File ..........................  185
19.3.2. Setting the Striping Layout for a Directory ................................................  186
19.3.3. Setting the Striping Layout for a File System .............................................  186
19.3.4. Per File System Stripe Count Limit ..........................................................  186
19.3.5. Creating a File on a Specific OST ............................................................  187

19.4. Retrieving File Layout/Striping Information (getstripe) .....................................  187
19.4.1. Displaying the Current Stripe Size ...........................................................  187
19.4.2. Inspecting the File Tree .......................................................................... 188
19.4.3. Locating the MDT for a remote directory ..................................................  188

19.5. Progressive File Layout(PFL) ..................................................................  L 2.10 188
19.5.1. lfs setstripe ...............................................................................  190
19.5.2. lfs migrate ...................................................................................  197
19.5.3. lfs getstripe ...............................................................................  201
19.5.4. lfs find .........................................................................................  205

19.6. Self-Extending Layout (SEL) ...................................................................  L 2.13 206
19.6.1. lfs setstripe ...............................................................................  207
19.6.2. lfs getstripe ...............................................................................  209
19.6.3. lfs find .........................................................................................  216

19.7. Foreign Layout .....................................................................................  L 2.13 217
19.7.1. lfs set[dir]stripe ...................................................................... 217
19.7.2. lfs get[dir]stripe ...................................................................... 218
19.7.3. lfs find .........................................................................................  218

19.8. Managing Free Space .......................................................................................  219
19.8.1. Checking File System Free Space ............................................................  219
19.8.2. Stripe Allocation Methods ......................................................................  221
19.8.3. Adjusting the Weighting Between Free Space and Location ...........................  222

19.9. Lustre Striping Internals ...................................................................................  222
20. Data on MDT (DoM) ......................................................................................  L 2.11 224

20.1. Introduction to Data on MDT (DoM) ..................................................................  224
20.2. User Commands ..............................................................................................  224

20.2.1. lfs setstripe for DoM files .......................................................................  224
20.2.2. Setting a default DoM layout to an existing directory ...................................  226
20.2.3. DoM Stripe Size Restrictions ..................................................................  228
20.2.4. lfs getstripe for DoM files ......................................................................  228
20.2.5. lfs find for DoM files ............................................................................  229
20.2.6. The dom_stripesize parameter .................................................................  230
20.2.7. Disable DoM ........................................................................................ 231

21. Lazy Size on MDT (LSoM) ..............................................................................  L 2.12 232



Administering Lustre

90

21.1. Introduction to Lazy Size on MDT (LSoM) ..........................................................  232
21.2. Enable LSoM .................................................................................................  232
21.3. User Commands ..............................................................................................  233

21.3.1. lfs getsom for LSoM data .......................................................................  233
21.3.2. Syncing LSoM data ...............................................................................  233

22. File Level Redundancy (FLR) ..........................................................................  L 2.11 235
22.1. Introduction ....................................................................................................  235
22.2. Operations ......................................................................................................  235

22.2.1. Creating a Mirrored File or Directory .......................................................  235
22.2.2. Extending a Mirrored File ......................................................................  240
22.2.3. Splitting a Mirrored File .........................................................................  244
22.2.4. Resynchronizing out-of-sync Mirrored File(s) .............................................  249
22.2.5. Verifying Mirrored File(s) ......................................................................  253
22.2.6. Finding Mirrored File(s) .........................................................................  255

22.3. Interoperability ................................................................................................  256
23. Managing the File System and I/O .............................................................................  258

23.1. Handling Full OSTs .........................................................................................  258
23.1.1. Checking OST Space Usage .................................................................... 258
23.1.2. Disabling creates on a Full OST ..............................................................  259
23.1.3. Migrating Data within a File System ........................................................  259
23.1.4. Returning an Inactive OST Back Online ....................................................  259
23.1.5. Migrating Metadata within a Filesystem ....................................................  259

23.2. Creating and Managing OST Pools .....................................................................  261
23.2.1. Working with OST Pools .......................................................................  262
23.2.2. Tips for Using OST Pools ......................................................................  264

23.3. Adding an OST to a Lustre File System ..............................................................  264
23.4. Performing Direct I/O ......................................................................................  265

23.4.1. Making File System Objects Immutable ....................................................  265
23.5. Other I/O Options ............................................................................................ 265

23.5.1. Lustre Checksums .................................................................................  265
23.5.2. PtlRPC Client Thread Pool .....................................................................  266

24. Lustre File System Failover and Multiple-Mount Protection ..........................................  268
24.1. Overview of Multiple-Mount Protection ..............................................................  268
24.2. Working with Multiple-Mount Protection .............................................................  268

25. Configuring and Managing Quotas ............................................................................  270
25.1. Working with Quotas .......................................................................................  270
25.2. Enabling Disk Quotas ......................................................................................  270

25.2.1. Quota Verification .................................................................................  272
25.3. Quota Administration .......................................................................................  273
25.4. Default Quota .......................................................................................  L 2.12 275

25.4.1. Usage .................................................................................................  275
25.5. Quota Allocation .............................................................................................  277
25.6. Quotas and Version Interoperability ....................................................................  278
25.7. Granted Cache and Quota Limits ........................................................................  278
25.8. Lustre Quota Statistics ...................................................................................... 279

25.8.1. Interpreting Quota Statistics ....................................................................  280
25.9. Pool Quotas ..........................................................................................  L 2.14 280

25.9.1. DOM and MDT pools ............................................................................ 281
25.9.2. Lfs quota/setquota options to setup quota pools ........................................... 281
25.9.3. Quota pools interoperability ....................................................................  281
25.9.4. Pool Quotas Hard Limit setup example .....................................................  281
25.9.5. Pool Quotas Soft Limit setup example ......................................................  282

26. Hierarchical Storage Management (HSM) ...........................................................  L 2.5 283
26.1. Introduction ....................................................................................................  283



Administering Lustre

91

26.2. Setup .............................................................................................................  283
26.2.1. Requirements .......................................................................................  283
26.2.2. Coordinator ..........................................................................................  284
26.2.3. Agents ................................................................................................  284

26.3. Agents and copytool ........................................................................................  284
26.3.1. Archive ID, multiple backends ................................................................  284
26.3.2. Registered agents ..................................................................................  285
26.3.3. Timeout ............................................................................................... 285

26.4. Requests ........................................................................................................  285
26.4.1. Commands ...........................................................................................  286
26.4.2. Automatic restore ..................................................................................  286
26.4.3. Request monitoring ...............................................................................  286

26.5. File states ....................................................................................................... 286
26.6. Tuning ...........................................................................................................  287

26.6.1. hsm_controlpolicy ........................................................................  287
26.6.2. max_requests ..................................................................................  287
26.6.3. policy ..............................................................................................  287
26.6.4. grace_delay ....................................................................................  288

26.7. change logs ....................................................................................................  288
26.8. Policy engine ..................................................................................................  288

26.8.1. Robinhood ...........................................................................................  289
27. Persistent Client Cache (PCC) .........................................................................  L 2.13 290

27.1. Introduction ....................................................................................................  290
27.2. Design ...........................................................................................................  290

27.2.1. Lustre Read-Write PCC Caching .............................................................. 290
27.2.2. Rule-based Persistent Client Cache ...........................................................  291

27.3. PCC Command Line Tools ...............................................................................  291
27.3.1. Add a PCC backend on a client ...............................................................  291
27.3.2. Delete a PCC backend from a client .........................................................  293
27.3.3. Remove all PCC backends on a client .......................................................  293
27.3.4. List all PCC backends on a client ............................................................  293
27.3.5. Attach given files into PCC ....................................................................  294
27.3.6. Attach given files into PCC by FID(s) ......................................................  294
27.3.7. Detach given files from PCC ..................................................................  294
27.3.8. Detach given files from PCC by FID(s) .....................................................  295
27.3.9. Display the PCC state for given files ........................................................  295

27.4. PCC Configuration Example .............................................................................. 296
28. Mapping UIDs and GIDs with Nodemap .............................................................  L 2.9 297

28.1. Setting a Mapping ...........................................................................................  297
28.1.1. Defining Terms ....................................................................................  297
28.1.2. Deciding on NID Ranges ........................................................................ 297
28.1.3. Defining a Servers Specific Group ...........................................................  298
28.1.4. Describing and Deploying a Sample Mapping ............................................  298
28.1.5. Mapping Project IDs ....................................................................  L 2.15 300

28.2. Removing Nodemaps .......................................................................................  300
28.3. Altering Properties ...........................................................................................  300

28.3.1. Managing the Properties .........................................................................  301
28.3.2. Mixing Properties .................................................................................. 302

28.4. Enabling the Feature ........................................................................................  303
28.5. default Nodemap ........................................................................................  303
28.6. Verifying Settings ............................................................................................ 304
28.7. Ensuring Consistency .......................................................................................  304

29. Configuring Shared-Secret Key (SSK) Security .................................................... L 2.9 306
29.1. SSK Security Overview ....................................................................................  306



Administering Lustre

92

29.1.1. Key features .........................................................................................  306
29.2. SSK Security Flavors .......................................................................................  306

29.2.1. Secure RPC Rules .................................................................................  307
29.3. SSK Key Files ................................................................................................  309

29.3.1. Key File Management ............................................................................  310
29.4. Lustre GSS Keyring .........................................................................................  313

29.4.1. Setup ..................................................................................................  313
29.4.2. Server Setup ........................................................................................  313
29.4.3. Debugging GSS Keyring ........................................................................  315
29.4.4. Revoking Keys .....................................................................................  316

29.5. Role of Nodemap in SSK .................................................................................  316
29.6. SSK Examples ................................................................................................  317

29.6.1. Securing Client to Server Communications ................................................  317
29.6.2. Securing MGS Communications ..............................................................  318
29.6.3. Securing Server to Server Communications ................................................  319

29.7. Viewing Secure PtlRPC Contexts .......................................................................  320
30. Managing Security in a Lustre File System .................................................................  321

30.1. Using ACLs ...................................................................................................  321
30.1.1. How ACLs Work ..................................................................................  321
30.1.2. Using ACLs with the Lustre Software .......................................................  321
30.1.3. Examples .............................................................................................  322

30.2. Using Root Squash ..........................................................................................  322
30.3. Isolating Clients to a Sub-directory Tree ..............................................................  323

30.3.1. Identifying Clients .................................................................................  323
30.3.2. Configuring Isolation .............................................................................  323
30.3.3. Making Isolation Permanent ....................................................................  324

30.4. Checking SELinux Policy Enforced by Lustre Clients ...................................  L 2.13 324
30.4.1. Determining SELinux Policy Info ............................................................  324
30.4.2. Enforcing SELinux Policy Check .............................................................  325
30.4.3. Making SELinux Policy Check Permanent .................................................  325
30.4.4. Sending SELinux Status Info from Clients .................................................  325

30.5. Encrypting files and directories ................................................................  L 2.14 326
30.5.1. Client-side encryption access semantics .....................................................  326
30.5.2. Client-side encryption key hierarchy .........................................................  328
30.5.3. Client-side encryption modes and usage ....................................................  328
30.5.4. Client-side encryption threat model ..........................................................  329
30.5.5. Manage encryption on directories .............................................................  330

30.6. Configuring Kerberos (KRB) Security .................................................................  332
30.6.1. What Is Kerberos? ................................................................................  333
30.6.2. Security Flavor .....................................................................................  333
30.6.3. Kerberos Setup .....................................................................................  334
30.6.4. Networking ..........................................................................................  335
30.6.5. Required packages ................................................................................  336
30.6.6. Build Lustre .........................................................................................  336
30.6.7. Running ..............................................................................................  336
30.6.8. Secure MGS connection .........................................................................  338

31. Lustre ZFS Snapshots .....................................................................................  L 2.10 339
31.1. Introduction ....................................................................................................  339

31.1.1. Requirements .......................................................................................  339
31.2. Configuration ..................................................................................................  339
31.3. Snapshot Operations ........................................................................................  341

31.3.1. Creating a Snapshot ...............................................................................  341
31.3.2. Delete a Snapshot .................................................................................  341
31.3.3. Mounting a Snapshot .............................................................................  341



Administering Lustre

93

31.3.4. Unmounting a Snapshot .........................................................................  342
31.3.5. List Snapshots ......................................................................................  343
31.3.6. Modify Snapshot Attributes ....................................................................  343

31.4. Global Write Barriers .......................................................................................  343
31.4.1. Impose Barrier ...................................................................................... 344
31.4.2. Remove Barrier ....................................................................................  344
31.4.3. Query Barrier .......................................................................................  344
31.4.4. Rescan Barrier ......................................................................................  345

31.5. Snapshot Logs ................................................................................................  345
31.6. Lustre Configuration Logs ................................................................................  346



94

Chapter 12. Monitoring a Lustre File
System

This chapter provides information on monitoring a Lustre file system and includes the following sections:

• Section 12.1, “ Lustre Changelogs”Lustre Changelogs

• Section 12.2, “ Lustre Jobstats”Lustre Jobstats

• Section 12.3, “ Lustre Monitoring Tool (LMT)”Lustre Monitoring Tool

• Section 12.4, “ CollectL ”CollectL

• Section 12.5, “ Other Monitoring Options”Other Monitoring Options

12.1.    Lustre Changelogs
The changelogs feature records events that change the file system namespace or file metadata. Changes
such as file creation, deletion, renaming, attribute changes, etc. are recorded with the target and parent file
identifiers (FIDs), the name of the target, a timestamp, and user information. These records can be used
for a variety of purposes:

• Capture recent changes to feed into an archiving system.

• Use changelog entries to exactly replicate changes in a file system mirror.

• Set up "watch scripts" that take action on certain events or directories.

• Audit activity on Lustre, thanks to user information associated to file/directory changes with timestamps.

Changelogs record types are:

Value Description

MARK Internal recordkeeping

CREAT Regular file creation

MKDIR Directory creation

HLINK Hard link

SLINK Soft link

MKNOD Other file creation

UNLNK Regular file removal

RMDIR Directory removal

RENME Rename, original

RNMTO Rename, final

OPEN * Open

CLOSE Close

LYOUT Layout change



Monitoring a Lustre File System

95

Value Description

TRUNC Regular file truncated

SATTR Attribute change

XATTR Extended attribute change (setxattr)

HSM HSM specific event

MTIME MTIME change

CTIME CTIME change

ATIME * ATIME change

MIGRT Migration event

FLRW File Level Replication: file initially written

RESYNC File Level Replication: file re-synced

GXATR * Extended attribute access (getxattr)

NOPEN * Denied open

Note

Event types marked with * are not recorded by default. Refer to Section 12.1.2.7, “Setting the
Changelog Mask” for instructions on modifying the Changelogs mask.

FID-to-full-pathname and pathname-to-FID functions are also included to map target and parent FIDs into
the file system namespace.

12.1.1.  Working with Changelogs
Several commands are available to work with changelogs.

12.1.1.1.  lctl changelog_register

Because changelog records take up space on the MDT, the system administration must register changelog
users. As soon as a changelog user is registered, the Changelogs feature is enabled. The registrants specify
which records they are "done with", and the system purges up to the greatest common record.

To register a new changelog user, run:

mds# lctl --device fsname-MDTnumber changelog_register

Changelog entries are not purged beyond a registered user's set point (see lfs changelog_clear).

12.1.1.2.  lfs changelog

To display the metadata changes on an MDT (the changelog records), run:

client# lfs changelog fsname-MDTnumber [startrec [endrec]]

It is optional whether to specify the start and end records.

These are sample changelog records:



Monitoring a Lustre File System

96

1 02MKDIR 15:15:21.977666834 2018.01.09 0x0 t=[0x200000402:0x1:0x0] j=mkdir.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics
2 01CREAT 15:15:36.687592024 2018.01.09 0x0 t=[0x200000402:0x2:0x0] j=cp.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
3 06UNLNK 15:15:41.305116815 2018.01.09 0x1 t=[0x200000402:0x2:0x0] j=rm.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
4 07RMDIR 15:15:46.468790091 2018.01.09 0x1 t=[0x200000402:0x1:0x0] j=rmdir.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics

12.1.1.3.  lfs changelog_clear

To clear old changelog records for a specific user (records that the user no longer needs), run:

client# lfs changelog_clear mdt_name userid endrec

The changelog_clear command indicates that changelog records previous to endrec are no longer
of interest to a particular user userid, potentially allowing the MDT to free up disk space. An endrec
value of 0 indicates the current last record. To run changelog_clear, the changelog user must be
registered on the MDT node using lctl.

When all changelog users are done with records < X, the records are deleted.

12.1.1.4.  lctl changelog_deregister

To deregister (unregister) a changelog user, run:

mds# lctl --device mdt_device changelog_deregister userid

changelog_deregister cl1 effectively does a lfs changelog_clear cl1 0 as it
deregisters.

12.1.2. Changelog Examples
This section provides examples of different changelog commands.

12.1.2.1. Registering a Changelog User

To register a new changelog user for a device (lustre-MDT0000):

mds# lctl --device lustre-MDT0000 changelog_register
lustre-MDT0000: Registered changelog userid 'cl1'

12.1.2.2. Displaying Changelog Records

To display changelog records for an MDT (e.g. lustre-MDT0000):

client# lfs changelog lustre-MDT0000
1 02MKDIR 15:15:21.977666834 2018.01.09 0x0 t=[0x200000402:0x1:0x0] ef=0xf \



Monitoring a Lustre File System

97

u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics
2 01CREAT 15:15:36.687592024 2018.01.09 0x0 t=[0x200000402:0x2:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
3 06UNLNK 15:15:41.305116815 2018.01.09 0x1 t=[0x200000402:0x2:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
4 07RMDIR 15:15:46.468790091 2018.01.09 0x1 t=[0x200000402:0x1:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics

Changelog records include this information:

rec# operation_type(numerical/text) timestamp datestamp flags
t=target_FID ef=extended_flags u=uid:gid nid=client_NID p=parent_FID target_name

Displayed in this format:

rec# operation_type(numerical/text) timestamp datestamp flags t=target_FID \
ef=extended_flags u=uid:gid nid=client_NID p=parent_FID target_name

For example:

2 01CREAT 15:15:36.687592024 2018.01.09 0x0 t=[0x200000402:0x2:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg

12.1.2.3. Clearing Changelog Records

To notify a device that a specific user (cl1) no longer needs records (up to and including 3):

# lfs changelog_clear  lustre-MDT0000 cl1 3

To confirm that the changelog_clear operation was successful, run lfs changelog; only records
after id-3 are listed:

# lfs changelog lustre-MDT0000
4 07RMDIR 15:15:46.468790091 2018.01.09 0x1 t=[0x200000402:0x1:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics

12.1.2.4. Deregistering a Changelog User

To deregister a changelog user (cl1) for a specific device (lustre-MDT0000):

mds# lctl --device lustre-MDT0000 changelog_deregister cl1
lustre-MDT0000: Deregistered changelog user 'cl1'

The deregistration operation clears all changelog records for the specified user (cl1).

client# lfs changelog lustre-MDT0000
5 00MARK  15:56:39.603643887 2018.01.09 0x0 t=[0x20001:0x0:0x0] ef=0xf \
u=500:500 nid=0@<0:0> p=[0:0x50:0xb] mdd_obd-lustre-MDT0000-0



Monitoring a Lustre File System

98

Note

MARK records typically indicate changelog recording status changes.

12.1.2.5. Displaying the Changelog Index and Registered Users

To display the current, maximum changelog index and registered changelog users for a specific device
(lustre-MDT0000):

mds# lctl get_param  mdd.lustre-MDT0000.changelog_users
mdd.lustre-MDT0000.changelog_users=current index: 8
ID    index (idle seconds)
cl2   8 (180)

12.1.2.6. Displaying the Changelog Mask

To show the current changelog mask on a specific device (lustre-MDT0000):

mds# lctl get_param  mdd.lustre-MDT0000.changelog_mask

mdd.lustre-MDT0000.changelog_mask= 
MARK CREAT MKDIR HLINK SLINK MKNOD UNLNK RMDIR RENME RNMTO CLOSE LYOUT \
TRUNC SATTR XATTR HSM MTIME CTIME MIGRT

12.1.2.7. Setting the Changelog Mask

To set the current changelog mask on a specific device (lustre-MDT0000):

mds# lctl set_param mdd.lustre-MDT0000.changelog_mask=HLINK
mdd.lustre-MDT0000.changelog_mask=HLINK
$ lfs changelog_clear lustre-MDT0000 cl1 0
$ mkdir /mnt/lustre/mydir/foo
$ cp /etc/hosts /mnt/lustre/mydir/foo/file
$ ln /mnt/lustre/mydir/foo/file /mnt/lustre/mydir/myhardlink

Only item types that are in the mask show up in the changelog.

# lfs changelog lustre-MDT0000
9 03HLINK 16:06:35.291636498 2018.01.09 0x0 t=[0x200000402:0x4:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x3:0x0] myhardlink

Introduced in Lustre 2.11

12.1.3.  Audit with Changelogs
A specific use case for Lustre Changelogs is audit. According to a definition found on  Wikipedia
[https://en.wikipedia.org/wiki/Information_technology_audit], information technology audits are used to
evaluate the organization's ability to protect its information assets and to properly dispense information to
authorized parties. Basically, audit consists in controlling that all data accesses made were done according
to the access control policy in place. And usually, this is done by analyzing access logs.

https://en.wikipedia.org/wiki/Information_technology_audit
https://en.wikipedia.org/wiki/Information_technology_audit


Monitoring a Lustre File System

99

Audit can be used as a proof of security in place. But Audit can also be a requirement to comply with
regulations.

Lustre Changelogs are a good mechanism for audit, because this is a centralized facility, and it is designed
to be transactional. Changelog records contain all information necessary for auditing purposes:

• ability to identify object of action thanks to file identifiers (FIDs) and name of targets

• ability to identify subject of action thanks to UID/GID and NID information

• ability to identify time of action thanks to timestamp

12.1.3.1. Enabling Audit

To have a fully functional Changelogs-based audit facility, some additional Changelog record types must
be enabled, to be able to record events such as OPEN, ATIME, GETXATTR and DENIED OPEN. Please
note that enabling these record types may have some performance impact. For instance, recording OPEN
and GETXATTR events generate writes in the Changelog records for a read operation from a file-system
standpoint.

Being able to record events such as OPEN or DENIED OPEN is important from an audit perspective. For
instance, if Lustre file system is used to store medical records on a system dedicated to Life Sciences,
data privacy is crucial. Administrators may need to know which doctors accessed, or tried to access, a
given medical record and when. And conversely, they might need to know which medical records a given
doctor accessed.

To enable all changelog entry types, do:

mds# lctl set_param mdd.lustre-MDT0000.changelog_mask=ALL
mdd.seb-MDT0000.changelog_mask=ALL

Once all required record types have been enabled, just register a Changelogs user and the audit facility
is operational.

Note that, however, it is possible to control which Lustre client nodes can trigger the recording of file
system access events to the Changelogs, thanks to the audit_mode flag on nodemap entries. The reason
to disable audit on a per-nodemap basis is to prevent some nodes (e.g. backup, HSM agent nodes) from
flooding the audit logs. When audit_mode flag is set to 1 on a nodemap entry, a client pertaining to this
nodemap will be able to record file system access events to the Changelogs, if Changelogs are otherwise
activated. When set to 0, events are not logged into the Changelogs, no matter if Changelogs are activated
or not. By default, audit_mode flag is set to 1 in newly created nodemap entries. And it is also set to
1 in 'default' nodemap.

To prevent nodes pertaining to a nodemap to generate Changelog entries, do:

mgs# lctl nodemap_modify --name nm1 --property audit_mode --value 0

12.1.3.2. Audit examples

12.1.3.2.1.  OPEN

An OPEN changelog entry is in the form:



Monitoring a Lustre File System

100

7 10OPEN  13:38:51.510728296 2017.07.25 0x242 t=[0x200000401:0x2:0x0] \
ef=0x7 u=500:500 nid=10.128.11.159@tcp m=-w-

It includes information about the open mode, in the form m=rwx.

OPEN entries are recorded only once per UID/GID, for a given open mode, as long as the file is not
closed by this UID/GID. It avoids flooding the Changelogs for instance if there is an MPI job opening the
same file thousands of times from different threads. It reduces the ChangeLog load significantly, without
significantly affecting the audit information. Similarly, only the last CLOSE per UID/GID is recorded.

12.1.3.2.2.  GETXATTR

A GETXATTR changelog entry is in the form:

8 23GXATR 09:22:55.886793012 2017.07.27 0x0 t=[0x200000402:0x1:0x0] \
ef=0xf u=500:500 nid=10.128.11.159@tcp x=user.name0

It includes information about the name of the extended attribute being accessed, in the form x=<xattr
name>.

12.1.3.2.3.  SETXATTR

A SETXATTR changelog entry is in the form:

4 15XATTR 09:41:36.157333594 2018.01.10 0x0 t=[0x200000402:0x1:0x0] \
ef=0xf u=500:500 nid=10.128.11.159@tcp x=user.name0

It includes information about the name of the extended attribute being modified, in the form x=<xattr
name>.

12.1.3.2.4.  DENIED OPEN

A DENIED OPEN changelog entry is in the form:

4 24NOPEN 15:45:44.947406626 2017.08.31 0x2 t=[0x200000402:0x1:0x0] \
ef=0xf u=500:500 nid=10.128.11.158@tcp m=-w-

It has the same information as a regular OPEN entry. In order to avoid flooding the Changelogs, DENIED
OPEN entries are rate limited: no more than one entry per user per file per time interval, this time interval
(in seconds) being configurable via mdd.<mdtname>.changelog_deniednext (default value is
60 seconds).

mds# lctl set_param mdd.lustre-MDT0000.changelog_deniednext=120
mdd.seb-MDT0000.changelog_deniednext=120
mds# lctl get_param mdd.lustre-MDT0000.changelog_deniednext
mdd.seb-MDT0000.changelog_deniednext=120

12.2.    Lustre Jobstats
The Lustre jobstats feature collects file system operation statistics for user processes running on Lustre
clients, and exposes on the server using the unique Job Identifier (JobID) provided by the job scheduler for



Monitoring a Lustre File System

101

each job. Job schedulers known to be able to work with jobstats include: SLURM, SGE, LSF, Loadleveler,
PBS and Maui/MOAB.

Since jobstats is implemented in a scheduler-agnostic manner, it is likely that it will be able to work with
other schedulers also, and also in environments that do not use a job scheduler, by storing custom format
strings in the jobid_name.

12.2.1.  How Jobstats Works
The Lustre jobstats code on the client extracts the unique JobID from an environment variable within the
user process, and sends this JobID to the server with all RPCs. This allows the server to tracks statistics
for operations specific to each application/command running on the client, and can be useful to identify
the source high I/O load.

A Lustre setting on the client, jobid_var, specifies an environment variable or other client-local source
that to holds a (relatively) unique the JobID for the running application. Any environment variable can be
specified. For example, SLURM sets the SLURM_JOB_ID environment variable with the unique JobID
for all clients running a particular job launched on one or more nodes, and the SLURM_JOB_ID will be
inherited by all child processes started below that process.

There are several reserved values for jobid_var:

• disable - disables sending a JobID from this client

• procname_uid - uses the process name and UID, equivalent to setting jobid_name=%e.%u

• nodelocal - use only the JobID format from jobid_name

• session - extract the JobID from jobid_this_session

Lustre can also be configured to generate a synthetic JobID from the client's process name and numeric
UID, by setting jobid_var=procname_uid. This will generate a uniform JobID when running the
same binary across multiple client nodes, but cannot distinguish whether the binary is part of a single
distributed process or multiple independent processes. This can be useful on login nodes where interactive
commands are run.

Introduced in Lustre 2.8

In Lustre 2.8 and later it is possible to set jobid_var=nodelocal and then also set
jobid_name=name, which all processes on that client node will use. This is useful if only a single job
is run on a client at one time, but if multiple jobs are run on a client concurrently, the session JobID
should be used.

Introduced in Lustre 2.12

In Lustre 2.12 and later, it is possible to specify more complex JobID values for jobid_name by using
a string that contains format codes that are evaluated for each process, in order to generate a site- or node-
specific JobID string.

• %e print executable name

• %g print group ID number

• %h print fully-qualified hostname

• %H print short hostname



Monitoring a Lustre File System

102

• %j print JobID from the source named by the jobid_var parameter

• %p print numeric process ID

• %u print user ID number

Introduced in Lustre 2.13

In Lustre 2.13 and later, it is possible to set a per-session JobID via the jobid_this_session
parameter instead of getting the JobID from an environment variable. This session ID will be inherited
by all processes that are started in this login session, though there can be a different JobID for each
login session. This is enabled by setting jobid_var=session instead of setting it to an environment
variable. The session ID will be substituted for %j in jobid_name.

The setting of jobid_var need not be the same on all clients. For example, one could use
SLURM_JOB_ID on all clients managed by SLURM, and use procname_uid on clients not managed
by SLURM, such as interactive login nodes.

It is not possible to have different jobid_var settings on a single node, since it is unlikely that
multiple job schedulers are active on one client. However, the actual JobID value is local to each process
environment and it is possible for multiple jobs with different JobIDs to be active on a single client at
one time.

12.2.2.  Enable/Disable Jobstats
Jobstats are disabled by default. The current state of jobstats can be verified by checking lctl
get_param jobid_var on a client:

clieht# lctl get_param jobid_var
jobid_var=disable

To enable jobstats on all clients for SLURM:

mgs# lctl set_param -P jobid_var=SLURM_JOB_ID

The lctl set_param command to enable or disable jobstats should be run on the MGS as root. The
change is persistent, and will be propagated to the MDS, OSS, and client nodes automatically when it is
set on the MGS and for each new client mount.

To temporarily enable jobstats on a client, or to use a different jobid_var on a subset of nodes, such as
nodes in a remote cluster that use a different job scheduler, or interactive login nodes that do not use a job
scheduler at all, run the lctl set_param command directly on the client node(s) after the filesystem
is mounted. For example, to enable the procname_uid synthetic JobID locally on a login node run:

client# lctl set_param jobid_var=procname_uid

The lctl set_param setting is not persistent, and will be reset if the global jobid_var is set on
the MGS or if the filesystem is unmounted.

The following table shows the environment variables which are set by various job schedulers. Set
jobid_var to the value for your job scheduler to collect statistics on a per job basis.



Monitoring a Lustre File System

103

Job Scheduler Environment Variable

Simple Linux Utility for Resource Management
(SLURM)

SLURM_JOB_ID

Sun Grid Engine (SGE) JOB_ID

Load Sharing Facility (LSF) LSB_JOBID

Loadleveler LOADL_STEP_ID

Portable Batch Scheduler (PBS)/MAUI PBS_JOBID

Cray Application Level Placement Scheduler
(ALPS)

ALPS_APP_ID

mgs# lctl set_param -P jobid_var=disable

To track job stats per process name and user ID (for debugging, or if no job scheduler is in use on some
nodes such as login nodes), specify jobid_var as procname_uid:

client# lctl set_param jobid_var=procname_uid

12.2.3.  Check Job Stats
Metadata operation statistics are collected on MDTs. These statistics can be accessed for all file systems
and all jobs on the MDT via the lctl get_param mdt.*.job_stats. For example, clients running
with jobid_var=procname_uid:

mds# lctl get_param mdt.*.job_stats
job_stats:
- job_id:          bash.0
  snapshot_time:   1352084992
  open:            { samples:     2, unit:  reqs }
  close:           { samples:     2, unit:  reqs }
  getattr:         { samples:     3, unit:  reqs }
- job_id:          mythbackend.0
  snapshot_time:   1352084996
  open:            { samples:    72, unit:  reqs }
  close:           { samples:    73, unit:  reqs }
  unlink:          { samples:    22, unit:  reqs }
  getattr:         { samples:   778, unit:  reqs }
  setattr:         { samples:    22, unit:  reqs }
  statfs:          { samples: 19840, unit:  reqs }
  sync:            { samples: 33190, unit:  reqs }

Data operation statistics are collected on OSTs. Data operations statistics can be accessed via lctl
get_param obdfilter.*.job_stats, for example:

oss# lctl get_param obdfilter.*.job_stats
obdfilter.myth-OST0000.job_stats=
job_stats:
- job_id:          mythcommflag.0
  snapshot_time:   1429714922



Monitoring a Lustre File System

104

  read:    { samples: 974, unit: bytes, min: 4096, max: 1048576, sum: 91530035 }
  write:   { samples:   0, unit: bytes, min:    0, max:       0, sum:        0 }
obdfilter.myth-OST0001.job_stats=
job_stats:
- job_id:          mythbackend.0
  snapshot_time:   1429715270
  read:    { samples:   0, unit: bytes, min:     0, max:      0, sum:        0 }
  write:   { samples:   1, unit: bytes, min: 96899, max:  96899, sum:    96899 }
  punch:   { samples:   1, unit:  reqs }
obdfilter.myth-OST0002.job_stats=job_stats:
obdfilter.myth-OST0003.job_stats=job_stats:
obdfilter.myth-OST0004.job_stats=
job_stats:
- job_id:          mythfrontend.500
  snapshot_time:   1429692083
  read:    { samples:   9, unit: bytes, min: 16384, max: 1048576, sum: 4444160 }
  write:   { samples:   0, unit: bytes, min:     0, max:       0, sum:       0 }
- job_id:          mythbackend.500
  snapshot_time:   1429692129
  read:    { samples:   0, unit: bytes, min:     0, max:       0, sum:       0 }
  write:   { samples:   1, unit: bytes, min: 56231, max:   56231, sum:   56231 }
  punch:   { samples:   1, unit:  reqs }

12.2.4.  Clear Job Stats
Accumulated job statistics can be reset by writing proc file job_stats.

Clear statistics for all jobs on the local node:

oss# lctl set_param obdfilter.*.job_stats=clear

Clear statistics only for job 'bash.0' on lustre-MDT0000:

mds# lctl set_param mdt.lustre-MDT0000.job_stats=bash.0

12.2.5.  Configure Auto-cleanup Interval
By default, if a job is inactive for 600 seconds (10 minutes) statistics for this job will be dropped. This
expiration value can be changed temporarily via:

mds# lctl set_param *.*.job_cleanup_interval={max_age}

It can also be changed permanently, for example to 700 seconds via:

mgs# lctl set_param -P mdt.testfs-*.job_cleanup_interval=700

The job_cleanup_interval can be set as 0 to disable the auto-cleanup. Note that if auto-cleanup of
Jobstats is disabled, then all statistics will be kept in memory forever, which may eventually consume all
memory on the servers. In this case, any monitoring tool should explicitly clear individual job statistics
as they are processed, as shown above.



Monitoring a Lustre File System

105

Introduced in Lustre 2.14

12.2.6.  Identifying Top Jobs
Since Lustre 2.15 the lljobstat utility can be used to monitor and identify the top JobIDs generating
load on a particular server. This allows the administrator to quickly see which applications/users/clients
(depending on how the JobID is conigured) are generating the most filesystem RPCs and take appropriate
action if needed.

mds# lljobstat -c 10
---
    timestamp: 1665984678
    top_jobs:
    - ls.500:          {ops: 64, ga: 64}
    - touch.500:       {ops: 6, op: 1, cl: 1, mn: 1, ga: 1, sa: 2}
    - bash.0:          {ops: 3, ga: 3}
    ...

It is possible to specify the number of top jobs to monitor as well as the refresh interval, among other
options.

12.3.  Lustre Monitoring Tool (LMT)
The Lustre Monitoring Tool (LMT) is a Python-based, distributed system that provides a top-like display
of activity on server-side nodes (MDS, OSS and portals routers) on one or more Lustre file systems. It does
not provide support for monitoring clients. For more information on LMT, including the setup procedure,
see:

https://github.com/chaos/lmt/wiki [https://github.com/chaos/lmt/wiki]

12.4.  CollectL
CollectL is another tool that can be used to monitor a Lustre file system. You can run CollectL on a
Lustre system that has any combination of MDSs, OSTs and clients. The collected data can be written to
a file for continuous logging and played back at a later time. It can also be converted to a format suitable
for plotting.

For more information about CollectL, see:

http://collectl.sourceforge.net [http://collectl.sourceforge.net]

Lustre-specific documentation is also available. See:

http://collectl.sourceforge.net/Tutorial-Lustre.html [http://collectl.sourceforge.net/Tutorial-Lustre.html]

12.5.  Other Monitoring Options
A variety of standard tools are available publicly including the following:

• lltop - Lustre load monitor with batch scheduler integration. https://github.com/jhammond/lltop

https://github.com/chaos/lmt/wiki
https://github.com/chaos/lmt/wiki
http://collectl.sourceforge.net
http://collectl.sourceforge.net
http://collectl.sourceforge.net/Tutorial-Lustre.html
http://collectl.sourceforge.net/Tutorial-Lustre.html
https://github.com/jhammond/lltop


Monitoring a Lustre File System

106

• tacc_stats - A job-oriented system monitor, analyzation, and visualization tool that probes Lustre
interfaces and collects statistics. https://github.com/jhammond/tacc_stats

• xltop - A continuous Lustre monitor with batch scheduler integration. https://github.com/jhammond/
xltop

Another option is to script a simple monitoring solution that looks at various reports from ipconfig, as
well as the procfs files generated by the Lustre software.

https://github.com/jhammond/tacc_stats
https://github.com/jhammond/xltop
https://github.com/jhammond/xltop


107

Chapter 13. Lustre Operations
Once you have the Lustre file system up and running, you can use the procedures in this section to perform
these basic Lustre administration tasks.

13.1.   Mounting by Label
The file system name is limited to 8 characters. We have encoded the file system and target information in
the disk label, so you can mount by label. This allows system administrators to move disks around without
worrying about issues such as SCSI disk reordering or getting the /dev/device wrong for a shared
target. Soon, file system naming will be made as fail-safe as possible. Currently, Linux disk labels are
limited to 16 characters. To identify the target within the file system, 8 characters are reserved, leaving
8 characters for the file system name:

fsname-MDT0000 or
fsname-OST0a19

To mount by label, use this command:

mount -t lustre -L file_system_label /mount_point

This is an example of mount-by-label:

mds# mount -t lustre -L testfs-MDT0000 /mnt/mdt

Caution

Mount-by-label should NOT be used in a multi-path environment or when snapshots are being
created of the device, since multiple block devices will have the same label.

Although the file system name is internally limited to 8 characters, you can mount the clients at any mount
point, so file system users are not subjected to short names. Here is an example:

client# mount -t lustre mds0@tcp0:/short /dev/long_mountpoint_name

13.2.  Starting Lustre
On the first start of a Lustre file system, the components must be started in the following order:

1. Mount the MGT.

Note

If a combined MGT/MDT is present, Lustre will correctly mount the MGT and MDT
automatically.

2. Mount the MDT.

Note

Mount all MDTs if multiple MDTs are present.



Lustre Operations

108

3. Mount the OST(s).

4. Mount the client(s).

13.3.  Mounting a Server
Starting a Lustre server is straightforward and only involves the mount command. Lustre servers can be
added to /etc/fstab:

mount -t lustre

The mount command generates output similar to this:

/dev/sda1 on /mnt/test/mdt type lustre (rw)
/dev/sda2 on /mnt/test/ost0 type lustre (rw)
192.168.0.21@tcp:/testfs on /mnt/testfs type lustre (rw)

In this example, the MDT, an OST (ost0) and file system (testfs) are mounted.

LABEL=testfs-MDT0000 /mnt/test/mdt lustre defaults,_netdev,noauto 0 0
LABEL=testfs-OST0000 /mnt/test/ost0 lustre defaults,_netdev,noauto 0 0

In general, it is wise to specify noauto and let your high-availability (HA) package manage when to mount
the device. If you are not using failover, make sure that networking has been started before mounting
a Lustre server. If you are running Red Hat Enterprise Linux, SUSE Linux Enterprise Server, Debian
operating system (and perhaps others), use the _netdev flag to ensure that these disks are mounted
after the network is up, unless you are using systemd 232 or greater, which recognize lustre as a
network filesystem. If you are using lnet.service, use x-systemd.requires=lnet.service
regardless of systemd version.

We are mounting by disk label here. The label of a device can be read with e2label. The label of a newly-
formatted Lustre server may end in FFFF if the --index option is not specified to mkfs.lustre,
meaning that it has yet to be assigned. The assignment takes place when the server is first started, and the
disk label is updated. It is recommended that the --index option always be used, which will also ensure
that the label is set at format time.

Caution

Do not do this when the client and OSS are on the same node, as memory pressure between the
client and OSS can lead to deadlocks.

Caution

Mount-by-label should NOT be used in a multi-path environment.

13.4.  Stopping the Filesystem
A complete Lustre filesystem shutdown occurs by unmounting all clients and servers in the order shown
below. Please note that unmounting a block device causes the Lustre software to be shut down on that node.



Lustre Operations

109

Note

Please note that the -a -t lustre in the commands below is not the name of a filesystem,
but rather is specifying to unmount all entries in /etc/mtab that are of type lustre

1. Unmount the clients

On each client node, unmount the filesystem on that client using the umount command:

umount -a -t lustre

The example below shows the unmount of the testfs filesystem on a client node:

[root@client1 ~]# mount -t lustre
XXX.XXX.0.11@tcp:/testfs on /mnt/testfs type lustre (rw,lazystatfs)

[root@client1 ~]# umount -a -t lustre
[154523.177714] Lustre: Unmounted testfs-client

2. Unmount the MDT and MGT

On the MGS and MDS node(s), run the umount command:

umount -a -t lustre

The example below shows the unmount of the MDT and MGT for the testfs filesystem on a
combined MGS/MDS:

[root@mds1 ~]# mount -t lustre
/dev/sda on /mnt/mgt type lustre (ro)
/dev/sdb on /mnt/mdt type lustre (ro)

[root@mds1 ~]# umount -a -t lustre
[155263.566230] Lustre: Failing over testfs-MDT0000
[155263.775355] Lustre: server umount testfs-MDT0000 complete
[155269.843862] Lustre: server umount MGS complete

For a seperate MGS and MDS, the same command is used, first on the MDS and then followed by
the MGS.

3. Unmount all the OSTs

On each OSS node, use the umount command:

umount -a -t lustre

The example below shows the unmount of all OSTs for the testfs filesystem on server OSS1:

[root@oss1 ~]# mount |grep lustre
/dev/sda on /mnt/ost0 type lustre (ro)
/dev/sdb on /mnt/ost1 type lustre (ro)
/dev/sdc on /mnt/ost2 type lustre (ro)



Lustre Operations

110

[root@oss1 ~]# umount -a -t lustre
Lustre: Failing over testfs-OST0002
Lustre: server umount testfs-OST0002 complete

For unmount command syntax for a single OST, MDT, or MGT target please refer to Section 13.5, “
Unmounting a Specific Target on a Server”

13.5.  Unmounting a Specific Target on a
Server

To stop a Lustre OST, MDT, or MGT , use the umount /mount_point command.

The example below stops an OST, ost0, on mount point /mnt/ost0 for the testfs filesystem:

[root@oss1 ~]# umount /mnt/ost0
Lustre: Failing over testfs-OST0000
Lustre: server umount testfs-OST0000 complete

Gracefully stopping a server with the umount command preserves the state of the connected clients.
The next time the server is started, it waits for clients to reconnect, and then goes through the recovery
procedure.

If the force ( -f) flag is used, then the server evicts all clients and stops WITHOUT recovery. Upon
restart, the server does not wait for recovery. Any currently connected clients receive I/O errors until they
reconnect.

Note

If you are using loopback devices, use the -d flag. This flag cleans up loop devices and can
always be safely specified.

13.6.  Specifying Failout/Failover Mode for
OSTs

In a Lustre file system, an OST that has become unreachable because it fails, is taken off the network, or
is unmounted can be handled in one of two ways:

• In failout mode, Lustre clients immediately receive errors (EIOs) after a timeout, instead of waiting
for the OST to recover.

• In failover mode, Lustre clients wait for the OST to recover.

By default, the Lustre file system uses failover mode for OSTs. To specify failout mode instead,
use the --param="failover.mode=failout" option as shown below (entered on one line):

oss# mkfs.lustre --fsname=fsname --mgsnode=mgs_NID \
        --param=failover.mode=failout --ost --index=ost_index /dev/ost_block_device

In the example below, failout mode is specified for the OSTs on the MGS mds0 in the file system
testfs(entered on one line).



Lustre Operations

111

oss# mkfs.lustre --fsname=testfs --mgsnode=mds0 --param=failover.mode=failout \
      --ost --index=3 /dev/sdb

Caution

Before running this command, unmount all OSTs that will be affected by a change in failover/
failout mode.

Note

After initial file system configuration, use the tunefs.lustre utility to change the mode. For
example, to set the failout mode, run:

# tunefs.lustre --param failover.mode=failout /dev/ost_device

13.7.  Handling Degraded OST RAID Arrays
Lustre includes functionality that notifies Lustre if an external RAID array has degraded performance
(resulting in reduced overall file system performance), either because a disk has failed and not been
replaced, or because a disk was replaced and is undergoing a rebuild. To avoid a global performance
slowdown due to a degraded OST, the MDS can avoid the OST for new object allocation if it is notified
of the degraded state.

A parameter for each OST, called degraded, specifies whether the OST is running in degraded mode
or not.

To mark the OST as degraded, use:

oss# lctl set_param obdfilter.{OST_name}.degraded=1

To mark that the OST is back in normal operation, use:

oss# lctl set_param obdfilter.{OST_name}.degraded=0

To determine if OSTs are currently in degraded mode, use:

oss# lctl get_param obdfilter.*.degraded

If the OST is remounted due to a reboot or other condition, the flag resets to 0.

It is recommended that this be implemented by an automated script that monitors the status of individual
RAID devices, such as MD-RAID's mdadm(8) command with the --monitor option to mark an
affected device degraded or restored.

13.8.  Running Multiple Lustre File Systems
Lustre supports multiple file systems provided the combination of NID:fsname is unique. Each file
system must be allocated a unique name during creation with the --fsname parameter. Unique names
for file systems are enforced if a single MGS is present. If multiple MGSs are present (for example if you



Lustre Operations

112

have an MGS on every MDS) the administrator is responsible for ensuring file system names are unique. A
single MGS and unique file system names provides a single point of administration and allows commands
to be issued against the file system even if it is not mounted.

Lustre supports multiple file systems on a single MGS. With a single MGS fsnames are guaranteed to be
unique. Lustre also allows multiple MGSs to co-exist. For example, multiple MGSs will be necessary if
multiple file systems on different Lustre software versions are to be concurrently available. With multiple
MGSs additional care must be taken to ensure file system names are unique. Each file system should have
a unique fsname among all systems that may interoperate in the future.

By default, the mkfs.lustre command creates a file system named lustre. To specify a different
file system name (limited to 8 characters) at format time, use the --fsname option:

oss# mkfs.lustre --fsname=file_system_name

Note

The MDT, OSTs and clients in the new file system must use the same file system name (prepended
to the device name). For example, for a new file system named foo, the MDT and two OSTs
would be named foo-MDT0000, foo-OST0000, and foo-OST0001.

To mount a client on the file system, run:

client# mount -t lustre mgsnode:/new_fsname /mount_point

For example, to mount a client on file system foo at mount point /mnt/foo, run:

client# mount -t lustre mgsnode:/foo /mnt/foo

Note

If a client(s) will be mounted on several file systems, add the following line to /etc/
xattr.conf file to avoid problems when files are moved between the file systems: lustre.*
skip

Note

To ensure that a new MDT is added to an existing MGS create the MDT by specifying: --mdt
--mgsnode=mgs_NID.

A Lustre installation with two file systems ( foo and bar) could look like this, where the MGS node is
mgsnode@tcp0 and the mount points are /mnt/foo and /mnt/bar.

mgsnode# mkfs.lustre --mgs /dev/sda
mdtfoonode# mkfs.lustre --fsname=foo --mgsnode=mgsnode@tcp0 --mdt --index=0
/dev/sdb
ossfoonode# mkfs.lustre --fsname=foo --mgsnode=mgsnode@tcp0 --ost --index=0
/dev/sda
ossfoonode# mkfs.lustre --fsname=foo --mgsnode=mgsnode@tcp0 --ost --index=1
/dev/sdb
mdtbarnode# mkfs.lustre --fsname=bar --mgsnode=mgsnode@tcp0 --mdt --index=0



Lustre Operations

113

/dev/sda
ossbarnode# mkfs.lustre --fsname=bar --mgsnode=mgsnode@tcp0 --ost --index=0
/dev/sdc
ossbarnode# mkfs.lustre --fsname=bar --mgsnode=mgsnode@tcp0 --ost --index=1
/dev/sdd

To mount a client on file system foo at mount point /mnt/foo, run:

client# mount -t lustre mgsnode@tcp0:/foo /mnt/foo

To mount a client on file system bar at mount point /mnt/bar, run:

client# mount -t lustre mgsnode@tcp0:/bar /mnt/bar

13.9.  Creating a sub-directory on a specific
MDT

It is possible to create individual directories, along with its files and sub-directories, to be stored on specific
MDTs. To create a sub-directory on a given MDT use the command:

client$ lfs mkdir -i mdt_index /mount_point/remote_dir

This command will allocate the sub-directory remote_dir onto the MDT with index mdt_index. For
more information on adding additional MDTs and mdt_index see 2.

Warning

An administrator can allocate remote sub-directories to separate MDTs. Creating remote sub-
directories in parent directories not hosted on MDT0000 is not recommended. This is because
the failure of the parent MDT will leave the namespace below it inaccessible. For this reason, by
default it is only possible to create remote sub-directories off MDT0000. To relax this restriction
and enable remote sub-directories off any MDT, an administrator must issue the following
command on the MGS:

mgs# lctl set_param -P mdt.fsname-MDT*.enable_remote_dir=1

For Lustre filesystem 'scratch', the command executed is:

mgs# lctl set_param -P mdt.scratch-*.enable_remote_dir=1

To verify the configuration setting execute the following command on any MDS:

mds# lctl get_param mdt.*.enable_remote_dir

Introduced in Lustre 2.8

With Lustre software version 2.8, a new tunable is available to allow users with a specific group ID to create
and delete remote and striped directories. This tunable is enable_remote_dir_gid. For example,



Lustre Operations

114

setting this parameter to the 'wheel' or 'admin' group ID allows users with that GID to create and delete
remote and striped directories. Setting this parameter to -1 on MDT0000 to permanently allow any non-
root users create and delete remote and striped directories. On the MGS execute the following command:

mgs# lctl set_param -P mdt.fsname-*.enable_remote_dir_gid=-1

For the Lustre filesystem 'scratch', the commands expands to:

mgs# lctl set_param -P mdt.scratch-*.enable_remote_dir_gid=-1

The change can be verified by executing the following command on every MDS:

mds# lctl get_param mdt.*.enable_remote_dir_gid

Introduced in Lustre 2.8

13.10.     Creating a directory striped
across multiple MDTs
The Lustre 2.8 DNE feature enables files in a single large directory to be distributed across multiple MDTs
(a striped directory), if there are mutliple MDTs added to the filesystem, see Section 14.7, “Adding a
New MDT to a Lustre File System”. The result is that metadata requests for files in a single large striped
directory are serviced by multiple MDTs and metadata service load is distributed over all the MDTs that
service a given directory. By distributing metadata service load over multiple MDTs, performance of very
large directories can be improved beyond the limit of one MDT. Normally, all files in a directory must
be created on a single MDT.

This command to stripe a directory over mdt_count MDTs is:

client$ lfs mkdir -c mdt_count /mount_point/new_directory

The striped directory feature is most useful for distributing a single large directory (50k entries or more)
across multiple MDTs. This should be used with discretion since creating and removing striped directories
incurs more overhead than non-striped directories.

Introduced in Lustre 2.13

13.10.1. Directory creation by space/inode usage
If the starting MDT is not specified when creating a new directory, this directory and its stripes will be
distributed on MDTs by space usage. For example the following will create a new directory on an MDT
preferring one that has less space usage:

client$ lfs mkdir -c 1 -i -1 dir1

Alternatively, if a default directory stripe is set on a directory, the subsequent use of mkdir for
subdirectories in dir1 will have the same effect:



Lustre Operations

115

client$ lfs setdirstripe -D -c 1 -i -1 dir1

The policy is:

• If free inodes/blocks on all MDT are almost the same, i.e. max_inodes_avail * 84% <
min_inodes_avail and max_blocks_avail * 84% < min_blocks_avail, then choose
MDT roundrobin.

• Otherwise, create more subdirectories on MDTs with more free inodes/blocks.

Sometime there are many MDTs. But it is not always desirable to stripe a directory across all MDTs,
even if the directory default stripe_count=-1 (unlimited). In this case, the per-filesystem tunable
parameter lod.*.max_mdt_stripecount can be used to limit the actual stripe count of directory
to fewer than the full MDT count. If lod.*.max_mdt_stripecount is not 0, and the directory
stripe_count=-1, the real directory stripe count will be the minimum of the number of MDTs
and max_mdt_stripecount. If lod.*.max_mdt_stripecount=0, or an explicit stripe count is
given for the directory, it is ignored.

To set max_mdt_stripecount, on all MDSes of file system, run:

mgs# lctl set_param -P lod.$fsname-MDTxxxx-mdtlov.max_mdt_stripecount=<N>

To check max_mdt_stripecount, run:

mds# lctl get_param lod.$fsname-MDTxxxx-mdtlov.max_mdt_stripecount

To reset max_mdt_stripecount, run:

mgs# lctl set_param -P -d lod.$fsname-MDTxxxx-mdtlov.max_mdt_stripecount

Introduced in Lustre 2.14

13.10.2. Filesystem-wide default directory striping
Similar to file objects allocation, the directory objects are allocated on MDTs by a round-robin algorithm
or a weighted algorithm. For the top three level of directories from the root of the filesystem, if the amount
of free inodes and blocks is well balanced (i.e., by default, when the free inodes and blocks across MDTs
differ by less than 5%), the round-robin algorithm is used to select the next MDT on which a directory
is to be created.

If the directory is more than three levels below the root directory, or MDTs are not balanced, then the
weighted algorithm is used to randomly select an MDT with more free inodes and blocks.

To avoid creating unnecessary remote directories, if the MDT where its parent directory is located is not
too full (the free inodes and blocks of the parent MDT is not more than 5% full than average of all MDTs),
this directory will be created on parent MDT.

If administrator wants to change this default filesystem-wide directory striping, run the following
command to limit this striping to the top level below the root directory:



Lustre Operations

116

client$ lfs setdirstripe -D -i -1 -c 1 --max-inherit 0 <mountpoint>

To revert to the pre-2.15 behavior of all directories being created only on MDT0000 by default (deleting
this striping won't work because it will be recreated if missing):

client$ lfs setdirstripe -D -i 0 -c 1 --max-inherit 0 <mountpoint>

13.11.  Default Dir Stripe Policy
If default dir stripe policy is set to a directory, it will be applied to sub directories created later. For example:

$ mkdir testdir1
$ lfs setdirstripe testdir1 -D -c 2
$ lfs getdirstripe testdir1 -D
lmv_stripe_count: 2 lmv_stripe_offset: -1 lmv_hash_type: none lmv_max_inherit: 3 lmv_max_inherit_rr: 0
$ mkdir dir1/subdir1
$ lfs getdirstripe testdir1/subdir1
lmv_stripe_count: 2 lmv_stripe_offset: 0 lmv_hash_type: crush
mdtidx       FID[seq:oid:ver]
     0       [0x200000400:0x2:0x0]
     1       [0x240000401:0x2:0x0]

Default dir stripe can be inherited by sub directory. This behavior is controlled by lmv_max_inherit
parameter. If lmv_max_inherit is 0 or 1, sub directory stops to inherit default dir stripe policy. Or sub
directory decreases its parent's lmv_max_inherit and uses it as its own lmv_max_inherit. -1 is
special because it means unlimited. For example:

$ lfs getdirstripe testdir1/subdir1 -D
lmv_stripe_count: 2 lmv_stripe_offset: -1 lmv_hash_type: none lmv_max_inherit: 2 lmv_max_inherit_rr: 0

lmv_max_inherit can be set explicitly with --max-inherit option in lfs setdirstripe -
D command. If the max-inherit value is not specified, the default value is -1 when stripe_count is 0
or 1. For other values of stripe_count, the default value is 3.

13.12.  Setting and Retrieving Lustre
Parameters

Several options are available for setting parameters in Lustre:

• When creating a file system, use mkfs.lustre. See Section 13.12.1, “Setting Tunable Parameters with
mkfs.lustre”below.

• When a server is stopped, use tunefs.lustre. See Section 13.12.2, “Setting Parameters with
tunefs.lustre”below.

• When the file system is running, use lctl to set or retrieve Lustre parameters. See Section 13.12.3,
“Setting Parameters with lctl”and Section 13.12.3.6, “Reporting Current Parameter Values”below.



Lustre Operations

117

13.12.1. Setting Tunable Parameters with mkfs.lustre
When the file system is first formatted, parameters can simply be added as a --param option to the
mkfs.lustre command. For example:

mds# mkfs.lustre --mdt --param="sys.timeout=50" /dev/sda

For more details about creating a file system,see Chapter 10, Configuring a Lustre File System. For more
details about mkfs.lustre, see Chapter 44, System Configuration Utilities.

13.12.2. Setting Parameters with tunefs.lustre
If a server (OSS or MDS) is stopped, parameters can be added to an existing file system using the --
param option to the tunefs.lustre command. For example:

oss# tunefs.lustre --param=failover.node=192.168.0.13@tcp0 /dev/sda

With tunefs.lustre, parameters are additive-- new parameters are specified in addition to old
parameters, they do not replace them. To erase all old tunefs.lustre parameters and just use newly-
specified parameters, run:

mds# tunefs.lustre --erase-params --param=new_parameters

The tunefs.lustre command can be used to set any parameter settable via lctl conf_param and that has
its own OBD device, so it can be specified as  obdname|fsname. obdtype. proc_file_name=
value. For example:

mds# tunefs.lustre --param mdt.identity_upcall=NONE /dev/sda1

For more details about tunefs.lustre, see Chapter 44, System Configuration Utilities.

13.12.3. Setting Parameters with lctl
When the file system is running, the lctl command can be used to set parameters (temporary or
permanent) and report current parameter values. Temporary parameters are active as long as the server or
client is not shut down. Permanent parameters live through server and client reboots.

Note

The lctl list_param command enables users to list all parameters that can be set. See
Section 13.12.3.5, “Listing All Tunable Parameters”.

For more details about the lctl command, see the examples in the sections below and Chapter 44, System
Configuration Utilities.

13.12.3.1. Setting Temporary Parameters

Use lctl set_param to set temporary parameters on the node where it is run. These parameters
internally map to corresponding items in the kernel /proc/{fs,sys}/{lnet,lustre} and /sys/
{fs,kernel/debug}/lustre virtual filesystems. However, since the mapping between a particular



Lustre Operations

118

parameter name and the underlying virtual pathname may change, it is not recommended to access the
virtual pathname directly. The lctl set_param command uses this syntax:

# lctl set_param [-n] [-P] obdtype.obdname.proc_file_name=value

For example:

# lctl set_param osc.*.max_dirty_mb=1024
osc.myth-OST0000-osc.max_dirty_mb=32
osc.myth-OST0001-osc.max_dirty_mb=32
osc.myth-OST0002-osc.max_dirty_mb=32
osc.myth-OST0003-osc.max_dirty_mb=32
osc.myth-OST0004-osc.max_dirty_mb=32

13.12.3.2. Setting Permanent Parameters

Use lctl set_param -P or lctl conf_param command to set permanent parameters. In general,
the set_param -P command is preferred for new parameters, as this isolates the parameter settings
from the MDT and OST device configuration, and is consistent with the common lctl get_param
and lctl set_param commands. The lctl conf_param command was previously used to specify
settable parameter, with the following syntax (the same as the mkfs.lustre and tunefs.lustre
commands):

obdname|fsname.obdtype.proc_file_name=value)

Note

The lctl conf_param and lctl set_param syntax is not the same.

Here are a few examples of lctl conf_param commands:

mgs# lctl conf_param testfs-MDT0000.sys.timeout=40
mgs# lctl conf_param testfs-MDT0000.mdt.identity_upcall=NONE
mgs# lctl conf_param testfs.llite.max_read_ahead_mb=16
mgs# lctl conf_param testfs-OST0000.osc.max_dirty_mb=29.15
mgs# lctl conf_param testfs-OST0000.ost.client_cache_seconds=15
mgs# lctl conf_param testfs.sys.timeout=40

Caution

Parameters specified with the lctl conf_param command are set permanently in the file
system's configuration file on the MGS.

Introduced in Lustre 2.5

13.12.3.3. Setting Permanent Parameters with lctl set_param
-P

The lctl set_param -P command can also set parameters permanently using the same syntax as
lctl set_param and lctl get_param commands. Permanent parameter settings must be issued



Lustre Operations

119

on the MGS. The given parameter is set on every host using lctl upcall. The lctl set_param
command uses the following syntax:

lctl set_param -P obdtype.obdname.proc_file_name=value

For example:

mgs# lctl set_param -P timeout=40
mgs# lctl set_param -P mdt.testfs-MDT*.identity_upcall=NONE
mgs# lctl set_param -P llite.testfs-*.max_read_ahead_mb=16
mgs# lctl set_param -P osc.testfs-OST*.max_dirty_mb=29.15
mgs# lctl set_param -P ost.testfs-OST*.client_cache_seconds=15

Use the -P -d option to delete permanent parameters. Syntax:

lctl set_param -P -d obdtype.obdname.parameter_name

For example:

mgs# lctl set_param -P -d osc.*.max_dirty_mb

Introduced in before Lustre 2.5

Note

Starting in Lustre 2.12, there is lctl get_param command can provide tab completion
when using an interactive shell with bash-completion installed. This simplifies the use of
get_param significantly, since it provides an interactive list of available parameters.

13.12.3.4. Listing Persistent Parameters

To list tunable parameters stored in the params log file by lctl set_param -P and applied to nodes
at mount, run the lctl --device MGS llog_print params command on the MGS. For example:

mgs# lctl --device MGS llog_print params
- { index: 2, event: set_param, device: general, parameter: osc.*.max_dirty_mb, value: 1024 }

13.12.3.5. Listing All Tunable Parameters

To list Lustre or LNet parameters that are available to set, use the lctl list_param command. For
example:

lctl list_param [-FR] obdtype.obdname

The following arguments are available for the lctl list_param command.

-F Add ' /', ' @' or ' =' for directories, symlinks and writeable files, respectively

-R Recursively lists all parameters under the specified path



Lustre Operations

120

For example:

oss# lctl list_param obdfilter.lustre-OST0000

13.12.3.6. Reporting Current Parameter Values

To report current Lustre parameter values, use the lctl get_param command with this syntax:

lctl get_param [-n] obdtype.obdname.proc_file_name

Introduced in before Lustre 2.5

Note

Starting in Lustre 2.12, there is lctl get_param command can provide tab completion
when using an interactive shell with bash-completion installed. This simplifies the use of
get_param significantly, since it provides an interactive list of available parameters.

This example reports data on RPC service times.

oss# lctl get_param -n ost.*.ost_io.timeouts
service : cur 1 worst 30 (at 1257150393, 85d23h58m54s ago) 1 1 1 1

This example reports the amount of space this client has reserved for writeback cache with each OST:

client# lctl get_param osc.*.cur_grant_bytes
osc.myth-OST0000-osc-ffff8800376bdc00.cur_grant_bytes=2097152
osc.myth-OST0001-osc-ffff8800376bdc00.cur_grant_bytes=33890304
osc.myth-OST0002-osc-ffff8800376bdc00.cur_grant_bytes=35418112
osc.myth-OST0003-osc-ffff8800376bdc00.cur_grant_bytes=2097152
osc.myth-OST0004-osc-ffff8800376bdc00.cur_grant_bytes=33808384

13.13.  Specifying NIDs and Failover
If a node has multiple network interfaces, it may have multiple NIDs, which must all be identified so other
nodes can choose the NID that is appropriate for their network interfaces. Typically, NIDs are specified
in a list delimited by commas ( ,). However, when failover nodes are specified, the NIDs are delimited
by a colon ( :) or by repeating a keyword such as --mgsnode= or --servicenode=).

To display the NIDs of all servers in networks configured to work with the Lustre file system, run (while
LNet is running):

# lctl list_nids

In the example below, mds0 and mds1 are configured as a combined MGS/MDT failover pair and oss0
and oss1 are configured as an OST failover pair. The Ethernet address for mds0 is 192.168.10.1, and for
mds1 is 192.168.10.2. The Ethernet addresses for oss0 and oss1 are 192.168.10.20 and 192.168.10.21
respectively.



Lustre Operations

121

mds0# mkfs.lustre --fsname=testfs --mdt --mgs \
        --servicenode=192.168.10.2@tcp0 \
        -–servicenode=192.168.10.1@tcp0 /dev/sda1
mds0# mount -t lustre /dev/sda1 /mnt/test/mdt
oss0# mkfs.lustre --fsname=testfs --servicenode=192.168.10.20@tcp0 \
        --servicenode=192.168.10.21 --ost --index=0 \
        --mgsnode=192.168.10.1@tcp0 --mgsnode=192.168.10.2@tcp0 \
        /dev/sdb
oss0# mount -t lustre /dev/sdb /mnt/test/ost0
client# mount -t lustre 192.168.10.1@tcp0:192.168.10.2@tcp0:/testfs \
        /mnt/testfs
mds0# umount /mnt/mdt
mds1# mount -t lustre /dev/sda1 /mnt/test/mdt
mds1# lctl get_param mdt.testfs-MDT0000.recovery_status

Where multiple NIDs are specified separated by commas (for example,
10.67.73.200@tcp,192.168.10.1@tcp), the two NIDs refer to the same host, and the Lustre
software chooses the best one for communication. When a pair of NIDs is separated by a colon (for
example, 10.67.73.200@tcp:10.67.73.201@tcp), the two NIDs refer to two different hosts and
are treated as a failover pair (the Lustre software tries the first one, and if that fails, it tries the second one.)

Two options to mkfs.lustre can be used to specify failover nodes. The --servicenode option
is used to specify all service NIDs, including those for primary nodes and failover nodes. When the --
servicenode option is used, the first service node to load the target device becomes the primary service
node, while nodes corresponding to the other specified NIDs become failover locations for the target
device. An older option, --failnode, specifies just the NIDs of failover nodes. For more information
about the --servicenode and --failnode options, see Chapter 11, Configuring Failover in a Lustre
File System.

13.14.  Erasing a File System
If you want to erase a file system and permanently delete all the data in the file system, run this command
on your targets:

# mkfs.lustre --reformat

If you are using a separate MGS and want to keep other file systems defined on that MGS, then set the
writeconf flag on the MDT for that file system. The writeconf flag causes the configuration logs
to be erased; they are regenerated the next time the servers start.

To set the writeconf flag on the MDT:

1. Unmount all clients/servers using this file system, run:

client# umount /mnt/lustre

2. Permanently erase the file system and, presumably, replace it with another file system, run:

mgs# mkfs.lustre --reformat --fsname spfs --mgs --mdt --index=0 /dev/mdsdev

3. If you have a separate MGS (that you do not want to reformat), then add the --writeconf flag to
mkfs.lustre on the MDT, run:



Lustre Operations

122

mgs# mkfs.lustre --reformat --writeconf --fsname spfs --mgsnode=mgs_nid \
       --mdt --index=0 /dev/mds_device

Note

If you have a combined MGS/MDT, reformatting the MDT reformats the MGS as well, causing
all configuration information to be lost; you can start building your new file system. Nothing
needs to be done with old disks that will not be part of the new file system, just do not mount them.

13.15.  Reclaiming Reserved Disk Space
All current Lustre installations run the ldiskfs file system internally on service nodes. By default, ldiskfs
reserves 5% of the disk space to avoid file system fragmentation. In order to reclaim this space, run the
following command on your OSS for each OST in the file system:

# tune2fs [-m reserved_blocks_percent] /dev/ostdev

You do not need to shut down Lustre before running this command or restart it afterwards.

Warning

Reducing the space reservation can cause severe performance degradation as the OST file system
becomes more than 95% full, due to difficulty in locating large areas of contiguous free space.
This performance degradation may persist even if the space usage drops below 95% again. It is
recommended NOT to reduce the reserved disk space below 5%.

13.16.  Replacing an Existing OST or MDT
To copy the contents of an existing OST to a new OST (or an old MDT to a new MDT), follow the process
for either OST/MDT backups in Section 18.2, “ Backing Up and Restoring an MDT or OST (ldiskfs
Device Level)”or Section 18.3, “ Backing Up an OST or MDT (Backend File System Level)”. For more
information on removing a MDT, see Section 14.9.1, “Removing an MDT from the File System”.

13.17.  Identifying To Which Lustre File an OST
Object Belongs

Use this procedure to identify the file containing a given object on a given OST.

1. On the OST (as root), run debugfs to display the file identifier ( FID) of the file associated with
the object.

For example, if the object is 34976 on /dev/lustre/ost_test2, the debug command is:

# debugfs -c -R "stat /O/0/d$((34976 % 32))/34976" /dev/lustre/ost_test2

The command output is:



Lustre Operations

123

debugfs 1.45.6.wc1 (20-Mar-2020)
/dev/lustre/ost_test2: catastrophic mode - not reading inode or group bitmaps
Inode: 352365   Type: regular    Mode:  0666   Flags: 0x80000
Generation: 2393149953    Version: 0x0000002a:00005f81
User:  1000   Group:  1000   Size: 260096
File ACL: 0    Directory ACL: 0
Links: 1   Blockcount: 512
Fragment:  Address: 0    Number: 0    Size: 0
ctime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009
atime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009
mtime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009
crtime: 0x4a216b3c:975870dc -- Sat May 30 13:22:04 2009
Size of extra inode fields: 24
Extended attributes stored in inode body:
  fid = "b9 da 24 00 00 00 00 00 6a fa 0d 3f 01 00 00 00 eb 5b 0b 00 00 00 0000
00 00 00 00 00 00 00 00 " (32)
  fid: objid=34976 seq=0 parent=[0x200000400:0x122:0x0] stripe=1
EXTENTS:
(0-64):4620544-4620607

2. The parent FID will be of the form [0x200000400:0x122:0x0] and can be resolved directly
using the command lfs fid2path [0x200000404:0x122:0x0] /mnt/lustre on any
Lustre client, and the process is complete.

3. In cases of an upgraded 1.x inode (if the first part of the FID is below 0x200000400), the MDT inode
number is 0x24dab9 and generation 0x3f0dfa6a and the pathname can also be resolved using
debugfs.

4. On the MDS (as root), use debugfs to find the file associated with the inode:

# debugfs -c -R "ncheck 0x24dab9" /dev/lustre/mdt_test
debugfs 1.42.3.wc3 (15-Aug-2012)
/dev/lustre/mdt_test: catastrophic mode - not reading inode or group bitmaps
Inode      Pathname
2415289    /ROOT/brian-laptop-guest/clients/client11/~dmtmp/PWRPNT/ZD16.BMP

The command lists the inode and pathname associated with the object.

Note

Debugfs' ''ncheck'' is a brute-force search that may take a long time to complete.

Note

To find the Lustre file from a disk LBA, follow the steps listed in the document at this
URL:  https://www.smartmontools.org/wiki/BadBlockHowto [https://www.smartmontools.org/
wiki/BadBlockHowto]. Then, follow the steps above to resolve the Lustre filename.

https://www.smartmontools.org/wiki/BadBlockHowto
https://www.smartmontools.org/wiki/BadBlockHowto
https://www.smartmontools.org/wiki/BadBlockHowto


124

Chapter 14. Lustre Maintenance
Once you have the Lustre file system up and running, you can use the procedures in this section to perform
these basic Lustre maintenance tasks:

• Section 14.1, “ Working with Inactive OSTs”

• Section 14.2, “ Finding Nodes in the Lustre File System”

• Section 14.3, “ Mounting a Server Without Lustre Service”

• Section 14.4, “ Regenerating Lustre Configuration Logs”

• Section 14.5, “ Changing a Server NID”

• Section 14.6, “ Clearing configuration”

• Section 14.7, “Adding a New MDT to a Lustre File System”

• Section 14.8, “ Adding a New OST to a Lustre File System”

• Section 14.9, “ Removing and Restoring MDTs and OSTs”

• Section 14.9.1, “Removing an MDT from the File System”

• Section 14.9.2, “ Working with Inactive MDTs”

• Section 14.9.3, “Removing an OST from the File System”

• Section 14.9.4, “ Backing Up OST Configuration Files”

• Section 14.9.5, “ Restoring OST Configuration Files”

• Section 14.9.6, “Returning a Deactivated OST to Service”

• Section 14.10, “ Aborting Recovery”

• Section 14.11, “ Determining Which Machine is Serving an OST ”

• Section 14.12, “ Changing the Address of a Failover Node”

• Section 14.13, “ Separate a combined MGS/MDT”

• Section 14.14, “ Set an MDT to read-only”

• Section 14.15, “ Tune Fallocate for ldiskfs”

14.1.    Working with Inactive OSTs
To mount a client or an MDT with one or more inactive OSTs, run commands similar to this:

client# mount -o exclude=testfs-OST0000 -t lustre \
           uml1:/testfs /mnt/testfs
            client# lctl get_param lov.testfs-clilov-*.target_obd



Lustre Maintenance

125

To activate an inactive OST on a live client or MDT, use the lctl activate command on the OSC
device. For example:

lctl --device 7 activate

Note

A colon-separated list can also be specified. For example, exclude=testfs-
OST0000:testfs-OST0001.

14.2.  Finding Nodes in the Lustre File System
There may be situations in which you need to find all nodes in your Lustre file system or get the names
of all OSTs.

To get a list of all Lustre nodes, run this command on the MGS:

# lctl get_param mgs.MGS.live.*

Note

This command must be run on the MGS.

In this example, file system testfs has three nodes, testfs-MDT0000, testfs-OST0000, and
testfs-OST0001.

mgs:/root# lctl get_param mgs.MGS.live.* 
                fsname: testfs 
                flags: 0x0     gen: 26 
                testfs-MDT0000 
                testfs-OST0000 
                testfs-OST0001 

To get the names of all OSTs, run this command on the MDS:

mds:/root# lctl get_param lov.*-mdtlov.target_obd 

Note

This command must be run on the MDS.

In this example, there are two OSTs, testfs-OST0000 and testfs-OST0001, which are both active.

mgs:/root# lctl get_param lov.testfs-mdtlov.target_obd 
0: testfs-OST0000_UUID ACTIVE 
1: testfs-OST0001_UUID ACTIVE 

14.3.  Mounting a Server Without Lustre
Service

If you are using a combined MGS/MDT, but you only want to start the MGS and not the MDT, run this
command:



Lustre Maintenance

126

mount -t lustre /dev/mdt_partition -o nosvc /mount_point

The mdt_partition variable is the combined MGS/MDT block device.

In this example, the combined MGS/MDT is testfs-MDT0000 and the mount point is /mnt/test/
mdt.

$ mount -t lustre -L testfs-MDT0000 -o nosvc /mnt/test/mdt

14.4.  Regenerating Lustre Configuration Logs
If the Lustre file system configuration logs are in a state where the file system cannot be started, use the
tunefs.lustre --writeconf command to regenerate them. After the writeconf command is
run and the servers restart, the configuration logs are re-generated and stored on the MGS (as with a new
file system).

You should only use the writeconf command if:

• The configuration logs are in a state where the file system cannot start

• A server NID is being changed

The writeconf command is destructive to some configuration items (e.g. OST pools information and
tunables set via conf_param), and should be used with caution.

Caution

The OST pools feature enables a group of OSTs to be named for file striping purposes. If you
use OST pools, be aware that running the writeconf command erases all pools information
(as well as any other parameters set via lctl conf_param). We recommend that the pools
definitions (and conf_param settings) be executed via a script, so they can be regenerated
easily after writeconf is performed. However, tunables saved with lctl set_param -
P are not erased in this case.

Note

If the MGS still holds any configuration logs, it may be possible to dump these logs to save any
parameters stored with lctl conf_param by dumping the config logs on the MGS and saving
the output (once for each MDT and OST device):

mgs# lctl --device MGS llog_print fsname-client
mgs# lctl --device MGS llog_print fsname-MDT0000
mgs# lctl --device MGS llog_print fsname-OST0000

To regenerate Lustre file system configuration logs:

1. Stop the file system services in the following order before running the tunefs.lustre --
writeconf command:

a. Unmount the clients.

b. Unmount the MDT(s).

c. Unmount the OST(s).



Lustre Maintenance

127

d. If the MGS is separate from the MDT it can remain mounted during this process.

2. Make sure the MDT and OST devices are available.

3. Run the tunefs.lustre --writeconf command on all target devices.

Run writeconf on the MDT(s) first, and then the OST(s).

a. On each MDS, for each MDT run:

mds# tunefs.lustre --writeconf /dev/mdt_device

b. On each OSS, for each OST run:

oss# tunefs.lustre --writeconf /dev/ost_device

4. Restart the file system in the following order:

a. Mount the separate MGT, if it is not already mounted.

b. Mount the MDT(s) in order, starting with MDT0000.

c. Mount the OSTs in order, starting with OST0000.

d. Mount the clients.

After the tunefs.lustre --writeconf command is run, the configuration logs are re-generated
as servers connect to the MGS.

14.5.  Changing a Server NID
In order to totally rewrite the Lustre configuration, the tunefs.lustre --writeconf command is
used to rewrite all of the configuration files.

If you need to change only the NID of the MDT or OST, the replace_nids command can simplify this
process. The replace_nids command differs from tunefs.lustre --writeconf in that it does
not erase the entire configuration log, precluding the need the need to execute the writeconf command
on all servers and re-specify all permanent parameter settings. However, the writeconf command can
still be used if desired.

Change a server NID in these situations:

• New server hardware is added to the file system, and the MDS or an OSS is being moved to the new
machine.

• New network card is installed in the server.

• You want to reassign IP addresses.

To change a server NID:

1. Update the LNet configuration in the /etc/modprobe.conf file so the list of server NIDs is correct.
Use lctl list_nids to view the list of server NIDS.

The lctl list_nids command indicates which network(s) are configured to work with the Lustre
file system.



Lustre Maintenance

128

2. Shut down the file system in this order:

a. Unmount the clients.

b. Unmount the MDT.

c. Unmount all OSTs.

3. If the MGS and MDS share a partition, start the MGS only:

mount -t lustre MDT partition -o nosvc mount_point

4. Run the replace_nids command on the MGS:

lctl replace_nids devicename nid1[,nid2,nid3 ...]

where devicename is the Lustre target name, e.g. testfs-OST0013

5. If the MGS and MDS share a partition, stop the MGS:

umount mount_point

Note

The replace_nids command also cleans all old, invalidated records out of the configuration
log, while preserving all other current settings.

Note

The previous configuration log is backed up on the MGS disk with the suffix '.bak'.

Introduced in Lustre 2.11

14.6.  Clearing configuration
This command runs on MGS node having the MGS device mounted with -o nosvc. It cleans up
configuration files stored in the CONFIGS/ directory of any records marked SKIP. If the device name
is given, then the specific logs for that filesystem (e.g. testfs-MDT0000) are processed. Otherwise, if a
filesystem name is given then all configuration files are cleared. The previous configuration log is backed
up on the MGS disk with the suffix 'config.timestamp.bak'. Eg: Lustre-MDT0000-1476454535.bak.

To clear a configuration:

1. Shut down the file system in this order:

a. Unmount the clients.

b. Unmount the MDT.

c. Unmount all OSTs.

2. If the MGS and MDS share a partition, start the MGS only using "nosvc" option.

mount -t lustre MDT partition -o nosvc mount_point

3. Run the clear_conf command on the MGS:



Lustre Maintenance

129

lctl clear_conf config

Example: To clear the configuration for MDT0000 on a filesystem named testfs

mgs# lctl clear_conf testfs-MDT0000

14.7. Adding a New MDT to a Lustre File
System

Additional MDTs can be added using the DNE feature to serve one or more remote sub-directories within
a filesystem, in order to increase the total number of files that can be created in the filesystem, to increase
aggregate metadata performance, or to isolate user or application workloads from other users of the
filesystem. It is possible to have multiple remote sub-directories reference the same MDT. However, the
root directory will always be located on MDT0000. To add a new MDT into the file system:

1. Discover the maximum MDT index. Each MDT must have unique index.

client$ lctl dl | grep mdc
36 UP mdc testfs-MDT0000-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5
37 UP mdc testfs-MDT0001-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5
38 UP mdc testfs-MDT0002-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5
39 UP mdc testfs-MDT0003-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5

2. Add the new block device as a new MDT at the next available index. In this example, the next available
index is 4.

mds# mkfs.lustre --reformat --fsname=testfs --mdt --mgsnode=mgsnode --index 4 /dev/mdt4_device

3. Mount the MDTs.

mds# mount –t lustre /dev/mdt4_blockdevice /mnt/mdt4

4. In order to start creating new files and directories on the new MDT(s) they need to be attached into the
namespace at one or more subdirectories using the lfs mkdir command. All files and directories
below those created with lfs mkdir will also be created on the same MDT unless otherwise specified.

client# lfs mkdir -i 3 /mnt/testfs/new_dir_on_mdt3
client# lfs mkdir -i 4 /mnt/testfs/new_dir_on_mdt4
client# lfs mkdir -c 4 /mnt/testfs/project/new_large_dir_striped_over_4_mdts

14.8.  Adding a New OST to a Lustre File
System

A new OST can be added to existing Lustre file system on either an existing OSS node or on a new OSS
node. In order to keep client IO load balanced across OSS nodes for maximum aggregate performance, it
is not recommended to configure different numbers of OSTs to each OSS node.



Lustre Maintenance

130

1. Add a new OST by using mkfs.lustre as when the filesystem was first formatted, see 4 for details.
Each new OST must have a unique index number, use lctl dl to see a list of all OSTs. For example,
to add a new OST at index 12 to the testfs filesystem run following commands should be run on
the OSS:

oss# mkfs.lustre --fsname=testfs --mgsnode=mds16@tcp0 --ost --index=12 /dev/sda
oss# mkdir -p /mnt/testfs/ost12
oss# mount -t lustre /dev/sda /mnt/testfs/ost12

2. Balance OST space usage (possibly).

The file system can be quite unbalanced when new empty OSTs are added to a relatively full filesystem.
New file creations are automatically balanced to favour the new OSTs. If this is a scratch file system
or files are pruned at regular intervals, then no further work may be needed to balance the OST space
usage as new files being created will preferentially be placed on the less full OST(s). As old files are
deleted, they will release space on the old OST(s).

Files existing prior to the expansion can optionally be rebalanced using the lfs_migrate utility.
This redistributes file data over the entire set of OSTs.

For example, to rebalance all files within the directory /mnt/lustre/dir, enter:

client# lfs_migrate /mnt/lustre/dir

To migrate files within the /test file system on OST0004 that are larger than 4GB in size to other
OSTs, enter:

client# lfs find /test --ost test-OST0004 -size +4G | lfs_migrate -y

See Section 40.2, “ lfs_migrate ” for details.

14.9.   Removing and Restoring MDTs and
OSTs

OSTs and DNE MDTs can be removed from and restored to a Lustre filesystem. Deactivating an OST
means that it is temporarily or permanently marked unavailable. Deactivating an OST on the MDS means
it will not try to allocate new objects there or perform OST recovery, while deactivating an OST the client
means it will not wait for OST recovery if it cannot contact the OST and will instead return an IO error
to the application immediately if files on the OST are accessed. An OST may be permanently deactivated
from the file system, depending on the situation and commands used.

Note

A permanently deactivated MDT or OST still appears in the filesystem configuration until the
configuration is regenerated with writeconf or it is replaced with a new MDT or OST at the
same index and permanently reactivated. A deactivated OST will not be listed by lfs df.

You may want to temporarily deactivate an OST on the MDS to prevent new files from being written to
it in several situations:

• A hard drive has failed and a RAID resync/rebuild is underway, though the OST can also be marked
degraded by the RAID system to avoid allocating new files on the slow OST which can reduce
performance, see Section 13.7, “ Handling Degraded OST RAID Arrays” for more details.



Lustre Maintenance

131

• OST is nearing its space capacity, though the MDS will already try to avoid allocating new files on
overly-full OSTs if possible, see Section 39.7, “Allocating Free Space on OSTs” for details.

• MDT/OST storage or MDS/OSS node has failed, and will not be available for some time (or forever),
but there is still a desire to continue using the filesystem before it is repaired.

14.9.1. Removing an MDT from the File System

If the MDT is permanently inaccessible, lfs rm_entry {directory} can be used to delete the
directory entry for the unavailable MDT. Using rmdir would otherwise report an IO error due to the
remote MDT being inactive. Please note that if the MDT is available, standard rm -r should be used to
delete the remote directory. After the remote directory has been removed, the administrator should mark
the MDT as permanently inactive with:

lctl conf_param {MDT name}.mdc.active=0

A user can identify which MDT holds a remote sub-directory using the lfs utility. For example:

client$ lfs getstripe --mdt-index /mnt/lustre/remote_dir1
1
client$ mkdir /mnt/lustre/local_dir0
client$ lfs getstripe --mdt-index /mnt/lustre/local_dir0
0

The lfs getstripe --mdt-index command returns the index of the MDT that is serving the given
directory.

14.9.2.   Working with Inactive MDTs

Files located on or below an inactive MDT are inaccessible until the MDT is activated again. Clients
accessing an inactive MDT will receive an EIO error.

14.9.3. Removing an OST from the File System

When deactivating an OST, note that the client and MDS each have an OSC device that handles
communication with the corresponding OST. To remove an OST from the file system:

1. If the OST is functional, and there are files located on the OST that need to be migrated off of the OST,
the file creation for that OST should be temporarily deactivated on the MDS (each MDS if running
with multiple MDS nodes in DNE mode).

a.
Introduced in Lustre 2.9

With Lustre 2.9 and later, the MDS should be set to only disable file creation on that OST by setting
max_create_count to zero:

mds# lctl set_param osp.osc_name.max_create_count=0

This ensures that files deleted or migrated off of the OST will have their corresponding OST objects
destroyed, and the space will be freed. For example, to disable OST0000 in the filesystem testfs,
run:

mds# lctl set_param osp.testfs-OST0000-osc-MDT*.max_create_count=0



Lustre Maintenance

132

on each MDS in the testfs filesystem.

b. With older versions of Lustre, to deactivate the OSC on the MDS node(s) use:

mds# lctl set_param osp.osc_name.active=0

This will prevent the MDS from attempting any communication with that OST, including destroying
objects located thereon. This is fine if the OST will be removed permanently, if the OST is not stable
in operation, or if it is in a read-only state. Otherwise, the free space and objects on the OST will not
decrease when files are deleted, and object destruction will be deferred until the MDS reconnects
to the OST.

For example, to deactivate OST0000 in the filesystem testfs, run:

mds# lctl set_param osp.testfs-OST0000-osc-MDT*.active=0

Deactivating the OST on the MDS does not prevent use of existing objects for read/write by a client.

Note

If migrating files from a working OST, do not deactivate the OST on clients. This causes
IO errors when accessing files located there, and migrating files on the OST would fail.

Caution

Do not use lctl set_param -P or lctl conf_param to deactivate the OST if
it is still working, as this immediately and permanently deactivates it in the file system
configuration on both the MDS and all clients.

2. Discover all files that have objects residing on the deactivated OST. Depending on whether the
deactivated OST is available or not, the data from that OST may be migrated to other OSTs, or may
need to be restored from backup.

a. If the OST is still online and available, find all files with objects on the deactivated OST, and copy
them to other OSTs in the file system to:

client# lfs find --ost ost_name /mount/point | lfs_migrate -y

Note that if multiple OSTs are being deactivated at one time, the lfs find command can take
multiple --ost arguments, and will return files that are located on any of the specified OSTs.

b. If the OST is no longer available, delete the files on that OST and restore them from backup:

client# lfs find --ost ost_uuid -print0 /mount/point |
        tee /tmp/files_to_restore | xargs -0 -n 1 unlink

The list of files that need to be restored from backup is stored in /tmp/files_to_restore.
Restoring these files is beyond the scope of this document.

3. Deactivate the OST.

a. If there is expected to be a replacement OST in some short time (a few days), the OST can temporarily
be deactivated on the clients using:

client# lctl set_param osc.fsname-OSTnumber-*.active=0



Lustre Maintenance

133

Note

This setting is only temporary and will be reset if the clients are remounted or rebooted.
It needs to be run on all clients.

b. If there is not expected to be a replacement for this OST in the near future, permanently deactivate
it on all clients and the MDS by running the following command on the MGS:

mgs# lctl conf_param ost_name.osc.active=0

Note

A deactivated OST still appears in the file system configuration, though a replacement OST
can be created that re-uses the same OST index with the mkfs.lustre --replace
option, see Section 14.9.5, “ Restoring OST Configuration Files”.

Introduced in Lustre 2.16

In Lustre 2.16 and later, it is possible to run the command "lctl del_ost --target fsname-
OSTxxxx" on the MGS to totally remove an OST from the MGS configuration logs. This will
cancel the configuration logs for that OST in the client and MDT configuration logs for the named
filesystem. This permanently removes the configuration records for that OST from the filesystem,
so that it will not be visible on later client and MDT mounts, and should only be run after earlier
steps to migrate files off the OST.

If the del_ost command is not available, the OST configuration records should be found in
the startup logs by running the command "lctl --device MGS llog_print fsname-
client" on the MGS (and also "... $fsname-MDTxxxx" for all the MDTs) to list all
attach, setup, add_osc, add_pool, and other records related to the removed OST(s). Once
the index value is known for each configuration record, the command "lctl --device MGS
llog_cancel llog_name -i index " will drop that record from the configuration log
llog_name. This is needed for each of fsname-client and fsname-MDTxxxx configuration
logs so that new mounts will no longer process it. If a whole OSS is being removed, theadd_uuid
records for the OSS should similarly be canceled.

mgs# lctl --device MGS llog_print testfs-client | egrep "192.168.10.99@tcp|OST0003"
- { index: 135, event: add_uuid, nid: 192.168.10.99@tcp(0x20000c0a80a63), node: 192.168.10.99@tcp }
- { index: 136, event: attach, device: testfs-OST0003-osc, type: osc, UUID: testfs-clilov_UUID }
- { index: 137, event: setup, device: testfs-OST0003-osc, UUID: testfs-OST0003_UUID, node: 192.168.10.99@tcp }
- { index: 138, event: add_osc, device: testfs-clilov, ost: testfs-OST0003_UUID, index: 3, gen: 1 }
mgs# lctl --device MGS llog_cancel testfs-client -i 138
mgs# lctl --device MGS llog_cancel testfs-client -i 137
mgs# lctl --device MGS llog_cancel testfs-client -i 136
                

14.9.4.   Backing Up OST Configuration Files

If the OST device is still accessible, then the Lustre configuration files on the OST should be backed up
and saved for future use in order to avoid difficulties when a replacement OST is returned to service. These
files rarely change, so they can and should be backed up while the OST is functional and accessible. If
the deactivated OST is still available to mount (i.e. has not permanently failed or is unmountable due to
severe corruption), an effort should be made to preserve these files.



Lustre Maintenance

134

1. Mount the OST file system.

oss# mkdir -p /mnt/ost
oss# mount -t ldiskfs /dev/ost_device /mnt/ost

2. Back up the OST configuration files.

oss# tar cvf ost_name.tar -C /mnt/ost last_rcvd \
           CONFIGS/ O/0/LAST_ID

3. Unmount the OST file system.

oss# umount /mnt/ost

14.9.5.   Restoring OST Configuration Files
If the original OST is still available, it is best to follow the OST backup and restore procedure given in
either Section 18.2, “ Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”, or Section 18.3,
“ Backing Up an OST or MDT (Backend File System Level)” and Section 18.4, “ Restoring a File-Level
Backup”.

To replace an OST that was removed from service due to corruption or hardware failure, the replacement
OST needs to be formatted using mkfs.lustre, and the Lustre file system configuration should be
restored, if available. Any objects stored on the OST will be permanently lost, and files using the OST
should be deleted and/or restored from backup.

Introduced in Lustre 2.5

With Lustre 2.5 and later, it is possible to replace an OST to the same index without restoring the
configuration files, using the --replace option at format time.

oss# mkfs.lustre --ost --reformat --replace --index=old_ost_index \
        other_options /dev/new_ost_dev

The MDS and OSS will negotiate the LAST_ID value for the replacement OST.

If the OST configuration files were not backed up, due to the OST file system being completely
inaccessible, it is still possible to replace the failed OST with a new one at the same OST index.

1. For older versions, format the OST file system without the --replace option and restore the saved
configuration:

oss# mkfs.lustre --ost --reformat --index=old_ost_index \
           other_options /dev/new_ost_dev

2. Mount the OST file system.

oss# mkdir /mnt/ost
oss# mount -t ldiskfs /dev/new_ost_dev /mnt/ost

3. Restore the OST configuration files, if available.

oss# tar xvf ost_name.tar -C /mnt/ost

4. Recreate the OST configuration files, if unavailable.

Follow the procedure in Section 35.3.4, “Fixing a Bad LAST_ID on an OST” to recreate the LAST_ID
file for this OST index. The last_rcvd file will be recreated when the OST is first mounted using



Lustre Maintenance

135

the default parameters, which are normally correct for all file systems. The CONFIGS/mountdata
file is created by mkfs.lustre at format time, but has flags set that request it to register itself with
the MGS. It is possible to copy the flags from another working OST (which should be the same):

oss1# debugfs -c -R "dump CONFIGS/mountdata /tmp" /dev/other_osdev
oss1# scp /tmp/mountdata oss0:/tmp/mountdata
oss0# dd if=/tmp/mountdata of=/mnt/ost/CONFIGS/mountdata bs=4 count=1 seek=5 skip=5 conv=notrunc

5. Unmount the OST file system.

oss# umount /mnt/ost

14.9.6. Returning a Deactivated OST to Service
If the OST was permanently deactivated, it needs to be reactivated in the MGS configuration.

mgs# lctl conf_param ost_name.osc.active=1

If the OST was temporarily deactivated, it needs to be reactivated on the MDS and clients.

mds# lctl set_param osp.fsname-OSTnumber-*.active=1
client# lctl set_param osc.fsname-OSTnumber-*.active=1

14.10.   Aborting Recovery
You can abort recovery with either the lctl utility or by mounting the target with the abort_recov
option (mount -o abort_recov). When starting a target, run:

mds# mount -t lustre -L mdt_name -o abort_recov /mount_point

Note

The recovery process is blocked until all OSTs are available.

14.11.  Determining Which Machine is Serving
an OST

In the course of administering a Lustre file system, you may need to determine which machine is serving
a specific OST. It is not as simple as identifying the machine’s IP address, as IP is only one of several
networking protocols that the Lustre software uses and, as such, LNet does not use IP addresses as node
identifiers, but NIDs instead. To identify the NID that is serving a specific OST, run one of the following
commands on a client (you do not need to be a root user):

client$ lctl get_param osc.fsname-OSTnumber*.ost_conn_uuid

For example:

client$ lctl get_param osc.*-OST0000*.ost_conn_uuid 
osc.testfs-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

- OR -

client$ lctl get_param osc.*.ost_conn_uuid 



Lustre Maintenance

136

osc.testfs-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0001-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0002-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0003-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0004-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

14.12.  Changing the Address of a Failover
Node

To change the address of a failover node (e.g, to use node X instead of node Y), run this command on the
OSS/OST partition (depending on which option was used to originally identify the NID):

oss# tunefs.lustre --erase-params --servicenode=NID /dev/ost_device

or

oss# tunefs.lustre --erase-params --failnode=NID /dev/ost_device

For more information about the --servicenode and --failnode options, see Chapter 11,
Configuring Failover in a Lustre File System.

14.13.  Separate a combined MGS/MDT
These instructions assume the MGS node will be the same as the MDS node. For instructions on how to
move MGS to a different node, see Section 14.5, “ Changing a Server NID”.

These instructions are for doing the split without shutting down other servers and clients.

1. Stop the MDS.

Unmount the MDT

umount -f /dev/mdt_device 

2. Create the MGS.

mds# mkfs.lustre --mgs --device-size=size /dev/mgs_device

3. Copy the configuration data from MDT disk to the new MGS disk.

mds# mount -t ldiskfs -o ro /dev/mdt_device /mdt_mount_point

mds# mount -t ldiskfs -o rw /dev/mgs_device /mgs_mount_point 

mds# cp -r /mdt_mount_point/CONFIGS/filesystem_name-* /mgs_mount_point/CONFIGS/. 

mds# umount /mgs_mount_point

mds# umount /mdt_mount_point

See Section 14.4, “ Regenerating Lustre Configuration Logs” for alternative method.

4. Start the MGS.

mgs# mount -t lustre /dev/mgs_device /mgs_mount_point



Lustre Maintenance

137

Check to make sure it knows about all your file system

mgs:/root# lctl get_param mgs.MGS.filesystems

5. Remove the MGS option from the MDT, and set the new MGS nid.

mds# tunefs.lustre --nomgs --mgsnode=new_mgs_nid /dev/mdt-device

6. Start the MDT.

mds# mount -t lustre /dev/mdt_device /mdt_mount_point

Check to make sure the MGS configuration looks right:

mgs# lctl get_param mgs.MGS.live.filesystem_name

Introduced in Lustre 2.13

14.14.  Set an MDT to read-only
It is sometimes desirable to be able to mark the filesystem read-only directly on the server, rather than
remounting the clients and setting the option there. This can be useful if there is a rogue client that is
deleting files, or when decommissioning a system to prevent already-mounted clients from modifying it
anymore.

Set the mdt.*.readonly parameter to 1 to immediately set the MDT to read-only. All future MDT
access will immediately return a "Read-only file system" error (EROFS) until the parameter is set to 0
again.

Example of setting the readonly parameter to 1, verifying the current setting, accessing from a client,
and setting the parameter back to 0:

mds# lctl set_param mdt.fs-MDT0000.readonly=1
mdt.fs-MDT0000.readonly=1

mds# lctl get_param mdt.fs-MDT0000.readonly
mdt.fs-MDT0000.readonly=1

client$ touch test_file
touch: cannot touch ‘test_file’: Read-only file system

mds# lctl set_param mdt.fs-MDT0000.readonly=0
mdt.fs-MDT0000.readonly=0

Introduced in Lustre 2.14

14.15.  Tune Fallocate for ldiskfs
This section shows how to tune/enable/disable fallocate for ldiskfs OSTs.

The default mode=0 is the standard "allocate unwritten extents" behavior used by ext4. This is by far
the fastest for space allocation, but requires the unwritten extents to be split and/or zeroed when they are
overwritten.



Lustre Maintenance

138

The OST fallocate mode=1 can also be set to use "zeroed extents", which may be handled by "WRITE
SAME", "TRIM zeroes data", or other low-level functionality in the underlying block device.

mode=-1 completely disables fallocate.

Example: To completely disable fallocate

lctl set_param osd-ldiskfs.*.fallocate_zero_blocks=-1

Example: To enable fallocate to use 'zeroed extents'

lctl set_param osd-ldiskfs.*.fallocate_zero_blocks=1



139

Chapter 15. Managing Lustre
Networking (LNet)

This chapter describes some tools for managing Lustre networking (LNet) and includes the following
sections:

• Section 15.1, “ Updating the Health Status of a Peer or Router”

• Section 15.2, “Starting and Stopping LNet”

• Section 15.3, “Hardware Based Multi-Rail Configurations with LNet”

• Section 15.4, “Load Balancing with an InfiniBand* Network”

• Section 15.5, “Dynamically Configuring LNet Routes”

15.1.  Updating the Health Status of a Peer or
Router

There are two mechanisms to update the health status of a peer or a router:

• LNet can actively check health status of all routers and mark them as dead or alive automatically. By
default, this is off. To enable it set auto_down and if desired check_routers_before_use.
This initial check may cause a pause equal to router_ping_timeout at system startup, if there
are dead routers in the system.

• When there is a communication error, all LNDs notify LNet that the peer (not necessarily a router) is
down. This mechanism is always on, and there is no parameter to turn it off. However, if you set the
LNet module parameter auto_down to 0, LNet ignores all such peer-down notifications.

Several key differences in both mechanisms:

• The router pinger only checks routers for their health, while LNDs notices all dead peers, regardless of
whether they are a router or not.

• The router pinger actively checks the router health by sending pings, but LNDs only notice a dead peer
when there is network traffic going on.

• The router pinger can bring a router from alive to dead or vice versa, but LNDs can only bring a peer
down.

15.2. Starting and Stopping LNet
The Lustre software automatically starts and stops LNet, but it can also be manually started in a standalone
manner. This is particularly useful to verify that your networking setup is working correctly before you
attempt to start the Lustre file system.

15.2.1. Starting LNet
To start LNet, run:



Managing Lustre Networking (LNet)

140

$ modprobe lnet
$ lctl network up

To see the list of local NIDs, run:

$ lctl list_nids

This command tells you the network(s) configured to work with the Lustre file system.

If the networks are not correctly setup, see the modules.conf "networks=" line and make sure the
network layer modules are correctly installed and configured.

To get the best remote NID, run:

$ lctl which_nid NIDs

where NIDs is the list of available NIDs.

This command takes the "best" NID from a list of the NIDs of a remote host. The "best" NID is the one
that the local node uses when trying to communicate with the remote node.

15.2.1.1. Starting Clients

To start a TCP client, run:

mount -t lustre mdsnode:/mdsA/client /mnt/lustre/

To start an Elan client, run:

mount -t lustre 2@elan0:/mdsA/client /mnt/lustre

15.2.2. Stopping LNet
Before the LNet modules can be removed, LNet references must be removed. In general, these references
are removed automatically when the Lustre file system is shut down, but for standalone routers, an explicit
step is needed to stop LNet. Run:

lctl network unconfigure

Note

Attempting to remove Lustre modules prior to stopping the network may result in a crash or an
LNet hang. If this occurs, the node must be rebooted (in most cases). Make sure that the Lustre
network and Lustre file system are stopped prior to unloading the modules. Be extremely careful
using rmmod -f.

To unconfigure the LNet network, run:

modprobe -r lnd_and_lnet_modules

Note

To remove all Lustre modules, run:

$ lustre_rmmod



Managing Lustre Networking (LNet)

141

15.3. Hardware Based Multi-Rail Configurations
with LNet

To aggregate bandwidth across both rails of a dual-rail IB cluster (o2iblnd) 1 using LNet, consider these
points:

• LNet can work with multiple rails, however, it does not load balance across them. The actual rail used
for any communication is determined by the peer NID.

• Hardware multi-rail LNet configurations do not provide an additional level of network fault tolerance.
The configurations described below are for bandwidth aggregation only.

• A Lustre node always uses the same local NID to communicate with a given peer NID. The criteria
used to determine the local NID are:

•
Introduced in Lustre 2.5

Lowest route priority number (lower number, higher priority).

• Fewest hops (to minimize routing), and

• Appears first in the "networks" or "ip2nets" LNet configuration strings

15.4. Load Balancing with an InfiniBand*

Network
A Lustre file system contains OSSs with two InfiniBand HCAs. Lustre clients have only one InfiniBand
HCA using OFED-based Infiniband ''o2ib'' drivers. Load balancing between the HCAs on the OSS is
accomplished through LNet.

15.4.1. Setting Up lustre.conf for Load Balancing
To configure LNet for load balancing on clients and servers:

1. Set the lustre.conf options.

Depending on your configuration, set lustre.conf options as follows:

• Dual HCA OSS server

options lnet networks="o2ib0(ib0),o2ib1(ib1)"

• Client with the odd IP address

options lnet ip2nets="o2ib0(ib0) 192.168.10.[103-253/2]"

• Client with the even IP address

options lnet ip2nets="o2ib1(ib0) 192.168.10.[102-254/2]"

2. Run the modprobe lnet command and create a combined MGS/MDT file system.

1Hardware multi-rail configurations are only supported by o2iblnd; other IB LNDs do not support multiple interfaces.



Managing Lustre Networking (LNet)

142

The following commands create an MGS/MDT or OST file system and mount the targets on the servers.

modprobe lnet
# mkfs.lustre --fsname lustre --mgs --mdt /dev/mdt_device
# mkdir -p /mount_point
# mount -t lustre /dev/mdt_device /mount_point

For example:

modprobe lnet
mds# mkfs.lustre --fsname lustre --mdt --mgs /dev/sda
mds# mkdir -p /mnt/test/mdt
mds# mount -t lustre /dev/sda /mnt/test/mdt   
mds# mount -t lustre mgs@o2ib0:/lustre /mnt/mdt
oss# mkfs.lustre --fsname lustre --mgsnode=mds@o2ib0 --ost --index=0 /dev/sda
oss# mkdir -p /mnt/test/mdt
oss# mount -t lustre /dev/sda /mnt/test/ost   
oss# mount -t lustre mgs@o2ib0:/lustre /mnt/ost0

3. Mount the clients.

client# mount -t lustre mgs_node:/fsname /mount_point

This example shows an IB client being mounted.

client# mount -t lustre
192.168.10.101@o2ib0,192.168.10.102@o2ib1:/mds/client /mnt/lustre

As an example, consider a two-rail IB cluster running the OFED stack with these IPoIB address
assignments.

             ib0                             ib1
Servers            192.168.0.*                     192.168.1.*
Clients            192.168.[2-127].*               192.168.[128-253].*

You could create these configurations:

• A cluster with more clients than servers. The fact that an individual client cannot get two rails of
bandwidth is unimportant because the servers are typically the actual bottleneck.

ip2nets="o2ib0(ib0),    o2ib1(ib1)      192.168.[0-1].*                     \
                                            #all servers;\
                   o2ib0(ib0)      192.168.[2-253].[0-252/2]       #even cl\
ients;\
                   o2ib1(ib1)      192.168.[2-253].[1-253/2]       #odd cli\
ents"

This configuration gives every server two NIDs, one on each network, and statically load-balances clients
between the rails.

• A single client that must get two rails of bandwidth, and it does not matter if the maximum aggregate
bandwidth is only (# servers) * (1 rail).

ip2nets="       o2ib0(ib0)                      192.168.[0-1].[0-252/2]     \
                                            #even servers;\



Managing Lustre Networking (LNet)

143

           o2ib1(ib1)                      192.168.[0-1].[1-253/2]         \
                                        #odd servers;\
           o2ib0(ib0),o2ib1(ib1)           192.168.[2-253].*               \
                                        #clients"

This configuration gives every server a single NID on one rail or the other. Clients have a NID on both rails.

• All clients and all servers must get two rails of bandwidth.

ip2nets=â€   o2ib0(ib0),o2ib2(ib1)           192.168.[0-1].[0-252/2]       \
  #even servers;\
           o2ib1(ib0),o2ib3(ib1)           192.168.[0-1].[1-253/2]         \
#odd servers;\
           o2ib0(ib0),o2ib3(ib1)           192.168.[2-253].[0-252/2)       \
#even clients;\
           o2ib1(ib0),o2ib2(ib1)           192.168.[2-253].[1-253/2)       \
#odd clients"

This configuration includes two additional proxy o2ib networks to work around the simplistic NID
selection algorithm in the Lustre software. It connects "even" clients to "even" servers with o2ib0 on
rail0, and "odd" servers with o2ib3 on rail1. Similarly, it connects "odd" clients to "odd" servers
with o2ib1 on rail0, and "even" servers with o2ib2 on rail1.

15.5. Dynamically Configuring LNet Routes
Two scripts are provided: lustre/scripts/lustre_routes_config and lustre/scripts/
lustre_routes_conversion.

lustre_routes_config sets or cleans up LNet routes from the specified config file. The /etc/
sysconfig/lnet_routes.conf file can be used to automatically configure routes on LNet startup.

lustre_routes_conversion converts a legacy routes configuration file to the new syntax, which
is parsed by lustre_routes_config.

15.5.1.  lustre_routes_config
lustre_routes_config usage is as follows

lustre_routes_config [--setup|--cleanup|--dry-run|--verbose] config_file
         --setup: configure routes listed in config_file
         --cleanup: unconfigure routes listed in config_file
         --dry-run: echo commands to be run, but do not execute them
         --verbose: echo commands before they are executed 

The format of the file which is passed into the script is as follows:

network: { gateway: gateway@exit_network [hop: hop] [priority:
priority] }

An LNet router is identified when its local NID appears within the list of routes. However, this can not be
achieved by the use of this script, since the script only adds extra routes after the router is identified. To
ensure that a router is identified correctly, make sure to add its local NID in the routes parameter in the
modprobe lustre configuration file. See Section 43.1, “ Introduction”.



Managing Lustre Networking (LNet)

144

15.5.2. lustre_routes_conversion
lustre_routes_conversion usage is as follows:

lustre_routes_conversion legacy_file new_file

lustre_routes_conversion takes as a first parameter a file with routes configured as follows:

network [hop] gateway@exit network[:priority];

The script then converts each routes entry in the provided file to:

network: { gateway: gateway@exit network [hop: hop] [priority:
priority] }

and appends each converted entry to the output file passed in as the second parameter to the script.

15.5.3. Route Configuration Examples
Below is an example of a legacy LNet route configuration. A legacy configuration file can have multiple
entries.

tcp1 10.1.1.2@tcp0:1;
tcp2 10.1.1.3@tcp0:2;
tcp3 10.1.1.4@tcp0;

Below is an example of the converted LNet route configuration. The following would be the result of the
lustre_routes_conversion script, when run on the above legacy entries.

tcp1: { gateway: 10.1.1.2@tcp0 priority: 1 }
tcp2: { gateway: 10.1.1.2@tcp0 priority: 2 }
tcp1: { gateway: 10.1.1.4@tcp0 }



145

Introduced in Lustre 2.10

Chapter 16. LNet Software Multi-
Rail

This chapter describes LNet Software Multi-Rail configuration and administration.

• Section 16.1, “Multi-Rail Overview”

Section 16.2, “Configuring Multi-Rail”

Section 16.3, “Notes on routing with Multi-Rail”

Section 16.4, “Multi-Rail Routing with LNet Health”

Section 16.5, “LNet Health”

16.1. Multi-Rail Overview
In computer networking, multi-rail is an arrangement in which two or more network interfaces
to a single network on a computer node are employed, to achieve increased throughput. Multi-
rail can also be where a node has one or more interfaces to multiple, even different kinds of
networks, such as Ethernet, Infiniband, and Intel® Omni-Path. For Lustre clients, multi-rail
generally presents the combined network capabilities as a single LNet network. Peer nodes
that are multi-rail capable are established during configuration, as are user-defined interface-
section policies.

The following link contains a detailed high-level design for the feature:  Multi-Rail High-Level
Design [https://wiki.lustre.org/images/b/bb/Multi-Rail_High-Level_Design_20150119.pdf]

16.2. Configuring Multi-Rail
Every node using multi-rail networking needs to be properly configured. Multi-rail uses
lnetctl and the LNet Configuration Library for configuration. Configuring multi-rail for
a given node involves two tasks:

1. Configuring multiple network interfaces present on the local node.

2. Adding remote peers that are multi-rail capable (are connected to one or more common
networks with at least two interfaces).

This section is a supplement to Section 9.1.3, “Adding, Deleting and Showing Networks” and
contains further examples for Multi-Rail configurations.

For information on the dynamic peer discovery feature added in Lustre Release 2.11.0, see
Section 9.1.5, “Dynamic Peer Discovery”.

16.2.1. Configure Multiple Interfaces on the Local
Node

Example lnetctl add command with multiple interfaces in a Multi-Rail configuration:

https://wiki.lustre.org/images/b/bb/Multi-Rail_High-Level_Design_20150119.pdf
https://wiki.lustre.org/images/b/bb/Multi-Rail_High-Level_Design_20150119.pdf
https://wiki.lustre.org/images/b/bb/Multi-Rail_High-Level_Design_20150119.pdf


LNet Software Multi-Rail

146

lnetctl net add --net tcp --if eth0,eth1

Example of YAML net show:

lnetctl net show -v
net:
    - net type: lo
      local NI(s):
        - nid: 0@lo
          status: up
          statistics:
              send_count: 0
              recv_count: 0
              drop_count: 0
          tunables:
              peer_timeout: 0
              peer_credits: 0
              peer_buffer_credits: 0
              credits: 0
          lnd tunables:
          tcp bonding: 0
          dev cpt: 0
          CPT: "[0]"
    - net type: tcp
      local NI(s):
        - nid: 192.168.122.10@tcp
          status: up
          interfaces:
              0: eth0
          statistics:
              send_count: 0
              recv_count: 0
              drop_count: 0
          tunables:
              peer_timeout: 180
              peer_credits: 8
              peer_buffer_credits: 0
              credits: 256
          lnd tunables:
          tcp bonding: 0
          dev cpt: -1
          CPT: "[0]"
        - nid: 192.168.122.11@tcp
          status: up
          interfaces:
              0: eth1
          statistics:
              send_count: 0
              recv_count: 0
              drop_count: 0
          tunables:
              peer_timeout: 180
              peer_credits: 8
              peer_buffer_credits: 0



LNet Software Multi-Rail

147

              credits: 256
          lnd tunables:
          tcp bonding: 0
          dev cpt: -1
          CPT: "[0]"

16.2.2. Deleting Network Interfaces

Example delete with lnetctl net del:

Assuming the network configuration is as shown above with the lnetctl net show -v
in the previous section, we can delete a net with following command:

lnetctl net del --net tcp --if eth0

The resultant net information would look like:

lnetctl net show -v
net:
    - net type: lo
      local NI(s):
        - nid: 0@lo
          status: up
          statistics:
              send_count: 0
              recv_count: 0
              drop_count: 0
          tunables:
              peer_timeout: 0
              peer_credits: 0
              peer_buffer_credits: 0
              credits: 0
          lnd tunables:
          tcp bonding: 0
          dev cpt: 0
          CPT: "[0,1,2,3]"

The syntax of a YAML file to perform a delete would be:

- net type: tcp
   local NI(s):
     - nid: 192.168.122.10@tcp
       interfaces:
           0: eth0

16.2.3. Adding Remote Peers that are Multi-Rail
Capable

The following example lnetctl peer add command adds a peer with 2 nids, with
192.168.122.30@tcp being the primary nid:

lnetctl peer add --prim_nid 192.168.122.30@tcp --nid 192.168.122.30@tcp,192.168.122.31@tcp



LNet Software Multi-Rail

148

      

The resulting lnetctl peer show would be:

lnetctl peer show -v
peer:
    - primary nid: 192.168.122.30@tcp
      Multi-Rail: True
      peer ni:
        - nid: 192.168.122.30@tcp
          state: NA
          max_ni_tx_credits: 8
          available_tx_credits: 8
          min_tx_credits: 7
          tx_q_num_of_buf: 0
          available_rtr_credits: 8
          min_rtr_credits: 8
          refcount: 1
          statistics:
              send_count: 2
              recv_count: 2
              drop_count: 0
        - nid: 192.168.122.31@tcp
          state: NA
          max_ni_tx_credits: 8
          available_tx_credits: 8
          min_tx_credits: 7
          tx_q_num_of_buf: 0
          available_rtr_credits: 8
          min_rtr_credits: 8
          refcount: 1
          statistics:
              send_count: 1
              recv_count: 1
              drop_count: 0

The following is an example YAML file for adding a peer:

addPeer.yaml
peer:
    - primary nid: 192.168.122.30@tcp
      Multi-Rail: True
      peer ni:
        - nid: 192.168.122.31@tcp

16.2.4. Deleting Remote Peers
Example of deleting a single nid of a peer (192.168.122.31@tcp):

lnetctl peer del --prim_nid 192.168.122.30@tcp --nid 192.168.122.31@tcp

Example of deleting the entire peer:

lnetctl peer del --prim_nid 192.168.122.30@tcp



LNet Software Multi-Rail

149

Example of deleting a peer via YAML:

Assuming the following peer configuration:
peer:
    - primary nid: 192.168.122.30@tcp
      Multi-Rail: True
      peer ni:
        - nid: 192.168.122.30@tcp
          state: NA
        - nid: 192.168.122.31@tcp
          state: NA
        - nid: 192.168.122.32@tcp
          state: NA

You can delete 192.168.122.32@tcp as follows:

delPeer.yaml
peer:
    - primary nid: 192.168.122.30@tcp
      Multi-Rail: True
      peer ni:
        - nid: 192.168.122.32@tcp
    
% lnetctl import --del < delPeer.yaml

16.3. Notes on routing with Multi-Rail
This section details how to configure Multi-Rail with the routing feature before the
Section 16.4, “Multi-Rail Routing with LNet Health” feature landed in Lustre 2.13. Routing
code has always monitored the state of the route, in order to avoid using unavailable ones.

This section describes how you can configure multiple interfaces on the same gateway node
but as different routes. This uses the existing route monitoring algorithm to guard against
interfaces going down. With the Section 16.4, “Multi-Rail Routing with LNet Health” feature
introduced in Lustre 2.13, the new algorithm uses the Section 16.5, “LNet Health” feature to
monitor the different interfaces of the gateway and always ensures that the healthiest interface
is used. Therefore, the configuration described in this section applies to releases prior to Lustre
2.13. It will still work in 2.13 as well, however it is not required due to the reason mentioned
above.

16.3.1. Multi-Rail Cluster Example

The below example outlines a simple system where all the Lustre nodes are MR capable. Each
node in the cluster has two interfaces.



LNet Software Multi-Rail

150

Figure 16.1. Routing Configuration with Multi-Rail

The routers can aggregate the interfaces on each side of the network by configuring them on
the appropriate network.

An example configuration:

Routers
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl net add --net o2ib1 --if ib2,ib3
lnetctl peer add --nid <peer1-nidA>@o2ib,<peer1-nidB>@o2ib,...
lnetctl peer add --nid <peer2-nidA>@o2ib1,<peer2-nidB>>@o2ib1,...
lnetctl set routing 1

Clients
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl route add --net o2ib1 --gateway <rtrX-nidA>@o2ib
lnetctl peer add --nid <rtrX-nidA>@o2ib,<rtrX-nidB>@o2ib
        
Servers
lnetctl net add --net o2ib1 --if ib0,ib1
lnetctl route add --net o2ib0 --gateway <rtrX-nidA>@o2ib1
lnetctl peer add --nid <rtrX-nidA>@o2ib1,<rtrX-nidB>@o2ib1

In the above configuration the clients and the servers are configured with only one route entry
per router. This works because the routers are MR capable. By adding the routers as peers with
multiple interfaces to the clients and the servers, when sending to the router the MR algorithm
will ensure that bot interfaces of the routers are used.

However, as of the Lustre 2.10 release LNet Resiliency is still under development and single
interface failure will still cause the entire router to go down.



LNet Software Multi-Rail

151

16.3.2. Utilizing Router Resiliency

Currently, LNet provides a mechanism to monitor each route entry. LNet pings each gateway
identified in the route entry on regular, configurable interval to ensure that it is alive. If sending
over a specific route fails or if the router pinger determines that the gateway is down, then the
route is marked as down and is not used. It is subsequently pinged on regular, configurable
intervals to determine when it becomes alive again.

This mechanism can be combined with the MR feature in Lustre 2.10 to add this router
resiliency feature to the configuration.

Routers
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl net add --net o2ib1 --if ib2,ib3
lnetctl peer add --nid <peer1-nidA>@o2ib,<peer1-nidB>@o2ib,...
lnetctl peer add --nid <peer2-nidA>@o2ib1,<peer2-nidB>@o2ib1,...
lnetctl set routing 1

Clients
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl route add --net o2ib1 --gateway <rtrX-nidA>@o2ib
lnetctl route add --net o2ib1 --gateway <rtrX-nidB>@o2ib
        
Servers
lnetctl net add --net o2ib1 --if ib0,ib1
lnetctl route add --net o2ib0 --gateway <rtrX-nidA>@o2ib1
lnetctl route add --net o2ib0 --gateway <rtrX-nidB>@o2ib1

There are a few things to note in the above configuration:

1. The clients and the servers are now configured with two routes, each route's gateway is one
of the interfaces of the route. The clients and servers will view each interface of the same
router as a separate gateway and will monitor them as described above.

2. The clients and the servers are not configured to view the routers as MR capable. This is
important because we want to deal with each interface as a separate peers and not different
interfaces of the same peer.

3. The routers are configured to view the peers as MR capable. This is an oddity in the
configuration, but is currently required in order to allow the routers to load balance the
traffic load across its interfaces evenly.

16.3.3. Mixed Multi-Rail/Non-Multi-Rail Cluster

The above principles can be applied to mixed MR/Non-MR cluster. For example, the same
configuration shown above can be applied if the clients and the servers are non-MR while the
routers are MR capable. This appears to be a common cluster upgrade scenario.

Introduced in Lustre 2.13



LNet Software Multi-Rail

152

16.4. Multi-Rail Routing with LNet
Health
This section details how routing and pertinent module parameters can be configured beginning
with Lustre 2.13.

Multi-Rail with Dynamic Discovery allows LNet to discover and use all configured interfaces
of a node. It references a node via it's primary NID. Multi-Rail routing carries forward this
concept to the routing infrastructure. The following changes are brought in with the Lustre
2.13 release:

1. Configuring a different route per gateway interface is no longer needed. One route per
gateway should be configured. Gateway interfaces are used according to the Multi-Rail
selection criteria.

2. Routing now relies on Section 16.5, “LNet Health” to keep track of the route aliveness.

3. Router interfaces are monitored via LNet Health. If an interface fails other interfaces will
be used.

4. Routing uses LNet discovery to discover gateways on regular intervals.

5. A gateway pushes its list of interfaces upon the discovery of any changes in its interfaces'
state.

16.4.1. Configuration

16.4.1.1. Configuring Routes

A gateway can have multiple interfaces on the same or different networks. The peers using
the gateway can reach it on one or more of its interfaces. Multi-Rail routing takes care of
managing which interface to use.

lnetctl route add --net <remote network>
      --gateway <NID for the gateway>
      --hop <number of hops> --priority <route priority>
      

16.4.1.2. Configuring Module Parameters

Table 16.1. Configuring Module Parameters

Module Parameter Usage

check_routers_before_useDefaults to 0. If set to 1 all routers must be up before the
system can proceed.

avoid_asym_router_failureDefaults to 1. If set to 1 single-hop routes have an additional
requirement to be considered up. The requirement is that the
gateway of the route must have at least one healthy network
interface connected directly to the remote net of the route. In
this context single-hop routes are routes that are given hop=1
explicitly when created, or routes for which lnet can infer that
they have only one hop. Otherwise the route is not single-hop
and this parameter has no effect.



LNet Software Multi-Rail

153

Module Parameter Usage

alive_router_check_intervalDefaults to 60 seconds. The gateways will be discovered
ever alive_router_check_interval. If the gateway
can be reached on multiple networks, the interval per
network is alive_router_check_interval / number
of networks.

router_ping_timeout Defaults to 50 seconds. A gateway sets its interface down if it
has not received any traffic for router_ping_timeout
+ alive_router_check_interval

router_sensitivity_percentageDefaults to 100. This parameter defines how sensitive a
gateway interface is to failure. If set to 100 then any gateway
interface failure will contribute to all routes using it going
down. The lower the value the more tolerant to failures the
system becomes.

16.4.2. Router Health
The routing infrastructure now relies on LNet Health to keep track of interface health. Each
gateway interface has a health value associated with it. If a send fails to one of these interfaces,
then the interface's health value is decremented and placed on a recovery queue. The unhealthy
interface is then pinged every lnet_recovery_interval. This value defaults to 1
second.

If the peer receives a message from the gateway, then it immediately assumes that the gateway's
interface is up and resets its health value to maximum. This is needed to ensure we start using
the gateways immediately instead of holding off until the interface is back to full health.

16.4.3. Discovery
LNet Discovery is used in place of pinging the peers. This serves two purposes:

1. The discovery communication infrastructure does not need to be duplicated for the routing
feature.

2. It allows propagation of the gateway's interface state changes to the peers using the gateway.

For (2), if an interface changes state from UP to DOWN or vice versa, then a discovery PUSH
is sent to all the peers which can be reached. This allows peers to adapt to changes quicker.

Discovery is designed to be backwards compatible. The discovery protocol is composed of
a GET and a PUT. The GET requests interface information from the peer, this is a basic lnet
ping. The peer responds with its interface information and a feature bit. If the peer is multi-
rail capable and discovery is turned on, then the node will PUSH its interface information. As
a result both peers will be aware of each other's interfaces.

This information is then used by the peers to decide, based on the interface state provided by
the gateway, whether the route is alive or not.

16.4.4. Route Aliveness Criteria
A route is considered alive if the following conditions hold:

1. The gateway can be reached on the local net via at least one path.



LNet Software Multi-Rail

154

2. For a single-hop route, if avoid_asym_router_failure is enabled then the remote
network defined in the route must have at least one healthy interface on the gateway.

Introduced in Lustre 2.12

16.5. LNet Health
LNet Multi-Rail has implemented the ability for multiple interfaces to be used on the same
LNet network or across multiple LNet networks. The LNet Health feature adds the ability
to maintain a health value for each local and remote interface. This allows the Multi-Rail
algorithm to consider the health of the interface before selecting it for sending. The feature
also adds the ability to resend messages across different interfaces when interface or network
failures are detected. This allows LNet to mitigate communication failures before passing the
failures to upper layers for further error handling. To accomplish this, LNet Health monitors
the status of the send and receive operations and uses this status to increment the interface's
health value in case of success and decrement it in case of failure.

16.5.1. Health Value
The initial health value of a local or remote interface is set to LNET_MAX_HEALTH_VALUE,
currently set to be 1000. The value itself is arbitrary and is meant to allow for health
granularity, as opposed to having a simple boolean state. The granularity allows the Multi-
Rail algorithm to select the interface that has the highest likelihood of sending or receiving
a message.

16.5.2. Failure Types and Behavior
LNet health behavior depends on the type of failure detected:

Failure Type Behavior

localresend A local failure has occurred, such as no route
found or an address resolution error. These
failures could be temporary, therefore LNet
will attempt to resend the message. LNet
will decrement the health value of the local
interface and will select it less often if there
are multiple available interfaces.

localno-resend A local non-recoverable error occurred in
the system, such as out of memory error. In
these cases LNet will not attempt to resend
the message. LNet will decrement the health
value of the local interface and will select
it less often if there are multiple available
interfaces.

remoteno-resend If LNet successfully sends a message, but the
message does not complete or an expected
reply is not received, then it is classified as a
remote error. LNet will not attempt to resend
the message to avoid duplicate messages on
the remote end. LNet will decrement the
health value of the remote interface and



LNet Software Multi-Rail

155

Failure Type Behavior

will select it less often if there are multiple
available interfaces.

remoteresend There are a set of failures where we can be
reasonably sure that the message was dropped
before getting to the remote end. In this case,
LNet will attempt to resend the message. LNet
will decrement the health value of the remote
interface and will select it less often if there
are multiple available interfaces.

16.5.3. User Interface
LNet Health is turned on by default. There are multiple module parameters available to control
the LNet Health feature.

All the module parameters are implemented in sysfs and are located in /sys/module/lnet/
parameters/. They can be set directly by echoing a value into them as well as from lnetctl.

Parameter Description

lnet_health_sensitivity When LNet detects a failure on a particular
interface it will decrement its Health Value
by lnet_health_sensitivity. The
greater the value, the longer it takes for that
interface to become healthy again. The default
value of lnet_health_sensitivity is
set to 100. To disable LNet health, the value
can be set to 0.

An lnet_health_sensitivity of 100
means that 10 consecutive message failures
or a steady-state failure rate over 1% would
degrade the interface Health Value until it
is disabled, while a lower failure rate would
steer traffic away from the interface but it
would continue to be available. When a failure
occurs on an interface then its Health Value is
decremented and the interface is flagged for
recovery.

lnetctl set health_sensitivity: sensitivity to failure
      0 - turn off health evaluation
      >0 - sensitivity value not more than 1000

lnet_recovery_interval When LNet detects a failure on a local or
remote interface it will place that interface
on a recovery queue. There is a recovery
queue for local interfaces and another for
remote interfaces. The interfaces on the
recovery queues will be LNet PINGed every
lnet_recovery_interval. This value
defaults to 1 second. On every successful
PING the health value of the interface pinged
will be incremented by 1.



LNet Software Multi-Rail

156

Parameter Description

Having this value configurable allows system
administrators to control the amount of
control traffic on the network.

lnetctl set recovery_interval: interval to ping unhealthy interfaces
      >0 - timeout in seconds

lnet_transaction_timeout This timeout is somewhat of an overloaded
value. It carries the following functionality:

• A message is abandoned if it
is not sent successfully when
the lnet_transaction_timeout expires and
the retry_count is not reached.

• A GET or a PUT which expects
an ACK expires if a REPLY or an ACK
respectively, is not received within the
lnet_transaction_timeout.

This value defaults to 30 seconds.

lnetctl set transaction_timeout: Message/Response timeout
      >0 - timeout in seconds

Note

The LND timeout will now
be a fraction of the
lnet_transaction_timeout
as described in the next section.

This means that in networks where
very large delays are expected then
it will be necessary to increase this
value accordingly.

lnet_retry_count When LNet detects a failure which it deems
appropriate for re-sending a message it
will check if a message has passed the
maximum retry_count specified. After which
if a message wasn't sent successfully a failure
event will be passed up to the layer which
initiated message sending. The default value
is 2.

Since the message retry interval
(lnet_lnd_timeout) is computed from
lnet_transaction_timeout /
lnet_retry_count, the
lnet_retry_count should be kept low
enough that the retry interval is not
shorter than the round-trip message delay
in the network. A lnet_retry_count



LNet Software Multi-Rail

157

Parameter Description

of 5 is reasonable for the default
lnet_transaction_timeout of 50
seconds.

lnetctl set retry_count: number of retries
      0 - turn off retries
      >0 - number of retries, cannot be more than lnet_transaction_timeout

lnet_lnd_timeout This is not a configurable parameter. But it
is derived from two configurable parameters:
lnet_transaction_timeout and
retry_count.

lnet_lnd_timeout = (lnet_transaction_timeout-1) / (retry_count+1)
              

As such there is a restriction
that lnet_transaction_timeout
>= retry_count

The core assumption here is that in a
healthy network, sending and receiving LNet
messages should not have large delays. There
could be large delays with RPC messages
and their responses, but that's handled at
the PtlRPC layer.

16.5.4. Displaying Information

16.5.4.1. Showing LNet Health Configuration Settings

lnetctl can be used to show all the LNet health configuration settings using the lnetctl
global show command.

#> lnetctl global show
      global:
      numa_range: 0
      max_intf: 200
      discovery: 1
      retry_count: 3
      transaction_timeout: 10
      health_sensitivity: 100
      recovery_interval: 1

16.5.4.2. Showing LNet Health Statistics

LNet Health statistics are shown under a higher verbosity settings. To show the local interface
health statistics:

lnetctl net show -v 3

To show the remote interface health statistics:

lnetctl peer show -v 3



LNet Software Multi-Rail

158

Sample output:

#> lnetctl net show -v 3
      net:
      - net type: tcp
        local NI(s):
           - nid: 192.168.122.108@tcp
             status: up
             interfaces:
                 0: eth2
             statistics:
                 send_count: 304
                 recv_count: 284
                 drop_count: 0
             sent_stats:
                 put: 176
                 get: 138
                 reply: 0
                 ack: 0
                 hello: 0
             received_stats:
                 put: 145
                 get: 137
                 reply: 0
                 ack: 2
                 hello: 0
             dropped_stats:
                 put: 10
                 get: 0
                 reply: 0
                 ack: 0
                 hello: 0
             health stats:
                 health value: 1000
                 interrupts: 0
                 dropped: 10
                 aborted: 0
                 no route: 0
                 timeouts: 0
                 error: 0
             tunables:
                 peer_timeout: 180
                 peer_credits: 8
                 peer_buffer_credits: 0
                 credits: 256
             dev cpt: -1
             tcp bonding: 0
             CPT: "[0]"
      CPT: "[0]"

There is a new YAML block, health stats, which displays the health statistics for each
local or remote network interface.

Global statistics also dump the global health statistics as shown below:



LNet Software Multi-Rail

159

#> lnetctl stats show
        statistics:
            msgs_alloc: 0
            msgs_max: 33
            rst_alloc: 0
            errors: 0
            send_count: 901
            resend_count: 4
            response_timeout_count: 0
            local_interrupt_count: 0
            local_dropped_count: 10
            local_aborted_count: 0
            local_no_route_count: 0
            local_timeout_count: 0
            local_error_count: 0
            remote_dropped_count: 0
            remote_error_count: 0
            remote_timeout_count: 0
            network_timeout_count: 0
            recv_count: 851
            route_count: 0
            drop_count: 10
            send_length: 425791628
            recv_length: 69852
            route_length: 0
            drop_length: 0

16.5.5. Initial Settings Recommendations

LNet Health is off by default. This means that lnet_health_sensitivity and
lnet_retry_count are set to 0.

Setting lnet_health_sensitivity to 0 will not decrement the health of the interface
on failure and will not change the interface selection behavior. Furthermore, the failed
interfaces will not be placed on the recovery queues. In essence, turning off the LNet Health
feature.

The LNet Health settings will need to be tuned for each cluster. However, the base
configuration would be as follows:

#> lnetctl global show
    global:
        numa_range: 0
        max_intf: 200
        discovery: 1
        retry_count: 3
        transaction_timeout: 10
        health_sensitivity: 100
        recovery_interval: 1

This setting will allow a maximum of two retries for failed messages within the 5 second
transaction timeout.



LNet Software Multi-Rail

160

If there is a failure on the interface the health value will be decremented by 1 and the interface
will be LNet PINGed every 1 second.



161

Chapter 17. Upgrading a Lustre File
System

This chapter describes interoperability between Lustre software releases. It also provides procedures for
upgrading from older Lustre 2.x software releases to a more recent 2.y Lustre release a (major release
upgrade), and from a Lustre software release 2.x.y to a more recent Lustre software release 2.x.z (minor
release upgrade). It includes the following sections:

• Section 17.1, “ Release Interoperability and Upgrade Requirements”

• Section 17.2, “ Upgrading to Lustre Software Release 2.x (Major Release)”

• Section 17.3, “ Upgrading to Lustre Software Release 2.x.y (Minor Release)”

17.1.   Release Interoperability and Upgrade
Requirements

Lustre software release 2.x (major) upgrade:

• All servers must be upgraded at the same time, while some or all clients may be upgraded independently
of the servers.

• All servers must be be upgraded to a Linux kernel supported by the Lustre software. See the Lustre
Release Notes for your Lustre version for a list of tested Linux distributions.

• Clients to be upgraded must be running a compatible Linux distribution as described in the Release
Notes.

Lustre software release 2.x.y release (minor) upgrade:

• All servers must be upgraded at the same time, while some or all clients may be upgraded.

• Rolling upgrades are supported for minor releases allowing individual servers and clients to be upgraded
without stopping the Lustre file system.

17.2.     Upgrading to Lustre Software Release
2.x (Major Release)

The procedure for upgrading from a Lustre software release 2.x to a more recent 2.y major release of the
Lustre software is described in this section. To upgrade an existing 2.x installation to a more recent major
release, complete the following steps:

1. Create a complete, restorable file system backup.

Caution

Before installing the Lustre software, back up ALL data. The Lustre software contains kernel
modifications that interact with storage devices and may introduce security issues and data



Upgrading a Lustre File System

162

loss if not installed, configured, or administered properly. If a full backup of the file system is
not practical, a device-level backup of the MDT file system is recommended. See Chapter 18,
Backing Up and Restoring a File System for a procedure.

2. Shut down the entire filesystem by following Section 13.4, “ Stopping the Filesystem”

3. Upgrade the Linux operating system on all servers to a compatible (tested) Linux distribution and
reboot.

4. Upgrade the Linux operating system on all clients to a compatible (tested) distribution and reboot.

5. Download the Lustre server RPMs for your platform from the  Lustre Releases [https://
wiki.whamcloud.com/display/PUB/Lustre+Releases] repository. See Table 8.1, “Packages Installed on
Lustre Servers”for a list of required packages.

6. Install the Lustre server packages on all Lustre servers (MGS, MDSs, and OSSs).

a. Log onto a Lustre server as the root user

b. Use the yum command to install the packages:

# yum --nogpgcheck install pkg1.rpm pkg2.rpm ... 

c. Verify the packages are installed correctly:

rpm -qa|egrep "lustre|wc"

d. Repeat these steps on each Lustre server.

7. Download the Lustre client RPMs for your platform from the  Lustre Releases [https://
wiki.whamcloud.com/display/PUB/Lustre+Releases] repository. See Table 8.2, “Packages Installed on
Lustre Clients” for a list of required packages.

Note

The version of the kernel running on a Lustre client must be the same as the version of the
lustre-client-modules- verpackage being installed. If not, a compatible kernel must
be installed on the client before the Lustre client packages are installed.

8. Install the Lustre client packages on each of the Lustre clients to be upgraded.

a. Log onto a Lustre client as the root user.

b. Use the yum command to install the packages:

# yum --nogpgcheck install pkg1.rpm pkg2.rpm ... 

c. Verify the packages were installed correctly:

# rpm -qa|egrep "lustre|kernel"

d. Repeat these steps on each Lustre client.

9. The DNE feature allows using multiple MDTs within a single filesystem namespace, and each MDT
can each serve one or more remote sub-directories in the file system. The root directory is always
located on MDT0.

https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases


Upgrading a Lustre File System

163

Note that clients running a release prior to the Lustre software release 2.4 can only see the namespace
hosted by MDT0 and will return an IO error if an attempt is made to access a directory on another MDT.

(Optional) To format an additional MDT, complete these steps:

a. Determine the index used for the first MDT (each MDT must have unique index). Enter:

client$ lctl dl | grep mdc
36 UP mdc lustre-MDT0000-mdc-ffff88004edf3c00 
      4c8be054-144f-9359-b063-8477566eb84e 5

In this example, the next available index is 1.

b. Format the new block device as a new MDT at the next available MDT index by entering (on one
line):

mds# mkfs.lustre --reformat --fsname=filesystem_name --mdt \
    --mgsnode=mgsnode --index new_mdt_index 
/dev/mdt1_device

10.(Optional) If you are upgrading from a release before Lustre 2.10, to enable the project quota feature
enter the following on every ldiskfs backend target while unmounted:

tune2fs –O project /dev/dev

Note

Enabling the project feature will prevent the filesystem from being used by older versions
of ldiskfs, so it should only be enabled if the project quota feature is required and/or after it is
known that the upgraded release does not need to be downgraded.

11.When setting up the file system, enter:

conf_param $FSNAME.quota.mdt=$QUOTA_TYPE
conf_param $FSNAME.quota.ost=$QUOTA_TYPE

12.
Introduced in Lustre 2.13

(Optional) If upgrading an ldiskfs MDT formatted prior to Lustre 2.13, the "wide striping" feature that
allows files to have more than 160 stripes and store other large xattrs was not enabled by default. This
feature can be enabled on existing MDTs by running the following command on all MDT devices:

mds# tune2fs -O ea_inode /dev/mdtdev

For more information about wide striping, see Section 19.9, “Lustre Striping Internals”.

13.Start the Lustre file system by starting the components in the order shown in the following steps:

a. Mount the MGT. On the MGS, run

mgs# mount -a -t lustre

b. Mount the MDT(s). On each MDT, run:

mds# mount -a -t lustre



Upgrading a Lustre File System

164

c. Mount all the OSTs. On each OSS node, run:

oss# mount -a -t lustre

Note

This command assumes that all the OSTs are listed in the /etc/fstab file. OSTs that are
not listed in the /etc/fstab file, must be mounted individually by running the mount
command:

mount -t lustre /dev/block_device/mount_point

d. Mount the file system on the clients. On each client node, run:

client# mount -a -t lustre

14.
Introduced in Lustre 2.7

(Optional) If you are upgrading from a release before Lustre 2.7, to enable OST FIDs to also store the
OST index (to improve reliability of LFSCK and debug messages), after the OSTs are mounted run
once on each OSS:

oss# lctl set_param osd-ldiskfs.*.osd_index_in_idif=1

Note

Enabling the index_in_idif feature will prevent the OST from being used by older
versions of Lustre, so it should only be enabled once it is known there is no need for the OST
to be downgraded to an earlier release.

15.If a new MDT was added to the filesystem, the new MDT must be attached into the namespace by
creating one or more new DNE subdirectories with the lfs mkdir command that use the new MDT:

client# lfs mkdir -i new_mdt_index /testfs/new_dir

Introduced in Lustre 2.8

In Lustre 2.8 and later, it is possible to split a new directory across multiple MDTs by creating it with
multiple stripes:

client# lfs mkdir -c 2 /testfs/new_striped_dir

Introduced in Lustre 2.13

In Lustre 2.13 and later, it is possible to set the default directory layout on existing directories so new
remote subdirectories are created on less-full MDTs:

client# lfs setdirstripe -D -c 1 -i -1 /testfs/some_dir

See Section 13.10.1, “Directory creation by space/inode usage” for details.



Upgrading a Lustre File System

165

Introduced in Lustre 2.15

In Lustre 2.15 and later, if no default directory layout is set on the root directory, the MDS will
automatically set the default directory layout the root directory to distribute the top-level directories
round-robin across all MDTs, see Section 13.10.2, “Filesystem-wide default directory striping”.

Note

The mounting order described in the steps above must be followed for the initial mount and
registration of a Lustre file system after an upgrade. For a normal start of a Lustre file system,
the mounting order is MGT, OSTs, MDT(s), clients.

If you have a problem upgrading a Lustre file system, see Section 35.2, “Reporting a Lustre File System
Bug”for ways to get help.

17.3.  Upgrading to Lustre Software Release
2.x.y (Minor Release)

Rolling upgrades are supported for upgrading from any Lustre software release 2.x.y to a more recent
Lustre software release 2.X.y. This allows the Lustre file system to continue to run while individual servers
(or their failover partners) and clients are upgraded one at a time. The procedure for upgrading a Lustre
software release 2.x.y to a more recent minor release is described in this section.

To upgrade Lustre software release 2.x.y to a more recent minor release, complete these steps:

1. Create a complete, restorable file system backup.

Caution

Before installing the Lustre software, back up ALL data. The Lustre software contains kernel
modifications that interact with storage devices and may introduce security issues and data
loss if not installed, configured, or administered properly. If a full backup of the file system is
not practical, a device-level backup of the MDT file system is recommended. See Chapter 18,
Backing Up and Restoring a File System for a procedure.

2. Download the Lustre server RPMs for your platform from the  Lustre Releases [https://
wiki.whamcloud.com/display/PUB/Lustre+Releases] repository. See Table 8.1, “Packages Installed on
Lustre Servers” for a list of required packages.

3. For a rolling upgrade, complete any procedures required to keep the Lustre file system running while
the server to be upgraded is offline, such as failing over a primary server to its secondary partner.

4. Unmount the Lustre server to be upgraded (MGS, MDS, or OSS)

5. Install the Lustre server packages on the Lustre server.

a. Log onto the Lustre server as the root user

b. Use the yum command to install the packages:

# yum --nogpgcheck install pkg1.rpm pkg2.rpm ... 

c. Verify the packages are installed correctly:

https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases


Upgrading a Lustre File System

166

rpm -qa|egrep "lustre|wc"

d. Mount the Lustre server to restart the Lustre software on the server:

server# mount -a -t lustre

e. Repeat these steps on each Lustre server.

6. Download the Lustre client RPMs for your platform from the  Lustre Releases [https://
wiki.whamcloud.com/display/PUB/Lustre+Releases] repository. See Table 8.2, “Packages Installed on
Lustre Clients” for a list of required packages.

7. Install the Lustre client packages on each of the Lustre clients to be upgraded.

a. Log onto a Lustre client as the root user.

b. Use the yum command to install the packages:

# yum --nogpgcheck install pkg1.rpm pkg2.rpm ... 

c. Verify the packages were installed correctly:

# rpm -qa|egrep "lustre|kernel"

d. Mount the Lustre client to restart the Lustre software on the client:

client# mount -a -t lustre

e. Repeat these steps on each Lustre client.

If you have a problem upgrading a Lustre file system, see Section 35.2, “Reporting a Lustre File System
Bug”for some suggestions for how to get help.

https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases
https://wiki.whamcloud.com/display/PUB/Lustre+Releases


167

Chapter 18. Backing Up and Restoring
a File System

This chapter describes how to backup and restore at the file system-level, device-level and file-level in a
Lustre file system. Each backup approach is described in the the following sections:

• Section 18.1, “ Backing up a File System”

• Section 18.2, “ Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”

• Section 18.3, “ Backing Up an OST or MDT (Backend File System Level)”

• Section 18.4, “ Restoring a File-Level Backup”

• Section 18.5, “ Using LVM Snapshots with the Lustre File System”

It is strongly recommended that sites perform periodic device-level backup of the MDT(s) (Section 18.2,
“ Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”), for example twice a week with
alternate backups going to a separate device, even if there is not enough capacity to do a full backup of all
of the filesystem data. Even if there are separate file-level backups of some or all files in the filesystem,
having a device-level backup of the MDT can be very useful in case of MDT failure or corruption. Being
able to restore a device-level MDT backup can avoid the significantly longer process of restoring the entire
filesystem from backup. Since the MDT is required for access to all files, its loss would otherwise force
full restore of the filesystem (if that is even possible) even if the OSTs are still OK.

Performing a periodic device-level MDT backup can be done relatively inexpensively because the storage
need only be connected to the primary MDS (it can be manually connected to the backup MDS in the
rare case it is needed), and only needs good linear read/write performance. While the device-level MDT
backup is not useful for restoring individual files, it is most efficient to handle the case of MDT failure
or corruption.

18.1.     Backing up a File System
Backing up a complete file system gives you full control over the files to back up, and allows restoration of
individual files as needed. File system-level backups are also the easiest to integrate into existing backup
solutions.

File system backups are performed from a Lustre client (or many clients working parallel in different
directories) rather than on individual server nodes; this is no different than backing up any other file system.

However, due to the large size of most Lustre file systems, it is not always possible to get a complete
backup. We recommend that you back up subsets of a file system. This includes subdirectories of the
entire file system, filesets for a single user, files incremented by date, and so on, so that restores can be
done more efficiently.

Note

Lustre internally uses a 128-bit file identifier (FID) for all files. To interface with user
applications, the 64-bit inode numbers are returned by the stat(), fstat(), and readdir()
system calls on 64-bit applications, and 32-bit inode numbers to 32-bit applications.

Some 32-bit applications accessing Lustre file systems (on both 32-bit and 64-bit CPUs) may
experience problems with the stat(), fstat() or readdir() system calls under certain
circumstances, though the Lustre client should return 32-bit inode numbers to these applications.



Backing Up and
Restoring a File System

168

In particular, if the Lustre file system is exported from a 64-bit client via NFS to a 32-bit client,
the Linux NFS server will export 64-bit inode numbers to applications running on the NFS
client. If the 32-bit applications are not compiled with Large File Support (LFS), then they return
EOVERFLOW errors when accessing the Lustre files. To avoid this problem, Linux NFS clients
can use the kernel command-line option "nfs.enable_ino64=0" in order to force the NFS
client to export 32-bit inode numbers to the client.

Workaround: We very strongly recommend that backups using tar(1) and other utilities that
depend on the inode number to uniquely identify an inode to be run on 64-bit clients. The 128-bit
Lustre file identifiers cannot be uniquely mapped to a 32-bit inode number, and as a result these
utilities may operate incorrectly on 32-bit clients. While there is still a small chance of inode
number collisions with 64-bit inodes, the FID allocation pattern is designed to avoid collisions
for long periods of usage.

18.1.1.  Lustre_rsync
The lustre_rsync feature keeps the entire file system in sync on a backup by replicating the file
system's changes to a second file system (the second file system need not be a Lustre file system, but it must
be sufficiently large). lustre_rsync uses Lustre changelogs to efficiently synchronize the file systems
without having to scan (directory walk) the Lustre file system. This efficiency is critically important for
large file systems, and distinguishes the Lustre lustre_rsync feature from other replication/backup
solutions.

18.1.1.1.  Using Lustre_rsync

The lustre_rsync feature works by periodically running lustre_rsync, a userspace program used
to synchronize changes in the Lustre file system onto the target file system. The lustre_rsync utility
keeps a status file, which enables it to be safely interrupted and restarted without losing synchronization
between the file systems.

The first time that lustre_rsync is run, the user must specify a set of parameters for the program
to use. These parameters are described in the following table and in Section 44.11, “ lustre_rsync”. On
subsequent runs, these parameters are stored in the the status file, and only the name of the status file needs
to be passed to lustre_rsync.

Before using lustre_rsync:

• Register the changelog user. For details, see the Chapter 44, System Configuration Utilities(
changelog_register) parameter in the Chapter 44, System Configuration Utilities( lctl).

- AND -

• Verify that the Lustre file system (source) and the replica file system (target) are identical before
registering the changelog user. If the file systems are discrepant, use a utility, e.g. regular rsync(not
lustre_rsync), to make them identical.

The lustre_rsync utility uses the following parameters:

Parameter Description

--source= src The path to the root of the Lustre file system (source) which will be synchronized.
This is a mandatory option if a valid status log created during a previous
synchronization operation ( --statuslog) is not specified.

--target= tgt The path to the root where the source file system will be synchronized
(target). This is a mandatory option if the status log created during a previous



Backing Up and
Restoring a File System

169

Parameter Description

synchronization operation ( --statuslog) is not specified. This option can
be repeated if multiple synchronization targets are desired.

--mdt= mdt The metadata device to be synchronized. A changelog user must be registered
for this device. This is a mandatory option if a valid status log created during a
previous synchronization operation ( --statuslog) is not specified.

--user= userid The changelog user ID for the specified MDT. To use lustre_rsync,
the changelog user must be registered. For details, see the
changelog_register parameter in Chapter 44, System Configuration
Utilities( lctl). This is a mandatory option if a valid status log created during
a previous synchronization operation ( --statuslog) is not specified.

--statuslog=
log

A log file to which synchronization status is saved. When the lustre_rsync
utility starts, if the status log from a previous synchronization operation is
specified, then the state is read from the log and otherwise mandatory --
source, --target and --mdt options can be skipped. Specifying the --
source, --target and/or --mdt options, in addition to the --statuslog
option, causes the specified parameters in the status log to be overridden.
Command line options take precedence over options in the status log.

--xattr yes|no Specifies whether extended attributes ( xattrs) are synchronized or not. The
default is to synchronize extended attributes.

Note

Disabling xattrs causes Lustre striping information not to be
synchronized.

--verbose Produces verbose output.

--dry-run Shows the output of lustre_rsync commands ( copy, mkdir, etc.) on the
target file system without actually executing them.

--abort-on-err Stops processing the lustre_rsync operation if an error occurs. The default
is to continue the operation.

18.1.1.2.   lustre_rsync Examples

Sample lustre_rsync commands are listed below.

Register a changelog user for an MDT (e.g. testfs-MDT0000).

# lctl --device testfs-MDT0000 changelog_register testfs-MDT0000
Registered changelog userid 'cl1'

Synchronize a Lustre file system ( /mnt/lustre) to a target file system ( /mnt/target).

$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \
           --mdt=testfs-MDT0000 --user=cl1 --statuslog sync.log  --verbose 
Lustre filesystem: testfs 
MDT device: testfs-MDT0000 
Source: /mnt/lustre 
Target: /mnt/target 
Statuslog: sync.log 
Changelog registration: cl1 
Starting changelog record: 0 



Backing Up and
Restoring a File System

170

Errors: 0 
lustre_rsync took 1 seconds 
Changelog records consumed: 22

After the file system undergoes changes, synchronize the changes onto the target file system. Only the
statuslog name needs to be specified, as it has all the parameters passed earlier.

$ lustre_rsync --statuslog sync.log --verbose 
Replicating Lustre filesystem: testfs 
MDT device: testfs-MDT0000 
Source: /mnt/lustre 
Target: /mnt/target 
Statuslog: sync.log 
Changelog registration: cl1 
Starting changelog record: 22 
Errors: 0 
lustre_rsync took 2 seconds 
Changelog records consumed: 42

To synchronize a Lustre file system ( /mnt/lustre) to two target file systems ( /mnt/target1 and
/mnt/target2).

$ lustre_rsync --source=/mnt/lustre --target=/mnt/target1 \
           --target=/mnt/target2 --mdt=testfs-MDT0000 --user=cl1  \
           --statuslog sync.log

18.2.  Backing Up and Restoring an MDT or
OST (ldiskfs Device Level)

In some cases, it is useful to do a full device-level backup of an individual device (MDT or OST), before
replacing hardware, performing maintenance, etc. Doing full device-level backups ensures that all of the
data and configuration files is preserved in the original state and is the easiest method of doing a backup.
For the MDT file system, it may also be the fastest way to perform the backup and restore, since it can do
large streaming read and write operations at the maximum bandwidth of the underlying devices.

Note

Keeping an updated full backup of the MDT is especially important because permanent failure
or corruption of the MDT file system renders the much larger amount of data in all the OSTs
largely inaccessible and unusable. The storage needed for one or two full MDT device backups
is much smaller than doing a full filesystem backup, and can use less expensive storage than the
actual MDT device(s) since it only needs to have good streaming read/write speed instead of high
random IOPS.

If hardware replacement is the reason for the backup or if a spare storage device is available, it is possible
to do a raw copy of the MDT or OST from one block device to the other, as long as the new device is at
least as large as the original device. To do this, run:

dd if=/dev/{original} of=/dev/{newdev} bs=4M

If hardware errors cause read problems on the original device, use the command below to allow as much
data as possible to be read from the original device while skipping sections of the disk with errors:



Backing Up and
Restoring a File System

171

dd if=/dev/{original} of=/dev/{newdev} bs=4k conv=sync,noerror /
      count={original size in 4kB blocks}

Even in the face of hardware errors, the ldiskfs file system is very robust and it may be possible to
recover the file system data after running e2fsck -fy /dev/{newdev} on the new device.

With Lustre software version 2.6 and later, the LFSCK scanning will automatically move objects from
lost+found back into its correct location on the OST after directory corruption.

In order to ensure that the backup is fully consistent, the MDT or OST must be unmounted, so that there
are no changes being made to the device while the data is being transferred. If the reason for the backup is
preventative (i.e. MDT backup on a running MDS in case of future failures) then it is possible to perform
a consistent backup from an LVM snapshot. If an LVM snapshot is not available, and taking the MDS
offline for a backup is unacceptable, it is also possible to perform a backup from the raw MDT block
device. While the backup from the raw device will not be fully consistent due to ongoing changes, the
vast majority of ldiskfs metadata is statically allocated, and inconsistencies in the backup can be fixed by
running e2fsck on the backup device, and is still much better than not having any backup at all.

18.3.   Backing Up an OST or MDT (Backend
File System Level)

This procedure provides an alternative to backup or migrate the data of an OST or MDT at the file level.
At the file-level, unused space is omitted from the backup and the process may be completed quicker with
a smaller total backup size. Backing up a single OST device is not necessarily the best way to perform
backups of the Lustre file system, since the files stored in the backup are not usable without metadata
stored on the MDT and additional file stripes that may be on other OSTs. However, it is the preferred
method for migration of OST devices, especially when it is desirable to reformat the underlying file system
with different configuration options or to reduce fragmentation.

Note

Since Lustre stores internal metadata that maps FIDs to local inode numbers via the Object Index
file, they need to be rebuilt at first mount after a restore is detected so that file-level MDT backup
and restore is supported. The OI Scrub rebuilds these automatically at first mount after a restore is
detected, which may affect MDT performance after mount until the rebuild is completed. Progress
can be monitored via lctl get_param osd-*.*.oi_scrub on the MDS or OSS node
where the target filesystem was restored.

Introduced in Lustre 2.11

18.3.1.  Backing Up an OST or MDT (Backend File
System Level)
Prior to Lustre software release 2.11.0, we can only do the backend file system level backup and restore
process for ldiskfs-based systems. The ability to perform a zfs-based MDT/OST file system level backup
and restore is introduced beginning in Lustre software release 2.11.0. Differing from an ldiskfs-based
system, index objects must be backed up before the unmount of the target (MDT or OST) in order to be
able to restore the file system successfully. To enable index backup on the target, execute the following
command on the target server:

# lctl set_param osd-*.${fsname}-${target}.index_backup=1



Backing Up and
Restoring a File System

172

${target} is composed of the target type (MDT or OST) plus the target index, such as MDT0000,
OST0001, and so on.

Note

The index_backup is also valid for an ldiskfs-based system, that will be used when migrating data
between ldiskfs-based and zfs-based systems as described in Section 18.6, “ Migration Between
ZFS and ldiskfs Target Filesystems ”.

18.3.2.  Backing Up an OST or MDT
The below examples show backing up an OST filesystem. When backing up an MDT, substitute mdt for
ost in the instructions below.

1. Umount the target

2. Make a mountpoint for the file system.

[oss]# mkdir -p /mnt/ost

3. Mount the file system.

For ldiskfs-based systems:

[oss]# mount -t ldiskfs /dev/{ostdev} /mnt/ost

For zfs-based systems:

a. Import the pool for the target if it is exported. For example:

[oss]# zpool import lustre-ost [-d ${ostdev_dir}]

b. Enable the canmount property on the target filesystem. For example:

[oss]# zfs set canmount=on ${fsname}-ost/ost

You also can specify the mountpoint property. By default, it will be: /${fsname}-ost/ost

c. Mount the target as 'zfs'. For example:

[oss]# zfs mount ${fsname}-ost/ost

4. Change to the mountpoint being backed up.

[oss]# cd /mnt/ost

5. Back up the extended attributes.

[oss]# getfattr -R -d -m '.*' -e hex -P . > ea-$(date +%Y%m%d).bak

Note

If the tar(1) command supports the --xattr option (see below), the getfattr step
may be unnecessary as long as tar correctly backs up the trusted.* attributes. However,
completing this step is not harmful and can serve as an added safety measure.



Backing Up and
Restoring a File System

173

Note

In most distributions, the getfattr command is part of the attr package. If the
getfattr command returns errors like Operation not supported, then the kernel
does not correctly support EAs. Stop and use a different backup method.

6. Verify that the ea-$date.bak file has properly backed up the EA data on the OST.

Without this attribute data, the MDT restore process will fail and result in an unusable filesystem. The
OST restore process may be missing extra data that can be very useful in case of later file system
corruption. Look at this file with more or a text editor. Each object file should have a corresponding
item similar to this:

[oss]# file: O/0/d0/100992
trusted.fid= \
0x0d822200000000004a8a73e500000000808a0100000000000000000000000000

7. Back up all file system data.

[oss]# tar czvf {backup file}.tgz [--xattrs] [--xattrs-include="trusted.*"] [--acls] --sparse .

Note

The tar --sparse option is vital for backing up an MDT. Very old versions of tar may not
support the --sparse option correctly, which may cause the MDT backup to take a long
time. Known-working versions include the tar from Red Hat Enterprise Linux distribution
(RHEL version 6.3 or newer) or GNU tar version 1.25 and newer.

Warning

The tar --xattrs option is only available in GNU tar version 1.27 or later or in RHEL
6.3 or newer. The --xattrs-include="trusted.*" option is required for correct
restoration of the xattrs when using GNU tar 1.27 or RHEL 7 and newer.

The tar --acls option is recommended for MDT backup of POSIX ACLs. Or, getfacl -
n -R and setfacl --restore can be used instead.

8. Change directory out of the file system.

[oss]# cd -

9. Unmount the file system.

[oss]# umount /mnt/ost

Note

When restoring an OST backup on a different node as part of an OST migration, you also have
to change server NIDs and use the --writeconf command to re-generate the configuration
logs. See Chapter 14, Lustre Maintenance(Changing a Server NID).



Backing Up and
Restoring a File System

174

18.4.  Restoring a File-Level Backup
To restore data from a file-level backup, you need to format the device, restore the file data and then
restore the EA data.

1. Format the new device.

[oss]# mkfs.lustre --ost --index {OST index}
--replace --fstype=${fstype} {other options} /dev/{newdev}

2. Set the file system label (ldiskfs-based systems only).

[oss]# e2label {fsname}-OST{index in hex} /mnt/ost

3. Mount the file system.

For ldiskfs-based systems:

[oss]# mount -t ldiskfs /dev/{newdev} /mnt/ost

For zfs-based systems:

a. Import the pool for the target if it is exported. For example:

[oss]# zpool import lustre-ost [-d ${ostdev_dir}]

b. Enable the canmount property on the target filesystem. For example:

[oss]# zfs set canmount=on ${fsname}-ost/ost

You also can specify the mountpoint property. By default, it will be: /${fsname}-ost/ost

c. Mount the target as 'zfs'. For example:

[oss]# zfs mount ${fsname}-ost/ost

4. Change to the new file system mount point.

[oss]# cd /mnt/ost

5. Restore the file system backup.

[oss]# tar xzvpf {backup file} [--xattrs] [--xattrs-include="trusted.*"] [--acls] [-P] --sparse

Warning

The tar --xattrs option is only available in GNU tar version 1.27 or later or in RHEL
6.3 or newer. The --xattrs-include="trusted.*" option is required for correct
restoration of the MDT xattrs when using GNU tar 1.27 or RHEL 7 and newer. Otherwise,
the setfattr step below should be used.

The tar --acls option is needed for correct restoration of POSIX ACLs on MDTs.
Alternatively, getfacl -n -R and setfacl --restore can be used instead.

The tar -P (or --absolute-names) option can be used to speed up extraction of a trusted
MDT backup archive.



Backing Up and
Restoring a File System

175

6. If not using a version of tar that supports direct xattr backups, restore the file system extended attributes.

[oss]# setfattr --restore=ea-${date}.bak

Note

If --xattrs option is supported by tar and specified in the step above, this step is redundant.

7. Verify that the extended attributes were restored.

[oss]# getfattr -d -m ".*" -e hex O/0/d0/100992 trusted.fid= \
0x0d822200000000004a8a73e500000000808a0100000000000000000000000000

8. Remove old OI and LFSCK files.

[oss]# rm -rf oi.16* lfsck_* LFSCK

9. Remove old CATALOGS.

[oss]# rm -f CATALOGS

Note

This is optional for the MDT side only. The CATALOGS record the llog file handlers that are
used for recovering cross-server updates. Before OI scrub rebuilds the OI mappings for the
llog files, the related recovery will get a failure if it runs faster than the background OI scrub.
This will result in a failure of the whole mount process. OI scrub is an online tool, therefore,
a mount failure means that the OI scrub will be stopped. Removing the old CATALOGS will
avoid this potential trouble. The side-effect of removing old CATALOGS is that the recovery
for related cross-server updates will be aborted. However, this can be handled by LFSCK after
the system mount is up.

10.Change directory out of the file system.

[oss]# cd -

11.Unmount the new file system.

[oss]# umount /mnt/ost

Note

If the restored system has a different NID from the backup system, please change the NID.
For detail, please refer to Section 14.5, “ Changing a Server NID”. For example:

[oss]# mount -t lustre -o nosvc ${fsname}-ost/ost /mnt/ost
[oss]# lctl replace_nids ${fsname}-OSTxxxx $new_nids
[oss]# umount /mnt/ost

12.Mount the target as lustre.

Usually, we will use the -o abort_recov option to skip unnecessary recovery. For example:

[oss]# mount -t lustre -o abort_recov #{fsname}-ost/ost /mnt/ost



Backing Up and
Restoring a File System

176

Lustre can detect the restore automatically when mounting the target, and then trigger OI scrub to
rebuild the OIs and index objects asynchronously in the background. You can check the OI scrub status
with the following command:

[oss]# lctl get_param -n osd-${fstype}.${fsname}-${target}.oi_scrub

If the file system was used between the time the backup was made and when it was restored, then the online
LFSCK tool will automatically be run to ensure the filesystem is coherent. If all of the device filesystems
were backed up at the same time after Lustre was was stopped, this step is unnecessary. In either case, the
filesystem will be immediately although there may be I/O errors reading from files that are present on the
MDT but not the OSTs, and files that were created after the MDT backup will not be accessible or visible.
See Section 36.4, “ Checking the file system with LFSCK”for details on using LFSCK.

18.5.  Using LVM Snapshots with the Lustre
File System

If you want to perform disk-based backups (because, for example, access to the backup system needs to
be as fast as to the primary Lustre file system), you can use the Linux LVM snapshot tool to maintain
multiple, incremental file system backups.

Because LVM snapshots cost CPU cycles as new files are written, taking snapshots of the main Lustre file
system will probably result in unacceptable performance losses. You should create a new, backup Lustre
file system and periodically (e.g., nightly) back up new/changed files to it. Periodic snapshots can be taken
of this backup file system to create a series of "full" backups.

Note

Creating an LVM snapshot is not as reliable as making a separate backup, because the LVM
snapshot shares the same disks as the primary MDT device, and depends on the primary MDT
device for much of its data. If the primary MDT device becomes corrupted, this may result in
the snapshot being corrupted.

18.5.1.  Creating an LVM-based Backup File System
Use this procedure to create a backup Lustre file system for use with the LVM snapshot mechanism.

1. Create LVM volumes for the MDT and OSTs.

Create LVM devices for your MDT and OST targets. Make sure not to use the entire disk for the targets;
save some room for the snapshots. The snapshots start out as 0 size, but grow as you make changes
to the current file system. If you expect to change 20% of the file system between backups, the most
recent snapshot will be 20% of the target size, the next older one will be 40%, etc. Here is an example:

cfs21:~# pvcreate /dev/sda1
   Physical volume "/dev/sda1" successfully created
cfs21:~# vgcreate vgmain /dev/sda1
   Volume group "vgmain" successfully created
cfs21:~# lvcreate -L200G -nMDT0 vgmain
   Logical volume "MDT0" created
cfs21:~# lvcreate -L200G -nOST0 vgmain
   Logical volume "OST0" created



Backing Up and
Restoring a File System

177

cfs21:~# lvscan
   ACTIVE                  '/dev/vgmain/MDT0' [200.00 GB] inherit
   ACTIVE                  '/dev/vgmain/OST0' [200.00 GB] inherit

2. Format the LVM volumes as Lustre targets.

In this example, the backup file system is called main and designates the current, most up-to-date
backup.

cfs21:~# mkfs.lustre --fsname=main --mdt --index=0 /dev/vgmain/MDT0
 No management node specified, adding MGS to this MDT.
    Permanent disk data:
 Target:     main-MDT0000
 Index:      0
 Lustre FS:  main
 Mount type: ldiskfs
 Flags:      0x75
               (MDT MGS first_time update )
 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
 Parameters:
checking for existing Lustre data
 device size = 200GB
 formatting backing filesystem ldiskfs on /dev/vgmain/MDT0
         target name  main-MDT0000
         4k blocks     0
         options        -i 4096 -I 512 -q -O dir_index -F
 mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-MDT0000  -i 4096 -I 512 -q
  -O dir_index -F /dev/vgmain/MDT0
 Writing CONFIGS/mountdata
cfs21:~# mkfs.lustre --mgsnode=cfs21 --fsname=main --ost --index=0
/dev/vgmain/OST0
    Permanent disk data:
 Target:     main-OST0000
 Index:      0
 Lustre FS:  main
 Mount type: ldiskfs
 Flags:      0x72
               (OST first_time update )
 Persistent mount opts: errors=remount-ro,extents,mballoc
 Parameters: mgsnode=192.168.0.21@tcp
checking for existing Lustre data
 device size = 200GB
 formatting backing filesystem ldiskfs on /dev/vgmain/OST0
         target name  main-OST0000
         4k blocks     0
         options        -I 256 -q -O dir_index -F
 mkfs_cmd = mkfs.ext2 -j -b 4096 -L lustre-OST0000 -J size=400 -I 256 
  -i 262144 -O extents,uninit_bg,dir_nlink,huge_file,flex_bg -G 256 
  -E resize=4290772992,lazy_journal_init, -F /dev/vgmain/OST0
 Writing CONFIGS/mountdata
cfs21:~# mount -t lustre /dev/vgmain/MDT0 /mnt/mdt
cfs21:~# mount -t lustre /dev/vgmain/OST0 /mnt/ost
cfs21:~# mount -t lustre cfs21:/main /mnt/main



Backing Up and
Restoring a File System

178

18.5.2.  Backing up New/Changed Files to the Backup
File System

At periodic intervals e.g., nightly, back up new and changed files to the LVM-based backup file system.

cfs21:~# cp /etc/passwd /mnt/main 
 
cfs21:~# cp /etc/fstab /mnt/main 
 
cfs21:~# ls /mnt/main 
fstab  passwd

18.5.3.  Creating Snapshot Volumes
Whenever you want to make a "checkpoint" of the main Lustre file system, create LVM snapshots of all
target MDT and OSTs in the LVM-based backup file system. You must decide the maximum size of a
snapshot ahead of time, although you can dynamically change this later. The size of a daily snapshot is
dependent on the amount of data changed daily in the main Lustre file system. It is likely that a two-day
old snapshot will be twice as big as a one-day old snapshot.

You can create as many snapshots as you have room for in the volume group. If necessary, you can
dynamically add disks to the volume group.

The snapshots of the target MDT and OSTs should be taken at the same point in time. Make sure that the
cronjob updating the backup file system is not running, since that is the only thing writing to the disks.
Here is an example:

cfs21:~# modprobe dm-snapshot
cfs21:~# lvcreate -L50M -s -n MDT0.b1 /dev/vgmain/MDT0
   Rounding up size to full physical extent 52.00 MB
   Logical volume "MDT0.b1" created
cfs21:~# lvcreate -L50M -s -n OST0.b1 /dev/vgmain/OST0
   Rounding up size to full physical extent 52.00 MB
   Logical volume "OST0.b1" created

After the snapshots are taken, you can continue to back up new/changed files to "main". The snapshots
will not contain the new files.

cfs21:~# cp /etc/termcap /mnt/main
cfs21:~# ls /mnt/main
fstab  passwd  termcap

18.5.4.  Restoring the File System From a Snapshot
Use this procedure to restore the file system from an LVM snapshot.

1. Rename the LVM snapshot.

Rename the file system snapshot from "main" to "back" so you can mount it without unmounting
"main". This is recommended, but not required. Use the --reformat flag to tunefs.lustre to
force the name change. For example:

cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf /dev/vgmain/MDT0.b1
 checking for existing Lustre data
 found Lustre data



Backing Up and
Restoring a File System

179

 Reading CONFIGS/mountdata
Read previous values:
 Target:     main-MDT0000
 Index:      0
 Lustre FS:  main
 Mount type: ldiskfs
 Flags:      0x5
              (MDT MGS )
 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
 Parameters:
Permanent disk data:
 Target:     back-MDT0000
 Index:      0
 Lustre FS:  back
 Mount type: ldiskfs
 Flags:      0x105
              (MDT MGS writeconf )
 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
 Parameters:
Writing CONFIGS/mountdata
cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf /dev/vgmain/OST0.b1
 checking for existing Lustre data
 found Lustre data
 Reading CONFIGS/mountdata
Read previous values:
 Target:     main-OST0000
 Index:      0
 Lustre FS:  main
 Mount type: ldiskfs
 Flags:      0x2
              (OST )
 Persistent mount opts: errors=remount-ro,extents,mballoc
 Parameters: mgsnode=192.168.0.21@tcp
Permanent disk data:
 Target:     back-OST0000
 Index:      0
 Lustre FS:  back
 Mount type: ldiskfs
 Flags:      0x102
              (OST writeconf )
 Persistent mount opts: errors=remount-ro,extents,mballoc
 Parameters: mgsnode=192.168.0.21@tcp
Writing CONFIGS/mountdata

When renaming a file system, we must also erase the last_rcvd file from the snapshots

cfs21:~# mount -t ldiskfs /dev/vgmain/MDT0.b1 /mnt/mdtback
cfs21:~# rm /mnt/mdtback/last_rcvd
cfs21:~# umount /mnt/mdtback
cfs21:~# mount -t ldiskfs /dev/vgmain/OST0.b1 /mnt/ostback
cfs21:~# rm /mnt/ostback/last_rcvd
cfs21:~# umount /mnt/ostback

2. Mount the file system from the LVM snapshot. For example:



Backing Up and
Restoring a File System

180

cfs21:~# mount -t lustre /dev/vgmain/MDT0.b1 /mnt/mdtback
cfs21:~# mount -t lustre /dev/vgmain/OST0.b1 /mnt/ostback
cfs21:~# mount -t lustre cfs21:/back /mnt/back

3. Note the old directory contents, as of the snapshot time. For example:

cfs21:~/cfs/b1_5/lustre/utils# ls /mnt/back
fstab  passwds

18.5.5.  Deleting Old Snapshots
To reclaim disk space, you can erase old snapshots as your backup policy dictates. Run:

lvremove /dev/vgmain/MDT0.b1

18.5.6.  Changing Snapshot Volume Size
You can also extend or shrink snapshot volumes if you find your daily deltas are smaller or larger than
expected. Run:

lvextend -L10G /dev/vgmain/MDT0.b1

Note

Extending snapshots seems to be broken in older LVM. It is working in LVM v2.02.01.

Introduced in Lustre 2.11

18.6.  Migration Between ZFS and ldiskfs
Target Filesystems
Beginning with Lustre 2.11.0, it is possible to migrate between ZFS and ldiskfs backends. For migrating
OSTs, it is best to use lfs find/lfs_migrate to empty out an OST while the filesystem is in use
and then reformat it with the new fstype. For instructions on removing the OST, please see Section 14.9.3,
“Removing an OST from the File System”.

18.6.1.  Migrate from a ZFS to an ldiskfs based
filesystem
The first step of the process is to make a ZFS backend backup using tar as described in Section 18.3, “
Backing Up an OST or MDT (Backend File System Level)”.

Next, restore the backup to an ldiskfs-based system as described in Section 18.4, “ Restoring a File-Level
Backup”.

18.6.2.  Migrate from an ldiskfs to a ZFS based
filesystem
The first step of the process is to make an ldiskfs backend backup using tar as described in Section 18.3,
“ Backing Up an OST or MDT (Backend File System Level)”.



Backing Up and
Restoring a File System

181

Caution:For a migration from ldiskfs to zfs, it is required to enable index_backup before the unmount of
the target. This is an additional step for a regular ldiskfs-based backup/restore and easy to be missed.

Next, restore the backup to an ldiskfs-based system as described in Section 18.4, “ Restoring a File-Level
Backup”.



182

Chapter 19. Managing File Layout
(Striping) and Free Space

This chapter describes file layout (striping) and I/O options, and includes the following sections:

• Section 19.1, “ How Lustre File System Striping Works”

• Section 19.2, “ Lustre File Layout (Striping) Considerations”

• Section 19.3, “Setting the File Layout/Striping Configuration (lfs setstripe)”

• Section 19.4, “Retrieving File Layout/Striping Information (getstripe)”

• Section 19.8, “Managing Free Space”

• Section 19.9, “Lustre Striping Internals”

19.1.     How Lustre File System Striping Works
In a Lustre file system, the MDS allocates objects to OSTs using either a round-robin algorithm or a
weighted algorithm. When the amount of free space is well balanced (i.e., by default, when the free space
across OSTs differs by less than 17%), the round-robin algorithm is used to select the next OST to which
a stripe is to be written. Periodically, the MDS adjusts the striping layout to eliminate some degenerated
cases in which applications that create very regular file layouts (striping patterns) preferentially use a
particular OST in the sequence.

Normally the usage of OSTs is well balanced. However, if users create a small number of exceptionally
large files or incorrectly specify striping parameters, imbalanced OST usage may result. When the free
space across OSTs differs by more than a specific amount (17% by default), the MDS then uses weighted
random allocations with a preference for allocating objects on OSTs with more free space. (This can reduce
I/O performance until space usage is rebalanced again.) For a more detailed description of how striping
is allocated, see Section 19.8, “Managing Free Space”.

Files can only be striped over a finite number of OSTs, based on the maximum size of the attributes that
can be stored on the MDT. If the MDT is ldiskfs-based without the ea_inode feature, a file can be
striped across at most 160 OSTs. With a ZFS-based MDT, or if the ea_inode feature is enabled for an
ldiskfs-based MDT (the default since Lustre 2.13.0), a file can be striped across up to 2000 OSTs. For
more information, see Section 19.9, “Lustre Striping Internals”.

19.2.   Lustre File Layout (Striping)
Considerations

Whether you should set up file striping and what parameter values you select depends on your needs. A
good rule of thumb is to stripe over as few objects as will meet those needs and no more.

Some reasons for using striping include:

• Providing high-bandwidth access. Many applications require high-bandwidth access to a single file,
which may be more bandwidth than can be provided by a single OSS. Examples are a scientific
application that writes to a single file from hundreds of nodes, or a binary executable that is loaded by
many nodes when an application starts.



Managing File Layout
(Striping) and Free Space

183

In cases like these, a file can be striped over as many OSSs as it takes to achieve the required peak
aggregate bandwidth for that file. Striping across a larger number of OSSs should only be used when
the file size is very large and/or is accessed by many nodes at a time. Currently, Lustre files can be
striped across up to 2000 OSTs

• Improving performance when OSS bandwidth is exceeded. Striping across many OSSs can improve
performance if the aggregate client bandwidth exceeds the server bandwidth and the application reads
and writes data fast enough to take advantage of the additional OSS bandwidth. The largest useful stripe
count is bounded by the I/O rate of the clients/jobs divided by the performance per OSS.

•
Introduced in Lustre 2.13

Matching stripes to I/O pattern.When writing to a single file from multiple nodes, having more than
one client writing to a stripe can lead to issues with lock exchange, where clients contend over writing to
that stripe, even if their I/Os do not overlap. This can be avoided if I/O can be stripe aligned so that each
stripe is accessed by only one client. Since Lustre 2.13, the 'overstriping' feature is available, allowing
more than one stripe per OST. This is particularly helpful for the case where thread count exceeds OST
count, making it possible to match stripe count to thread count even in this case.

• Providing space for very large files. Striping is useful when a single OST does not have enough free
space to hold the entire file.

Some reasons to minimize or avoid striping:

• Increased overhead. Striping results in more locks and extra network operations during common
operations such as stat and unlink. Even when these operations are performed in parallel, one
network operation takes less time than 100 operations.

Increased overhead also results from server contention. Consider a cluster with 100 clients and 100
OSSs, each with one OST. If each file has exactly one object and the load is distributed evenly, there
is no contention and the disks on each server can manage sequential I/O. If each file has 100 objects,
then the clients all compete with one another for the attention of the servers, and the disks on each node
seek in 100 different directions resulting in needless contention.

• Increased risk. When files are striped across all servers and one of the servers breaks down, a small
part of each striped file is lost. By comparison, if each file has exactly one stripe, fewer files are lost,
but they are lost in their entirety. Many users would prefer to lose some of their files entirely than all
of their files partially.

• Small files. Small files do not benefit from striping because they can be efficiently stored and accessed
as a single OST object or even with Data on MDT.

• O_APPEND mode. When files are opened for append, they instantiate all uninitialized components
expressed in the layout. Typically, log files are opened for append, and complex layouts can be
inefficient.

Note

The mdd.*.append_stripe_count and mdd.*.append_pool  options can be used
to specify special default striping for files created with  O_APPEND.

19.2.1.  Choosing a Stripe Size
Choosing a stripe size is a balancing act, but reasonable defaults are described below. The stripe size has
no effect on a single-stripe file.



Managing File Layout
(Striping) and Free Space

184

• The stripe size must be a multiple of the page size. Lustre software tools enforce a multiple of 64 KB
(the maximum page size on ia64 and PPC64 nodes) so that users on platforms with smaller pages do
not accidentally create files that might cause problems for ia64 clients.

• The smallest recommended stripe size is 512 KB. Although you can create files with a stripe size of
64 KB, the smallest practical stripe size is 512 KB because the Lustre file system sends 1MB chunks
over the network. Choosing a smaller stripe size may result in inefficient I/O to the disks and reduced
performance.

• A good stripe size for sequential I/O using high-speed networks is between 1 MB and 4 MB. In
most situations, stripe sizes larger than 4 MB may result in longer lock hold times and contention during
shared file access.

• The maximum stripe size is 4 GB. Using a large stripe size can improve performance when accessing
very large files. It allows each client to have exclusive access to its own part of a file. However, a large
stripe size can be counterproductive in cases where it does not match your I/O pattern.

• Choose a stripe pattern that takes into account the write patterns of your application. Writes that
cross an object boundary are slightly less efficient than writes that go entirely to one server. If the file
is written in a consistent and aligned way, make the stripe size a multiple of the write() size.

19.3. Setting the File Layout/Striping
Configuration (lfs setstripe)

Use the lfs setstripe command to create new files with a specific file layout (stripe pattern)
configuration.

lfs setstripe [--size|-s stripe_size] [--stripe-count|-c stripe_count] [--overstripe-count|-C stripe_count] \
[--index|-i start_ost] [--pool|-p pool_name] filename|dirname 

stripe_size

The stripe_size indicates how much data to write to one OST before moving to the next OST. The
default stripe_size is 1 MB. Passing a stripe_size of 0 causes the default stripe size to be used.
Otherwise, the stripe_size value must be a multiple of 64 KB.

stripe_count (--stripe-count, --overstripe-count)

The stripe_count indicates how many stripes to use. The default stripe_count value is 1. Setting
stripe_count to 0 causes the default stripe count to be used. Setting stripe_count to -1 means
stripe over all available OSTs (full OSTs are skipped). When --overstripe-count is used, per OST if
necessary.

start_ost

The start OST is the first OST to which files are written. The default value for start_ost is -1, which
allows the MDS to choose the starting index. This setting is strongly recommended, as it allows space and
load balancing to be done by the MDS as needed. If the value of start_ost is set to a value other than
-1, the file starts on the specified OST index. OST index numbering starts at 0.

Note

If the specified OST is inactive or in a degraded mode, the MDS will silently choose another
target.



Managing File Layout
(Striping) and Free Space

185

Note

If you pass a start_ost value of 0 and a stripe_count value of 1, all files are written to
OST 0, until space is exhausted. This is probably not what you meant to do. If you only want
to adjust the stripe count and keep the other parameters at their default settings, do not specify
any of the other parameters:

client# lfs setstripe -c stripe_count filename

pool_name

The pool_name specifies the OST pool to which the file will be written. This allows limiting the OSTs
used to a subset of all OSTs in the file system. For more details about using OST pools, see Section 23.2,
“ Creating and Managing OST Pools”.

19.3.1. Specifying a File Layout (Striping Pattern) for a
Single File

It is possible to specify the file layout when a new file is created using the command lfs setstripe.
This allows users to override the file system default parameters to tune the file layout more optimally for
their application. Execution of an lfs setstripe command fails if the file already exists.

19.3.1.1. Setting the Stripe Size

The command to create a new file with a specified stripe size is similar to:

[client]# lfs setstripe -s 4M /mnt/lustre/new_file

This example command creates the new file /mnt/lustre/new_file with a stripe size of 4 MB.

Now, when the file is created, the new stripe setting creates the file on a single OST with a stripe size of 4M:

 [client]# lfs getstripe /mnt/lustre/new_file
/mnt/lustre/4mb_file
lmm_stripe_count:   1
lmm_stripe_size:    4194304
lmm_pattern:        1
lmm_layout_gen:     0
lmm_stripe_offset:  1
obdidx     objid        objid           group
1          690550       0xa8976         0 

In this example, the stripe size is 4 MB.

19.3.1.2.  Setting the Stripe Count

The command below creates a new file with a stripe count of -1 to specify striping over all available OSTs:

[client]# lfs setstripe -c -1 /mnt/lustre/full_stripe

The example below indicates that the file full_stripe is striped over all six active OSTs in the
configuration:

[client]# lfs getstripe /mnt/lustre/full_stripe
/mnt/lustre/full_stripe



Managing File Layout
(Striping) and Free Space

186

  obdidx   objid   objid   group
  0        8       0x8     0
  1        4       0x4     0
  2        5       0x5     0
  3        5       0x5     0
  4        4       0x4     0
  5        2       0x2     0

This is in contrast to the output in Section 19.3.1.1, “Setting the Stripe Size”, which shows only a single
object for the file.

19.3.2. Setting the Striping Layout for a Directory
In a directory, the lfs setstripe command sets a default striping configuration for files created in
the directory. The usage is the same as lfs setstripe for a regular file, except that the directory must
exist prior to setting the default striping configuration. If a file is created in a directory with a default stripe
configuration (without otherwise specifying striping), the Lustre file system uses those striping parameters
instead of the file system default for the new file.

To change the striping pattern for a sub-directory, create a directory with desired file layout as described
above. Sub-directories inherit the file layout of the root/parent directory.

Note

Special default striping can be used for files created with O_APPEND. Files with uninitialized
layouts opened with O_APPEND will override a directory's default striping configuration and
abide by the  mdd.*.append_pool and mdd.*.append_stripe_count options (if
they are specified).

19.3.3. Setting the Striping Layout for a File System
Setting the striping specification on the root directory determines the striping for all new files created
in the file system unless an overriding striping specification takes precedence (such as a striping layout
specified by the application, or set using lfs setstripe, or specified for the parent directory).

Note

The striping settings for a root directory are, by default, applied to any new child directories
created in the root directory, unless striping settings have been specified for the child directory.

Note

Special default striping can be used for files created with O_APPEND. Files with uninitialized
layouts opened with O_APPEND will override a file system's default striping configuration and
abide by the  mdd.*.append_pool and mdd.*.append_stripe_count options (if
they are specified).

19.3.4. Per File System Stripe Count Limit
Sometime there are many OSTs in a filesystem, but it is not always desirable to stripe file
to across all OSTs, even if the given stripe_count=-1 (unlimited). In this case, the per-
filesystem tunable parameter lod.*.max_stripecount can be used to limit the real stripe count
of file to a lower number than the OST count. If lod.*.max_stripecount is not 0, and



Managing File Layout
(Striping) and Free Space

187

the file stripe_count=-1, the real stripe count will be the minimum of the OST count and
max_stripecount. If lod.*.max_stripecount=0, or an explicit stripe count is given for the
file, it is ignored.

To set max_stripecount, on all MDSes of file system, run:

mgs# lctl set_param -P lod.$fsname-MDTxxxx-mdtlov.max_stripecount=<N>
        

To check max_stripecount, run:

mds# lctl get_param lod.$fsname-MDTxxxx-mdtlov.max_stripecount
        

To reset max_stripecount, run:

mgs# lctl set_param -P -d lod.$fsname-MDTxxxx-mdtlov.max_stripecount
        

19.3.5. Creating a File on a Specific OST
You can use lfs setstripe to create a file on a specific OST. In the following example, the file
file1 is created on the first OST (OST index is 0).

$ lfs setstripe --stripe-count 1 --index 0 file1
$ dd if=/dev/zero of=file1 count=1 bs=100M
1+0 records in
1+0 records out

$ lfs getstripe file1
/mnt/testfs/file1
lmm_stripe_count:   1
lmm_stripe_size:    1048576
lmm_pattern:        1
lmm_layout_gen:     0
lmm_stripe_offset:  0
     obdidx    objid   objid    group
     0         37364   0x91f4   0

19.4. Retrieving File Layout/Striping
Information (getstripe)

The lfs getstripe command is used to display information that shows over which OSTs a file is
distributed. For each OST, the index and UUID is displayed, along with the OST index and object ID for
each stripe in the file. For directories, the default settings for files created in that directory are displayed.

19.4.1. Displaying the Current Stripe Size
To see the current stripe size for a Lustre file or directory, use the lfs getstripe command. For
example, to view information for a directory, enter a command similar to:



Managing File Layout
(Striping) and Free Space

188

[client]# lfs getstripe /mnt/lustre 

This command produces output similar to:

/mnt/lustre
(Default) stripe_count: 1 stripe_size: 1M stripe_offset: -1

In this example, the default stripe count is 1 (data blocks are striped over a single OST), the default stripe
size is 1 MB, and the objects are created over all available OSTs.

To view information for a file, enter a command similar to:

$ lfs getstripe /mnt/lustre/foo
/mnt/lustre/foo
lmm_stripe_count:   1
lmm_stripe_size:    1048576
lmm_pattern:        1
lmm_layout_gen:     0
lmm_stripe_offset:  0
  obdidx   objid    objid      group
  2        835487   m0xcbf9f   0 

In this example, the file is located on obdidx 2, which corresponds to the OST lustre-OST0002.
To see which node is serving that OST, run:

$ lctl get_param osc.lustre-OST0002-osc.ost_conn_uuid
osc.lustre-OST0002-osc.ost_conn_uuid=192.168.20.1@tcp

19.4.2. Inspecting the File Tree
To inspect an entire tree of files, use the lfs find command:

lfs find [--recursive | -r] file|directory ...

19.4.3. Locating the MDT for a remote directory
Lustre can be configured with multiple MDTs in the same file system. Each directory and file could be
located on a different MDT. To identify which MDT a given subdirectory is located, pass the getstripe
[--mdt-index|-M] parameter to lfs. An example of this command is provided in the section
Section 14.9.1, “Removing an MDT from the File System”.

Introduced in Lustre 2.10

19.5. Progressive File Layout(PFL)
The Lustre Progressive File Layout (PFL) feature simplifies the use of Lustre so that users can expect
reasonable performance for a variety of normal file IO patterns without the need to explicitly understand
their IO model or Lustre usage details in advance. In particular, users do not necessarily need to know the
size or concurrency of output files in advance of their creation and explicitly specify an optimal layout for
each file in order to achieve good performance for both highly concurrent shared-single-large-file IO or
parallel IO to many smaller per-process files.

The layout of a PFL file is stored on disk as composite layout. A PFL file is essentially an array of
sub-layout components, with each sub-layout component being a plain layout covering different



Managing File Layout
(Striping) and Free Space

189

and non-overlapped extents of the file. For PFL files, the file layout is composed of a series of components,
therefore it's possible that there are some file extents are not described by any components.

An example of how data blocks of PFL files are mapped to OST objects of components is shown in the
following PFL object mapping diagram:

Figure 19.1. PFL object mapping diagram

The PFL file in Figure 19.1, “PFL object mapping diagram” has 3 components and shows the mapping
for the blocks of a 2055MB file. The stripe size for the first two components is 1MB, while the stripe size
for the third component is 4MB. The stripe count is increasing for each successive component. The first
component only has two 1MB blocks and the single object has a size of 2MB. The second component
holds the next 254MB of the file spread over 4 separate OST objects in RAID-0, each one will have a
size of 256MB / 4 objects = 64MB per object. Note the first two objects obj 2,0 and obj 2,1 have a
1MB hole at the start where the data is stored in the first component. The final component holds the next
1800MB spread over 32 OST objects. There is a 256MB / 32 = 8MB hole at the start each one for the data
stored in the first two components. Each object will be 2048MB / 32 objects = 64MB per object, except
the obj 3,0 that holds an extra 4MB chunk and obj 3,1 that holds an extra 3MB chunk. If more data
was written to the file, only the objects in component 3 would increase in size.

When a file range with defined but not instantiated component is accessed, clients will send a Layout Intent
RPC to the MDT, and the MDT would instantiate the objects of the components covering that range.

Next, some commands for user to operate PFL files are introduced and some examples of possible
composite layout are illustrated as well. Lustre provides commands lfs setstripe and lfs
migrate for users to operate PFL files. lfs setstripe commands are used to create PFL files,
add or delete components to or from an existing composite file; lfs migrate commands are used to
re-layout the data in existing files using the new layout parameter by copying the data from the existing
OST(s) to the new OST(s). Also, as introduced in the previous sections, lfs getstripe commands
can be used to list the striping/component information for a given PFL file, and lfs find commands
can be used to search the directory tree rooted at the given directory or file name for the files that match
the given PFL component parameters.

Note

Using PFL files requires both the client and server to understand the PFL file layout, which isn't
available for Lustre 2.9 and earlier. And it will not prevent older clients from accessing non-PFL
files in the filesystem.



Managing File Layout
(Striping) and Free Space

190

19.5.1. lfs setstripe
lfs setstripe commands are used to create PFL files, add or delete components to or from an existing
composite file. (Suppose we have 8 OSTs in the following examples and stripe size is 1MB by default.)

19.5.1.1. Create a PFL file

Command

lfs setstripe
[--component-end|-E end1] [STRIPE_OPTIONS]
[--component-end|-E end2] [STRIPE_OPTIONS] ... filename

The -E option is used to specify the end offset (in bytes or using a suffix “kMGTP”, e.g. 256M) of
each component, and it also indicates the following STRIPE_OPTIONS are for this component. Each
component defines the stripe pattern of the file in the range of [start, end). The first component must
start from offset 0 and all components must be adjacent with each other, no holes are allowed, so each
extent will start at the end of previous extent. A -1 end offset or eof indicates this is the last component
extending to the end of file.

Example

$ lfs setstripe -E 4M -c 1 -E 64M -c 4 -E -1 -c -1 -i 4 \
/mnt/testfs/create_comp

This command creates a file with composite layout illustrated in the following figure. The first component
has 1 stripe and covers [0, 4M), the second component has 4 stripes and covers [4M, 64M), and the last
component stripes start at OST4, cross over all available OSTs and covers [64M, EOF).

Figure 19.2. Example: create a composite file

The composite layout can be output by the following command:

$ lfs getstripe /mnt/testfs/create_comp
/mnt/testfs/create_comp
  lcm_layout_gen:  3



Managing File Layout
(Striping) and Free Space

191

  lcm_entry_count: 3
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

    lcme_id:             2
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   67108864
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: -1
    lcme_id:             3
    lcme_flags:          0
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 4

Note

Only the first component’s OST objects of the PFL file are instantiated when the layout is being
set. Other instantiation is delayed to later write/truncate operations.

If we write 128M data to this PFL file, the second and third components will be instantiated:

$ dd if=/dev/zero of=/mnt/testfs/create_comp bs=1M count=128
$ lfs getstripe /mnt/testfs/create_comp
/mnt/testfs/create_comp
  lcm_layout_gen:  5
  lcm_entry_count: 3
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:



Managing File Layout
(Striping) and Free Space

192

      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   67108864
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
      - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }
      - 2: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }
      - 3: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }

    lcme_id:             3
    lcme_flags:          init
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  8
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 4
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x3:0x0] }
      - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
      - 2: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
      - 3: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
      - 4: { l_ost_idx: 0, l_fid: [0x100000000:0x3:0x0] }
      - 5: { l_ost_idx: 1, l_fid: [0x100010000:0x3:0x0] }
      - 6: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }
      - 7: { l_ost_idx: 3, l_fid: [0x100030000:0x3:0x0] }

19.5.1.2. Add component(s) to an existing composite file

Command

lfs setstripe --component-add
[--component-end|-E end1] [STRIPE_OPTIONS]
[--component-end|-E end2] [STRIPE_OPTIONS] ... filename

The option --component-add is used to add components to an existing composite file. The extent start
of the first component to be added is equal to the extent end of last component in the existing file, and all
components to be added must be adjacent with each other.

Note

If the last existing component is specified by -E -1 or -E eof, which covers to the end of the
file, it must be deleted before a new one is added.

Example



Managing File Layout
(Striping) and Free Space

193

$ lfs setstripe -E 4M -c 1 -E 64M -c 4 /mnt/testfs/add_comp
$ lfs setstripe --component-add -E -1 -c 4 -o 6-7,0,5 \
/mnt/testfs/add_comp

This command adds a new component which starts from the end of the last existing component to the end
of file. The layout of this example is illustrated in Figure 19.3, “Example: add a component to an existing
composite file”. The last component stripes across 4 OSTs in sequence OST6, OST7, OST0 and OST5,
covers [64M, EOF).

Figure 19.3. Example: add a component to an existing composite file

The layout can be printed out by the following command:

$ lfs getstripe /mnt/testfs/add_comp
/mnt/testfs/add_comp
  lcm_layout_gen:  5
  lcm_entry_count: 3
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   67108864
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       1



Managing File Layout
(Striping) and Free Space

194

      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
      - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }
      - 2: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }
      - 3: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }

    lcme_id:             5
    lcme_flags:          0
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: -1

The component ID "lcme_id" changes as layout generation changes. It is not necessarily sequential and
does not imply ordering of individual components.

Note

Similar to specifying a full-file composite layout at file creation time, --component-add
won't instantiate OST objects, the instantiation is delayed to later write/truncate operations. For
example, after writing beyond the 64MB start of the file's last component, the new component
has had objects allocated:

$ lfs getstripe -I5 /mnt/testfs/add_comp
/mnt/testfs/add_comp
  lcm_layout_gen:  6
  lcm_entry_count: 3
    lcme_id:             5
    lcme_flags:          init
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 6
      lmm_objects:
      - 0: { l_ost_idx: 6, l_fid: [0x100060000:0x4:0x0] }
      - 1: { l_ost_idx: 7, l_fid: [0x100070000:0x4:0x0] }
      - 2: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }
      - 3: { l_ost_idx: 5, l_fid: [0x100050000:0x4:0x0] }

19.5.1.3. Delete component(s) from an existing file

Command

lfs setstripe --component-del
[--component-id|-I comp_id | --component-flags comp_flags]
filename



Managing File Layout
(Striping) and Free Space

195

The option --component-del is used to remove the component(s) specified by component ID or flags
from an existing file. Any data stored in the deleted component will be lost after this operation.

The ID specified by -I option is the numerical unique ID of the component, which can be obtained
by command lfs getstripe -I command, and the flag specified by --component-flags
option is a certain type of components, which can be obtained by command lfs getstripe --
component-flags. For now, we only have two flags init and ^init for instantiated and un-
instantiated components respectively.

Note

Deletion must start with the last component because creation of a hole in the middle of a file
layout is not allowed.

Example

$ lfs getstripe -I /mnt/testfs/del_comp
1
2
5
$ lfs setstripe --component-del -I 5 /mnt/testfs/del_comp

This example deletes the component with ID 5 from file /mnt/testfs/del_comp. If we still use the
last example, the final result is illustrated in Figure 19.4, “Example: delete a component from an existing
file”.

Figure 19.4. Example: delete a component from an existing file

If you try to delete a non-last component, you will see the following error:

$ lfs setstripe -component-del -I 2 /mnt/testfs/del_comp
Delete component 0x2 from /mnt/testfs/del_comp failed. Invalid argument
error: setstripe: delete component of file '/mnt/testfs/del_comp' failed: Invalid argument

19.5.1.4. Set default PFL layout to an existing directory

Similar to create a PFL file, you can set default PFL layout to an existing directory. After that, all the files
created will inherit this layout by default.



Managing File Layout
(Striping) and Free Space

196

Command

lfs setstripe
[--component-end|-E end1] [STRIPE_OPTIONS]
[--component-end|-E end2] [STRIPE_OPTIONS] ... dirname

Example

$ mkdir /mnt/testfs/pfldir
$ lfs setstripe -E 256M -c 1 -E 16G -c 4 -E -1 -S 4M -c -1 /mnt/testfs/pfldir

When you run lfs getstripe, you will see:

$ lfs getstripe /mnt/testfs/pfldir
/mnt/testfs/pfldir
  lcm_layout_gen:  0
  lcm_entry_count: 3
    lcme_id:             N/A
    lcme_flags:          0
    lcme_extent.e_start: 0
    lcme_extent.e_end:   268435456
      stripe_count:  1       stripe_size:   1048576       stripe_offset: -1
    lcme_id:             N/A
    lcme_flags:          0
    lcme_extent.e_start: 268435456
    lcme_extent.e_end:   17179869184
      stripe_count:  4       stripe_size:   1048576       stripe_offset: -1
    lcme_id:             N/A
    lcme_flags:          0
    lcme_extent.e_start: 17179869184
    lcme_extent.e_end:   EOF
      stripe_count:  -1       stripe_size:   4194304       stripe_offset: -1

If you create a file under /mnt/testfs/pfldir, the layout of that file will inherit the layout from
its parent directory:

$ touch /mnt/testfs/pfldir/pflfile
$ lfs getstripe /mnt/testfs/pfldir/pflfile
/mnt/testfs/pfldir/pflfile
  lcm_layout_gen:  2
  lcm_entry_count: 3
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   268435456
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_objects:



Managing File Layout
(Striping) and Free Space

197

      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0xa:0x0] }

    lcme_id:             2
    lcme_flags:          0
    lcme_extent.e_start: 268435456
    lcme_extent.e_end:   17179869184
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1

    lcme_id:             3
    lcme_flags:          0
    lcme_extent.e_start: 17179869184
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   4194304
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1

Note

lfs setstripe --component-add/del can't be run on a directory, because the default
layout in directory is like a config, which can be arbitrarily changed by lfs setstripe, while
the layout of a file may have data (OST objects) attached. If you want to delete the default layout
in a directory, run lfs setstripe -d dirname to return the directory to the filesystem-
wide defaults, like:

$ lfs setstripe -d /mnt/testfs/pfldir
$ lfs getstripe -d /mnt/testfs/pfldir
/mnt/testfs/pfldir
stripe_count:  1 stripe_size:   1048576 stripe_offset: -1
/mnt/testfs/pfldir/commonfile
lmm_stripe_count:  1
lmm_stripe_size:   1048576
lmm_pattern:       1
lmm_layout_gen:    0
lmm_stripe_offset: 0
 obdidx   objid   objid   group
      2              9           0x9              0

19.5.2. lfs migrate

lfs migrate commands are used to re-layout the data in the existing files with the new layout parameter
by copying the data from the existing OST(s) to the new OST(s).

Command

lfs migrate [--component-end|-E comp_end] [STRIPE_OPTIONS] ...
filename



Managing File Layout
(Striping) and Free Space

198

The difference between migrate and setstripe is that migrate is to re-layout the data in the
existing files, while setstripe is to create new files with the specified layout.

Example

Case1. Migrate a normal one to a composite layout

$ lfs setstripe -c 1 -S 128K /mnt/testfs/norm_to_2comp
$ dd if=/dev/urandom of=/mnt/testfs/norm_to_2comp bs=1M count=5
$ lfs getstripe /mnt/testfs/norm_to_2comp --yaml
/mnt/testfs/norm_to_comp
lmm_stripe_count:  1
lmm_stripe_size:   131072
lmm_pattern:       1
lmm_layout_gen:    0
lmm_stripe_offset: 7
lmm_objects:
      - l_ost_idx: 7
        l_fid:     0x100070000:0x2:0x0
$ lfs migrate -E 1M -S 512K -c 1 -E -1 -S 1M -c 2 \
/mnt/testfs/norm_to_2comp

In this example, a 5MB size file with 1 stripe and 128K stripe size is migrated to a composite layout file
with 2 components, illustrated in Figure 19.5, “Example: migrate normal to composite”.

Figure 19.5. Example: migrate normal to composite

The stripe information after migration is like:

$ lfs getstripe /mnt/testfs/norm_to_2comp
/mnt/testfs/norm_to_2comp
  lcm_layout_gen:  4
  lcm_entry_count: 2
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   1048576



Managing File Layout
(Striping) and Free Space

199

      lmm_stripe_count:  1
      lmm_stripe_size:   524288
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 1048576
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 2
      lmm_objects:
      - 0: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }
      - 1: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }

Case2. Migrate a composite layout to another composite layout

$ lfs setstripe -E 1M -S 512K -c 1 -E -1 -S 1M -c 2 \
/mnt/testfs/2comp_to_3comp
$ dd if=/dev/urandom of=/mnt/testfs/norm_to_2comp bs=1M count=5
$ lfs migrate -E 1M -S 1M -c 2 -E 4M -S 1M -c 2 -E -1 -S 3M -c 3 \
/mnt/testfs/2comp_to_3comp

In this example, a composite layout file with 2 components is migrated a composite layout file with
3 components. If we still use the example in case1, the migration process is illustrated in Figure 19.6,
“Example: migrate composite to composite”.

Figure 19.6. Example: migrate composite to composite

The stripe information is like:



Managing File Layout
(Striping) and Free Space

200

$ lfs getstripe /mnt/testfs/2comp_to_3comp
/mnt/testfs/2comp_to_3comp
  lcm_layout_gen:  6
  lcm_entry_count: 3
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   1048576
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 4
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }
      - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }

    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 1048576
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 6
      lmm_objects:
      - 0: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
      - 1: { l_ost_idx: 7, l_fid: [0x100070000:0x3:0x0] }

    lcme_id:             3
    lcme_flags:          init
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  3
      lmm_stripe_size:   3145728
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x3:0x0] }
      - 1: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
      - 2: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }

Case3. Migrate a composite layout to a normal one

$ lfs migrate -E 1M -S 1M -c 2 -E 4M -S 1M -c 2 -E -1 -S 3M -c 3 \
/mnt/testfs/3comp_to_norm
$ dd if=/dev/urandom of=/mnt/testfs/norm_to_2comp bs=1M count=5
$ lfs migrate -c 2 -S 2M /mnt/testfs/3comp_to_normal

In this example, a composite file with 3 components is migrated to a normal file with 2 stripes and 2M stripe
size. If we still use the example in Case2, the migration process is illustrated in Figure 19.7, “Example:
migrate composite to normal”.



Managing File Layout
(Striping) and Free Space

201

Figure 19.7. Example: migrate composite to normal

The stripe information is like:

$ lfs getstripe /mnt/testfs/3comp_to_norm --yaml
/mnt/testfs/3comp_to_norm
lmm_stripe_count:  2
lmm_stripe_size:   2097152
lmm_pattern:       1
lmm_layout_gen:    7
lmm_stripe_offset: 4
lmm_objects:
      - l_ost_idx: 4
        l_fid:     0x100040000:0x3:0x0
      - l_ost_idx: 5
        l_fid:     0x100050000:0x3:0x0

19.5.3. lfs getstripe
lfs getstripe commands can be used to list the striping/component information for a given PFL file.
Here, only those parameters new for PFL files are shown.

Command

lfs getstripe
[--component-id|-I [comp_id]]
[--component-flags [comp_flags]]
[--component-count]
[--component-start [+-][N][kMGTPE]]
[--component-end|-E [+-][N][kMGTPE]]
dirname|filename

Example

Suppose we already have a composite file /mnt/testfs/3comp, created by the following command:

$ lfs setstripe -E 4M -c 1 -E 64M -c 4 -E -1 -c -1 -i 4 \



Managing File Layout
(Striping) and Free Space

202

/mnt/testfs/3comp

And write some data

$ dd if=/dev/zero of=/mnt/testfs/3comp bs=1M count=5

Case1. List component ID and its related information

• List all the components ID

$ lfs getstripe -I /mnt/testfs/3comp
1
2
3

• List the detailed striping information of component ID=2

$ lfs getstripe -I2 /mnt/testfs/3comp
/mnt/testfs/3comp
  lcm_layout_gen:  4
  lcm_entry_count: 3
    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   67108864
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 5
      lmm_objects:
      - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
      - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
      - 2: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
      - 3: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

• List the stripe offset and stripe count of component ID=2

$ lfs getstripe -I2 -i -c /mnt/testfs/3comp
      lmm_stripe_count:  4
      lmm_stripe_offset: 5

Case2. List the component which contains the specified flag

• List the flag of each component

$ lfs getstripe -component-flag -I /mnt/testfs/3comp
    lcme_id:             1
    lcme_flags:          init
    lcme_id:             2
    lcme_flags:          init
    lcme_id:             3
    lcme_flags:          0

• List component(s) who is not instantiated

$ lfs getstripe --component-flags=^init /mnt/testfs/3comp



Managing File Layout
(Striping) and Free Space

203

/mnt/testfs/3comp
  lcm_layout_gen:  4
  lcm_entry_count: 3
    lcme_id:             3
    lcme_flags:          0
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    4
      lmm_stripe_offset: 4

Case3. List the total number of all the component(s)

• List the total number of all the components

$ lfs getstripe --component-count /mnt/testfs/3comp
3

Case4. List the component with the specified extent start or end positions

• List the start position in bytes of each component

$ lfs getstripe --component-start /mnt/testfs/3comp
0
4194304
67108864

• List the start position in bytes of component ID=3

$ lfs getstripe --component-start -I3 /mnt/testfs/3comp
67108864

• List the component with start = 64M

$ lfs getstripe --component-start=64M /mnt/testfs/3comp
/mnt/testfs/3comp
  lcm_layout_gen:  4
  lcm_entry_count: 3
    lcme_id:             3
    lcme_flags:          0
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    4
      lmm_stripe_offset: 4

• List the component(s) with start > 5M

$ lfs getstripe --component-start=+5M /mnt/testfs/3comp
/mnt/testfs/3comp
  lcm_layout_gen:  4
  lcm_entry_count: 3



Managing File Layout
(Striping) and Free Space

204

    lcme_id:             3
    lcme_flags:          0
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    4
      lmm_stripe_offset: 4

• List the component(s) with start < 5M

$ lfs getstripe --component-start=-5M /mnt/testfs/3comp
/mnt/testfs/3comp
  lcm_layout_gen:  4
  lcm_entry_count: 3
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 4
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }

    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   67108864
      lmm_stripe_count:  4
      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 5
      lmm_objects:
      - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
      - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
      - 2: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
      - 3: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

• List the component(s) with start > 3M and end < 70M

$ lfs getstripe --component-start=+3M --component-end=-70M \
/mnt/testfs/3comp
/mnt/testfs/3comp
  lcm_layout_gen:  4
  lcm_entry_count: 3
    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   67108864
      lmm_stripe_count:  4



Managing File Layout
(Striping) and Free Space

205

      lmm_stripe_size:   1048576
      lmm_pattern:       1
      lmm_layout_gen:    0
      lmm_stripe_offset: 5
      lmm_objects:
      - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
      - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
      - 2: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
      - 3: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

19.5.4. lfs find
lfs find commands can be used to search the directory tree rooted at the given directory or file name
for the files that match the given PFL component parameters. Here, only those parameters new for PFL
files are shown. Their usages are similar to lfs getstripe commands.

Command

lfs find directory|filename
[[!] --component-count [+-=]comp_cnt]
[[!] --component-start [+-=]N[kMGTPE]]
[[!] --component-end|-E [+-=]N[kMGTPE]]
[[!] --component-flags=comp_flags]

Note

If you use --component-xxx options, only the composite files will be searched; but if you
use ! --component-xxx options, all the files will be searched.

Example

We use the following directory and composite files to show how lfs find works.

$ mkdir /mnt/testfs/testdir
$ lfs setstripe -E 1M -E 10M -E eof /mnt/testfs/testdir/3comp
$ lfs setstripe -E 4M -E 20M -E 30M -E eof /mnt/testfs/testdir/4comp
$ mkdir -p /mnt/testfs/testdir/dir_3comp
$ lfs setstripe -E 6M -E 30M -E eof /mnt/testfs/testdir/dir_3comp
$ lfs setstripe -E 8M -E eof /mnt/testfs/testdir/dir_3comp/2comp
$ lfs setstripe -c 1 /mnt/testfs/testdir/dir_3comp/commnfile

Case1. Find the files that match the specified component count condition

Find the files under directory /mnt/testfs/testdir whose number of components is not equal to 3.

$ lfs find /mnt/testfs/testdir ! --component-count=3
/mnt/testfs/testdir
/mnt/testfs/testdir/4comp
/mnt/testfs/testdir/dir_3comp/2comp
/mnt/testfs/testdir/dir_3comp/commonfile

Case2. Find the files/dirs that match the specified component start/end condition

Find the file(s) under directory /mnt/testfs/testdir with component start = 4M and end < 70M

$ lfs find /mnt/testfs/testdir --component-start=4M -E -30M



Managing File Layout
(Striping) and Free Space

206

/mnt/testfs/testdir/4comp

Case3. Find the files/dirs that match the specified component flag condition

Find the file(s) under directory /mnt/testfs/testdir whose component flags contain init

$ lfs find /mnt/testfs/testdir --component-flag=init
/mnt/testfs/testdir/3comp
/mnt/testfs/testdir/4comp
/mnt/testfs/testdir/dir_3comp/2comp

Note

Since lfs find uses "!" to do negative search, we don’t support flag ^init here.

Introduced in Lustre 2.13

19.6.  Self-Extending Layout (SEL)
The Lustre Self-Extending Layout (SEL) feature is an extension of the Section 19.5, “Progressive File
Layout(PFL)” feature, which allows the MDS to change the defined PFL layout dynamically. With this
feature, the MDS monitors the used space on OSTs and swaps the OSTs for the current file when they are
low on space. This avoids ENOSPC problems for SEL files when applications are writing to them.

Whereas PFL delays the instantiation of some components until an IO operation occurs on this region,
SEL allows splitting such non-instantiated components in two parts: an “extendable” component and an
“extension” component. The extendable component is a regular PFL component, covering just a part of
the region, which is small originally. The extension (or SEL) component is a new component type which
is always non-instantiated and unassigned, covering the other part of the region. When a write reaches this
unassigned space, and the client calls the MDS to have it instantiated, the MDS makes a decision as to
whether to grant additional space to the extendable component. The granted region moves from the head
of the extension component to the tail of the extendable component, thus the extendable component grows
and the SEL one is shortened. Therefore, it allows the file to continue on the same OSTs, or in the case
where space is low on one of the current OSTs, to modify the layout to switch to a new component on
new OSTs. In particular, it lets IO automatically spill over to a large HDD OST pool once a small SSD
OST pool is getting low on space.

The default extension policy modifies the layout in the following ways:

1. Extension: continue on the same OSTs – used when not low on space on any of the OSTs of the current
component; a particular extent is granted to the extendable component.

2. Spill over: switch to next component OSTs – it is used only for not the last component when at least
one of the current OSTs is low on space; the whole region of the SEL component moves to the next
component and the SEL component is removed in its turn.

3. Repeating: create a new component with the same layout but on free OSTs – it is used only for the last
component when  at least one of the current OSTs is low on space; a new component has the same
layout but instantiated on different OSTs (from the same pool) which have enough space.

4. Forced extension: continue with the current component OSTs despite the low on space condition – it
is used only for the last component when a repeating attempt detected low on space condition as well
- spillover is impossible and there is no sense in the repeating.

5. Each spill event increments the spill_hit counter, which can be accessed with: lctl
lod.*.POOLNAME.spill_hit



Managing File Layout
(Striping) and Free Space

207

Note

The SEL feature does not require clients to understand the SEL format of already created files,
only the MDS support is needed which is introduced in Lustre 2.13. However, old clients will
have some limitations as the Lustre tools will not support it.

19.6.1. lfs setstripe
The lfs setstripe command is used to create files with composite layouts, as well as add or delete
components to or from an existing file. It is extended to support SEL components.

19.6.1.1. Create a SEL file

Command

lfs setstripe
[--component-end|-E end1] [STRIPE_OPTIONS] ... FILENAME

STRIPE OPTIONS:
--extension-size, --ext-size, -z <ext_size>

The -z option is added to specify the size of the region which is granted to the extendable component
on each iteration. While declaring any component, this option turns the declared component to a pair of
components: extendable and extension ones.

Example

The following command creates 2 pairs of extendable and extension components:

# lfs setstripe -E 1G -z 64M -E -1 -z 256M /mnt/lustre/file

Figure 19.8. Example: create a SEL file

Note

As usual, only the first PFL component is instantiated at the creation time, thus it is immediately
extended to the extension size (64M for the first component), whereas the third component is
left zero-length.

# lfs getstripe /mnt/lustre/file
/mnt/lustre/file
  lcm_layout_gen: 4
  lcm_mirror_count: 1
  lcm_entry_count: 4
    lcme_id: 1
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 0
    lcme_extent.e_end: 67108864
      lmm_stripe_count: 1



Managing File Layout
(Striping) and Free Space

208

      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }

    lcme_id: 2
    lcme_mirror_id: 0
    lcme_flags: extension
    lcme_extent.e_start: 67108864
    lcme_extent.e_end: 1073741824
      lmm_stripe_count: 0
      lmm_extension_size: 67108864
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

    lcme_id: 3
    lcme_mirror_id: 0
    lcme_flags: 0
    lcme_extent.e_start: 1073741824
    lcme_extent.e_end: 1073741824
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

    lcme_id: 4
    lcme_mirror_id: 0
    lcme_flags: extension
    lcme_extent.e_start: 1073741824
    lcme_extent.e_end: EOF
      lmm_stripe_count: 0
      lmm_extension_size: 268435456
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

19.6.1.2. Create a SEL layout template

Similar to PFL, it is possible to set a SEL layout template to a directory. After that, all the files created
under it will inherit this layout by default.

# lfs setstripe -E 1G -z 64M -E -1 -z 256M /mnt/lustre/dir
# ./lustre/utils/lfs getstripe  /mnt/lustre/dir
/mnt/lustre/dir
  lcm_layout_gen:    0
  lcm_mirror_count:  1
  lcm_entry_count:   4
    lcme_id:             N/A
    lcme_mirror_id:      N/A
    lcme_flags:          0



Managing File Layout
(Striping) and Free Space

209

    lcme_extent.e_start: 0
    lcme_extent.e_end:   67108864
      stripe_count:  1       stripe_size:   1048576       pattern:       raid0       stripe_offset: -1

    lcme_id:             N/A
    lcme_mirror_id:      N/A
    lcme_flags:          extension
    lcme_extent.e_start: 67108864
    lcme_extent.e_end:   1073741824
      stripe_count:  1       extension_size: 67108864       pattern:       raid0       stripe_offset: -1

    lcme_id:             N/A
    lcme_mirror_id:      N/A
    lcme_flags:          0
    lcme_extent.e_start: 1073741824
    lcme_extent.e_end:   1073741824
      stripe_count:  1       stripe_size:   1048576       pattern:       raid0       stripe_offset: -1

    lcme_id:             N/A
    lcme_mirror_id:      N/A
    lcme_flags:          extension
    lcme_extent.e_start: 1073741824
    lcme_extent.e_end:   EOF
      stripe_count:  1       extension_size: 268435456       pattern:       raid0       stripe_offset: -1
 

19.6.2. lfs getstripe
lfs getstripe commands can be used to list the striping/component information for a given SEL file.
Here, only those parameters new for SEL files are shown.

Command

lfs getstripe
[--extension-size|--ext-size|-z] filename

The -z option is added to print the extension size in bytes. For composite files this is the extension size of
the first extension component. If a particular component is identified by other options (--component-
id, --component-start, etc...), this component extension size is printed.

Example 1: List a SEL component information

Suppose we already have a composite file /mnt/lustre/file, created by the following command:

# lfs setstripe -E 1G -z 64M -E -1 -z 256M /mnt/lustre/file

The 2nd component could be listed with the following command:

# lfs getstripe -I2 /mnt/lustre/file
/mnt/lustre/file
  lcm_layout_gen: 4
  lcm_mirror_count: 1
  lcm_entry_count: 4
    lcme_id: 2
    lcme_mirror_id: 0
    lcme_flags: extension



Managing File Layout
(Striping) and Free Space

210

    lcme_extent.e_start: 67108864
    lcme_extent.e_end: 1073741824
      lmm_stripe_count: 0
      lmm_extension_size: 67108864
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1
      

Note

As you can see the SEL components are marked by the  extension flag and
lmm_extension_size field keeps the specified extension size.

Example 2: List the extension size

Having the same file as in the above example, the extension size of the second component could be listed
with:

# lfs getstripe -z -I2 /mnt/lustre/file
67108864

Example 3: Extension

Having the same file as in the above example, suppose there is a write which crosses the end of the first
component (64M), and then another write another write which crosses the end of the first component
(128M) again, the layout changes as following:

Figure 19.9. Example: an extension of a SEL file

The layout can be printed out by the following command:

# lfs getstripe /mnt/lustre/file
/mnt/lustre/file



Managing File Layout
(Striping) and Free Space

211

  lcm_layout_gen: 6
  lcm_mirror_count: 1
  lcm_entry_count: 4
    lcme_id: 1
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 0
    lcme_extent.e_end: 201326592
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }

    lcme_id: 2
    lcme_mirror_id: 0
    lcme_flags: extension
    lcme_extent.e_start: 201326592
    lcme_extent.e_end: 1073741824
      lmm_stripe_count: 0
      lmm_extension_size: 67108864
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

    lcme_id: 3
    lcme_mirror_id: 0
    lcme_flags: 0
    lcme_extent.e_start: 1073741824
    lcme_extent.e_end: 1073741824
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

    lcme_id: 4
    lcme_mirror_id: 0
    lcme_flags: extension
    lcme_extent.e_start: 1073741824
    lcme_extent.e_end: EOF
      lmm_stripe_count: 0
      lmm_extension_size: 268435456
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

Example 4: Spillover

In case where OST0 is low on space and an IO happens to a SEL component, a spillover happens: the full
region of the SEL component is added to the next component, e.g. in the example above the next layout
modification will look like:



Managing File Layout
(Striping) and Free Space

212

Figure 19.10. Example: a spillover in a SEL file

Note

Despite the fact the third component was [1G, 1G] originally, while it is not instantiated, instead
of getting extended backward, it is moved backward to the start of the previous SEL component
(192M) and extended on its extension size (256M) from that position, thus it becomes [192M,
448M].

# lfs getstripe /mnt/lustre/file
/mnt/lustre/file
  lcm_layout_gen: 7
  lcm_mirror_count: 1
  lcm_entry_count: 3
    lcme_id: 1
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 0
    lcme_extent.e_end: 201326592
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }

    lcme_id: 3
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 201326592
    lcme_extent.e_end: 469762048
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 1
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x8:0x0] }



Managing File Layout
(Striping) and Free Space

213

    lcme_id: 4
    lcme_mirror_id: 0
    lcme_flags: extension
    lcme_extent.e_start: 469762048
    lcme_extent.e_end: EOF
      lmm_stripe_count: 0
      lmm_extension_size: 268435456
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

Example 5: Repeating

Suppose in the example above, OST0 got enough free space back but OST1 is low on space, the following
write to the last SEL component leads to a new component allocation before the SEL component, which
repeats the previous component layout but instantiated on free OSTs:

Figure 19.11. Example: repeat a SEL component

# lfs getstripe /mnt/lustre/file
/mnt/lustre/file
  lcm_layout_gen: 9
  lcm_mirror_count: 1
  lcm_entry_count: 4
    lcme_id: 1
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 0
    lcme_extent.e_end: 201326592
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }

    lcme_id: 3
    lcme_mirror_id: 0
    lcme_flags: init



Managing File Layout
(Striping) and Free Space

214

    lcme_extent.e_start: 201326592
    lcme_extent.e_end: 469762048
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 1
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x8:0x0] }

    lcme_id: 8
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 469762048
    lcme_extent.e_end: 738197504
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 65535
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x6:0x0] }

    lcme_id: 4
    lcme_mirror_id: 0
    lcme_flags: extension
    lcme_extent.e_start: 738197504
    lcme_extent.e_end: EOF
      lmm_stripe_count: 0
      lmm_extension_size: 268435456
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1

Example 6: Forced extension

Suppose in the example above, both OST0 and OST1 are low on space, the following write to the last SEL
component will behave as an extension as there is no sense to repeat.

Figure 19.12. Example: forced extension in a SEL file



Managing File Layout
(Striping) and Free Space

215

# lfs getstripe /mnt/lustre/file
/mnt/lustre/file
  lcm_layout_gen: 11
  lcm_mirror_count: 1
  lcm_entry_count: 4
    lcme_id: 1
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 0
    lcme_extent.e_end: 201326592
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }

    lcme_id: 3
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 201326592
    lcme_extent.e_end: 469762048
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: 1
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x8:0x0] }

    lcme_id: 8
    lcme_mirror_id: 0
    lcme_flags: init
    lcme_extent.e_start: 469762048
    lcme_extent.e_end: 1006632960
      lmm_stripe_count: 1
      lmm_stripe_size: 1048576
      lmm_pattern: raid0
      lmm_layout_gen: 65535
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x6:0x0] }

    lcme_id: 4
    lcme_mirror_id: 0
    lcme_flags: extension
    lcme_extent.e_start: 1006632960
    lcme_extent.e_end: EOF
      lmm_stripe_count: 0
      lmm_extension_size: 268435456
      lmm_pattern: raid0
      lmm_layout_gen: 0
      lmm_stripe_offset: -1



Managing File Layout
(Striping) and Free Space

216

19.6.3. lfs find
lfs find commands can be used to search for the files that match the given SEL component paremeters.
Here, only those parameters new for the SEL files are shown.

lfs find
[[!] --extension-size|--ext-size|-z [+-]ext-size[KMG]
[[!] --component-flags=extension]

The -z option is added to specify the extension size to search for. The files which have any component
with the extension size matched the given criteria are printed out. As always “+” and “-“ signs are allowed
to specify the least and the most size.

A new extension component flag is added. Only files which have at least one SEL component are
printed.

Note

The negative search for flags searches the files which have a non-SEL component (not files which
do not have any SEL component).

Example

# lfs setstripe --extension-size 64M -c 1 -E -1 /mnt/lustre/file

# lfs find --comp-flags extension /mnt/lustre/*
/mnt/lustre/file

# lfs find ! --comp-flags extension /mnt/lustre/*
/mnt/lustre/file

# lfs find -z 64M /mnt/lustre/*
/mnt/lustre/file

# lfs find -z +64M /mnt/lustre/*

# lfs find -z -64M /mnt/lustre/*

# lfs find -z +63M /mnt/lustre/*
/mnt/lustre/file

# lfs find -z -65M /mnt/lustre/*
/mnt/lustre/file

# lfs find -z 65M /mnt/lustre/*

# lfs find ! -z 64M /mnt/lustre/*

# lfs find ! -z +64M /mnt/lustre/*
/mnt/lustre/file

# lfs find ! -z -64M /mnt/lustre/*
/mnt/lustre/file



Managing File Layout
(Striping) and Free Space

217

# lfs find ! -z +63M /mnt/lustre/*

# lfs find ! -z -65M /mnt/lustre/*

# lfs find ! -z 65M /mnt/lustre/*
/mnt/lustre/file

Introduced in Lustre 2.13

19.7.  Foreign Layout
The Lustre Foreign Layout feature is an extension of both the LOV and LMV formats which allows the
creation of empty files and directories with the necessary specifications to point to corresponding objects
outside from Lustre namespace.

The new LOV/LMV foreign internal format can be represented as:

Figure 19.13. LOV/LMV foreign format

19.7.1. lfs set[dir]stripe

The lfs set[dir]stripe commands are used to create files or directories with foreign layouts, by
calling the corresponding API, itself invoking the appropriate ioctl().

19.7.1.1. Create a Foreign file/dir

Command

lfs set[dir]stripe \
--foreign[=<foreign_type>] --xattr|-x <layout_string> \
[--flags <hex_bitmask>] [--mode <mode_bits>] \
{file,dir}name

Both the --foreign and --xattr|-x options are mandatory. The <foreign_type> (default is
"none", meaning no special behavior), and both --flags and --mode (default is 0666) options are
optional.

Example

The following command creates a foreign file of "none" type and with "foo@bar" LOV content and specific
mode and flags:

# lfs setstripe --foreign=none --flags=0xda08 --mode=0640 \
--xattr=foo@bar /mnt/lustre/file



Managing File Layout
(Striping) and Free Space

218

Figure 19.14. Example: create a foreign file

19.7.2. lfs get[dir]stripe
lfs get[dir]stripe commands can be used to retrieve foreign LOV/LMV informations and content.

Command

lfs get[dir]stripe [-v] filename

List foreign layout information

Suppose we already have a foreign file /mnt/lustre/file, created by the following command:

# lfs setstripe --foreign=none --flags=0xda08 --mode=0640 \
--xattr=foo@bar /mnt/lustre/file

The full foreign layout informations can be listed using the following command:

# lfs getstripe -v /mnt/lustre/file
/mnt/lustre/file
  lfm_magic: 0x0BD70BD0
  lfm_length: 7
  lfm_type: none
  lfm_flags: 0x0000DA08
  lfm_value: foo@bar
      

Note

As you can see the lfm_length field value is the characters number in the variable length
lfm_value field.

19.7.3. lfs find
lfs find commands can be used to search for all the foreign files/directories or those that match the
given selection paremeters.

lfs find
[[!] --foreign[=<foreign_type>]

The --foreign[=<foreign_type>] option has been added to specify that all [!,but not] files and/
or directories with a foreign layout [and [!,but not] of <foreign_type>] will be retrieved.

Example

# lfs setstripe --foreign=none --xattr=foo@bar /mnt/lustre/file



Managing File Layout
(Striping) and Free Space

219

# touch /mnt/lustre/file2

# lfs find --foreign /mnt/lustre/*
/mnt/lustre/file

# lfs find ! --foreign /mnt/lustre/*
/mnt/lustre/file2

# lfs find --foreign=none /mnt/lustre/*
/mnt/lustre/file

19.8. Managing Free Space
To optimize file system performance, the MDT assigns file stripes to OSTs based on two allocation
algorithms. The round-robin allocator gives preference to location (spreading out stripes across OSSs to
increase network bandwidth utilization) and the weighted allocator gives preference to available space
(balancing loads across OSTs). Threshold and weighting factors for these two algorithms can be adjusted
by the user. The MDT reserves 0.1 percent of total OST space and 32 inodes for each OST. The MDT
stops object allocation for the OST if available space is less than reserved or the OST has fewer than 32
free inodes. The MDT starts object allocation when available space is twice as big as the reserved space
and the OST has more than 64 free inodes. Note, clients could append existing files no matter what object
allocation state is.

Introduced in Lustre 2.9

The reserved space for each OST can be adjusted by the user. Use the lctl set_param command, for
example the next command reserve 1GB space for all OSTs.

lctl set_param -P osp.*.reserved_mb_low=1024

This section describes how to check available free space on disks and how free space is allocated. It then
describes how to set the threshold and weighting factors for the allocation algorithms.

19.8.1. Checking File System Free Space

Free space is an important consideration in assigning file stripes. The lfs df command can be used to
show available disk space on the mounted Lustre file system and space consumption per OST. If multiple
Lustre file systems are mounted, a path may be specified, but is not required. Options to the lfs df
command are shown below.

Option Description

-h, --human-readable Displays sizes in human readable format (for
example: 1K, 234M, 5G) using base-2 (binary)
values (i.e. 1G = 1024M).

-H, --si Like -h, this displays counts in human readable
format, but using base-10 (decimal) values (i.e. 1G
= 1000M).

-i, --inodes Lists inodes instead of block usage.



Managing File Layout
(Striping) and Free Space

220

Option Description

-l, --lazy Do not attempt to contact any OST or MDT
not currently connected to the client. This avoids
blocking the lfs df output if a target is offline
or unreachable, and only returns the space on OSTs
that can currently be accessed.

-p, --pool Limit the usage to report only OSTs that are in the
specified pool. If multiple Lustre filesystems are
mounted, list the OSTs in pool for each filesystem,
or limit the display to only a pool for a specific
filesystem if fsname.pool is given. Specifying
both fsname and pool is equivalent to providing
a specific mountpoint.

-v, --verbose Display verbose status of MDTs and OSTs. This
may include one or more optional flags at the end
of each line.

lfs df may also report additional target status as the last column in the display, if there are issues with
that target. Target states include:

• D: OST/MDT is Degraded. The target has a failed drive in the RAID device, or is undergoing
RAID reconstruction. This state is marked on the server automatically for ZFS targets via
zed, or a (user-supplied) script that monitors the target device and sets "lctl set_param
obdfilter.target.degraded=1" on the OST. This target will be avoided for new allocations,
but will still be used to read existing files located there or if there are not enough non-degraded OSTs
to make up a widely-striped file.

• R: OST/MDT is Read-only. The target filesystem is marked read-only due to filesystem corruption
detected by ldiskfs or ZFS. No modifications are allowed on this OST, and it needs to be unmounted
and e2fsck or zpool scrub run to repair the underlying filesystem.

• N: OST/MDT is No-precreate. The target is configured to deny object precreation set
by "lctl set_param obdfilter.target.no_precreate=1" parameter or the "-o
no_precreate" mount option. This may be done to add an OST to the filesystem without allowing
objects to be allocated on it yet, or for other reasons.

• S: OST/MDT is out of Space. The target filesystem has less than the minimum required free space
and will not be used for new object allocations until it has more free space.

• I: OST/MDT is out of Inodes. The target filesystem has less than the minimum required free inodes
and will not be used for new object allocations until it has more free inodes.

• f: OST/MDT is on flash. The target filesystem is using a flash (non-rotational) storage device. This
is normally detected from the underlying Linux block device, but can be set manually with "lctl
set_param osd-*.*.nonrotational=1 on the respective OSTs. This lower-case status is only
shown in conjunction with the -v option, since it is not an error condition.

Note

The df -i and lfs df -i commands show the minimum number of inodes that can be created
in the file system at the current time. If the total number of objects available across all of the
OSTs is smaller than those available on the MDT(s), taking into account the default file striping,
then df -i will also report a smaller number of inodes than could be created. Running lfs df
-i will report the actual number of inodes that are free on each target.



Managing File Layout
(Striping) and Free Space

221

For ZFS file systems, the number of inodes that can be created is dynamic and depends on the
free space in the file system. The Free and Total inode counts reported for a ZFS file system are
only an estimate based on the current usage for each target. The Used inode count is the actual
number of inodes used by the file system.

Examples

client$ lfs df
UUID                 1K-blocks       Used Available Use%  Mounted on
testfs-OST0000_UUID    9174328    1020024   8154304  11%  /mnt/lustre[MDT:0]
testfs-OST0000_UUID   94181368   56330708  37850660  59%  /mnt/lustre[OST:0]
testfs-OST0001_UUID   94181368   56385748  37795620  59%  /mnt/lustre[OST:1]
testfs-OST0002_UUID   94181368   54352012  39829356  57%  /mnt/lustre[OST:2]
filesystem summary:  282544104  167068468  39829356  57%  /mnt/lustre

[client1] $ lfs df -hv
UUID                    bytes        Used Available Use%  Mounted on
testfs-MDT0000_UUID      8.7G      996.1M      7.8G  11%  /mnt/lustre[MDT:0]
testfs-OST0000_UUID     89.8G       53.7G     36.1G  59%  /mnt/lustre[OST:0] f
testfs-OST0001_UUID     89.8G       53.8G     36.0G  59%  /mnt/lustre[OST:1] f
testfs-OST0002_UUID     89.8G       51.8G     38.0G  57%  /mnt/lustre[OST:2] f
filesystem summary:    269.5G      159.3G    110.1G  59%  /mnt/lustre

[client1] $ lfs df -iH
UUID                   Inodes       IUsed    IFree IUse%  Mounted on
testfs-MDT0000_UUID     2.21M       41.9k     2.17M   1%  /mnt/lustre[MDT:0]
testfs-OST0000_UUID    737.3k       12.1k    725.1k   1%  /mnt/lustre[OST:0]
testfs-OST0001_UUID    737.3k       12.2k    725.0k   1%  /mnt/lustre[OST:1]
testfs-OST0002_UUID    737.3k       12.2k    725.0k   1%  /mnt/lustre[OST:2]
filesystem summary:     2.21M       41.9k     2.17M   1%  /mnt/lustre[OST:2]

19.8.2.  Stripe Allocation Methods
Two stripe allocation methods are provided:

• Round-robin allocator - When the OSTs have approximately the same amount of free space, the round-
robin allocator alternates stripes between OSTs on different OSSs, so the OST used for stripe 0 of each
file is evenly distributed among OSTs, regardless of the stripe count. In a simple example with eight
OSTs numbered 0-7, objects would be allocated like this:

File 1: OST1, OST2, OST3, OST4
File 2: OST5, OST6, OST7
File 3: OST0, OST1, OST2, OST3, OST4, OST5
File 4: OST6, OST7, OST0

Here are several more sample round-robin stripe orders (each letter represents a different OST on a
single OSS):

3: AAA One 3-OST OSS

3x3: ABABAB Two 3-OST OSSs

3x4: BBABABA One 3-OST OSS (A) and one 4-OST OSS (B)

3x5: BBABBABA One 3-OST OSS (A) and one 5-OST OSS (B)

3x3x3: ABCABCABC Three 3-OST OSSs



Managing File Layout
(Striping) and Free Space

222

• Weighted allocator - When the free space difference between the OSTs becomes significant, the
weighting algorithm is used to influence OST ordering based on size (amount of free space available
on each OST) and location (stripes evenly distributed across OSTs). The weighted allocator fills the
emptier OSTs faster, but uses a weighted random algorithm, so the OST with the most free space is not
necessarily chosen each time.

The allocation method is determined by the amount of free-space imbalance on the OSTs. When free space
is relatively balanced across OSTs, the faster round-robin allocator is used, which maximizes network
balancing. The weighted allocator is used when any two OSTs are out of balance by more than the
specified threshold (17% by default). The threshold between the two allocation methods is defined by the
qos_threshold_rr parameter.

To temporarily set the qos_threshold_rr to 25, enter the folowing on each MDS:

mds# lctl set_param lod.fsname*.qos_threshold_rr=25

19.8.3. Adjusting the Weighting Between Free Space and
Location

The weighting priority used by the weighted allocator is set by the the qos_prio_free parameter.
Increasing the value of qos_prio_free puts more weighting on the amount of free space available on
each OST and less on how stripes are distributed across OSTs. The default value is 91 (percent). When
the free space priority is set to 100 (percent), weighting is based entirely on free space and location is no
longer used by the striping algorithm.

To permanently change the allocator weighting to 100, enter this command on the MGS:

lctl conf_param fsname-MDT0000-*.lod.qos_prio_free=100

.

Note

When qos_prio_free is set to 100, a weighted random algorithm is still used to assign
stripes, so, for example, if OST2 has twice as much free space as OST1, OST2 is twice as likely
to be used, but it is not guaranteed to be used.

19.9. Lustre Striping Internals
Individual files can only be striped over a finite number of OSTs, based on the maximum size of the
attributes that can be stored on the MDT. If the MDT is ldiskfs-based without the ea_inode feature,
a file can be striped across at most 160 OSTs. With ZFS-based MDTs, or if the ea_inode feature is
enabled for an ldiskfs-based MDT, a file can be striped across up to 2000 OSTs.

Lustre inodes use an extended attribute to record on which OST each object is located, and the identifier
each object on that OST. The size of the extended attribute is a function of the number of stripes.

If using an ldiskfs-based MDT, the maximum number of OSTs over which files can be striped can been
raised to 2000 by enabling the ea_inode feature on the MDT:

tune2fs -O ea_inode /dev/mdtdev

Introduced in Lustre 2.13



Managing File Layout
(Striping) and Free Space

223

Note

Since Lustre 2.13 the ea_inode feature is enabled by default on all newly formatted ldiskfs
MDT filesystems.

Note

The maximum stripe count for a single file does not limit the maximum number of OSTs that are
in the filesystem as a whole, only the maximum possible size and maximum aggregate bandwidth
for the file.



224

Introduced in Lustre 2.11

Chapter 20. Data on MDT (DoM)
This chapter describes Data on MDT (DoM).

20.1.   Introduction to Data on MDT (DoM)
The Lustre Data on MDT (DoM) feature improves small file IO by placing small files directly
on the MDT, and also improves large file IO by avoiding the OST being affected by small
random IO that can cause device seeking and hurt the streaming IO performance. Therefore,
users can expect more consistent performance for both small file IO and mixed IO patterns.

The layout of a DoM file is stored on disk as a composite layout and is a special case of
Progressive File Layout (PFL). Please see Section 19.5, “Progressive File Layout(PFL)” for
more information on PFL. For DoM files, the file layout is composed of the component of the
file, which is placed on an MDT, and the rest of components are placed on OSTs, if needed.
The first component is placed on the MDT in the MDT object data blocks. This component
always has one stripe with size equal to the component size. Such a component with an MDT
layout can be only the first component in composite layout. The rest of components are placed
over OSTs as usual with a RAID0 layout. The OST components are not instantiated until a
client writes or truncates the file beyond the size of the MDT component.

20.2.   User Commands
Lustre provides the lfs setstripe command for users to create DoM files. Also, as usual,
lfs getstripe command can be used to list the striping/component information for a
given file, while lfs find command can be used to search the directory tree rooted at the
given directory or file name for the files that match the given DoM component parameters,
e.g. layout type.

20.2.1.  lfs setstripe for DoM files
The lfs setstripe command is used to create DoM files.

20.2.1.1. Command

lfs setstripe --component-end|-E end1 --layout|-L mdt \
        [--component-end|-E end2 [STRIPE_OPTIONS] ...] <filename>
              

The command above creates a file with the special composite layout, which defines the
first component as an MDT component. The MDT component must start from offset 0 and
ends at end1. The end1 is also the stripe size of this component, and is limited by the
lod.*.dom_stripesize of the MDT the file is created on. No other options are required
for this component. The rest of the components use the normal syntax for composite files
creation.

Note

If the next component doesn't specify striping, such as:



Data on MDT (DoM)

225

lfs setstripe -E 1M -L mdt -E EOF <filename>

Then that component get its settings from the default filesystem striping.

20.2.1.2. Example

The command below creates a file with a DoM layout. The first component has an mdt layout
and is placed on the MDT, covering [0, 1M). The second component covers [1M, EOF) and
is striped over all available OSTs.

client$ lfs setstripe -E 1M -L mdt -E -1 -S 4M -c -1 \
          /mnt/lustre/domfile

The resulting layout is illustrated by Figure 20.1, “Resulting file layout”.

Figure 20.1. Resulting file layout

The resulting can also be checked with lfs getstripe as shown below:

client$ lfs getstripe /mnt/lustre/domfile
/mnt/lustre/domfile
  lcm_layout_gen:   2
  lcm_mirror_count: 1
  lcm_entry_count:  2
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   1048576
      lmm_stripe_count:  0
      lmm_stripe_size:   1048576
      lmm_pattern:       mdt
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:
      
    lcme_id:             2
    lcme_flags:          0
    lcme_extent.e_start: 1048576
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   4194304
      lmm_pattern:       raid0
      lmm_layout_gen:    65535
      lmm_stripe_offset: -1

The output above shows that the first component has size 1MB and pattern is 'mdt'. The second
component is not instantiated yet, which is seen by lcme_flags: 0.

If more than 1MB of data is written to the file, then lfs getstripe output is changed
accordingly:



Data on MDT (DoM)

226

client$ lfs getstripe /mnt/lustre/domfile
/mnt/lustre/domfile
  lcm_layout_gen:   3
  lcm_mirror_count: 1
  lcm_entry_count:  2
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   1048576
      lmm_stripe_count:  0
      lmm_stripe_size:   1048576
      lmm_pattern:       mdt
      lmm_layout_gen:    0
      lmm_stripe_offset: 2
      lmm_objects:
      
    lcme_id:             2
    lcme_flags:          init
    lcme_extent.e_start: 1048576
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   4194304
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }
      - 1: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }

The output above shows that the second component now has objects on OSTs with a 4MB
stripe.

20.2.2. Setting a default DoM layout to an existing
directory

A DoM layout can be set on an existing directory as well. When set, all the files created after
that will inherit this layout by default.

20.2.2.1. Command

lfs setstripe --component-end|-E end1 --layout|-L mdt \
[--component-end|-E end2 [STRIPE_OPTIONS] ...] <dirname>

20.2.2.2. Example

client$ mkdir /mnt/lustre/domdir
client$ touch /mnt/lustre/domdir/normfile
client$ lfs setstripe -E 1M -L mdt -E -1 /mnt/lustre/domdir/
client$ lfs getstripe -d /mnt/lustre/domdir
  lcm_layout_gen:   0
  lcm_mirror_count: 1
  lcm_entry_count:  2
    lcme_id:             N/A



Data on MDT (DoM)

227

    lcme_flags:          0
    lcme_extent.e_start: 0
    lcme_extent.e_end:   1048576
      stripe_count:  0    stripe_size:   1048576    \
      pattern:  mdt    stripe_offset:  -1
    
    lcme_id:             N/A
    lcme_flags:          0
    lcme_extent.e_start: 1048576
    lcme_extent.e_end:   EOF
      stripe_count:  1    stripe_size:   1048576    \
      pattern:  raid0    stripe_offset:  -1
              

In the output above, it can be seen that the directory has a default layout with a DoM
component.

The following example will check layouts of files in that directory:

client$ touch /mnt/lustre/domdir/domfile
client$ lfs getstripe /mnt/lustre/domdir/normfile
/mnt/lustre/domdir/normfile
lmm_stripe_count:  2
lmm_stripe_size:   1048576
lmm_pattern:       raid0
lmm_layout_gen:    0
lmm_stripe_offset: 1
  obdidx   objid   objid   group
       1              3           0x3              0
       0              3           0x3              0

client$ lfs getstripe /mnt/lustre/domdir/domfile
/mnt/lustre/domdir/domfile
  lcm_layout_gen:   2
  lcm_mirror_count: 1
  lcm_entry_count:  2
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   1048576
      lmm_stripe_count:  0
      lmm_stripe_size:   1048576
      lmm_pattern:       mdt
      lmm_layout_gen:    0
      lmm_stripe_offset: 2
      lmm_objects:
      
    lcme_id:             2
    lcme_flags:          0
    lcme_extent.e_start: 1048576
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0



Data on MDT (DoM)

228

      lmm_layout_gen:    65535
      lmm_stripe_offset: -1

We can see that first file normfile in that directory has an ordinary layout, whereas the file
domfile  inherits the directory default layout and is a DoM file.

Note

The directory default layout setting will be inherited by new files even if the server
DoM size limit will be set to a lower value.

20.2.3.   DoM Stripe Size Restrictions
The maximum size of a DoM component is restricted in several ways to protect the MDT from
being eventually filled with large files.

20.2.3.1. LFS limits for DoM component size

lfs setstripe allows for setting the component size for MDT layouts up to 1GB (this is
a compile-time limit to avoid improper configuration), however, the size must also be aligned
by 64KB due to the minimum stripe size in Lustre (see Table 5.2, “File and file system limits”
Minimum stripe size). There is also a limit imposed on each file by lfs setstripe
-E end that may be smaller than the MDT-imposed limit if this is better for a particular usage.

20.2.3.2. MDT Server Limits

The lod.$fsname-MDTxxxx.dom_stripesize is used to control the per-MDT
maximum size for a DoM component. Larger DoM components specified by the user will
be truncated to the MDT-specified limit, and as such may be different on each MDT to
balance DoM space usage on each MDT separately, if needed. It is 1MB by default and can
be changed with the lctl tool. For more information on setting dom_stripesize please
see Section 20.2.6, “ The dom_stripesize parameter”.

20.2.4.   lfs getstripe for DoM files
The lfs getstripe command is used to list the striping/component information for a
given file. For DoM files, it can be used to check its layout and size.

20.2.4.1. Command

lfs getstripe [--component-id|-I [comp_id]] [--layout|-L] \
              [--stripe-size|-S] <dirname|filename>

20.2.4.2. Examples

client$ lfs getstripe -I1 /mnt/lustre/domfile
/mnt/lustre/domfile
  lcm_layout_gen:   3
  lcm_mirror_count: 1
  lcm_entry_count:  2
    lcme_id:             1
    lcme_flags:          init
    lcme_extent.e_start: 0



Data on MDT (DoM)

229

    lcme_extent.e_end:   1048576
      lmm_stripe_count:  0
      lmm_stripe_size:   1048576
      lmm_pattern:       mdt
      lmm_layout_gen:    0
      lmm_stripe_offset: 2
      lmm_objects:

Short info about the layout and size of DoM component can be obtained with the use of the
-L option along with -S or -E options:

client$ lfs getstripe -I1 -L -S /mnt/lustre/domfile
      lmm_stripe_size:   1048576
      lmm_pattern:       mdt
client$ lfs getstripe -I1 -L -E /mnt/lustre/domfile
    lcme_extent.e_end:   1048576
      lmm_pattern:       mdt

Both commands return layout type and its size. The stripe size is equal to the extent size of
component in case of DoM files, so both can be used to get size on the MDT.

20.2.5.   lfs find for DoM files
The lfs find command can be used to search the directory tree rooted at the given directory
or file name for the files that match the given parameters. The command below shows the new
parameters for DoM files and their usages are similar to the lfs getstripe command.

20.2.5.1. Command

lfs find <directory|filename> [--layout|-L] [...]
              

20.2.5.2. Examples

Find all files with DoM layout under directory /mnt/lustre:

client$ lfs find -L mdt /mnt/lustre
/mnt/lustre/domfile
/mnt/lustre/domdir
/mnt/lustre/domdir/domfile
                          
client$ lfs find -L mdt -type f /mnt/lustre
/mnt/lustre/domfile
/mnt/lustre/domdir/domfile
                          
client$ lfs find -L mdt -type d /mnt/lustre
/mnt/lustre/domdir

By using this command you can find all DoM objects, only DoM files, or only directories with
default DoM layout.

Find the DoM files/dirs with a particular stripe size:

client$ lfs find -L mdt -S -1200K -type f /mnt/lustre
/mnt/lustre/domfile



Data on MDT (DoM)

230

/mnt/lustre/domdir/domfile
                          
client$ lfs find -L mdt -S +200K -type f /mnt/lustre
/mnt/lustre/domfile
/mnt/lustre/domdir/domfile

The first command finds all DoM files with stripe size less than 1200KB. The second command
above does the same for files with a stripe size greater than 200KB. In both cases, all DoM
files are found because their DoM size is 1MB.

20.2.6.   The dom_stripesize parameter
The MDT controls the default maximum DoM size on the server via the parameter
dom_stripesize in the LOD device. The dom_stripesize can be set differently for
each MDT, if necessary. The default value of the parameter is 1MB and can be changed with
lctl tool.

20.2.6.1. Get Command

lctl get_param lod.*MDT<index>*.dom_stripesize
              

20.2.6.2. Get Examples

The commands below get the maximum allowed DoM size on the server. The final command
is an attempt to create a file with a larger size than the parameter setting and correctly fails.

mds# lctl get_param lod.*MDT0000*.dom_stripesize
lod.lustre-MDT0000-mdtlov.dom_stripesize=1048576

mds# lctl get_param -n lod.*MDT0000*.dom_stripesize
1048576

client$ lfs setstripe -E 2M -L mdt /mnt/lustre/dom2mb
Create composite file /mnt/lustre/dom2mb failed. Invalid argument
error: setstripe: create composite file '/mnt/lustre/dom2mb' failed:
Invalid argument

20.2.6.3. Temporary Set Command

To temporarily set the value of the parameter, the lctl set_param is used:

lctl set_param lod.*MDT<index>*.dom_stripesize=<value>
              

20.2.6.4. Temporary Set Examples

The example below shows a change to the default DoM limit on the server to 64KB and try
to create a file with 1MB DoM size after that.

mds# lctl set_param -n lod.*MDT0000*.dom_stripesize=64K
mds# lctl get_param -n lod.*MDT0000*.dom_stripesize
65536



Data on MDT (DoM)

231

client$ lfs setstripe -E 1M -L mdt /mnt/lustre/dom
Create composite file /mnt/lustre/dom failed. Invalid argument
error: setstripe: create composite file '/mnt/lustre/dom' failed:
Invalid argument

20.2.6.5. Persistent Set Command

To persistently set the value of the parameter on a specific MDT, the lctl set_param
-P command is used:

lctl set_param -P lod.fsname-MDTindex.dom_stripesize=value

This can also use a wildcard '*' for the index to apply to all MDTs.

20.2.6.6. Persistent Set Examples

The new value of the parameter is saved in the MGS parameters log permanently:

mgs# lctl set_param -P lod.lustre-MDT0000.dom_stripesize=512K
mds# lctl get_param -n lod.*MDT0000*.dom_stripesize
524288

and are applied on the matching MDTs within a few seconds.

20.2.7.   Disable DoM
When lctl set_param (whether with -P or not) sets dom_stripesize to 0, DoM
component creation will be disabled on the specified server(s), and any new layouts with a
specified DoM component will have that component removed from the file layout. Existing
files and layouts with DoM components on that MDT are not changed.

Note

DoM files can still be created in existing directories with a default DoM layout.



232

Introduced in Lustre 2.12

Chapter 21. Lazy Size on MDT
(LSoM)

This chapter describes Lazy Size on MDT (LSoM).

21.1.  Introduction to Lazy Size on MDT
(LSoM)

In the Lustre file system, MDSs store the ctime, mtime, owner, and other file attributes. The
OSSs store the size and number of blocks used for each file. To obtain the correct file size,
the client must contact each OST that the file is stored across, which means multiple RPCs to
get the size and blocks for a file when a file is striped over multiple OSTs. The Lazy Size on
MDT (LSoM) feature stores the file size on the MDS and avoids the need to fetch the file size
from the OST(s) in cases where the application understands that the size may not be accurate.
Lazy means there is no guarantee of the accuracy of the attributes stored on the MDS.

Since many Lustre installations use SSD for MDT storage, the motivation for the LSoM work
is to speed up the time it takes to get the size of a file from the Lustre file system by storing
that data on the MDTs. We expect this feature to be initially used by Lustre policy engines
that scan the backend MDT storage, make decisions based on broad size categories, and do
not depend on a totally accurate file size. Examples include Lester, Robinhood, Zester, and
various vendor offerings. Future improvements will allow the LSoM data to be accessed by
tools such as lfs find.

21.2. Enable LSoM
LSoM is always enabled and nothing needs to be done to enable the feature for fetching the
LSoM data when scanning the MDT inodes with a policy engine. It is also possible to access
the LSoM data on the client via the lfs getsom command. Because the LSoM data is
currently accessed on the client via the xattr interface, the xattr_cache will cache the file
size and block count on the client as long as the inode is cached. In most cases this is desirable,
since it improves access to the LSoM data. However, it also means that the LSoM data may be
stale if the file size is changed after the xattr is first accessed or if the xattr is accessed shortly
after the file is first created.

If it is necessary to access up-to-date LSoM data that has gone stale, it is possible
to flush the xattr cache from the client by cancelling the MDC locks via lctl
set_param ldlm.namespaces.*mdc*.lru_size=clear. Otherwise, the file
attributes will be dropped from the client cache if the file has not been accessed
before the LDLM lock timeout. The timeout is stored via lctl get_param
ldlm.namespaces.*mdc*.lru_max_age.

If repeated access to LSoM attributes for files that are recently created or frequently modified
from a specific client, such as an HSM agent node, it is possible to disable xattr caching
on a client via: lctl set_param llite.*.xattr_cache=0. This may cause extra
overhead when accessing files, and is not recommended for normal usage.



Lazy Size on MDT (LSoM)

233

21.3. User Commands
Lustre provides the lfs getsom command to list file attributes that are stored on the MDT.

The llsom_sync command allows the user to sync the file attributes on the MDT with the
valid/up-to-date data on the OSTs. llsom_sync is called on the client with the Lustre file
system mount point. llsom_sync uses Lustre MDS changelogs and, thus, a changelog user
must be registered to use this utility.

21.3.1. lfs getsom for LSoM data
The lfs getsom command lists file attributes that are stored on the MDT. lfs getsom
is called with the full path and file name for a file on the Lustre file system. If no flags are
used, then all file attributes stored on the MDS will be shown.

21.3.1.1. lfs getsom Command

lfs getsom [-s] [-b] [-f] <filename>

The various lfs getsom options are listed and described below.

Option Description

-s Only show the size value of the LSoM data for a given file. This
is an optional flag

-b Only show the blocks value of the LSoM data for a given file.
This is an optional flag

-f Only show the flag value of the LSoM data for a given file. This
is an optional flag. Valid flags are:

SOM_FL_UNKNOWN = 0x0000 - Unknown or no SoM data,
must get size from OSTs.

SOM_FL_STRICT = 0x0001 - Known strictly correct, FLR file
(SoM guaranteed)

SOM_FL_STALE = 0x0002 - Known stale -was right at some
point in the past, but it is known (or likely) to be incorrect now
(e.g. opened for write)

SOM_FL_LAZY= 0x0004 - Approximate, may never have been
strictly correct, need to sync SOM data to achieve eventual
consistency.

21.3.2. Syncing LSoM data
The llsom_sync command allows the user to sync the file attributes on the MDT with
the valid/up-to-date data on the OSTs. llsom_sync is called on the client with the client
mount point for the Lustre file system. llsom_sync uses Lustre MDS changelogs and, thus,
a changelog user must be registered to use this utility.

21.3.2.1. llsom_sync Command

llsom_sync --mdt|-m <mdt> --user|-u <user_id>



Lazy Size on MDT (LSoM)

234

              [--daemonize|-d] [--verbose|-v] [--interval|-i] [--min-age|-a]
              [--max-cache|-c] [--sync|-s] <lustre_mount_point>

The various llsom_sync options are listed and described below.

Option Description

--mdt | -m <mdt> The metadata device which need to be synced the LSoM
xattr of files. A changelog user must be registered for this
device.Required flag.

--user | -u
<user_id>

The changelog user id for the MDT device. Required flag.

--daemonize | -d Optional flag to “daemonize” the program. In daemon mode,
the utility will scan, process the changelog records and sync the
LSoM xattr for files periodically.

--verbose | -v Optional flag to produce verbose output.

--interval | -i Optional flag for the time interval to scan the Lustre changelog
and process the log record in daemon mode.

--min-age | -a Optional flag for the time that llsom_sync tool will not try
to sync the LSoM data for any files closed less than this many
seconds old. The default min-age value is 600s(10 minutes).

--max-cache | -c Optional flag for the total memory used for the FID cache which
can be with a suffix [KkGgMm].The default max-cache value
is 256MB. For the parameter value < 100, it is taken as the
percentage of total memory size used for the FID cache instead
of the cache size.

--sync | -s Optional flag to sync file data to make the dirty data out of cache
to ensure the blocks count is correct when update the file LSoM
xattr. This option could hurt server performance significantly if
thousands of fsync requests are sent.



235

Introduced in Lustre 2.11

Chapter 22. File Level Redundancy
(FLR)

This chapter describes File Level Redundancy (FLR).

22.1. Introduction
The Lustre file system was initially designed and implemented for HPC use. It has been
working well on high-end storage that has internal redundancy and fault-tolerance. However,
despite the expense and complexity of these storage systems, storage failures still occur, and
before release 2.11, Lustre could not be more reliable than the individual storage and servers’
components on which it was based. The Lustre file system had no mechanism to mitigate
storage hardware failures and files would become inaccessible if a server was inaccessible or
otherwise out of service.

With the File Level Redundancy (FLR) feature introduced in Lustre Release 2.11, any Lustre
file can store the same data on multiple OSTs in order for the system to be robust in the event
of storage failures or other outages. With the choice of multiple mirrors, the best suited mirror
can be chosen to satisfy an individual request, which has a direct impact on IO availability.
Furthermore, for files that are concurrently read by many clients (e.g. input decks, shared
libraries, or executables) the aggregate parallel read performance of a single file can be
improved by creating multiple mirrors of the file data.

The first phase of the FLR feature has been implemented with delayed write (Figure 22.1,
“FLR Delayed Write”). While writing to a mirrored file, only one primary or preferred mirror
will be updated directly during the write, while other mirrors will be simply marked as stale.
The file can subsequently return to a mirrored state again by synchronizing among mirrors
with command line tools (run by the user or administrator directly or via automated monitoring
tools).

Figure 22.1. FLR Delayed Write

22.2. Operations
Lustre provides lfs mirror command line tools for users to operate on mirrored files or
directories.

22.2.1. Creating a Mirrored File or Directory
Command:

lfs mirror create <--mirror-count|-N[mirror_count]



File Level Redundancy (FLR)

236

[setstripe_options|[--flags<=flags>]]> ... <filename|directory>

The above command will create a mirrored file or directory specified by filename or
directory, respectively.

Option Description

--mirror-count|-N[mirror_count] Indicates the number of mirrors to be created
with the following setstripe options. It can be
repeated multiple times to separate mirrors
that have different layouts.

The mirror_count argument is optional
and defaults to 1 if it is not specified; if
specified, it must follow the option without a
space.

setstripe_options Specifies a specific layout for the mirror.
It can be a plain layout with a specific
striping pattern or a composite layout,
such as Section 19.5, “Progressive File
Layout(PFL)”. The options are the same as
those for the lfs setstripe command.

If setstripe_options are not
specified, then the stripe options inherited
from the previous component will be used.
If there is no previous component, then the
stripe_count and stripe_size
options inherited from the filesystem-wide
default values will be used, and the OST
pool_name inherited from the parent
directory will be used.

--flags<=flags> Sets flags to the mirror to be created.

Only the prefer flag is supported at this
time. This flag will be set to all components
that belong to the corresponding mirror.
The prefer flag gives a hint to Lustre for
which mirrors should be used to serve I/
O. When a mirrored file is being read, the
component(s) with the prefer flag is likely
to be picked to serve the read; and when a
mirrored file is prepared to be written, the
MDT will tend to choose the component
with the prefer flag set and mark the other
components with overlapping extents as
stale. This flag just provides a hint to Lustre,
which means Lustre may still choose mirrors
without this flag set, for instance, if all
preferred mirrors are unavailable when the
I/O occurs. This flag can be set on multiple
components.

Note: This flag will be set to all components
that belong to the corresponding mirror. The



File Level Redundancy (FLR)

237

Option Description

--comp-flags option also exists, which
can be set to individual components at mirror
creation time.

Note: For redundancy and fault-tolerance, users need to make sure that different mirrors
must be on different OSTs, even OSSs and racks. An understanding of cluster topology is
necessary to achieve this architecture. In the initial implementation the use of the existing OST
pools mechanism will allow separating OSTs by any arbitrary criteria: i.e. fault domain. In
practice, users can take advantage of OST pools by grouping OSTs by topological information.
Therefore, when creating a mirrored file, users can indicate which OST pools can be used by
mirrors.

Examples:

The following command creates a mirrored file with 2 plain layout mirrors:

client# lfs mirror create -N -S 4M -c 2 -p flash \
                          -N -c -1 -p archive /mnt/testfs/file1

The following command displays the layout information of the mirrored file /mnt/testfs/
file1:

client# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    2
  lcm_mirror_count:  2
  lcm_entry_count:   2
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   4194304
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
      - 1: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

    lcme_id:             131074
    lcme_mirror_id:      2
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  6
      lmm_stripe_size:   4194304
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 3
      lmm_pool:          archive



File Level Redundancy (FLR)

238

      lmm_objects:
      - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }
      - 1: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }
      - 2: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
      - 3: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
      - 4: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
      - 5: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }

The first mirror has 4MB stripe size and two stripes across OSTs in the “flash” OST pool. The
second mirror has 4MB stripe size inherited from the first mirror, and stripes across all of the
available OSTs in the “archive” OST pool.

As mentioned above, it is recommended to use the --pool|-p option (one of the lfs
setstripe options) with OST pools configured with independent fault domains to ensure
different mirrors will be placed on different OSTs, servers, and/or racks, thereby improving
availability and performance. If the setstripe options are not specified, it is possible to create
mirrors with objects on the same OST(s), which would remove most of the benefit of using
replication.

In the layout information printed by lfs getstripe, lcme_mirror_id shows mirror
ID, which is the unique numerical identifier for a mirror. And lcme_flags shows mirrored
component flags. Valid flag names are:

• init - indicates mirrored component has been initialized (has allocated OST objects).

• stale - indicates mirrored component does not have up-to-date data. Stale components
will not be used for read or write operations, and need to be resynchronized by running lfs
mirror resync command before they can be accessed again.

• prefer - indicates mirrored component is preferred for read or write. For example, the
mirror is located on SSD-based OSTs or is closer, fewer hops, on the network to the client.
This flag can be set by users at mirror creation time.

The following command creates a mirrored file with 3 PFL mirrors:

client# lfs mirror create -N -E 4M -p flash --flags=prefer -E eof -c 2 \
-N -E 16M -S 8M -c 4 -p archive --comp-flags=prefer -E eof -c -1 \
-N -E 32M -c 1 -p none -E eof -c -1 /mnt/testfs/file2

The following command displays the layout information of the mirrored file /mnt/testfs/
file2:

client# lfs getstripe /mnt/testfs/file2
/mnt/testfs/file2
  lcm_layout_gen:    6
  lcm_mirror_count:  3
  lcm_entry_count:   6
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init,prefer
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0



File Level Redundancy (FLR)

239

      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x3:0x0] }

    lcme_id:             65538
    lcme_mirror_id:      1
    lcme_flags:          prefer
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1
      lmm_pool:          flash

    lcme_id:             131075
    lcme_mirror_id:      2
    lcme_flags:          init,prefer
    lcme_extent.e_start: 0
    lcme_extent.e_end:   16777216
      lmm_stripe_count:  4
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 4
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x3:0x0] }
      - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x3:0x0] }
      - 2: { l_ost_idx: 6, l_fid: [0x100060000:0x3:0x0] }
      - 3: { l_ost_idx: 7, l_fid: [0x100070000:0x3:0x0] }

    lcme_id:             131076
    lcme_mirror_id:      2
    lcme_flags:          0
    lcme_extent.e_start: 16777216
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  6
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1
      lmm_pool:          archive

    lcme_id:             196613
    lcme_mirror_id:      3
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   33554432
      lmm_stripe_count:  1
      lmm_stripe_size:   8388608



File Level Redundancy (FLR)

240

      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x3:0x0] }

    lcme_id:             196614
    lcme_mirror_id:      3
    lcme_flags:          0
    lcme_extent.e_start: 33554432
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1

For the first mirror, the first component inherits the stripe count and stripe size from filesystem-
wide default values. The second component inherits the stripe size and OST pool from the first
component, and has two stripes. Both of the components are allocated from the “flash” OST
pool. Also, the flag prefer is applied to all the components of the first mirror, which tells
the client to read data from those components whenever they are available.

For the second mirror, the first component has an 8MB stripe size and 4 stripes across OSTs
in the “archive” OST pool. The second component inherits the stripe size and OST pool from
the first component, and stripes across all of the available OSTs in the “archive” OST pool.
The flag prefer is only applied to the first component.

For the third mirror, the first component inherits the stripe size of 8MB from the last component
of the second mirror, and has one single stripe. The OST pool name is cleared and inherited
from the parent directory (if it was set with OST pool name). The second component inherits
stripe size from the first component, and stripes across all of the available OSTs.

22.2.2. Extending a Mirrored File
Command:

lfs mirror extend [--no-verify] <--mirror-count|-N[mirror_count]
[setstripe_options|-f <victim_file>]> ... <filename>

The above command will append mirror(s) indicated by setstripe options or just take
the layout from existing file victim_file into the file filename. The filename must
be an existing file, however, it can be a mirrored or regular non-mirrored file. If it is a non-
mirrored file, the command will convert it to a mirrored file.

Option Description

--mirror-count|-N[mirror_count] Indicates the number of mirrors to be added
with the following setstripe options.
It can be repeated multiple times to separate
mirrors that have different layouts.

The mirror_count argument is optional
and defaults to 1 if it is not specified; if



File Level Redundancy (FLR)

241

Option Description

specified, it must follow the option without a
space.

setstripe_options Specifies a specific layout for the mirror.
It can be a plain layout with specific
striping pattern or a composite layout,
such as Section 19.5, “Progressive File
Layout(PFL)”. The options are the same as
those for the lfs setstripe command.

If setstripe_options are not
specified, then the stripe options inherited
from the previous component will be used.
If there is no previous component, then the
stripe_count and stripe_size
options inherited from filesystem-wide
default values will be used, and the OST
pool_name inherited from parent directory
will be used.

-f <victim_file> If victim_file exists, the command will
split the layout from that file and use it as a
mirror added to the mirrored file. After the
command is finished, the victim_file
will be removed.

Note: The setstripe_options cannot
be specified with -f <victim_file>
option in one command line.

--no-verify If victim_file is specified, the
command will verify that the file contents
from victim_file are the same as
filename. Otherwise, the command will
return a failure. However, the option --
no-verify can be used to override this
verification. This option can save significant
time on file comparison if the file size is
large, but use it only when the file contents
are known to be the same.

Note: The lfs mirror extend operation won't be applied to the directory.

Examples:

The following commands create a non-mirrored file, convert it to a mirrored file, and extend
it with a plain layout mirror:

# lfs setstripe -p flash /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
lmm_stripe_count:  1
lmm_stripe_size:   1048576
lmm_pattern:       raid0
lmm_layout_gen:    0



File Level Redundancy (FLR)

242

lmm_stripe_offset: 0
lmm_pool:          flash
        obdidx           objid           objid           group
             0               4            0x4                0

# lfs mirror extend -N -S 8M -c -1 -p archive /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    2
  lcm_mirror_count:  2
  lcm_entry_count:   2
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x4:0x0] }

    lcme_id:             131073
    lcme_mirror_id:      2
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  6
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 3
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x3:0x0] }
      - 1: { l_ost_idx: 4, l_fid: [0x100040000:0x4:0x0] }
      - 2: { l_ost_idx: 5, l_fid: [0x100050000:0x4:0x0] }
      - 3: { l_ost_idx: 6, l_fid: [0x100060000:0x4:0x0] }
      - 4: { l_ost_idx: 7, l_fid: [0x100070000:0x4:0x0] }
      - 5: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }

The following commands split the PFL layout from a victim_file and use it as a mirror
added to the mirrored file /mnt/testfs/file1 created in the above example without data
verification:

# lfs setstripe -E 16M -c 2 -p none \
                -E eof -c -1 /mnt/testfs/victim_file
# lfs getstripe /mnt/testfs/victim_file
/mnt/testfs/victim_file
  lcm_layout_gen:    2
  lcm_mirror_count:  1



File Level Redundancy (FLR)

243

  lcm_entry_count:   2
    lcme_id:             1
    lcme_mirror_id:      0
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   16777216
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 5
      lmm_objects:
      - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x5:0x0] }
      - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x5:0x0] }

    lcme_id:             2
    lcme_mirror_id:      0
    lcme_flags:          0
    lcme_extent.e_start: 16777216
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1

# lfs mirror extend --no-verify -N -f /mnt/testfs/victim_file \
                    /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    3
  lcm_mirror_count:  3
  lcm_entry_count:   4
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x4:0x0] }

    lcme_id:             131073
    lcme_mirror_id:      2
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  6
      lmm_stripe_size:   8388608



File Level Redundancy (FLR)

244

      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 3
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x3:0x0] }
      - 1: { l_ost_idx: 4, l_fid: [0x100040000:0x4:0x0] }
      - 2: { l_ost_idx: 5, l_fid: [0x100050000:0x4:0x0] }
      - 3: { l_ost_idx: 6, l_fid: [0x100060000:0x4:0x0] }
      - 4: { l_ost_idx: 7, l_fid: [0x100070000:0x4:0x0] }
      - 5: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }

    lcme_id:             196609
    lcme_mirror_id:      3
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   16777216
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 5
      lmm_objects:
      - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x5:0x0] }
      - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x5:0x0] }

    lcme_id:             196610
    lcme_mirror_id:      3
    lcme_flags:          0
    lcme_extent.e_start: 16777216
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  -1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1

After extending, the victim_file was removed:

# ls /mnt/testfs/victim_file
ls: cannot access /mnt/testfs/victim_file: No such file or directory

22.2.3. Splitting a Mirrored File
Command:

lfs mirror split <--mirror-id <mirror_id>>
[--destroy|-d] [-f <new_file>] <mirrored_file>

The above command will split a specified mirror with ID <mirror_id> out of an
existing mirrored file specified by mirrored_file. By default, a new file named
<mirrored_file>.mirror~<mirror_id> will be created with the layout of the split
mirror. If the --destroy|-d option is specified, then the split mirror will be destroyed. If
the -f <new_file> option is specified, then a file named new_file will be created with



File Level Redundancy (FLR)

245

the layout of the split mirror. If mirrored_file has only one mirror existing after split,
it will be converted to a regular non-mirrored file. If the original mirrored_file is not a
mirrored file, then the command will return an error.

Option Description

--mirror-id <mirror_id> The unique numerical identifier for a mirror.
The mirror ID is unique within a mirrored
file and is automatically assigned at file
creation or extension time. It can be fetched
by the lfs getstripe command.

--destroy|-d Indicates the split mirror will be destroyed.

-f <new_file> Indicates a file named new_file will be
created with the layout of the split mirror.

Examples:

The following commands create a mirrored file with 4 mirrors, then split 3 mirrors separately
from the mirrored file.

Creating a mirrored file with 4 mirrors:

# lfs mirror create -N2 -E 4M -p flash -E eof -c -1 \
                    -N2 -S 8M -c 2 -p archive /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    6
  lcm_mirror_count:  4
  lcm_entry_count:   6
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x4:0x0] }

    lcme_id:             65538
    lcme_mirror_id:      1
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1
      lmm_pool:          flash



File Level Redundancy (FLR)

246

    lcme_id:             131075
    lcme_mirror_id:      2
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 0
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }

    lcme_id:             131076
    lcme_mirror_id:      2
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1
      lmm_pool:          flash

    lcme_id:             196613
    lcme_mirror_id:      3
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 4
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x5:0x0] }
      - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x6:0x0] }

    lcme_id:             262150
    lcme_mirror_id:      4
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 7
      lmm_pool:          archive
      lmm_objects:



File Level Redundancy (FLR)

247

      - 0: { l_ost_idx: 7, l_fid: [0x100070000:0x5:0x0] }
      - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x4:0x0] }

Splitting the mirror with ID 1 from /mnt/testfs/file1 and creating /mnt/testfs/
file1.mirror~1 with the layout of the split mirror:

# lfs mirror split --mirror-id 1 /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1.mirror~1
/mnt/testfs/file1.mirror~1
  lcm_layout_gen:    1
  lcm_mirror_count:  1
  lcm_entry_count:   2
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x4:0x0] }

    lcme_id:             65538
    lcme_mirror_id:      1
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1
      lmm_pool:          flash

Splitting the mirror with ID 2 from /mnt/testfs/file1 and destroying it:

# lfs mirror split --mirror-id 2 -d /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    8
  lcm_mirror_count:  2
  lcm_entry_count:   2
    lcme_id:             196613
    lcme_mirror_id:      3
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0



File Level Redundancy (FLR)

248

      lmm_stripe_offset: 4
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x5:0x0] }
      - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x6:0x0] }

    lcme_id:             262150
    lcme_mirror_id:      4
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 7
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 7, l_fid: [0x100070000:0x5:0x0] }
      - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x4:0x0] }

Splitting the mirror with ID 3 from /mnt/testfs/file1 and creating /mnt/testfs/
file2 with the layout of the split mirror:

# lfs mirror split --mirror-id 3 -f /mnt/testfs/file2 \
                   /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file2
/mnt/testfs/file2
  lcm_layout_gen:    1
  lcm_mirror_count:  1
  lcm_entry_count:   1
    lcme_id:             196613
    lcme_mirror_id:      3
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 4
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x5:0x0] }
      - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x6:0x0] }

# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    9
  lcm_mirror_count:  1
  lcm_entry_count:   1
    lcme_id:             262150
    lcme_mirror_id:      4
    lcme_flags:          init



File Level Redundancy (FLR)

249

    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  2
      lmm_stripe_size:   8388608
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 7
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 7, l_fid: [0x100070000:0x5:0x0] }
      - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x4:0x0] }

The above layout information showed that mirrors with ID 1, 2, and 3 were all split from
the mirrored file /mnt/testfs/file1.

22.2.4. Resynchronizing out-of-sync Mirrored
File(s)

Command:

lfs mirror resync [--only <mirror_id[,...]>]
<mirrored_file> [<mirrored_file2>...]

The above command will resynchronize out-of-sync mirrored file(s) specified by
mirrored_file. It supports specifying multiple mirrored files in one command line.

If there is no stale mirror for the specified mirrored file(s), then the command does nothing.
Otherwise, it will copy data from synced mirror to the stale mirror(s), and mark all successfully
copied mirror(s) as SYNC. If the --only <mirror_id[,...]> option is specified, then
the command will only resynchronize the mirror(s) specified by the mirror_id(s). This
option cannot be used when multiple mirrored files are specified.

Option Description

--only <mirror_id[,...]> Indicates which mirror(s) specified
by mirror_id(s) needs to be
resynchronized. The mirror_id is the
unique numerical identifier for a mirror.
Multiple mirror_ids are separated by
comma. This option cannot be used when
multiple mirrored files are specified.

Note: With delayed write implemented in FLR phase 1, after writing to a mirrored file, users
need to run lfs mirror resync command to get all mirrors synchronized.

Examples:

The following commands create a mirrored file with 3 mirrors, then write some data into the
file and resynchronizes stale mirrors.

Creating a mirrored file with 3 mirrors:

# lfs mirror create -N -E 4M -p flash -E eof \
                    -N2 -p archive /mnt/testfs/file1



File Level Redundancy (FLR)

250

# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    4
  lcm_mirror_count:  3
  lcm_entry_count:   4
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 1
      lmm_pool:          flash
      lmm_objects:
      - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x5:0x0] }

    lcme_id:             65538
    lcme_mirror_id:      1
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: -1
      lmm_pool:          flash

    lcme_id:             131075
    lcme_mirror_id:      2
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0
      lmm_stripe_offset: 3
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x4:0x0] }

    lcme_id:             196612
    lcme_mirror_id:      3
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
      lmm_stripe_count:  1
      lmm_stripe_size:   1048576
      lmm_pattern:       raid0
      lmm_layout_gen:    0



File Level Redundancy (FLR)

251

      lmm_stripe_offset: 4
      lmm_pool:          archive
      lmm_objects:
      - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x6:0x0] }

Writing some data into the mirrored file /mnt/testfs/file1:

# yes | dd of=/mnt/testfs/file1 bs=1M count=2
2+0 records in
2+0 records out
2097152 bytes (2.1 MB) copied, 0.0320613 s, 65.4 MB/s

# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    5
  lcm_mirror_count:  3
  lcm_entry_count:   4
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
    ......

    lcme_id:             65538
    lcme_mirror_id:      1
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
    ......

    lcme_id:             131075
    lcme_mirror_id:      2
    lcme_flags:          init,stale
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
    ......

    lcme_id:             196612
    lcme_mirror_id:      3
    lcme_flags:          init,stale
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
    ......

The above layout information showed that data were written into the first component of mirror
with ID 1, and mirrors with ID 2 and 3 were marked with “stale” flag.

Resynchronizing the stale mirror with ID 2 for the mirrored file /mnt/testfs/file1:

# lfs mirror resync --only 2 /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    7
  lcm_mirror_count:  3



File Level Redundancy (FLR)

252

  lcm_entry_count:   4
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
    ......

    lcme_id:             65538
    lcme_mirror_id:      1
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
    ......

    lcme_id:             131075
    lcme_mirror_id:      2
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
    ......

    lcme_id:             196612
    lcme_mirror_id:      3
    lcme_flags:          init,stale
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
    ......

The above layout information showed that after resynchronizing, the “stale” flag was removed
from mirror with ID 2.

Resynchronizing all of the stale mirrors for the mirrored file /mnt/testfs/file1:

# lfs mirror resync /mnt/testfs/file1
# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
  lcm_layout_gen:    9
  lcm_mirror_count:  3
  lcm_entry_count:   4
    lcme_id:             65537
    lcme_mirror_id:      1
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   4194304
    ......

    lcme_id:             65538
    lcme_mirror_id:      1
    lcme_flags:          0
    lcme_extent.e_start: 4194304
    lcme_extent.e_end:   EOF
    ......



File Level Redundancy (FLR)

253

    lcme_id:             131075
    lcme_mirror_id:      2
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
    ......

    lcme_id:             196612
    lcme_mirror_id:      3
    lcme_flags:          init
    lcme_extent.e_start: 0
    lcme_extent.e_end:   EOF
    ......

The above layout information showed that after resynchronizing, none of the mirrors were
marked as stale.

22.2.5. Verifying Mirrored File(s)
Command:

lfs mirror verify [--only <mirror_id,mirror_id2[,...]>]
[--verbose|-v] <mirrored_file> [<mirrored_file2> ...]

The above command will verify that each SYNC mirror (contains up-to-date data) of
a mirrored file, specified by mirrored_file, has exactly the same data. It supports
specifying multiple mirrored files in one command line.

This is a scrub tool that should be run on regular basis to make sure that mirrored files are
not corrupted. The command won't repair the file if it turns out to be corrupted. Usually, an
administrator should check the file content from each mirror and decide which one is correct
and then invoke lfs mirror resync to repair it manually.

Option Description

--only <mirror_id,mirror_id2[,...]> Indicates which mirrors specified by
mirror_ids need to be verified. The
mirror_id is the unique numerical
identifier for a mirror. Multiple
mirror_ids are separated by comma.

Note: At least two mirror_ids are
required. This option cannot be used when
multiple mirrored files are specified.

--verbose|-v Indicates the command will print where
the differences are if the data do not match.
Otherwise, the command will just return
an error in that case. This option can be
repeated for multiple times to print more
information.

Note:

Mirror components that have “stale” or “offline” flags will be skipped and not verified.



File Level Redundancy (FLR)

254

Examples:

The following command verifies that each mirror of a mirrored file contains exactly the same
data:

# lfs mirror verify /mnt/testfs/file1

The following command has the -v option specified to print where the differences are if the
data does not match:

# lfs mirror verify -vvv /mnt/testfs/file2
Chunks to be verified in /mnt/testfs/file2:
[0, 0x200000)   [1, 2, 3, 4]    4
[0x200000, 0x400000)    [1, 2, 3, 4]    4
[0x400000, 0x600000)    [1, 2, 3, 4]    4
[0x600000, 0x800000)    [1, 2, 3, 4]    4
[0x800000, 0xa00000)    [1, 2, 3, 4]    4
[0xa00000, 0x1000000)   [1, 2, 3, 4]    4
[0x1000000, 0xffffffffffffffff) [1, 2, 3, 4]    4

Verifying chunk [0, 0x200000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0, 0x200000):
Mirror 1:       0x207b02f1
Mirror 2:       0x207b02f1
Mirror 3:       0x207b02f1
Mirror 4:       0x207b02f1

Verifying chunk [0, 0x200000) on mirror: 1 2 3 4 PASS

Verifying chunk [0x200000, 0x400000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x200000, 0x400000):
Mirror 1:       0x207b02f1
Mirror 2:       0x207b02f1
Mirror 3:       0x207b02f1
Mirror 4:       0x207b02f1

Verifying chunk [0x200000, 0x400000) on mirror: 1 2 3 4 PASS

Verifying chunk [0x400000, 0x600000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x400000, 0x600000):
Mirror 1:       0x42571b66
Mirror 2:       0x42571b66
Mirror 3:       0x42571b66
Mirror 4:       0xabdaf92

lfs mirror verify: chunk [0x400000, 0x600000) has different
checksum value on mirror 1 and mirror 4.
Verifying chunk [0x600000, 0x800000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x600000, 0x800000):
Mirror 1:       0x1f8ad0d8
Mirror 2:       0x1f8ad0d8
Mirror 3:       0x1f8ad0d8
Mirror 4:       0x18975bf9

lfs mirror verify: chunk [0x600000, 0x800000) has different



File Level Redundancy (FLR)

255

checksum value on mirror 1 and mirror 4.
Verifying chunk [0x800000, 0xa00000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x800000, 0xa00000):
Mirror 1:       0x69c17478
Mirror 2:       0x69c17478
Mirror 3:       0x69c17478
Mirror 4:       0x69c17478

Verifying chunk [0x800000, 0xa00000) on mirror: 1 2 3 4 PASS

lfs mirror verify: '/mnt/testfs/file2' chunk [0xa00000, 0x1000000]
exceeds file size 0xa00000: skipped

The following command uses the --only option to only verify the specified mirrors:

# lfs mirror verify -v --only 1,4 /mnt/testfs/file2
CRC-32 checksum value for chunk [0, 0x200000):
Mirror 1:       0x207b02f1
Mirror 4:       0x207b02f1

CRC-32 checksum value for chunk [0x200000, 0x400000):
Mirror 1:       0x207b02f1
Mirror 4:       0x207b02f1

CRC-32 checksum value for chunk [0x400000, 0x600000):
Mirror 1:       0x42571b66
Mirror 4:       0xabdaf92

lfs mirror verify: chunk [0x400000, 0x600000) has different
checksum value on mirror 1 and mirror 4.
CRC-32 checksum value for chunk [0x600000, 0x800000):
Mirror 1:       0x1f8ad0d8
Mirror 4:       0x18975bf9

lfs mirror verify: chunk [0x600000, 0x800000) has different
checksum value on mirror 1 and mirror 4.
CRC-32 checksum value for chunk [0x800000, 0xa00000):
Mirror 1:       0x69c17478
Mirror 4:       0x69c17478

lfs mirror verify: '/mnt/testfs/file2' chunk [0xa00000, 0x1000000]
exceeds file size 0xa00000: skipped

22.2.6. Finding Mirrored File(s)
The lfs find command is used to list files and directories with specific attributes. The
following two attribute parameters are specific to a mirrored file or directory:

lfs find <directory|filename ...>
    [[!] --mirror-count|-N [+-]n]
    [[!] --mirror-state <[^]state>]

Option Description

--mirror-count|-N [+-]n Indicates mirror count.



File Level Redundancy (FLR)

256

Option Description

--mirror-state <[^]state> Indicates mirrored file state.

If ^state is used, print only files not
matching state. Only one state can be
specified.

Valid state names are:

ro – indicates the mirrored file is in read-
only state. All of the mirrors contain the up-
to-date data.

wp – indicates the mirrored file is in a state
of being written.

sp – indicates the mirrored file is in a state
of being resynchronized.

Note:

Specifying ! before an option negates its meaning (files NOT matching the parameter). Using
+ before a numeric value means 'more than n', while - before a numeric value means 'less than
n'. If neither is used, it means 'equal to n', within the bounds of the unit specified (if any).

Examples:

The following command recursively lists all mirrored files that have more than 2 mirrors under
directory /mnt/testfs:

# lfs find --mirror-count +2 --type f /mnt/testfs

The following command recursively lists all out-of-sync mirrored files under directory /mnt/
testfs:

# lfs find --mirror-state=^ro --type f /mnt/testfs

22.3. Interoperability
Introduced in Lustre release 2.11.0, the FLR feature is based on the Section 19.5, “Progressive
File Layout(PFL)” feature introduced in Lustre 2.10.0

For Lustre release 2.9 and older clients, which do not understand the PFL layout, they cannot
access and open mirrored files created in the Lustre 2.11 filesystem.

The following example shows the errors returned by accessing and opening a mirrored file
(created in Lustre 2.11 filesystem) on a Lustre 2.9 client:

# ls /mnt/testfs/mirrored_file
ls: cannot access /mnt/testfs/mirrored_file: Invalid argument

# cat /mnt/testfs/mirrored_file
cat: /mnt/testfs/mirrored_file: Operation not supported

For Lustre release 2.10 clients, which understand the PFL layout, but do not understand a
mirrored layout, they can access mirrored files created in Lustre 2.11 filesystem, however,



File Level Redundancy (FLR)

257

they cannot open them. This is because the Lustre 2.10 clients do not verify overlapping
components so they would read and write mirrored files just as if they were normal PFL files,
which will cause a problem where synced mirrors actually contain different data.

The following example shows the results returned by accessing and opening a mirrored file
(created in Lustre 2.11 filesystem) on a Lustre 2.10 client:

# ls /mnt/testfs/mirrored_file
/mnt/testfs/mirrored_file

# cat /mnt/testfs/mirrored_file
cat: /mnt/testfs/mirrored_file: Operation not supported



258

Chapter 23. Managing the File System
and I/O

23.1.   Handling Full OSTs
Sometimes a Lustre file system becomes unbalanced, often due to incorrectly-specified stripe settings, or
when very large files are created that are not striped over all of the OSTs. Lustre will automatically avoid
allocating new files on OSTs that are full. If an OST is completely full and more data is written to files
already located on that OST, an error occurs. The procedures below describe how to handle a full OST.

The MDS will normally handle space balancing automatically at file creation time, and this procedure is
normally not needed, but manual data migration may be desirable in some cases (e.g. creating very large
files that would consume more than the total free space of the full OSTs).

23.1.1.  Checking OST Space Usage
The example below shows an unbalanced file system:

client# lfs df -h
UUID                       bytes           Used            Available       \
Use%            Mounted on
testfs-MDT0000_UUID        4.4G            214.5M          3.9G            \
4%              /mnt/testfs[MDT:0]
testfs-OST0000_UUID        2.0G            751.3M          1.1G            \
37%             /mnt/testfs[OST:0]
testfs-OST0001_UUID        2.0G            755.3M          1.1G            \
37%             /mnt/testfs[OST:1]
testfs-OST0002_UUID        2.0G            1.7G            155.1M          \
86%             /mnt/testfs[OST:2] ****
testfs-OST0003_UUID        2.0G            751.3M          1.1G            \
37%             /mnt/testfs[OST:3]
testfs-OST0004_UUID        2.0G            747.3M          1.1G            \
37%             /mnt/testfs[OST:4]
testfs-OST0005_UUID        2.0G            743.3M          1.1G            \
36%             /mnt/testfs[OST:5]
 
filesystem summary:        11.8G           5.4G            5.8G            \
45%             /mnt/testfs

In this case, OST0002 is almost full and when an attempt is made to write additional information to the
file system (even with uniform striping over all the OSTs), the write command fails as follows:

client# lfs setstripe /mnt/testfs 4M 0 -1
client# dd if=/dev/zero of=/mnt/testfs/test_3 bs=10M count=100
dd: writing '/mnt/testfs/test_3': No space left on device
98+0 records in
97+0 records out
1017192448 bytes (1.0 GB) copied, 23.2411 seconds, 43.8 MB/s



Managing the File System and I/O

259

23.1.2.  Disabling creates on a Full OST
To avoid running out of space in the file system, if the OST usage is imbalanced and one or more OSTs
are close to being full while there are others that have a lot of space, the MDS will typically avoid file
creation on the full OST(s) automatically. The full OSTs may optionally be deactivated manually on the
MDS to ensure the MDS will not allocate new objects there.

1. Log into the MDS server and use the lctl command to stop new object creation on the full OST(s):

mds# lctl set_param osp.fsname-OSTnnnn*.max_create_count=0

When new files are created in the file system, they will only use the remaining OSTs. Either manual space
rebalancing can be done by migrating data to other OSTs, as shown in the next section, or normal file
deletion and creation can passively rebalance the space usage.

23.1.3.   Migrating Data within a File System
If there is a need to move the file data from the current OST(s) to new OST(s), the data must be migrated
(copied) to the new location. The simplest way to do this is to use the lfs_migrate command, as
described in Section 14.8, “ Adding a New OST to a Lustre File System”.

23.1.4.   Returning an Inactive OST Back Online
Once the full OST(s) no longer are severely imbalanced, due to either active or passive data redistribution,
they should be reactivated so they will again have new files allocated on them.

[mds]# lctl set_param osp.testfs-OST0002.max_create_count=20000

23.1.5. Migrating Metadata within a Filesystem
Introduced in Lustre 2.8

23.1.5.1. Whole Directory Migration

Lustre software version 2.8 includes a feature to migrate metadata (directories and inodes therein) between
MDTs. This migration can only be performed on whole directories. Striped directories are not supported
until Lustre 2.12. For example, to migrate the contents of the /testfs/remotedir directory from
the MDT where it currently is located to MDT0000 to allow that MDT to be removed, the sequence of
commands is as follows:

$ cd /testfs
$ lfs getdirstripe -m ./remotedir which MDT is dir on?
1
$ touch ./remotedir/file.{1,2,3}.txtcreate test files
$ lfs getstripe -m ./remotedir/file.*.txtcheck files are on MDT0001
1
1
1
$ lfs migrate -m 0 ./remotedir migrate testremote to MDT0000
$ lfs getdirstripe -m ./remotedir which MDT is dir on now?
0



Managing the File System and I/O

260

$ lfs getstripe -m ./remotedir/file.*.txtcheck files are on MDT0000
0
0
0

For more information, see man lfs-migrate.

Warning

During migration each file receives a new identifier (FID). As a consequence, the file will report
a new inode number to userspace applications. Some system tools (for example, backup and
archiving tools, NFS, Samba) that identify files by inode number may consider the migrated files
to be new, even though the contents are unchanged. If a Lustre system is re-exporting to NFS,
the migrated files may become inaccessible during and after migration if the client or server are
caching a stale file handle with the old FID. Restarting the NFS service will flush the local file
handle cache, but clients may also need to be restarted as they may cache stale file handles as well.

Introduced in Lustre 2.12

23.1.5.2. Striped Directory Migration

Lustre 2.8 included a feature to migrate metadata (directories and inodes therein) between MDTs, however
it did not support migration of striped directories, or changing the stripe count of an existing directory.
Lustre 2.12 adds support for migrating and restriping directories. The lfs migrate -m command can
only only be performed on whole directories, though it will migrate both the specified directory and its
sub-entries recursively. For example, to migrate the contents of a large directory /testfs/largedir
from its current location on MDT0000 to MDT0001 and MDT0003, run the following command:

$ lfs migrate -m 1,3 /testfs/largedir

Metadata migration will migrate file dirent and inode to other MDTs, but it won't touch file data. During
migration, directory and its sub-files can be accessed like normal ones, though the same warning above
applies to tools that depend on the file inode number. Migration may fail for various reasons such as MDS
restart, or disk full. In those cases, some of the sub-files may have been migrated to the new MDTs, while
others are still on the original MDT. The files can be accessed normally. The same lfs migrate -
m command should be executed again when these issues are fixed to finish this migration. However, you
cannot abort a failed migration, or migrate to different MDTs from previous migration command.

Introduced in Lustre 2.12

23.1.5.3. Directory Restriping

Lustre 2.14 includs a feature to change the stripe count of an existing directory. The lfs setdirstripe
-c command can be performed on an existing directory to change its stripe count. For example, a directory
/testfs/testdir is becoming large, run the following command to increase its stripe count to 2:

$ lfs setdirstripe -c 2 /testfs/testdir

By default directory restriping will migrate sub-file dirents only, but it won't move inodes. To enable
moving both dirents and inodes, run the following command on all MDS's:

mds$ lctl set_param mdt.*.dir_restripe_nsonly=0

It's not allowed to specify MDTs in directory restriping, instead server will pick MDTs for the added stripes
by space and inode usages. During restriping, directory and its sub-files can be accessed like normal ones,



Managing the File System and I/O

261

which is the same as directory migration. Similarly you cannot abort a failed restriping, and server will
resume the failed restriping automatically when it notices an unfinished restriping.

Introduced in Lustre 2.12

23.1.5.4. Directory Auto-Split

Lustre 2.14 includs a feature to automatically increase the stripe count of a directory when it becomes
large. This can be enabled by the following command:

mds$ lctl set_param mdt.*.enable_dir_auto_split=1

The sub file count that triggers directory auto-split is 50k, and it can be changed by the following command:

mds$ lctl set_param mdt.*.dir_split_count=value

The directory stripe count will be increased from 0 to 4 if it's a plain directory, and from 4 to 8 upon the
second split, and so on. However the final stripe count won't exceed total MDT count, and it will stop
splitting when it's distributed among all MDTs. This delta value can be changed by the following command:

mds$ lctl set_param mdt.*.dir_split_delta=value

23.2.    Creating and Managing OST Pools
The OST pools feature enables users to group OSTs together to make object placement more flexible. A
'pool' is the name associated with an arbitrary subset of OSTs in a Lustre cluster.

OST pools follow these rules:

• An OST can be a member of multiple pools.

• No ordering of OSTs in a pool is defined or implied.

• Stripe allocation within a pool follows the same rules as the normal stripe allocator.

• OST membership in a pool is flexible, and can change over time.

When an OST pool is defined, it can be used to allocate files. When file or directory striping is set to a
pool, only OSTs in the pool are candidates for striping. If a stripe_index is specified which refers to an
OST that is not a member of the pool, an error is returned.

OST pools are used only at file creation. If the definition of a pool changes (an OST is added or removed
or the pool is destroyed), already-created files are not affected.

Note

An error ( EINVAL) results if you create a file using an empty pool.

Note

If a directory has pool striping set and the pool is subsequently removed, the new files created in
this directory have the (non-pool) default striping pattern for that directory applied and no error
is returned.



Managing the File System and I/O

262

23.2.1. Working with OST Pools
OST pools are defined in the configuration log on the MGS. Use the lctl command to:

• Create/destroy a pool

• Add/remove OSTs in a pool

• List pools and OSTs in a specific pool

The lctl command MUST be run on the MGS. Another requirement for managing OST pools is to either
have the MDT and MGS on the same node or have a Lustre client mounted on the MGS node, if it is
separate from the MDS. This is needed to validate the pool commands being run are correct.

Caution

Running the writeconf command on the MDS erases all pools information (as well as any
other parameters set using lctl conf_param). We recommend that the pools definitions
(and conf_param settings) be executed using a script, so they can be reproduced easily after
a writeconf is performed.

To create a new pool, run:

mgs# lctl pool_new fsname.poolname

Note

The pool name is an ASCII string up to 15 characters.

To add the named OST to a pool, run:

mgs# lctl pool_add fsname.poolname ost_list

Where:

• ost_listis fsname-OST index_range

• index_rangeis ost_index_start- ost_index_end[,index_range] or
ost_index_start- ost_index_end/step

If the leading  fsname  and/or ending _UUID are missing, they are automatically added.

For example, to add even-numbered OSTs to pool1 on file system testfs, run a single command (
pool_add) to add many OSTs to the pool at one time:

lctl pool_add testfs.pool1 OST[0-10/2]

Note

Each time an OST is added to a pool, a new llog configuration record is created. For
convenience, you can run a single command.

To remove a named OST from a pool, run:



Managing the File System and I/O

263

mgs# lctl pool_remove 
fsname.
poolname 
ost_list

To destroy a pool, run:

mgs# lctl pool_destroy 
fsname.
poolname

Note

All OSTs must be removed from a pool before it can be destroyed.

To list pools in the named file system, run:

mgs# lctl pool_list 
fsname|pathname

To list OSTs in a named pool, run:

lctl pool_list 
fsname.
poolname

23.2.1.1. Using the lfs Command with OST Pools

Several lfs commands can be run with OST pools. Use the lfs setstripe command to associate a
directory with an OST pool. This causes all new regular files and directories in the directory to be created
in the pool. The lfs command can be used to list pools in a file system and OSTs in a named pool.

To associate a directory with a pool, so all new files and directories will be created in the pool, run:

client# lfs setstripe --pool|-p pool_name 
filename|dirname 

To set striping patterns, run:

client# lfs setstripe [--size|-s stripe_size] [--offset|-o start_ost]
           [--stripe-count|-c stripe_count] [--overstripe-count|-C stripe_count]
           [--pool|-p pool_name]
           
dir|filename

Note

If you specify striping with an invalid pool name, because the pool does not exist or the pool
name was mistyped, lfs setstripe returns an error. Run lfs pool_list to make sure
the pool exists and the pool name is entered correctly.



Managing the File System and I/O

264

Note

The --pool option for lfs setstripe is compatible with other modifiers. For example, you can
set striping on a directory to use an explicit starting index.

Introduced in Lustre 2.16

Note

There are several reserved pool keywords:

• Use  --pool '' or --pool inherit to force a component to inherit the pool
from the parent or root directory instead of the previous PFL's component (see Section 19.5,
“Progressive File Layout(PFL)”).

• Use  --pool ignore to force creation of a file or a PFL's component without a pool set
(no inheritance from last component, root or parent).

23.2.2.  Tips for Using OST Pools
Here are several suggestions for using OST pools.

• A directory or file can be given an extended attribute (EA), that restricts striping to a pool.

• Pools can be used to group OSTs with the same technology or performance (slower or faster), or that
are preferred for certain jobs. Examples are SATA OSTs versus SAS OSTs or remote OSTs versus
local OSTs.

• A file created in an OST pool tracks the pool by keeping the pool name in the file LOV EA.

23.3.  Adding an OST to a Lustre File System
To add an OST to existing Lustre file system:

1. Add a new OST by passing on the following commands, run:

oss# mkfs.lustre --fsname=testfs --mgsnode=mds16@tcp0 --ost --index=12 /dev/sda
oss# mkdir -p /mnt/testfs/ost12
oss# mount -t lustre /dev/sda /mnt/testfs/ost12

2. Migrate the data (possibly).

The file system is quite unbalanced when new empty OSTs are added. New file creations are
automatically balanced. If this is a scratch file system or files are pruned at a regular interval, then no
further work may be needed. Files existing prior to the expansion can be rebalanced with an in-place
copy, which can be done with a simple script.

The basic method is to copy existing files to a temporary file, then move the temp file over the old one.
This should not be attempted with files which are currently being written to by users or applications.
This operation redistributes the stripes over the entire set of OSTs.

A very clever migration script would do the following:



Managing the File System and I/O

265

• Examine the current distribution of data.

• Calculate how much data should move from each full OST to the empty ones.

• Search for files on a given full OST (using lfs getstripe).

• Force the new destination OST (using lfs setstripe).

• Copy only enough files to address the imbalance.

If a Lustre file system administrator wants to explore this approach further, per-OST disk-usage statistics
can be found in the osc.*.rpc_stats parameter file.

23.4.  Performing Direct I/O
The Lustre software supports the O_DIRECT flag to open.

Applications using the read() and write() calls must supply buffers aligned on a page boundary
(usually 4 K). If the alignment is not correct, the call returns -EINVAL. Direct I/O may help performance
in cases where the client is doing a large amount of I/O and is CPU-bound (CPU utilization 100%).

23.4.1. Making File System Objects Immutable
An immutable file or directory is one that cannot be modified, renamed or removed. To do this:

chattr +i 
file

To remove this flag, use chattr -i

23.5. Other I/O Options
This section describes other I/O options, including checksums, and the ptlrpcd thread pool.

23.5.1. Lustre Checksums
To guard against network data corruption, a Lustre client can perform two types of data checksums: in-
memory (for data in client memory) and wire (for data sent over the network). For each checksum type,
a 32-bit checksum of the data read or written on both the client and server is computed, to ensure that the
data has not been corrupted in transit over the network. The ldiskfs backing file system does NOT do
any persistent checksumming, so it does not detect corruption of data in the OST file system.

The checksumming feature is enabled, by default, on individual client nodes. If the client or OST detects
a checksum mismatch, then an error is logged in the syslog of the form:

LustreError: BAD WRITE CHECKSUM: changed in transit before arrival at OST: \
from 192.168.1.1@tcp inum 8991479/2386814769 object 1127239/0 extent [10240\
0-106495]

If this happens, the client will re-read or re-write the affected data up to five times to get a good copy of
the data over the network. If it is still not possible, then an I/O error is returned to the application.



Managing the File System and I/O

266

To enable both types of checksums (in-memory and wire), run:

lctl set_param llite.*.checksum_pages=1

To disable both types of checksums (in-memory and wire), run:

lctl set_param llite.*.checksum_pages=0

To check the status of a wire checksum, run:

lctl get_param osc.*.checksums

23.5.1.1. Changing Checksum Algorithms

By default, the Lustre software uses the adler32 checksum algorithm, because it is robust and has a
lower impact on performance than crc32. The Lustre file system administrator can change the checksum
algorithm via lctl get_param, depending on what is supported in the kernel.

To check which checksum algorithm is being used by the Lustre software, run:

$ lctl get_param osc.*.checksum_type

To change the wire checksum algorithm, run:

$ lctl set_param osc.*.checksum_type=
algorithm

Note

The in-memory checksum always uses the adler32 algorithm, if available, and only falls back to
crc32 if adler32 cannot be used.

In the following example, the lctl get_param command is used to determine that the Lustre software
is using the adler32 checksum algorithm. Then the lctl set_param command is used to change the
checksum algorithm to crc32. A second lctl get_param command confirms that the crc32 checksum
algorithm is now in use.

$ lctl get_param osc.*.checksum_type
osc.testfs-OST0000-osc-ffff81012b2c48e0.checksum_type=crc32 [adler]
$ lctl set_param osc.*.checksum_type=crc32
osc.testfs-OST0000-osc-ffff81012b2c48e0.checksum_type=crc32
$ lctl get_param osc.*.checksum_type
osc.testfs-OST0000-osc-ffff81012b2c48e0.checksum_type=[crc32] adler

23.5.2. PtlRPC Client Thread Pool
The use of large SMP nodes for Lustre clients requires significant parallelism within the kernel to avoid
cases where a single CPU would be 100% utilized and other CPUs would be relativity idle. This is
especially noticeable when a single thread traverses a large directory.



Managing the File System and I/O

267

The Lustre client implements a PtlRPC daemon thread pool, so that multiple threads can be created to
serve asynchronous RPC requests, even if only a single userspace thread is running. The number of ptlrpcd
threads spawned is controlled at module load time using module options. By default two service threads
are spawned per CPU socket.

One of the issues with thread operations is the cost of moving a thread context from one CPU to another
with the resulting loss of CPU cache warmth. To reduce this cost, PtlRPC threads can be bound to a CPU.
However, if the CPUs are busy, a bound thread may not be able to respond quickly, as the bound CPU
may be busy with other tasks and the thread must wait to schedule.

Because of these considerations, the pool of ptlrpcd threads can be a mixture of bound and unbound threads.
The system operator can balance the thread mixture based on system size and workload.

23.5.2.1. ptlrpcd parameters

These parameters should be set in /etc/modprobe.conf or in the etc/modprobe.d directory, as
options for the ptlrpc module.

options ptlrpcd ptlrpcd_per_cpt_max=XXX

Sets the number of ptlrpcd threads created per socket. The default if not specified is two threads per CPU
socket, including hyper-threaded CPUs. The lower bound is 2 threads per socket.

options ptlrpcd ptlrpcd_bind_policy=[1-4]

Controls the binding of threads to CPUs. There are four policy options.

• PDB_POLICY_NONE(ptlrpcd_bind_policy=1) All threads are unbound.

• PDB_POLICY_FULL(ptlrpcd_bind_policy=2) All threads attempt to bind to a CPU.

• PDB_POLICY_PAIR(ptlrpcd_bind_policy=3) This is the default policy. Threads are allocated as a
bound/unbound pair. Each thread (bound or free) has a partner thread. The partnering is used by the
ptlrpcd load policy, which determines how threads are allocated to CPUs.

• PDB_POLICY_NEIGHBOR(ptlrpcd_bind_policy=4) Threads are allocated as a bound/unbound pair.
Each thread (bound or free) has two partner threads.



268

Chapter 24. Lustre File System Failover
and Multiple-Mount Protection

This chapter describes the multiple-mount protection (MMP) feature, which protects the file system from
being mounted simultaneously to more than one node. It includes the following sections:

• Section 24.1, “ Overview of Multiple-Mount Protection”

• Section 24.2, “Working with Multiple-Mount Protection”

Note

For information about configuring a Lustre file system for failover, see Chapter 11, Configuring
Failover in a Lustre File System

24.1.   Overview of Multiple-Mount Protection
The multiple-mount protection (MMP) feature protects the Lustre file system from being mounted
simultaneously to more than one node. This feature is important in a shared storage environment (for
example, when a failover pair of OSSs share a LUN).

The backend file system, ldiskfs, supports the MMP mechanism. A block in the file system is updated
by a kmmpd daemon at one second intervals, and a sequence number is written in this block. If the file
system is cleanly unmounted, then a special "clean" sequence is written to this block. When mounting the
file system, ldiskfs checks if the MMP block has a clean sequence or not.

Even if the MMP block has a clean sequence, ldiskfs waits for some interval to guard against the
following situations:

• If I/O traffic is heavy, it may take longer for the MMP block to be updated.

• If another node is trying to mount the same file system, a "race" condition may occur.

With MMP enabled, mounting a clean file system takes at least 10 seconds. If the file system was not
cleanly unmounted, then the file system mount may require additional time.

Note

The MMP feature is only supported on Linux kernel versions newer than 2.6.9.

24.2. Working with Multiple-Mount Protection
On a new Lustre file system, MMP is automatically enabled by mkfs.lustre at format time if failover
is being used and the kernel and e2fsprogs version support it. On an existing file system, a Lustre file
system administrator can manually enable MMP when the file system is unmounted.

Use the following commands to determine whether MMP is running in the Lustre file system and to enable
or disable the MMP feature.

To determine if MMP is enabled, run:

dumpe2fs -h /dev/block_device | grep mmp



Lustre File System Failover
and Multiple-Mount Protection

269

Here is a sample command:

dumpe2fs -h /dev/sdc | grep mmp 
Filesystem features: has_journal ext_attr resize_inode dir_index 
filetype extent mmp sparse_super large_file uninit_bg

To manually disable MMP, run:

tune2fs -O ^mmp /dev/block_device

To manually enable MMP, run:

tune2fs -O mmp /dev/block_device

When MMP is enabled, if ldiskfs detects multiple mount attempts after the file system is mounted, it
blocks these later mount attempts and reports the time when the MMP block was last updated, the node
name, and the device name of the node where the file system is currently mounted.



270

Chapter 25. Configuring and Managing
Quotas
25.1.  Working with Quotas

Quotas allow a system administrator to limit the amount of disk space a user, group, or project can use.
Quotas are set by root, and can be specified for individual users, groups, and/or projects. Before a file is
written to a partition where quotas are set, the quota of the creator's group is checked. If a quota exists, then
the file size counts towards the group's quota. If no quota exists, then the owner's user quota is checked
before the file is written. Similarly, inode usage for specific functions can be controlled if a user over-
uses the allocated space.

Lustre quota enforcement differs from standard Linux quota enforcement in several ways:

• Quotas are administered via the lfs and lctl commands (post-mount).

• The quota feature in Lustre software is distributed throughout the system (as the Lustre file system is
a distributed file system). Because of this, quota setup and behavior on Lustre is somewhat different
from local disk quotas in the following ways:

• No single point of administration: some commands must be executed on the MGS, other commands
on the MDSs and OSSs, and still other commands on the client.

• Granularity: a local quota is typically specified for kilobyte resolution, Lustre uses one megabyte as
the smallest quota resolution.

• Accuracy: quota information is distributed throughout the file system and can only be accurately
calculated with a quiescent file system in order to minimize performance overhead during normal use.

• Quotas are allocated and consumed in a quantized fashion.

• Client does not set the usrquota or grpquota options to mount. Space accounting is enabled
by default and quota enforcement can be enabled/disabled on a per-filesystem basis with lctl
set_param -P.

Introduced in Lustre 2.8

It is worth noting that the lfs quotaon, lfs quotaoff, lfs quotacheck and quota_type
sub-commands are deprecated as of Lustre 2.4.0, and removed completely in Lustre 2.8.0.

Caution

Although a quota feature is available in the Lustre software, root quotas are NOT enforced.

lfs setquota -u root (limits are not enforced)

lfs quota -u root (usage includes internal Lustre data that is dynamic in size and does
not accurately reflect mount point visible block and inode usage).

25.2.  Enabling Disk Quotas
The design of quotas on Lustre has management and enforcement separated from resource usage and
accounting. Lustre software is responsible for management and enforcement. The back-end file system is



Configuring and Managing Quotas

271

responsible for resource usage and accounting. Because of this, it is necessary to begin enabling quotas
by enabling quotas on the back-end disk system.

Caution

Quota setup is orchestrated by the MGS and all setup commands in this section must be run
directly on the MGS. Support for project quotas specifically requires Lustre Release 2.10 or later.
A patched server may be required, depending on the kernel version and backend filesystem type:

Configuration Patched Server Required?

ldiskfs with kernel version < 4.5 Yes

ldiskfs with kernel version >= 4.5 No

zfs version >=0.8 with kernel version < 4.5 Yes

zfs version >=0.8 with kernel version > 4.5 No

*Note: Project quotas are not supported on zfs versions earlier than 0.8.

Once setup, verification of the quota state must be performed on the MDT. Although quota enforcement is
managed by the Lustre software, each OSD implementation relies on the back-end file system to maintain
per-user/group/project block and inode usage. Hence, differences exist when setting up quotas with ldiskfs
or ZFS back-ends:

• For ldiskfs backends, mkfs.lustre now creates empty quota files and enables the QUOTA feature
flag in the superblock which turns quota accounting on at mount time automatically. e2fsck was also
modified to fix the quota files when the QUOTA feature flag is present. The project quota feature is
disabled by default, and tune2fs needs to be run to enable every target manually. If user, group, and
project quota usage is inconsistent, run e2fsck -f on all unmounted MDTs and OSTs.

• For ZFS backend, the project quota feature is not supported on zfs versions less than 0.8.0. Accounting
ZAPs are created and maintained by the ZFS file system itself. While ZFS tracks per-user and group
block usage, it does not handle inode accounting for ZFS versions prior to zfs-0.7.0. The ZFS OSD
previously implemented its own support for inode tracking. Two options are available:

1. The ZFS OSD can estimate the number of inodes in-use based on the number of blocks
used by a given user or group. This mode can be enabled by running the following
command on the server running the target: lctl set_param osd-zfs.${FSNAME}-
${TARGETNAME}.quota_iused_estimate=1.

2. Similarly to block accounting, dedicated ZAPs are also created the ZFS OSD to maintain per-user
and group inode usage. This is the default mode which corresponds to quota_iused_estimate
set to 0.

Note

To (re-)enable space usage quota on ldiskfs filesystems, run tune2fs -O quota against all
targets. This command sets the QUOTA feature flag in the superblock and runs e2fsck internally.
As a result, the target must be offline to build the per-UID/GID disk usage database.

Introduced in Lustre 2.10

Lustre filesystems formatted with a Lustre release prior to 2.10 can be still safely upgraded
to release 2.10, but will not have project quota usage reporting functional until 2.15.0 or
tune2fs -O project is run against all ldiskfs backend targets. This command sets
the PROJECT feature flag in the superblock and runs e2fsck (as a result, the target must



Configuring and Managing Quotas

272

be offline). See Section 25.6, “ Quotas and Version Interoperability” for further important
considerations.

Caution

Lustre requires a version of e2fsprogs that supports quota to be installed on the server nodes
when using the ldiskfs backend (e2fsprogs is not needed with ZFS backend). In general, we
recommend to use the latest e2fsprogs version available on  https://downloads.whamcloud.com/
public/e2fsprogs/ [https://downloads.whamcloud.com/public/e2fsprogs/].

The ldiskfs OSD relies on the standard Linux quota to maintain accounting information on disk.
As a consequence, the Linux kernel running on the Lustre servers using ldiskfs backend must
have CONFIG_QUOTA, CONFIG_QUOTACTL and CONFIG_QFMT_V2 enabled.

Quota enforcement is turned on/off independently of space accounting which is always enabled. There is
a single per-file system quota parameter controlling inode/block quota enforcement. Like all permanent
parameters, this quota parameter can be set via lctl set_param -P on the MGS via the command:

lctl set_param -P osd-*.fsname-*.quota_slave_md|dt.enabled=u|g|p|none
        

• dt -- to configure data/block quota managed by OSTs (and MDTs for DoM files)

• md -- to configure metadata/inode quota managed by MDTs

• u -- to enable quota enforcement for users only

• g -- to enable quota enforcement for groups only

• p -- to enable quota enforcement for projects only

• ug -- to enable quota enforcement for all users and groups

• ugp -- to enable quota enforcement for all users, groups, and projects

• none -- to disable quota enforcement for all users, groups and projects

Examples:

To turn on user, group, and project quotas for block only on file system testfs1, on the MGS run:

mgs# lctl set_param -P osd-*.testfs1*.quota_slave_dt.enabled=ugp

To turn on only group quotas for inodes on file system testfs2, on the MGS run:

mgs# lctl set_param -P osd*.testfs2*.quota_slave_md.enabled=g

To turn off user, group, and project quotas for both inode and block on file system testfs3, on the
MGS run:

mgs# lctl set_param -P osd*.testfs3*.quota*.enabled=none

25.2.1.  Quota Verification
Once the quota parameters have been configured, all targets which are part of the file system will be
automatically notified of the new quota settings and enable/disable quota enforcement as needed. The per-
target enforcement status can still be verified by running the following command on the servers:

https://downloads.whamcloud.com/public/e2fsprogs/
https://downloads.whamcloud.com/public/e2fsprogs/
https://downloads.whamcloud.com/public/e2fsprogs/


Configuring and Managing Quotas

273

$ lctl get_param osd-*.*.quota_slave_*.enabled
osd-zfs.testfs1-MDT0000.quota_slave_dt.enabled=ugp
osd-zfs.testfs1-OST0000.quota_slave_dt.enabled=ugp
      

25.3.  Quota Administration
Once the file system is up and running, quota limits on blocks and inodes can be set for user, group, and
project. This is  controlled entirely from a client via three quota parameters:

Grace period-- The period of time (in seconds) within which users are allowed to exceed their soft limit.
There are six types of grace periods:

• user block soft limit

• user inode soft limit

• group block soft limit

• group inode soft limit

• project block soft limit

• project inode soft limit

The grace period applies to all users. The user block soft limit is for all users who are using a blocks quota.

Soft limit -- The grace timer is started once the soft limit is exceeded. At this point, the user/group/project
can still allocate block/inode. When the grace time expires and if the user is still above the soft limit, the
soft limit becomes a hard limit and the user/group/project can't allocate any new block/inode any more.
The user/group/project should then delete files to be under the soft limit. The soft limit MUST be smaller
than the hard limit. If the soft limit is not needed, it should be set to zero (0).

Hard limit -- Block or inode allocation will fail with EDQUOT(i.e. quota exceeded) when the hard limit
is reached. The hard limit is the absolute limit. When a grace period is set, one can exceed the soft limit
within the grace period if under the hard limit.

Due to the distributed nature of a Lustre file system and the need to maintain performance under load,
those quota parameters may not be 100% accurate. The quota settings can be manipulated via the lfs
command, executed on a client, and includes several options to work with quotas:

• quota -- displays general quota information (disk usage and limits)

• setquota -- specifies quota limits and tunes the grace period. By default, the grace period is one week.

Usage:

lfs quota [-q] [-v] [-h] [-o obd_uuid] [-u|-g|-p uname|uid|gname|gid|projid] /mount_point
lfs quota -t {-u|-g|-p} /mount_point
lfs setquota {-u|--user|-g|--group|-p|--project} username|groupname [-b block-softlimit] \
             [-B block_hardlimit] [-i inode_softlimit] \
             [-I inode_hardlimit] /mount_point



Configuring and Managing Quotas

274

To display general quota information (disk usage and limits) for the user running the command and his
primary group, run:

$ lfs quota /mnt/testfs

To display general quota information for a specific user (" bob" in this example), run:

$ lfs quota -u bob /mnt/testfs

To display general quota information for a specific user (" bob" in this example) and detailed quota
statistics for each MDT and OST, run:

$ lfs quota -u bob -v /mnt/testfs

To display general quota information for a specific project (" 1" in this example), run:

$ lfs quota -p 1 /mnt/testfs

To display general quota information for a specific group (" eng" in this example), run:

$ lfs quota -g eng /mnt/testfs

To limit quota usage for a specific project ID on a specific directory ("/mnt/testfs/dir" in this
example), run:

$ lfs project -s -p 1 -r /mnt/testfs/dir
$ lfs setquota -p 1 -b 307200 -B 309200 -i 10000 -I 11000 /mnt/testfs

Recursively list all descendants'(of the directory) project attribute on directory ("/mnt/testfs/dir"
in this example), run:

$ lfs project -r /mnt/testfs/dir

Please note that if it is desired to have lfs quota -p show the space/inode usage under the directory
properly (much faster than du), then the user/admin needs to use different project IDs for different
directories.

To display block and inode grace times for user quotas, run:

$ lfs quota -t -u /mnt/testfs

To set user or group quotas for a specific ID ("bob" in this example), run:

$ lfs setquota -u bob -b 307200 -B 309200 -i 10000 -I 11000 /mnt/testfs

In this example, the quota for user "bob" is set to 300 MB (309200*1024) and the hard limit is 11,000
files. Therefore, the inode hard limit should be 11000.



Configuring and Managing Quotas

275

The quota command displays the quota allocated and consumed by each Lustre target. Using the previous
setquota example, running this lfs quota command:

$ lfs quota -u bob -v /mnt/testfs

displays this command output:

Disk quotas for user bob (uid 6000):
Filesystem          kbytes quota limit grace files quota limit grace
/mnt/testfs         0      30720 30920 -     0     10000 11000 -
testfs-MDT0000_UUID 0      -      8192 -     0     -     2560  -
testfs-OST0000_UUID 0      -      8192 -     0     -     0     -
testfs-OST0001_UUID 0      -      8192 -     0     -     0     -
Total allocated inode limit: 2560, total allocated block limit: 24576

Global quota limits are stored in dedicated index files (there is one such index per quota type) on the
quota master target (aka QMT). The QMT runs on MDT0000 and exports the global indices via lctl
get_param. The global indices can thus be dumped via the following command:

# lctl get_param qmt.testfs-QMT0000.*.glb-*

The format of global indexes depends on the OSD type. The ldiskfs OSD uses an IAM files while the ZFS
OSD creates dedicated ZAPs.

Each slave also stores a copy of this global index locally. When the global index is modified on the master,
a glimpse callback is issued on the global quota lock to notify all slaves that the global index has been
modified. This glimpse callback includes information about the identifier subject to the change. If the
global index on the QMT is modified while a slave is disconnected, the index version is used to determine
whether the slave copy of the global index isn't up to date any more. If so, the slave fetches the whole
index again and updates the local copy. The slave copy of the global index can also be accessed via the
following command:

lctl get_param osd-*.*.quota_slave.limit*

Introduced in Lustre 2.12

25.4.  Default Quota
The default quota is used to enforce the quota limits for any user, group, or project that do not have quotas
set by administrator.

The default quota can be disabled by setting limits to 0.

25.4.1.  Usage

lfs quota [-U|--default-usr|-G|--default-grp|-P|--default-prj] /mount_point
lfs setquota {-U|--default-usr|-G|--default-grp|-P|--default-prj} [-b block-softlimit] \
             [-B block_hardlimit] [-i inode_softlimit] [-I inode_hardlimit] /mount_point



Configuring and Managing Quotas

276

lfs setquota {-u|-g|-p} username|groupname --default /mount_point
      

To set the default user quota:

# lfs setquota -U -b 10G -B 11G -i 100K -I 105K /mnt/testfs
      

To set the default group quota:

# lfs setquota -G -b 10G -B 11G -i 100K -I 105K /mnt/testfs
      

To set the default project quota:

# lfs setquota -P -b 10G -B 11G -i 100K -I 105K /mnt/testfs
      

To disable the default user quota:

# lfs setquota -U -b 0 -B 0 -i 0 -I 0 /mnt/testfs
      

To disable the default group quota:

# lfs setquota -G -b 0 -B 0 -i 0 -I 0 /mnt/testfs
      

To disable the default project quota:

# lfs setquota -P -b 0 -B 0 -i 0 -I 0 /mnt/testfs
      

To set user 'bob' to use the default user quota:

# lfs setquota -u bob --default /mnt/testfs
      

To set group 'bob' to use the default group quota:

# lfs setquota -g bob --default /mnt/testfs
      

To set project 1000 to use the default project quota:

# lfs setquota -p 1000 --default /mnt/testfs



Configuring and Managing Quotas

277

      

Note

If quota limits are set for some user, group or project, it will use those specific quota limits instead
of the default quota. Quota limits for any user, group or project will use the default quota by
setting its quota limits with option '--default'.

25.5.  Quota Allocation
In a Lustre file system, quota must be properly allocated or users may experience unnecessary failures.
The file system block quota is divided up among the OSTs within the file system. Each OST requests an
allocation which is increased up to the quota limit. The quota allocation is then quantized to reduce the
number of quota-related request traffic.

The Lustre quota system distributes quotas from the Quota Master Target (aka QMT). Only one QMT
instance is supported for now and only runs on the same node as MDT0000. All OSTs and MDTs set up
a Quota Slave Device (aka QSD) which connects to the QMT to allocate/release quota space. The QSD
is setup directly from the OSD layer.

To reduce quota requests, quota space is initially allocated to QSDs in very large chunks. How much
unused quota space can be held by a target is controlled by the qunit size. When quota space for a given
ID is close to exhaustion on the QMT, the qunit size is reduced and QSDs are notified of the new qunit
size value via a glimpse callback. Slaves are then responsible for releasing quota space above the new
qunit value. The qunit size isn't shrunk indefinitely and there is a minimal value of 1MB for blocks and
1,024 for inodes. This means that the quota space rebalancing process will stop when this minimum value
is reached. As a result, quota exceeded can be returned while many slaves still have 1MB or 1,024 inodes
of spare quota space.

If we look at the setquota example again, running this lfs quota command:

# lfs quota -u bob -v /mnt/testfs

displays this command output:

Disk quotas for user bob (uid 500):
Filesystem          kbytes quota limit grace       files  quota limit grace
/mnt/testfs         30720* 30720 30920 6d23h56m44s 10101* 10000 11000
6d23h59m50s
testfs-MDT0000_UUID 0      -     0     -           10101  -     10240
testfs-OST0000_UUID 0      -     1024  -           -      -     -
testfs-OST0001_UUID 30720* -     29896 -           -      -     -
Total allocated inode limit: 10240, total allocated block limit: 30920

The total quota limit of 30,920 is allocated to user bob, which is further distributed to two OSTs.

Values appended with ' *' show that the quota limit has been exceeded, causing the following error when
trying to write or create a file:

$ cp: writing `/mnt/testfs/foo`: Disk quota exceeded.



Configuring and Managing Quotas

278

Note

It is very important to note that the block quota is consumed per OST and the inode quota per
MDS. Therefore, when the quota is consumed on one OST (resp. MDT), the client may not be
able to create files regardless of the quota available on other OSTs (resp. MDTs).

Setting the quota limit below the minimal qunit size may prevent the user/group from all file
creation. It is thus recommended to use soft/hard limits which are a multiple of the number of
OSTs * the minimal qunit size.

To determine the total number of inodes, use lfs df -i(and also lctl get_param
*.*.filestotal). For more information on using the lfs df -i command and the command
output, see Section 19.8.1, “Checking File System Free Space”.

Unfortunately, the statfs interface does not report the free inode count directly, but instead reports
the total inode and used inode counts. The free inode count is calculated for df from (total inodes
- used inodes). It is not critical to know the total inode count for a file system. Instead, you should
know (accurately), the free inode count and the used inode count for a file system. The Lustre software
manipulates the total inode count in order to accurately report the other two values.

25.6.  Quotas and Version Interoperability
Introduced in Lustre 2.10

To use the project quota functionality introduced in Lustre 2.10, all Lustre servers and clients must
be upgraded to Lustre release 2.10 or later for project quota to work correctly. Otherwise, project
quota will be inaccessible on clients and not be accounted for on OSTs. Furthermore, the servers may be
required to use a patched kernel,  for more information see Section 25.2, “ Enabling Disk Quotas”.

Introduced in Lustre 2.14

df and lfs df will return the amount of space available to that project rather than the total filesystem
space, if the project quota limit is smaller.  Only client need be upgraded to Lustre release 2.14 or later
to apply this new behavior.

25.7.  Granted Cache and Quota Limits
In a Lustre file system, granted cache does not respect quota limits. In this situation, OSTs grant cache
to a Lustre client to accelerate I/O. Granting cache causes writes to be successful in OSTs, even if they
exceed the quota limits, and will overwrite them.

The sequence is:

1. A user writes files to the Lustre file system.

2. If the Lustre client has enough granted cache, then it returns 'success' to users and arranges the writes
to the OSTs.

3. Because Lustre clients have delivered success to users, the OSTs cannot fail these writes.

Because of granted cache, writes always overwrite quota limitations. For example, if you set a 400 GB
quota on user A and use IOR to write for user A from a bundle of clients, you will write much more data
than 400 GB, and cause an out-of-quota error ( EDQUOT).



Configuring and Managing Quotas

279

Note

The effect of granted cache on quota limits can be mitigated, but not eradicated. Reduce the
maximum amount of dirty data on the clients (minimal value is 1MB):

• lctl set_param osc.*.max_dirty_mb=8

25.8.  Lustre Quota Statistics
The Lustre software includes statistics that monitor quota activity, such as the kinds of quota RPCs sent
during a specific period, the average time to complete the RPCs, etc. These statistics are useful to measure
performance of a Lustre file system.

Each quota statistic consists of a quota event and min_time, max_time and sum_time values for
the event.

Quota Event Description

sync_acq_req Quota slaves send a acquiring_quota request and
wait for its return.

sync_rel_req Quota slaves send a releasing_quota request and
wait for its return.

async_acq_req Quota slaves send an acquiring_quota request and
do not wait for its return.

async_rel_req Quota slaves send a releasing_quota request and do
not wait for its return.

wait_for_blk_quota (lquota_chkquota) Before data is written to OSTs, the OSTs check if
the remaining block quota is sufficient. This is done
in the lquota_chkquota function.

wait_for_ino_quota (lquota_chkquota) Before files are created on the MDS, the MDS
checks if the remaining inode quota is sufficient.
This is done in the lquota_chkquota function.

wait_for_blk_quota (lquota_pending_commit) After blocks are written to OSTs, relative quota
information is updated. This is done in the
lquota_pending_commit function.

wait_for_ino_quota (lquota_pending_commit) After files are created, relative quota
information is updated. This is done in the
lquota_pending_commit function.

wait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread sending
a quota request for a specific UID/GID for block
quota at any time. At that time, if other threads need
to do this too, they should wait. This is done in the
qctxt_wait_pending_dqacq function.

wait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending a
quota request for a specific UID/GID for inode
quota at any time. If other threads need to do
this too, they should wait. This is done in the
qctxt_wait_pending_dqacq function.

nowait_for_pending_blk_quota_req
(qctxt_wait_pending_dqacq)

On the MDS or OSTs, there is one thread
sending a quota request for a specific UID/GID



Configuring and Managing Quotas

280

Quota Event Description

for block quota at any time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

nowait_for_pending_ino_quota_req
(qctxt_wait_pending_dqacq)

On the MDS, there is one thread sending
a quota request for a specific UID/GID for
inode quota at any time. When threads enter
qctxt_wait_pending_dqacq, they do not need to
wait. This is done in the qctxt_wait_pending_dqacq
function.

quota_ctl The quota_ctl statistic is generated when lfs
setquota, lfs quota and so on, are issued.

adjust_qunit Each time qunit is adjusted, it is counted.

25.8.1. Interpreting Quota Statistics
Quota statistics are an important measure of the performance of a Lustre file system. Interpreting these
statistics correctly can help you diagnose problems with quotas, and may indicate adjustments to improve
system performance.

For example, if you run this command on the OSTs:

lctl get_param lquota.testfs-OST0000.stats

You will get a result similar to this:

snapshot_time                                1219908615.506895 secs.usecs
async_acq_req                              1 samples [us]  32 32 32
async_rel_req                              1 samples [us]  5 5 5
nowait_for_pending_blk_quota_req(qctxt_wait_pending_dqacq) 1 samples [us] 2\
 2 2
quota_ctl                          4 samples [us]  80 3470 4293
adjust_qunit                               1 samples [us]  70 70 70
....

In the first line, snapshot_time indicates when the statistics were taken. The remaining lines list the
quota events and their associated data.

In the second line, the async_acq_req event occurs one time. The min_time, max_time and
sum_time statistics for this event are 32, 32 and 32, respectively. The unit is microseconds (µs).

In the fifth line, the quota_ctl event occurs four times. The min_time, max_time and sum_time
statistics for this event are 80, 3470 and 4293, respectively. The unit is microseconds (µs).

Introduced in Lustre 2.14

25.9.  Pool Quotas
OST Pool Quotas feature gives an ability to limit user's (group's/project's) disk usage at OST pool level.
Each OST Pool Quota (PQ) maps directly to the OST pool of the same name. Thus PQ could be tuned



Configuring and Managing Quotas

281

with standard  lctl pool_new/add/remove/erase commands. All PQ are subset of a global
pool that includes all OSTs and MDTs (DOM case). It may be initially confusing to be prevented from
using "all of" one quota due to a different quota setting. In Lustre, a quota is a limit, not a right to use
an amount. You don't always get to use your quota - an OST may be out of space, or some other quota
is limiting. For example, if there is an inode quota and a space quota, and you hit your inode limit while
you still have plenty of space, you can't use the space. For another example, quotas may easily be over-
allocated: everyone gets 10PB of quota, in a 15PB system. That does not give them the right to use 10PB,
it means they cannot use more than 10PB. They may very well get ENOSPC long before that - but they
will not get EDQUOT. This behavior already exists in Lustre today, but pool quotas increase the number
of limits in play: user, group or project global space quota and now all of those limits can also be defined
for each pool. In all cases, the net effect is that the actual amount of space you can use is limited to the
smallest (min) quota out of everything that is applicable. See more details in  OST Pool Quotas HLD
[http://wiki.lustre.org/OST_Pool_Quotas_HLD]

25.9.1. DOM and MDT pools
From Quota Master point of view, "data" MDTs are regular members together with OSTs. However Pool
Quotas support only OSTs as there is currently no mechanism to group MDTs in pools.

25.9.2. Lfs quota/setquota options to setup quota
pools
The same long option --pool is used to setup and report Pool Quotas with lfs setquota and lfs
setquota.

lfs setquota --pool pool_name is used to set the block and soft usage limit for the user, group,
or project for the specified pool name.

lfs quota --pool pool_name shows the user, group, or project usage for the specified pool name.

25.9.3. Quota pools interoperability
Both client and server should have at least Lustre 2.14 to support Pool Quotas.

Note

Pool Quotas may be able to work with older clients if server supports Pool Quotas. Pool quotas
cannot be viewed or modified by older clients. Since the quota enforcement is done on the servers,
only a single client is needed to configure the quotas. This could be done by mounting a client
directly on the MDS if needed.

25.9.4. Pool Quotas Hard Limit setup example
Let's imagine you need to setup quota usage for already existed OST pool flash_pool:

# it is a limit for global pool. PQ don't work properly without that
lfs setquota -u ivan -B100T /mnt/testfs
# set 1TiB block hard limit for ivan in a flash_pool
lfs setquota -u ivan --pool flash_pool -B1T /mnt/testfs
      

http://wiki.lustre.org/OST_Pool_Quotas_HLD
http://wiki.lustre.org/OST_Pool_Quotas_HLD


Configuring and Managing Quotas

282

Note

System-side hard limit is required before setting Quota Pool limit. If you do not need to limit user
at all OSTs and MDTs at system, only per pool, it is recommended to set some unrealistic big
hard limit. Without a global limit in place the Quota Pool limit will not be enforced. No matter
hard or soft global limit - at least one of them should be set.

25.9.5. Pool Quotas Soft Limit setup example

# notify OSTs to enforce quota for ivan
lfs setquota -u ivan -B10T /mnt/testfs
# soft limit 10MiB for ivan in a pool flash_pool
lfs setquota -u ivan --pool flash_pool -b1T /mnt/testfs
# set block grace 600 s for all users at flash_pool
lfs setquota -t -u --block-grace 600 --pool flash_pool /mnt/testfs
      



283

Introduced in Lustre 2.5

Chapter 26. Hierarchical Storage
Management (HSM)

This chapter describes how to bind Lustre to a Hierarchical Storage Management (HSM)
solution.

26.1.  Introduction
The Lustre file system can bind to a Hierarchical Storage Management (HSM) solution using a
specific set of functions. These functions enable connecting a Lustre file system to one or more
external storage systems, typically HSMs. With a Lustre file system bound to a HSM solution,
the Lustre file system acts as a high speed cache in front of these slower HSM storage systems.

The Lustre file system integration with HSM provides a mechanism for files to simultaneously
exist in a HSM solution and have a metadata entry in the Lustre file system that can be
examined. Reading, writing or truncating the file will trigger the file data to be fetched from
the HSM storage back into the Lustre file system.

The process of copying a file into the HSM storage is known as archive. Once the archive
is complete, the Lustre file data can be deleted (known as release.) The process of returning
data from the HSM storage to the Lustre file system is called restore. The archive and restore
operations require a Lustre file system component called an Agent.

An Agent is a specially designed Lustre client node that mounts the Lustre file system in
question. On an Agent, a user space program called a copytool is run to coordinate the archive
and restore of files between the Lustre file system and the HSM solution.

Requests to restore a given file are registered and dispatched by a facet on the MDT called
the Coordinator.

Figure 26.1. Overview of the Lustre file system HSM

26.2.  Setup

26.2.1.  Requirements
To setup a Lustre/HSM configuration you need:

• a standard Lustre file system (version 2.5.0 and above)



Hierarchical Storage
Management (HSM)

284

• a minimum of 2 clients, 1 used for your chosen computation task that generates useful data,
and 1 used as an agent.

Multiple agents can be employed. All the agents need to share access to their backend storage.
For the POSIX copytool, a POSIX namespace like NFS or another Lustre file system is
suitable.

26.2.2.  Coordinator
To bind a Lustre file system to a HSM system a coordinator must be activated on each of your
filesystem MDTs. This can be achieved with the command:

$ lctl set_param mdt.$FSNAME-MDT0000.hsm_control=enabled
mdt.lustre-MDT0000.hsm_control=enabled

To verify that the coordinator is running correctly

$ lctl get_param mdt.$FSNAME-MDT0000.hsm_control
mdt.lustre-MDT0000.hsm_control=enabled

26.2.3.  Agents
Once a coordinator is started, launch the copytool on each agent node to connect to your HSM
storage. If your HSM storage has POSIX access this command will be of the form:

lhsmtool_posix --daemon --hsm-root $HSMPATH --archive=1 $LUSTREPATH

The POSIX copytool must be stopped by sending it a TERM signal.

26.3.  Agents and copytool
Agents are Lustre file system clients running copytool. copytool is a userspace daemon that
transfers data between Lustre and a HSM solution. Because different HSM solutions use
different APIs, copytools can typically only work with a specific HSM. Only one copytool
can be run by an agent node.

The following rule applies regarding copytool instances: a Lustre file system only supports
a single copytool process, per ARCHIVE ID (see below), per client node. Due to a Lustre
software limitation, this constraint is irrespective of the number of Lustre file systems mounted
by the Agent.

Bundled with Lustre tools, the POSIX copytool can work with any HSM or external storage
that exports a POSIX API.

26.3.1.  Archive ID, multiple backends
A Lustre file system can be bound to several different HSM solutions. Each bound HSM
solution is identified by a number referred to as ARCHIVE ID. A unique value of ARCHIVE
ID must be chosen for each bound HSM solution. ARCHIVE ID must be in the range 1 to 32.

A Lustre file system supports an unlimited number of copytool instances. You need, at least,
one copytool per ARCHIVE ID. When using the POSIX copytool, this ID is defined using
--archive switch.



Hierarchical Storage
Management (HSM)

285

For example: if a single Lustre file system is bound to 2 different HSMs (A and B,) ARCHIVE
ID “1” can be chosen for HSM A and ARCHIVE ID “2” for HSM B. If you start 3 copytool
instances for ARCHIVE ID 1, all of them will use Archive ID “1”. The same rule applies for
copytool instances dealing with the HSM B, using Archive ID “2”.

When issuing HSM requests, you can use the --archive switch to choose the backend you
want to use. In this example, file foo will be archived into backend ARCHIVE ID “5”:

$ lfs hsm_archive --archive=5 /mnt/lustre/foo

A default ARCHIVE ID can be defined which will be used when the --archive switch is
not specified:

$ lctl set_param -P mdt.lustre-MDT0000.hsm.default_archive_id=5

The ARCHIVE ID of archived files can be checked using lfs hsm_state command:

$ lfs hsm_state /mnt/lustre/foo
/mnt/lustre/foo: (0x00000009) exists archived, archive_id:5

26.3.2.  Registered agents
A Lustre file system allocates a unique UUID per client mount point, for each filesystem.
Only one copytool can be registered for each Lustre mount point. As a consequence, the UUID
uniquely identifies a copytool, per filesystem.

The currently registered copytool instances (agents UUID) can be retrieved by running the
following command, per MDT, on MDS nodes:

$ lctl get_param -n mdt.$FSNAME-MDT0000.hsm.agents
uuid=a19b2416-0930-fc1f-8c58-c985ba5127ad archive_id=1 requests=[current:0 ok:0 errors:0]

The returned fields have the following meaning:

• uuid the client mount used by the corresponding copytool.

• archive_id comma-separated list of ARCHIVE IDs accessible by this copytool.

• requests various statistics on the number of requests processed by this copytool.

26.3.3.  Timeout
One or more copytool instances may experience conditions that cause them to become
unresponsive. To avoid blocking access to the related files a timeout value is defined for
request processing. A copytool must be able to fully complete a request within this time. The
default is 3600 seconds.

$ lctl set_param -n mdt.lustre-MDT0000.hsm.active_request_timeout

26.4.  Requests
Data management between a Lustre file system and HSM solutions is driven by requests. There
are five types:

• ARCHIVE Copy data from a Lustre file system file into the HSM solution.



Hierarchical Storage
Management (HSM)

286

• RELEASE Remove file data from the Lustre file system.

• RESTORE Copy back data from the HSM solution into the corresponding Lustre file system
file.

• REMOVE Delete the copy of the data from the HSM solution.

• CANCEL Cancel an in-progress or pending request.

Only the RELEASE is performed synchronously and does not involve the coordinator. Other
requests are handled by Coordinators. Each MDT coordinator is resiliently managing them.

26.4.1.  Commands
Requests are submitted using lfs command:

$ lfs hsm_archive [--archive=ID] FILE1 [FILE2...]
$ lfs hsm_release FILE1 [FILE2...]
$ lfs hsm_restore FILE1 [FILE2...]
$ lfs hsm_remove  FILE1 [FILE2...]

Requests are sent to the default ARCHIVE ID unless an ARCHIVE ID is specified with the
--archive option (See Section 26.3.1, “ Archive ID, multiple backends ”).

26.4.2.  Automatic restore
Released files are automatically restored when a process tries to read or modify them. The
corresponding I/O will block waiting for the file to be restored. This is transparent to the
process. For example, the following command automatically restores the file if released.

$ cat /mnt/lustre/released_file

26.4.3.  Request monitoring
The list of registered requests and their status can be monitored, per MDT, with the following
command:

$ lctl get_param -n mdt.lustre-MDT0000.hsm.actions

The list of requests currently being processed by a copytool is available with:

$ lctl get_param -n mdt.lustre-MDT0000.hsm.active_requests

26.5.  File states
When files are archived or released, their state in the Lustre file system changes. This state
can be read using the following lfs command:

$ lfs hsm_state FILE1 [FILE2...]

There is also a list of specific policy flags which could be set to have a per-file specific policy:

• NOARCHIVE This file will never be archived.



Hierarchical Storage
Management (HSM)

287

• NORELEASE This file will never be released. This value cannot be set if the flag is currently
set to RELEASED

• DIRTY This file has been modified since a copy of it was made in the HSM solution. DIRTY
files should be archived again. The DIRTY flag can only be set if EXIST is set.

The following options can only be set by the root user.

• LOST This file was previously archived but the copy was lost on the HSM solution for some
reason in the backend (for example, by a corrupted tape), and could not be restored. If the
file is not in the RELEASE state it needs to be archived again. If the file is in the RELEASE
state, the file data is lost.

Some flags can be manually set or cleared using the following commands:

$ lfs hsm_set [FLAGS] FILE1 [FILE2...]
$ lfs hsm_clear [FLAGS] FILE1 [FILE2...]

26.6.  Tuning

26.6.1.  hsm_controlpolicy
hsm_control controls coordinator activity and can also purge the action list.

$ lctl set_param mdt.$FSNAME-MDT0000.hsm_control=purge

Possible values are:

• enabled Start coordinator thread. Requests are dispatched on available copytool
instances.

• disabled Pause coordinator activity. No new request will be scheduled. No timeout will
be handled. New requests will be registered but will be handled only when the coordinator
is enabled again.

• shutdown Stop coordinator thread. No request can be submitted.

• purge Clear all recorded requests. Do not change coordinator state.

26.6.2.  max_requests
max_requests is the maximum number of active requests at the same time. This is a per
coordinator value, and independent of the number of agents.

For example, if 2 MDT and 4 agents are present, the agents will never have to handle more
than 2 x max_requests.

$ lctl set_param mdt.$FSNAME-MDT0000.hsm.max_requests=10

26.6.3.  policy
Change system behavior. Values can be added or removed by prefixing them with '+' or '-'.

$ lctl set_param mdt.$FSNAME-MDT0000.hsm.policy=+NRA



Hierarchical Storage
Management (HSM)

288

Possible values are a combination of:

• NRA No Retry Action. If a restore fails, do not reschedule it automatically.

• NBR Non Blocking Restore. Restore is triggered but does not block clients. Access to a
released file returns ENODATA.

26.6.4.  grace_delay
grace_delay is the delay, expressed in seconds, before a successful or failed request is
cleared from the whole request list.

$ lctl set_param mdt.$FSNAME-MDT0000.hsm.grace_delay=10

26.7.  change logs
A changelog record type “HSM“ was added for Lustre file system logs that relate to HSM
events.

16HSM   13:49:47.469433938 2013.10.01 0x280 t=[0x200000400:0x1:0x0]

Two items of information are available for each HSM record: the FID of the modified file and
a bit mask. The bit mask codes the following information (lowest bits first):

• Error code, if any (7 bits)

• HSM event (3 bits)

• HE_ARCHIVE = 0 File has been archived.

• HE_RESTORE = 1 File has been restored.

• HE_CANCEL = 2 A request for this file has been canceled.

• HE_RELEASE = 3 File has been released.

• HE_REMOVE = 4 A remove request has been executed automatically.

• HE_STATE = 5 File flags have changed.

• HSM flags (3 bits)

• CLF_HSM_DIRTY=0x1

In the above example, 0x280 means the error code is 0 and the event is HE_STATE.

When using liblustreapi, there is a list of helper functions to easily extract the different
values from this bitmask, like: hsm_get_cl_event(), hsm_get_cl_flags(), and
hsm_get_cl_error()

26.8.  Policy engine
A Lustre file system does not have an internal component responsible for automatically
scheduling archive requests and release requests under any conditions (like low space).
Automatically scheduling archive operations is the role of the policy engine.



Hierarchical Storage
Management (HSM)

289

It is recommended that the Policy Engine run on a dedicated client, similar to an agent node,
with a Lustre version 2.5+.

A policy engine is a userspace program using the Lustre file system HSM specific API to
monitor the file system and schedule requests.

Robinhood is the recommended policy engine.

26.8.1.  Robinhood
Robinhood is a Policy engine and reporting tool for large file systems. It maintains a replicate
of file system metadata in a database that can be queried at will. Robinhood makes it possible
to schedule mass action on file system entries by defining attribute-based policies, provides
fast find and du enhanced clones, and provides administrators with an overall view of file
system content through a web interface and command line tools.

Robinhood can be used for various configurations. Robinhood is an external project, and
further information can be found on the project website: https://sourceforge.net/apps/trac/
robinhood/wiki/Doc.

https://sourceforge.net/apps/trac/robinhood/wiki/Doc
https://sourceforge.net/apps/trac/robinhood/wiki/Doc


290

Introduced in Lustre 2.13

Chapter 27. Persistent Client
Cache (PCC)

This chapter describes Persistent Client Cache (PCC).

27.1. Introduction
Flash-based SSDs help to (partly) close the ever-increasing performance gap between
magnetic disks and CPUs. SSDs build a new level in the storage hierarchy, both in terms of
price and performance. The large size of data sets stored in Lustre, ranging up to hundreds of
PiB in the largest centers, makes it more cost-effective to store most of the data on HDDs and
only an active subset of data on SSDs.

The PCC mechanism allows clients equipped with internal SSDs to deliver additional
performance for both read and write intensive applications that have node-local I/O patterns
without losing the benefits of the global Lustre namespace. PCC is combined with Lustre
HSM and layout lock mechanisms to provide persistent caching services using the local SSD
storage, while allowing migration of individual files between local and shared storage. This
enables I/O intensive applications to read and write data on client nodes without losing the
benefits of the global Lustre namespace.

The main advantages to use this cache on the Lustre clients is that the I/O stack is much
simpler for the cached data, as there is no interference with I/Os from other clients, which
enables performance optimizations. There are no special requirements on the hardware of the
client nodes. Any Linux filesystem, such as ext4 on an NVMe device, can be used as PCC
cache. Local file caching reduces the pressure on the object storage targets (OSTs), as small
or random I/Os can be aggregated to large sequential I/Os and temporary files do not even
need to be flushed to OSTs.

27.2. Design

27.2.1. Lustre Read-Write PCC Caching

Figure 27.1. Overview of PCC-RW Architecture

Lustre typically uses its integrated HSM mechanism to interface with larger and slower
archival storage using tapes or other media. PCC-RW, on the contrary, is actually an HSM



Persistent Client Cache (PCC)

291

backend storage system which provides a group of high-speed local caches on Lustre clients.
Figure 27.1, “Overview of PCC-RW Architecture” shows the PCC-RW architecture. Each
client uses its own local storage, usually in the form of NVMe, formatted as a local file system
for the local cache. Cached I/Os are directed to files in the local file system, while normal I/
O are directed to OSTs.

PCC-RW uses Lustre's HSM mechanism for data synchronization. Each PCC node is actually
an HSM agent and has a copy tool instance running on it. The Lustre HSM copytool is used
to restore files from the local cache to Lustre OSTs. Any remote access for a PCC cached
file from another Lustre client triggers this data synchronization. If a PCC client goes offline,
the cached data becomes temporarily inaccessible to other clients. The data will be accessible
again after the PCC client reboots, mounts the Lustre filesystem, and restarts the copytool.

Currently, PCC clients cache entire files on their local filesystems. A file has to be attached
to PCC before I/O can be directed to a client cache. The Lustre layout lock feature is used to
ensure that the caching services are consistent with the global file system state. The file data
can be written/read directly to/from the local PCC cache after a successful attach operation. If
the attach has not been successful, the client will simply fall back to the normal I/O path and
direct I/Os to OSTs. PCC-RW cached files are automatically restored to the global filesystem
when a process on another client tries to read or modify them. The corresponding I/O will be
blocked, waiting for the released file to be restored. This is transparent to the application.

The revocation of the layout lock can automatically detach the file from the PCC cache at
any time. The PCC-RW cached file can be manually detached by the lfs pcc detach
command. After the cached file is detached from the cache and restored to OSTs, it will be
removed from the PCC filesystem.

Failed PCC-RW operations usually return corresponding error codes. There is a special case
when the space of the local PCC file system is exhausted. In this case, PCC-RW can fall back
to the normal I/O path automatically since the capacity of the Lustre file system is much larger
than the capacity of the PCC device.

27.2.2. Rule-based Persistent Client Cache
PCC includes a rule-based, configurable caching infrastructure that enables it to achieve
various objectives, such as customizing I/O caching and providing performance isolation and
QoS guarantees.

For PCC-RW, when a file is being created, a rule-based policy is used to determine whether it
will be cached. It supports rules for different users, groups, projects, or filenames extensions.

Rule-based PCC-RW caching of newly created files can determine which file can use a cache
on PCC directly without administrator's intervention.

27.3. PCC Command Line Tools
Lustre provides lfs and lctl command line tools for users to interact with PCC feature.

27.3.1. Add a PCC backend on a client
Command:

client# lctl pcc add mountpoint pccpath [--param|-p cfgparam]



Persistent Client Cache (PCC)

292

The above command will add a PCC backend to the Lustre client.

Option Description

mountpoint The Lustre client mount point.

pccpath The directory path on local filesystem for PCC cache. The
whole filesystem does not need to be exclusively dedicated
to the PCC cache, but the directory should not be accessible
to regular users.

cfgparam A string in the form of name-value pairs to config the PCC
backend such as read-write attach id (archive ID), and auto
caching rule, etc.

Note: when a client node has more than one Lustre mount point or Lustre filesystem instance,
the parameter mountpoint makes sure that only the PCC backend on specified Lustre
filesystem instance or Lustre mount point is configured. This Lustre mount point must be the
same as the HSM (lhsmtool_posix) configuration, if the PCC backend is used as PCC-RW
caching. Also, the parameter pccpath should be the same as the HSM root parameter of the
POSIX copytool (lhsmtool_posix).

PCC-RW uses Lustre's HSM mechanism for data synchronization. Before using PCC-RW on
a client, it is still necessary to setup HSM on the MDTs and the PCC client nodes.

First, a coordinator must be activated on each of the filesystem MDTs. This can be achieved
with the command:

mds# lctl set_param mdt.$FSNAME-MDT0000.hsm_control=enabled
mdt.lustre-MDT0000.hsm_control=enabled

Next, launch the copytool on each agent node (PCC client node) to connect to your HSM
storage. This command will be of the form:

client# lhsmtool_posix --daemon --hsm-root $PCCPATH --archive=$ARCHIVE_ID $LUSTREPATH

Examples:

The following command adds a PCC backend on a client:

client# lctl pcc add /mnt/lustre /mnt/pcc  --param "projid={500,1000}&fname={*.h5},uid={1001} rwid=2"

The first substring of the config parameter is the auto-cache rule, where "&" represents the
logical AND operator while "," represents the logical OR operator. The example rule means
that new files are only auto cached if either of the following conditions are satisfied:

• The project ID is either 500 or 1000 and the suffix of the file name is "h5";

• The user ID is 1001;

The currently supported name-value pairs for PCC backend configuration are listing as
follows:

• rwid PCC-RW attach ID which is same as the archive ID of the copytool agent running
on this PCC node.

• auto_attach "auto_attach=1"  enables auto attach at the next open or during I/
O. Enabling this option should cause automatic attaching of valid PCC-cached files which



Persistent Client Cache (PCC)

293

were detached due to the manual  lfs pcc detach command or revocation of layout
lock (i.e. LRU lock shrinking). "auto_attach=0" means that auto file attach is disabled
and is the default mode.

27.3.2. Delete a PCC backend from a client
Command:

lctl pcc del <mountpoint> <pccpath>

The above command will delete a PCC backend from a Lustre client.

Option Description

mountpoint The Lustre client mount point.

pccpath A PCC backend is specified by this path. Please refer to
lctl pcc add for details.

Examples:

The following command will delete a PCC backend referenced by "/mnt/pcc" on a client
with the mount point of "/mnt/lustre".

client# lctl pcc del /mnt/lustre /mnt/pcc

27.3.3. Remove all PCC backends on a client
Command:

lctl pcc clear <mountpoint>

The above command will remove all PCC backends on a Lustre client.

Option Description

mountpoint The Lustre client mount point.

Examples:

The following command will remove all PCC backends from a client with the mount point
of "/mnt/lustre".

client# lctl pcc clear /mnt/lustre

27.3.4. List all PCC backends on a client
Command:

lctl pcc list <mountpoint>

The above command will list all PCC backends on a Lustre client.

Option Description

mountpoint The Lustre client mount point.

Examples:



Persistent Client Cache (PCC)

294

The following command will list all PCC backends on a client with the mount point of "/
mnt/lustre".

client# lctl pcc list /mnt/lustre

27.3.5. Attach given files into PCC
Command:

lfs pcc attach --id|-i <NUM> <file...>

The above command will attach the given files onto PCC.

Option Description

--id|-i <NUM> Attach ID to select which PCC backend to use.

Examples:

The following command will attach the file referenced by /mnt/lustre/test onto the
PCC backend with PCC-RW attach ID that equals 2.

client# lfs pcc attach -i 2 /mnt/lustre/test

27.3.6. Attach given files into PCC by FID(s)
Command:

lfs pcc attach_fid --id|-i <NUM> --mnt|-m <mountpoint> <fid...>

The above command will attach the given files referenced by their FIDs into PCC.

Option Description

--id|-i <NUM> Attach ID to select which PCC backend to use.

--mnt|-m <mountpoint> The Lustre mount point.

Examples:

The following command will attach the file referenced by FID 0x200000401:0x1:0x0
onto the PCC backend with PCC-RW attach ID that equals 2.

client# lfs pcc attach_fid -i 2 -m /mnt/lustre 0x200000401:0x1:0x0

27.3.7. Detach given files from PCC
Command:

lfs pcc detach [--keep|-k] <file...>

The above command will detach given files from PCC.

Option Description

--keep|-k By default, the detach command will detach the file from
PCC permanently and remove the PCC copy after detach.



Persistent Client Cache (PCC)

295

Option Description

This option will only detach the file, but keep the PCC
copy in cache. It allows the detached file to be attached
automatically at the next open if the cached copy of the file
is still valid.

Examples:

The following command will detach the file referenced by /mnt/lustre/test from PCC
permanently and remove the corresponding cached file on PCC.

client# lfs pcc detach /mnt/lustre/test

The following command will detach the file referenced by /mnt/lustre/test from PCC,
but allow the file to be attached automatically at the next open.

client# lfs pcc detach -k /mnt/lustre/test

27.3.8. Detach given files from PCC by FID(s)
Command:

lfs pcc detach_fid [--keep|-k] <mountpoint> <fid...>

The above command will detach the given files from PCC by FID(s).

Option Description

--keep|-k Please refer to the command lfs pcc detach  for
details

Examples:

The following command will detach the file referenced by FID 0x200000401:0x1:0x0
from PCC permanently and remove the corresponding cached file on PCC.

client# lfs pcc detach_fid /mnt/lustre 0x200000401:0x1:0x0

The following command will detach the file referenced by FID 0x200000401:0x1:0x0
from PCC, but allow the file to be attached automatically at the next open.

client# lfs pcc detach_fid -k /mnt/lustre 0x200000401:0x1:0x0

27.3.9. Display the PCC state for given files
Command:

lfs pcc state <file...>

The above command will display the PCC state for given files.

Examples:

The following command will display the PCC state of the file referenced by /mnt/lustre/
test.



Persistent Client Cache (PCC)

296

client# lfs pcc state /mnt/lustre/test
file: /mnt/lustre/test, type: readwrite, PCC file: /mnt/pcc/0004/0000/0bd1/0000/0002/0000/0x200000bd1:0x4:0x0, user number: 1, flags: 4

If the file "/mnt/lustre/test" is not cached on PCC, the output of its PCC state is as follow:

client# lfs pcc state /mnt/lustre/test
file: /mnt/lustre/test, type: none

27.4. PCC Configuration Example
1. Setup HSM on MDT

mds# lctl set_param mdt.lustre-MDT0000.hsm_control=enabled

2. Setup PCC on the clients

client1# lhsmtool_posix --daemon --hsm-root /mnt/pcc --archive=1 /mnt/lustre < /dev/null > /tmp/copytool_log 2>&1
client1# lctl pcc add /mnt/lustre /mnt/pcc "projid={1000},uid={500} rwid=1"

client2# lhsmtool_posix --daemon --hsm-root /mnt/pcc --archive=2 /mnt/lustre < /dev/null > /tmp/copytool_log 2>&1
client2# lctl pcc add /mnt/lustre /mnt/pcc "projid={1000}&gid={500} rwid=2"

3. Execute PCC commands on the clients

client1# echo "QQQQQ" > /mnt/lustre/test

client2# lfs pcc attach -i 2 /mnt/lustre/test

client2# lfs pcc state /mnt/lustre/test
file: /mnt/lustre/test, type: readwrite, PCC file: /mnt/pcc/0004/0000/0bd1/0000/0002/0000/0x200000bd1:0x4:0x0, user number: 1, flags: 6

client2# lfs pcc detach /mnt/lustre/test



297

Introduced in Lustre 2.9

Chapter 28. Mapping UIDs and
GIDs with Nodemap

This chapter describes how to map UID and GIDs across a Lustre file system using the
nodemap feature, and includes the following sections:

• Section 28.1, “Setting a Mapping”

• Section 28.2, “Removing Nodemaps”

• Section 28.3, “Altering Properties”

• Section 28.4, “Enabling the Feature”

• Section 28.5, “default Nodemap”

• Section 28.6, “Verifying Settings”

• Section 28.7, “Ensuring Consistency”

28.1. Setting a Mapping
The nodemap feature allows UIDs and GIDs from remote systems to be mapped to local sets
of UIDs and GIDs while retaining POSIX ownership, permissions and quota information. As a
result, multiple sites with conflicting user and group identifiers can operate on a single Lustre
file system without creating collisions in UID or GID space.

28.1.1. Defining Terms
When the nodemap feature is enabled, client file system access to a Lustre system is filtered
through the nodemap identity mapping policy engine. Lustre connectivity is governed by
network identifiers, or NIDs, such as 192.168.7.121@tcp. When an operation is made
from a NID, Lustre decides if that NID is part of a nodemap, a policy group consisting of
one or more NID ranges. If no policy group exists for that NID, access is squashed to user
nobody by default. Each policy group also has several properties, such as trusted and
admin, which determine access conditions. A collection of identity maps or idmaps are kept
for each policy group. These idmaps determine how UIDs and GIDs on the client are translated
into the canonical user space of the local Lustre file system.

In order for nodemap to function properly, the MGS, MDS, and OSS systems must all have
a version of Lustre which supports nodemap. Clients operate transparently and do not require
special configuration or knowledge of the nodemap setup.

28.1.2. Deciding on NID Ranges
NIDs can be described as either a singleton address or a range of addresses. A single address is
described in standard Lustre NID format, such as 10.10.6.120@tcp. A range is described
using a dash to separate the range, for example, 192.168.20.[0-255]@tcp.



Mapping UIDs and
GIDs with Nodemap

298

The range must be contiguous. The full LNet definition for a nidlist is as follows:

<nidlist>       :== <nidrange> [ ' ' <nidrange> ]
<nidrange>      :== <addrrange> '@' <net>
<addrrange>     :== '*' |
                        <ipaddr_range> |
                        <numaddr_range>
<ipaddr_range>  :==
        <numaddr_range>.<numaddr_range>.<numaddr_range>.<numaddr_range>
<numaddr_range> :== <number> |
                        <expr_list>
<expr_list>     :== '[' <range_expr> [ ',' <range_expr>] ']'
<range_expr>    :== <number> |
                        <number> '-' <number> |
                        <number> '-' <number> '/' <number>
<net>           :== <netname> | <netname><number>
<netname>       :== "lo" | "tcp" | "o2ib" | "gni"
<number>        :== <nonnegative decimal> | <hexadecimal>

28.1.3. Defining a Servers Specific Group
For proper operations, the Lustre file system requires to have a privileged group that covers
all Lustre server nodes. So the very first step when working with nodemaps is to create such
a group with both properties admin and trusted set. It is recommended to give this group
an explicit label such as “TrustedSystems” or some identifier that makes the association clear.

Let's consider a deployment where the server nodes are in the NID range 192.168.0.
[1-10]@tcp. Create the policy group, add the NID range to that group, and set the properties
accordingly using the lctl command on the MGS:

mgs# lctl nodemap_add TrustedSystems
mgs# lctl nodemap_add_range --name TrustedSystems --range 192.168.0.[1-10]@tcp
mgs# lctl nodemap_modify --name TrustedSystems --property admin --value 1
mgs# lctl nodemap_modify --name TrustedSystems --property trusted --value 1

28.1.4. Describing and Deploying a Sample
Mapping

Deploy nodemap by first considering which users need to be mapped, and what sets of network
addresses or ranges are involved. Issues of visibility between users must be examined as well.

Consider a deployment where researchers are working on data relating to birds. The
researchers use a computing system which mounts the filesystem from a single IPv4
address, 192.168.0.100, and sensors which mount the filesystem from an address range
192.168.0.[50-99]. Name this policy group BirdResearchSite. Create the policy
group and add the NID ranges to that group on the MGS using the lctl command:

        mgs# lctl nodemap_add BirdResearchSite
        mgs# lctl nodemap_add_range --name BirdResearchSite --range 192.168.0.100@tcp
        mgs# lctl nodemap_add_range --name BirdResearchSite --range 192.168.0.[50-99]@tcp
      



Mapping UIDs and
GIDs with Nodemap

299

Later, additional sensors were added that use addresses in the range 192.168.10.
[101-150] that increased the number of nodes in the BirdResearchSite nodemap, but
otherwise are managed as part of the same nodemap.

        mgs# lctl nodemap_add_range --name BirdResearchSite --range 192.168.0.[101-150]@tcp
      

Note

A NID cannot be in more than one policy group. Assign a NID to a new policy group
by first removing it from the existing group.

The researchers use the following identifiers on their host system:

• swan (UID 530) member of group wetlands (GID 600)

• duck (UID 531) member of group wetlands (GID 600)

• hawk (UID 532) member of group raptor (GID 601)

• merlin (UID 533) member of group raptor (GID 601)

Assign a set of six idmaps to this policy group, with four for UIDs, and two for GIDs. Pick
a starting point, e.g. UID 11000, with room for additional UIDs and GIDs to be added as the
configuration grows. Use the lctl command to set up the idmaps:

mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 530:11000
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 531:11001
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 532:11002
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 533:11003
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype gid --idmap 600:11000
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype gid --idmap 601:11001

The parameter 530:11000 assigns a client UID, for example UID 530, to a single canonical
UID, such as UID 11000. Each assignment is made individually. There is no method to specify
a range 530-533:11000-11003. UID and GID idmaps are assigned separately. There is
no implied relationship between the two.

Files created on the Lustre file system from the 192.168.0.100@tcp NID using UID
duck and GID wetlands are stored in the Lustre file system using the canonical identifiers,
in this case UID 11001 and GID 11000. A different NID, if not part of the same policy group,
sees its own view of the same file space.

Suppose a previously created project directory exists owned by UID 11002/GID 11001, with
mode 770. When users hawk and merlin at 192.168.0.100 place files named hawk-file
and merlin-file into the directory, the contents from the 192.168.0.100 client appear as:

[merlin@192.168.0.100 projectsite]$ ls -la
total 34520
drwxrwx--- 2 hawk   raptor     4096 Jul 23 09:06 .
drwxr-xr-x 3 nobody nobody     4096 Jul 23 09:02 ..
-rw-r--r-- 1 hawk   raptor 10240000 Jul 23 09:05 hawk-file
-rw-r--r-- 1 merlin raptor 25100288 Jul 23 09:06 merlin-file

From a privileged view, the canonical owners are displayed:



Mapping UIDs and
GIDs with Nodemap

300

[root@trustedSite projectsite]# ls -la
total 34520
drwxrwx--- 2 11002 11001     4096 Jul 23 09:06 .
drwxr-xr-x 3 root root     4096 Jul 23 09:02 ..
-rw-r--r-- 1 11002 11001 10240000 Jul 23 09:05 hawk-file
-rw-r--r-- 1 11003 11001 25100288 Jul 23 09:06 merlin-file

If UID 11002 or GID 11001 do not exist on the Lustre MDS or MGS, create them in LDAP
or other data sources, or trust clients by setting identity_upcall to NONE. For more
information, see Section 41.1, “User/Group Upcall”.

Building a larger and more complex configuration is possible by iterating through the lctl
commands above. In short:

1. Create a name for the policy group.

2. Create a set of NID ranges used by the group.

3. Define which UID and GID translations need to occur for the group.

Introduced in Lustre 2.15

28.1.5. Mapping Project IDs
Like UIDs and GIDs, PROJIDs can be mapped via nodemaps, from client to file system IDs
and conversely. To declare a PROJID mapping, use the projid type:

mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype projid --idmap 33:1

28.2. Removing Nodemaps
It is possible to delete a NID range from a nodemap, any clients in this NID range will be
moved to the default nodemap.

mgs# lctl nodemap_del_range --name BirdResearchSite --range 192.168.0.[101-150]@tcp

When deleting a range from a nodemap it must be the same range that was declared when
using nodemap_add_range. This means that it is not possible to remove a range inside of the
initial values or a (partially) overlapping range. Also worth noting, if two different ranges
are added that are adjacent, they are still treated as two independent ranges and must be each
individually deleted.

When deleting a whole policy group all of the associated ID mappings, NID ranges, and other
parameters will be removed, and existing clients will be moved to the default nodemap. The
default nodemap cannot be deleted. The syntax is:

mgs# lctl nodemap_del BirdResearchSite

28.3. Altering Properties
Privileged users access mapped systems with rights dependent on certain properties, described
below. By default, root access is squashed to user nobody, which interferes with most
administrative actions.



Mapping UIDs and
GIDs with Nodemap

301

For proper operations, the Lustre file system requires a group that covers all Lustre server
nodes, with both properties admin and trusted set. It is recommended to give this group
an explicit label such as “TrustedSystems” or some identifier that makes the association clear.

28.3.1. Managing the Properties
Several properties exist, off by default, which change client behavior: admin, trusted,
map_mode, squash_uid, squash_gid, squash_projid, deny_unknown,
audit_mode and forbid_encryption.

• The property admin defines whether root is squashed on the policy group. By default, it
is squashed, unless this property is enabled. Coupled with the trusted property, this will
allow unmapped access for backup nodes, transfer points, or other administrative mount
points.

• The trusted property permits members of a policy group to see the file system's
canonical identifiers. In the above example, UID 11002 and GID 11001 will be seen without
translation. This can be utilized when local UID and GID sets already map directly to the
specified users.

•
Introduced in Lustre 2.10

The map_mode property lets control the way mapping is carried out. By default it is set to
all which means the nodemap will map UIDs, GIDs, and PROJIDs. If set to uid_only
or just uid, only UIDs will be mapped. If set to gid_only or just gid, only GIDs will
be mapped. If set to projid_only or just projid, only PROJIDs will be mapped. If set
to both, both UIDs and GIDs will be mapped. Multiple values can be specified, comma
separated.

• The properties squash_uid,  squash_gid and squash_projid define the default
UID, GID and PROJID respectively that users will be squashed to if unmapped, unless the
deny_unknown flag is set, in which case access will still be denied.

Note

The squash_projid property was introduced in Lustre 2.15

• The property deny_unknown denies all access to users not mapped in a particular
nodemap. This is useful if a site is concerned about unmapped users accessing the file system
in order to satisfy security requirements.

•
Introduced in Lustre 2.11

The property audit_mode lets control which Lustre client nodes can trigger the recording
of file system access events to the Changelogs. When this flag is set to 1, clients will be
able to record file system access events to the Changelogs, if Changelogs are otherwise
activated. When set to 0, events are not logged into the Changelogs, no matter if Changelogs
are activated or not. By default, this flag is set to 1 in newly created nodemap entries. And
it is also set to 1 in 'default' nodemap.

•
Introduced in Lustre 2.14

The property forbid_encryption prevents clients from using encryption.

•
Introduced in Lustre 2.16



Mapping UIDs and
GIDs with Nodemap

302

The property readonly_mount forces clients to a read-only mount if not specified
explicitly. By default it is set to 0 which means clients are allowed to mount in read-write
mode. Set it to 1 to force read-only mount.

•
Introduced in Lustre 2.16

The property rbac defines different Role-Based Admin Control mechanisms:

• byfid_ops, to allow operations by FID (e.g. 'lfs rmfid').

• chlg_ops, to allow access to Lustre Changelogs.

• dne_ops, to allow operations related to DNE (e.g. 'lfs mkdir').

• file_perms, to allow modifications of file permissions and owners.

• fscrypt_admin, to allow fscrypt related admin tasks (create or modify protectors/
policies). Note that even without this role, it is still possible to lock or unlock encrypted
directories, as these operations only need read access to fscrypt metadata.

• quota_ops, to allow quota modifications.
The default value for this property is all, which means all roles are allowed. Multiple
values among those listed above can be specified, comma separated. Apart from all, any
role not explicitly specified is forbidden. And to forbid all roles, use none value.

Alter values to either true (1) or false (0) on the MGS:

mgs# lctl nodemap_modify --name BirdAdminSite --property trusted --value 1
mgs# lctl nodemap_modify --name BirdAdminSite --property admin --value 1
mgs# lctl nodemap_modify --name BirdAdminSite --property deny_unknown --value 1

Change values during system downtime to minimize the chance of any ownership or
permissions problems if the policy group is active. Although changes can be made live, client
caching of data may interfere with modification as there are a few seconds of lead time before
the change is distributed.

28.3.2. Mixing Properties
With both admin and trusted properties set, the policy group has full access, as if nodemap
was turned off, to the Lustre file system. The administrative site for the Lustre file system
needs at least one group with both properties in order to perform maintenance or to perform
administrative tasks.

Warning

Lustre server nodes must be in a policy group with both these properties set to 1. It
is recommended to use a policy group labeled “TrustedSystems” or some identifier
that makes the association clear.

If a policy group has the admin property set, but does not have the property trusted set,
root is mapped directly to root, any explicitly specified UID and GID idmaps are honored, and
other access is squashed. If root alters ownership to UIDs or GIDs which are locally known
from that host but not part of an idmap, root effectively changes ownership of those files to
the default squashed UID and GID.



Mapping UIDs and
GIDs with Nodemap

303

If trusted is set but admin is not, the policy group has full access to the canonical UID
and GID sets of the Lustre file system, and root is squashed.

The deny_unknown property, once enabled, prevents unmapped users from accessing the file
system. Root access also is denied, if the admin property is off, and root is not part of any
mapping.

Introduced in Lustre 2.15

To prevent a client from changing quota settings for a project other than the one assigned to the
fileset it is restricted to, you should map the PROJID to itself, set map_mode to projid, and
then trusted to 0 and deny_unknown to 1. This way, only operations on the designated
PROJID will be allowed.

When nodemaps are modified, the change events are queued and distributed across the cluster.
Under normal conditions, these changes can take around ten seconds to propagate. During this
distribution window, file access could be made via the old or new nodemap settings. Therefore,
it is recommended to save changes for a maintenance window or to deploy them while the
mapped nodes are not actively writing to the file system.

28.4. Enabling the Feature
The nodemap feature is simple to enable:

mgs# lctl nodemap_activate 1

Passing the parameter 0 instead of 1 disables the feature again. After deploying the feature,
validate the mappings are intact before offering the file system to be mounted by clients.

Introduced in Lustre 2.8

So far, changes have been made on the MGS. Prior to Lustre 2.9, changes must also be
manually set on MDS systems as well. Also, changes must be manually deployed to OSS
servers if quota is enforced, utilizing lctl set_param instead of lctl. Prior to 2.9, the
configuration is not persistent, requiring a script which generates the mapping to be saved and
deployed after every Lustre restart. As an example, use this style to deploy settings on the OSS:

oss# lctl set_param nodemap.add_nodemap=SiteName
oss# lctl set_param nodemap.add_nodemap_range='SiteName 192.168.0.15@tcp'
oss# lctl set_param nodemap.add_nodemap_idmap='SiteName uid 510:1700'
oss# lctl set_param nodemap.add_nodemap_idmap='SiteName gid 612:1702'

In Lustre 2.9 and later, nodemap configuration is saved on the MGS and distributed
automatically to MGS, MDS, and OSS nodes, a process which takes approximately ten seconds
in normal circumstances.

28.5. default Nodemap
There is a special nodemap called default. As the name suggests, it is created by default
and cannot be removed. It is like a fallback nodemap, setting the behaviour for Lustre clients
that do not match any other nodemap.

Because of its special role, only some parameters can be set on the default nodemap:

• admin



Mapping UIDs and
GIDs with Nodemap

304

• trusted

• squash_uid

• squash_gid

• fileset

• audit_mode

In particular, no UID/GID mapping can be defined on the default nodemap.

Note

Be careful when altering the admin and trusted properties of the default
nodemap, especially if your Lustre servers fall into this nodemap.

28.6. Verifying Settings
By using lctl nodemap_info all, existing nodemap configuration is listed for easy
export. This command acts as a shortcut into the configuration interface for nodemap. On
the Lustre MGS, the nodemap.active parameter contains a 1 if nodemap is active on the
system. Each policy group creates a directory containing the following parameters:

• admin and trusted each contain a 1 if the values are set, and 0 otherwise.

• idmap contains a list of the idmaps for the policy group, while ranges contains a list of
NIDs for the group.

• squash_uid and squash_gid determine what UID and GID users are squashed to if
needed.

The expected outputs for the BirdResearchSite in the example above are:

mgs# lctl get_param nodemap.BirdResearchSite.idmap

 [
  { idtype: uid, client_id: 530, fs_id: 11000 },
  { idtype: uid, client_id: 531, fs_id: 11001 },
  { idtype: uid, client_id: 532, fs_id: 11002 },
  { idtype: uid, client_id: 533, fs_id: 11003 },
  { idtype: gid, client_id: 600, fs_id: 11000 },
  { idtype: gid, client_id: 601, fs_id: 11001 }
 ]

 mgs# lctl get_param nodemap.BirdResearchSite.ranges
 [
  { id: 11, start_nid: 192.168.0.100@tcp, end_nid: 192.168.0.100@tcp }
 ]

28.7. Ensuring Consistency
Consistency issues may arise in a nodemap enabled configuration when Lustre clients mount
from an unknown NID range, new UIDs and GIDs that were not part of a known map are



Mapping UIDs and
GIDs with Nodemap

305

added, or there are misconfigurations in the rules. Keep in mind the following when activating
nodemap on a production system:

• Creating new policy groups or idmaps on a production system is allowed, but reserve a
maintenance window to alter the  trusted property to avoid metadata problems.

• To perform administrative tasks, access the Lustre file system via a policy group with
trusted and admin properties set. This prevents the creation of orphaned and squashed
files. Granting the admin property without the trusted property is dangerous. The root
user on the client may know of UIDs and GIDs that are not present in any idmap. If root
alters ownership to those identifiers, the ownership is squashed as a result. For example, tar
file extracts may be flipped from an expected UID such as UID 500 to nobody, normally
UID 99.

• To map distinct UIDs at two or more sites onto a single UID or GID on the Lustre file
system, create overlapping idmaps and place each site in its own policy group. Each distinct
UID may have its own mapping onto the target UID or GID.

•
Introduced in Lustre 2.8

In Lustre 2.8, changes must be manually kept in a script file to be re-applied after a Lustre
reload, and changes must be made on each OSS, MDS, and MGS nodes, as there is no
automatic synchronization between the nodes.

• If deny_unknown is in effect, it is possible for unmapped users to see dentries which were
viewed by a mapped user. This is a result of client caching, and unmapped users will not
be able to view any file contents.

• Nodemap activation status can be checked with lctl nodemap_info, but extra
validation is possible. One way of ensuring valid deployment on a production system is to
create a fingerprint of known files with specific UIDs and GIDs mapped to a test client.
After bringing the Lustre system online after maintenance, the test client can validate the
UIDs and GIDs map correctly before the system is mounted in user space.



306

Introduced in Lustre 2.9

Chapter 29. Configuring Shared-
Secret Key (SSK) Security

This chapter describes how to configure Shared-Secret Key security and includes the following
sections:

• Section 29.1, “SSK Security Overview”

• Section 29.2, “SSK Security Flavors”

• Section 29.3, “SSK Key Files”

• Section 29.4, “Lustre GSS Keyring”

• Section 29.5, “Role of Nodemap in SSK”

• Section 29.6, “SSK Examples”

• Section 29.7, “Viewing Secure PtlRPC Contexts”

29.1. SSK Security Overview
The SSK feature ensures integrity and data protection for Lustre PtlRPC traffic. Key files
containing a shared secret and session-specific attributes are distributed to Lustre hosts. This
authorizes Lustre hosts to mount the file system and optionally enables secure data transport,
depending on which security flavor is configured. The administrator handles the generation,
distribution, and installation of SSK key files, see Section 29.3.1, “Key File Management”.

29.1.1. Key features
SSK provides the following key features:

• Host-based authentication

• Data Transport Privacy

• Encrypts Lustre RPCs

• Prevents eavesdropping

• Data Transport Integrity - Keyed-Hashing Message Authentication Code (HMAC)

• Prevents man-in-the-middle attacks

• Ensures RPCs cannot be altered undetected

29.2. SSK Security Flavors
SSK is implemented as a Generic Security Services (GSS) mechanism through Lustre's support
of the GSS Application Program Interface (GSSAPI). The SSK GSS mechanism supports five
flavors that offer varying levels of protection.



Configuring Shared-
Secret Key (SSK) Security

307

Flavors provided:

• skn - SSK Null (Authentication)

• ska - SSK Authentication and Integrity for non-bulk RPCs

• ski - SSK Authentication and Integrity

• skpi - SSK Authentication, Privacy, and Authentication

• gssnull - Provides no protection. Used for testing purposes only

The table below describes the security characteristics of each flavor:

Table 29.1. SSK Security Flavor Protections

skn ska ski skpi

Required to
mount file
system

Yes Yes Yes Yes

Provides RPC
Integrity

No Yes Yes Yes

Provides RPC
Privacy

No No No Yes

Provides Bulk
RPC Integrity

No No Yes Yes

Provides Bulk
RPC Privacy

No No No Yes

Valid non-GSS flavors include:

null - Provides no protection. This is the default flavor.

plain - Plaintext with a hash on each RPC.

29.2.1. Secure RPC Rules
Secure RPC configuration rules are written to the Lustre log (llog) with the lctl command.
Rules are processed with the llog and dictate the security flavor that is used for a particular
Lustre network and direction.

Note

Rules take affect in a matter of seconds and impact both existing and new connections.

Rule format:

target.srpc.flavor.network[.direction]=flavor

• target - This could be the file system name or a specific MDT/OST device name.

• network - LNet network name of the RPC initiator. For example tcp1 or o2ib0. This
can also be the keyword default that applies to all networks otherwise specified.



Configuring Shared-
Secret Key (SSK) Security

308

• direction - Direction is optional. This could be one of mdt2mdt, mdt2ost,
cli2mdt, or cli2ost.

Note

To secure the connection to the MGS use the mgssec=flavor mount option. This
is required because security rules are unknown to the initiator until after the MGS
connection has been established.

The examples below are for a test Lustre file system named testfs.

29.2.1.1. Defining Rules

Rules can be defined and deleted in any order. The rule with the greatest specificity for a given
connection is applied. The fsname.srpc.flavor.default rule is the broadest rule as
it applies to all non-MGS connections for the file system in the absence of a more specific
rule. You may tailor SSK security to your needs by further specifying a specific target,
network, and/or direction.

The following example illustrates an approach to configuring SSK security for an environment
consisting of three LNet networks. The requirements for this example are:

• All non-MGS connections must be authenticated.

• PtlRPC traffic on LNet network tcp0 must be encrypted.

• LNet networks tcp1 and o2ib0 are local physically secure networks that require high
performance. Do not encrypt PtlRPC traffic on these networks.

1. Ensure that all non-MGS connections are authenticated and encrypted by default.

mgs# lctl conf_param testfs.srpc.flavor.default=skpi

2. Override the file system default security flavor on LNet networks tcp1 and o2ib0 with
ska. Security flavor ska provides authentication but without the performance impact of
encryption and bulk RPC integrity.

mgs# lctl conf_param testfs.srpc.flavor.tcp1=ska
mgs# lctl conf_param testfs.srpc.flavor.o2ib0=ska

Note

Currently the "lctl set_param -P" format does not work with sptlrpc.

29.2.1.2. Listing Rules

To view the Secure RPC Config Rules, enter:

mgs# lctl get_param mgs.*.live.testfs
...
Secure RPC Config Rules:
testfs.srpc.flavor.tcp.cli2mdt=skpi
testfs.srpc.flavor.tcp.cli2ost=skpi
testfs.srpc.flavor.o2ib=ski
...



Configuring Shared-
Secret Key (SSK) Security

309

29.2.1.3. Deleting Rules

To delete a security flavor for an LNet network use the conf_param -d command to delete
the flavor for that network:

For example, to delete the testfs.srpc.flavor.o2ib1=ski rule, enter:

mgs# lctl conf_param -d testfs.srpc.flavor.o2ib1

29.3. SSK Key Files
SSK key files are a collection of attributes formatted as fixed length values and stored in a file,
which are distributed by the administrator to client and server nodes. Attributes include:

• Version - Key file schema version number. Not user-defined.

• Type - A mandatory attribute that denotes the Lustre role of the key file consumer. Valid
key types are:

• mgs - for MGS when the mgssec mount.lustre option is used.

• server - for MDS and OSS servers

• client - for clients as well as servers who communicate with other servers in a client
context (e.g. MDS communication with OSTs).

• HMAC algorithm - The Keyed-Hash Message Authentication Code algorithm used for
integrity. Valid algorithms are (Default: SHA256):

• SHA256

• SHA512

• Cryptographic algorithm - Cipher for encryption. Valid algorithms are (Default:
AES-256-CTR).

• AES-256-CTR

• Session security context expiration - Seconds before session contexts generated from key
expire and are regenerated (Default: 604800 seconds (7 days)).

• Shared key length - Shared key length in bits (Default: 256).

• Prime length - Length of prime (p) in bits used for the Diffie-Hellman Key Exchange
(DHKE). (Default: 2048). This is generated only for client keys and can take a while to
generate. This value also sets the minimum prime length that servers and MGS will accept
from a client. Clients attempting to connect with a prime length less than the minimum will
be rejected. In this way servers can guarantee the minimum encryption level that will be
permitted.

• File system name - Lustre File system name for key.

• MGS NIDs - Comma-separated list of MGS NIDs. Only required when mgssec is used
(Default: "").

• Nodemap name - Nodemap name for key (Default: "default"). See Section 29.5, “Role of
Nodemap in SSK”



Configuring Shared-
Secret Key (SSK) Security

310

• Shared key - Shared secret used by all SSK flavors to provide authentication.

• Prime (p) - Prime used for the DHKE. This is only used for keys with Type=client.

Note

Key files provide a means to authenticate Lustre connections; always store and
transfer key files securely. Key files must not be world writable or they will fail to
load.

29.3.1. Key File Management
The lgss_sk utility is used to write, modify, and read SSK key files. lgss_sk can be used
to load key files singularly into the kernel keyring. lgss_sk options include:

Table 29.2. lgss_sk Parameters

Parameter Value Description

-l|--load filename Install key from file into user's session
keyring. Must be executed by root.

-m|--modify filename Modify a file's key attributes

-r|--read filename Show file's key attributes

-w|--write filename Generate key file

-c|--crypt cipher Cipher for encryption (Default: AES Counter
mode)

AES-256-CTR

-i|--hmac hash Hash algorithm for intregrity (Default:
SHA256)

SHA256 or SHA512

-e|--expire seconds Seconds before contexts from key expire
(Default: 604800 (7 days))

-f|--fsname name File system name for key

-g|--mgsnids NID(s) Comma separated list of MGS NID(s). Only
required when mgssec is used (Default: "")

-n|--nodemap map Nodemap name for key (Default: "default")

-p|--prime-bits length Prime length (p) for DHKE in bits (Default:
2048)

-t|--type type Key type (mgs, server, client)

-k|--key-bits length Shared key length in bits (Default: 256)

-d|--data file Shared key random data source (Default: /
dev/random)

-v|--verbose Increase verbosity for errors

29.3.1.1. Writing Key Files

Key files are generated by the lgss_sk utility. Parameters are specified on the command line
followed by the --write parameter and the filename to write to. The lgss_sk utility will



Configuring Shared-
Secret Key (SSK) Security

311

not overwrite files so the filename must be unique. Mandatory parameters for generating key
files are --type, either --fsname or --mgsnids, and --write; all other parameters
are optional.

lgss_sk uses /dev/random as the default entropy data source; you may override this
with the --data parameter. When no hardware random number generator is available on the
system where lgss_sk is executing, you may need to press keys on the keyboard or move
the mouse (if directly attached to the system) or cause disk IO (if system is remote), in order to
generate entropy for the shared key. It is possible to use /dev/urandom for testing purposes
but this may provide less security in some cases.

Example:

To create a server type key file for the testfs Lustre file system for clients in the biology
nodemap, enter:

server# lgss_sk -t server -f testfs -n biology \
-w testfs.server.biology.key

29.3.1.2. Modifying Key Files

Like writing key files you modify them by specifying the paramaters on the command line
that you want to change. Only key file attributes associated with the parameters provided are
changed; all other attributes remain unchanged.

To modify a key file's Type to client and populate the Prime (p) key attribute, if it is missing,
enter:

client# lgss_sk -t client -m testfs.client.biology.key

To add MGS NIDs 192.168.1.101@tcp,10.10.0.101@o2ib to
server key file testfs.server.biology.key and client key file
testfs.client.biology.key, enter

server# lgss_sk -g 192.168.1.101@tcp,10.10.0.101@o2ib \
-m testfs.server.biology.key

client# lgss_sk -g 192.168.1.101@tcp,10.10.0.101@o2ib \
-m testfs.client.biology.key

To modify the testfs.server.biology.key on the MGS to support MGS connections
from biology clients, modify the key file's Type to include mgs in addition to server, enter:

mgs# lgss_sk -t mgs,server -m testfs.server.biology.key

29.3.1.3. Reading Key Files

Read key files with the lgss_sk utility and --read parameter. Read the keys modified in
the previous examples:

mgs# lgss_sk -r testfs.server.biology.key
Version:        1
Type:           mgs server
HMAC alg:       SHA256
Crypt alg:      AES-256-CTR
Ctx Expiration: 604800 seconds



Configuring Shared-
Secret Key (SSK) Security

312

Shared keylen:  256 bits
Prime length:   2048 bits
File system:    testfs
MGS NIDs:       192.168.1.101@tcp 10.10.0.101@o2ib
Nodemap name:   biology
Shared key:
  0000: 84d2 561f 37b0 4a58 de62 8387 217d c30a  ..V.7.JX.b..!}..
  0010: 1caa d39c b89f ee6c 2885 92e7 0765 c917  .......l(....e..

client# lgss_sk -r testfs.client.biology.key
Version:        1
Type:           client
HMAC alg:       SHA256
Crypt alg:      AES-256-CTR
Ctx Expiration: 604800 seconds
Shared keylen:  256 bits
Prime length:   2048 bits
File system:    testfs
MGS NIDs:       192.168.1.101@tcp 10.10.0.101@o2ib
Nodemap name:   biology
Shared key:
  0000: 84d2 561f 37b0 4a58 de62 8387 217d c30a  ..V.7.JX.b..!}..
  0010: 1caa d39c b89f ee6c 2885 92e7 0765 c917  .......l(....e..
Prime (p) :
  0000: 8870 c3e3 09a5 7091 ae03 f877 f064 c7b5  .p....p....w.d..
  0010: 14d9 bc54 75f8 80d3 22f9 2640 0215 6404  ...Tu...".&@..d.
  0020: 1c53 ba84 1267 bea2 fb05 37a4 ed2d 5d90  .S...g....7..-].
  0030: 84e3 1a67 67f0 47c7 0c68 5635 f50e 9cf0  ...gg.G..hV5....
  0040: e622 6f53 2627 6af6 9598 eeed 6290 9b1e  ."oS&'j.....b...
  0050: 2ec5 df04 884a ea12 9f24 cadc e4b6 e91d  .....J...$......
  0060: 362f a239 0a6d 0141 b5e0 5c56 9145 6237  6/.9.m.A..\V.Eb7
  0070: 59ed 3463 90d7 1cbe 28d5 a15d 30f7 528b  Y.4c....(..]0.R.
  0080: 76a3 2557 e585 a1be c741 2a81 0af0 2181  v.%W.....A*...!.
  0090: 93cc a17a 7e27 6128 5ebd e0a4 3335 db63  ...z~'a(^...35.c
  00a0: c086 8d0d 89c1 c203 3298 2336 59d8 d7e7  ........2.#6Y...
  00b0: e52a b00c 088f 71c3 5109 ef14 3910 fcf6  .*....q.Q...9...
  00c0: 0fa0 7db7 4637 bb95 75f4 eb59 b0cd 4077  ..}.F7..u..Y..@w
  00d0: 8f6a 2ebd f815 a9eb 1b77 c197 5100 84c0  .j.......w..Q...
  00e0: 3dc0 d75d 40b3 6be5 a843 751a b09c 1b20  =..]@.k..Cu....
  00f0: 8126 4817 e657 b004 06b6 86fb 0e08 6a53  .&H..W........jS

29.3.1.4. Loading Key Files

Key files can be loaded into the kernel keyring with the lgss_sk utility or at mount time with
the skpath mount option. The skpath method has the advantage that it accepts a directory
path and loads all key files within the directory into the keyring. The lgss_sk utility loads
a single key file into the keyring with each invocation. Key files must not be world writable
or they will fail to load.

Third party tools can also load the keys if desired. The only caveat is that the key must be
available when the request_key upcall to userspace is made and they use the correct key
descriptions for a key so that it can be found during the upcall (see Key Descriptions).

Examples:



Configuring Shared-
Secret Key (SSK) Security

313

Load the testfs.server.biology.key key file using lgss_sk, enter:

server# lgss_sk -l testfs.server.biology.key

Use the skpath mount option to load all of the key files in the /secure_directory
directory when mounting a storage target, enter:

server# mount -t lustre -o skpath=/secure_directory \
/storage/target /mount/point

Use the skpath mount option to load key files into the keyring on a client, enter:

client# mount -t lustre -o skpath=/secure_directory \
mgsnode:/testfs /mnt/testfs

29.4. Lustre GSS Keyring
The Lustre GSS Keyring binary lgss_keyring is used by SSK to handle the upcall from
kernel space into user space via request-key. The purpose of lgss_keyring is to create
a token that is passed as part of the security context initialization RPC (SEC_CTX_INIT)

29.4.1. Setup
The Lustre GSS keyring types of flavors utilize the Linux kernel keyring infrastructure
to maintain keys as well as to perform the upcall from kernel space to userspace for key
negotiation/establishment. The GSS keyring establishes a key type (see “request-key(8)”)
named lgssc when the Lustre ptlrpc_gss kernel module is loaded. When a security
context must be established it creates a key and uses the request-key binary in an upcall
to establish the key. This key will look for the configuration file in /etc/request-key.d
with the name keytype.conf, for Lustre this is lgssc.conf.

Each node participating in SSK Security must have a /etc/request-key.d/
lgssc.conf file that contains the following single line:

create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g
%T %P %S

The request-key binary will call lgss_keyring with the arguments following it with
their substituted values (see request-key.conf(5)).

29.4.2. Server Setup
Lustre servers do not use the Linux request-key mechanism as clients do. Instead servers
run a daemon that uses a pipefs with the kernel to trigger events based on read/write to a file
descriptor. The server-side binary is lsvcgssd. It can be executed in the foreground or as a
daemon. Below are the parameters for the lsvcgssd binary which requires various security
flavors (gssnull, krb5, sk) to be enabled explicitly. This ensures that only required
functionality is enabled.

Table 29.3. lsvcgssd Parameters

Parameter Description

-f Run in foreground



Configuring Shared-
Secret Key (SSK) Security

314

Parameter Description

-n Do not establish Kerberos credentials

-v Verbosity

-m Service MDS

-o Service OSS

-g Service MGS

-k Enable Kerberos support

-s Enable Shared Key support

-z Enable gssnull support

A SysV style init script is installed for starting and stopping the lsvcgssd daemon.
The init script checks the LSVCGSSARGS variable in the /etc/sysconfig/lsvcgss
configuration file for startup parameters.

Keys during the upcall on the client and handling of an RPC on the server are found by using
a specific key description for each key in the kernel keyring.

For each MGS NID there must be a separate key loaded. The format of the key description
should be:

Table 29.4. Key Descriptions

Type Key Description Example

MGC lustre:MGCNID lustre:MGC192.168.1.10@tcp

MDC/OSC/
OSP/LWP

lustre:fsname lustre:testfs

MDT lustre:fsname:NodemapName lustre:testfs:biology

OST lustre:fsname:NodemapName lustre:testfs:biology

MGS lustre:MGS lustre:MGS

All keys for Lustre use the user type for keys and are attached to the user’s keyring. This is
not configurable. Below is an example showing how to list the user’s keyring, load a key file,
read the key, and clear the key from the kernel keyring.

client# keyctl show
Session Keyring
  17053352 --alswrv      0     0  keyring: _ses
 773000099 --alswrv      0 65534   \_ keyring: _uid.0

client# lgss_sk -l /secure_directory/testfs.client.key

client# keyctl show
Session Keyring
  17053352 --alswrv      0     0  keyring: _ses
 773000099 --alswrv      0 65534   \_ keyring: _uid.0
1028795127 --alswrv      0     0       \_ user: lustre:testfs

client# keyctl pipe 1028795127 | lgss_sk -r -
Version:        1



Configuring Shared-
Secret Key (SSK) Security

315

Type:           client
HMAC alg:       SHA256
Crypt alg:      AES-256-CTR
Ctx Expiration: 604800 seconds
Shared keylen:  256 bits
Prime length:   2048 bits
File system:    testfs
MGS NIDs:
Nodemap name:   default
Shared key:
  0000: faaf 85da 93d0 6ffc f38c a5c6 f3a6 0408  ......o.........
  0010: 1e94 9b69 cf82 d0b9 880b f173 c3ea 787a  ...i.......s..xz
Prime (p) :
  0000: 9c12 ed95 7b9d 275a 229e 8083 9280 94a0  ....{.'Z".......
  0010: 8593 16b2 a537 aa6f 8b16 5210 3dd5 4c0c  .....7.o..R.=.L.
  0020: 6fae 2729 fcea 4979 9435 f989 5b6e 1b8a  o.')..Iy.5..[n..
  0030: 5039 8db2 3a23 31f0 540c 33cb 3b8e 6136  P9..:#1.T.3.;.a6
  0040: ac18 1eba f79f c8dd 883d b4d2 056c 0501  .........=...l..
  0050: ac17 a4ab 9027 4930 1d19 7850 2401 7ac4  .....'I0..xP$.z.
  0060: 92b4 2151 8837 ba23 94cf 22af 72b3 e567  ..!Q.7.#..".r..g
  0070: 30eb 0cd4 3525 8128 b0ff 935d 0ba3 0fc0  0...5%.(...]....
  0080: 9afa 5da7 0329 3ce9 e636 8a7d c782 6203  ..]..)<..6.}..b.
  0090: bb88 012e 61e7 5594 4512 4e37 e01d bdfc  ....a.U.E.N7....
  00a0: cb1d 6bd2 6159 4c3a 1f4f 1167 0e26 9e5e  ..k.aYL:.O.g.&.^
  00b0: 3cdc 4a93 63f6 24b1 e0f1 ed77 930b 9490  <.J.c.$....w....
  00c0: 25ef 4718 bff5 033e 11ba e769 4969 8a73  %.G....>...iIi.s
  00d0: 9f5f b7bb 9fa0 7671 79a4 0d28 8a80 1ea1  ._....vqy..(....
  00e0: a4df 98d6 e20e fe10 8190 5680 0d95 7c83  ..........V...|.
  00f0: 6e21 abb3 a303 ff55 0aa8 ad89 b8bf 7723  n!.....U......w#

client# keyctl clear @u

client# keyctl show
Session Keyring
  17053352 --alswrv      0     0  keyring: _ses
 773000099 --alswrv      0 65534   \_ keyring: _uid.0

29.4.3. Debugging GSS Keyring
Lustre client and server support several debug levels, which can be seen below.

Debug levels:

• 0 - Error

• 1 - Warn

• 2 - Info

• 3 - Debug

• 4 - Trace

To set the debug level on the client use the Lustre parameter:



Configuring Shared-
Secret Key (SSK) Security

316

sptlrpc.gss.lgss_keyring.debug_level

For example to set the debug level to trace, enter:

client# lctl set_param sptlrpc.gss.lgss_keyring.debug_level=4

Server-side verbosity is increased by adding additional verbose flags (-v) to the command
line arguments for the daemon. The following command runs the lsvcgssd daemon in the
foreground with debug verbosity supporting gssnull and SSK

server# lsvcgssd -f -vvv -z -s

lgss_keyring is called as part of the request-key upcall which has no standard output;
therefore logging is done through syslog. The server-side logging with lsvcgssd is written
to standard output when executing in the foreground and to syslog in daemon mode.

29.4.4. Revoking Keys
The keys discussed above with lgss_sk and the skpath mount options are not revoked.
They are only used to create valid contexts for client connections. Instead of revoking them
they can be invalidated in one of two ways.

• Unloading the key from the user keyring on the server will cause new client connections to
fail. If no longer necessary it can be deleted.

• Changing the nodemap name for the clients on the servers. Since the nodemap is an integral
part of the shared key context instantiation, renaming the nodemap a group of NIDs belongs
to will prevent any new contexts.

There currently does not exist a mechanism to flush contexts from Lustre. Targets could be
unmounted from the servers to purge contexts. Alternatively shorter context expiration could
be used when the key is created so that contexts need to be refreshed more frequently than
the default. 3600 seconds could be reasonable depending on the use case so that contexts will
have to be renegotiated every hour.

29.5. Role of Nodemap in SSK
SSK uses Nodemap (See Chapter 28, Mapping UIDs and GIDs with Nodemap) policy group
names and their associated NID range(s) as a mechanism to prevent key file forgery, and to
control the range of NIDs on which a given key file can be used.

Clients assume they are in the nodemap specified in the key file they use. When clients
instantiate security contexts an upcall is triggered that specifies information about the context
that triggers it. From this context information request-key calls lgss_keyring, which
in turn looks up the key with description lustre:fsname or lustre:target_name for the
MGC. Using the key found in the user keyring matching the description, the nodemap name
is read from the key, hashed with SHA256, and sent to the server.

Servers look up the client’s NID to determine which nodemap the NID is associated with
and sends the nodemap name to lsvcgssd. The lsvcgssd daemon verifies whether the
HMAC equals the nodemap value sent by the client. This prevents forgery and invalidates the
key when a client’s NID is not associated with the nodemap name defined on the servers.

It is not required to activate the Nodemap feature in order for SSK to perform client NID to
nodemap name lookups.



Configuring Shared-
Secret Key (SSK) Security

317

29.6. SSK Examples
The examples in this section use 1 MGS/MDS (NID 172.16.0.1@tcp), 1 OSS (NID
172.16.0.3@tcp), and 2 clients. The Lustre file system name is testfs.

29.6.1. Securing Client to Server Communications
This example illustrates how to configure SSK to apply Privacy and Integrity protections to
client-to-server PtlRPC traffic on the tcp network. Rules that specify a direction, specifically
cli2mdt and cli2ost, are used. This permits server-to-server communications to continue
using null which is the default flavor for all Lustre connections. This arrangement
provides no server-to-server protections, see Section 29.6.3, “Securing Server to Server
Communications”.

1. Create secure directory for storing SSK key files.

mds# mkdir /secure_directory
mds# chmod 600 /secure_directory
oss# mkdir /secure_directory
oss# chmod 600 /secure_directory
cli1# mkdir /secure_directory
cli1# chmod 600 /secure_directory
cli2# mkdir /secure_directory
cli2# chmod 600 /secure_directory

2. Generate a key file for the MDS and OSS servers. Run:

mds# lgss_sk -t server -f testfs -w \
/secure_directory/testfs.server.key

3. Securely copy the /secure_directory/testfs.server.key key file to the OSS.

mds# scp /secure_directory/testfs.server.key \
oss:/secure_directory/

4. Securely copy the /secure_directory/testfs.server.key key file to /
secure_directory/testfs.client.key on client1.

mds# scp /secure_directory/testfs.server.key \
client1:/secure_directory/testfs.client.key

5. Modify the key file type to client on client1. This operation also generates a prime
number of Prime length to populate the Prime (p) attribute. Run:

client1# lgss_sk -t client \
-m /secure_directory/testfs.client.key

6. Create a /etc/request-key.d/lgssc.conf file on all nodes that contains this line
'create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g
%T %P %S' without the single quotes. Run:

mds# echo create lgssc \* \* /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf
oss# echo create lgssc \* \* /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf
client1# echo create lgssc \* \* /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf
client2# echo create lgssc \* \* /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf



Configuring Shared-
Secret Key (SSK) Security

318

7. Configure the lsvcgss daemon on the MDS and OSS. Set the LSVCGSSDARGS variable
in /etc/sysconfig/lsvcgss on the MDS to ‘-s -m’. On the OSS, set the
LSVCGSSDARGS variable in /etc/sysconfig/lsvcgss to ‘-s -o’

8. Start the lsvcgssd daemon on the MDS and OSS. Run:

mds# systemctl start lsvcgss.service
oss# systemctl start lsvcgss.service

9. Mount the MDT and OST with the -o skpath=/secure_directory mount option.
The skpath option loads all SSK key files found in the directory into the kernel keyring.

10.Set client to MDT and client to OST security flavor to SSK Privacy and Integrity, skpi:

mds# lctl conf_param testfs.srpc.flavor.tcp.cli2mdt=skpi
mds# lctl conf_param testfs.srpc.flavor.tcp.cli2ost=skpi

11.Mount the testfs file system on client1 and client2:

client1# mount -t lustre -o skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs
client2# mount -t lustre -o skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs
mount.lustre: mount 172.16.0.1@tcp:/testfs at /mnt/testfs failed: Connection refused

12.client2 failed to authenticate because it does not have a valid key file. Repeat steps 4 and
5, substitute client1 for client2, then mount the testfs file system on client2:

client2# mount -t lustre -o skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs

13.Verify that the mdc and osc connections are using the SSK mechanism and that rpc and
bulk security flavors are skpi. See Section 29.7, “Viewing Secure PtlRPC Contexts”.

Notice the mgc connection to the MGS has no secure PtlRPC security context. This
is because skpi security was only specified for client-to-MDT and client-to-OST
connections in step 10. The following example details the steps necessary to secure the
connection to the MGS.

29.6.2. Securing MGS Communications
This example builds on the previous example.

1. Enable lsvcgss MGS service support on MGS. Edit /etc/sysconfig/lsvcgss
on the MGS and add the (-g) parameter to the LSVCGSSDARGS variable. Restart the
lsvcgss service.

2. Add mgs key type and MGS NIDs to /secure_directory/testfs.server.key
on MDS.

mgs# lgss_sk -t mgs,server -g 172.16.0.1@tcp,172.16.0.2@tcp -m /secure_directory/testfs.server.key

3. Load the modified key file on the MGS. Run:

mgs# lgss_sk -l /secure_directory/testfs.server.key

4. Add MGS NIDs to /secure_directory/testfs.client.key on client, client1.

client1# lgss_sk -g 172.16.0.1@tcp,172.16.0.2@tcp -m /secure_directory/testfs.client.key



Configuring Shared-
Secret Key (SSK) Security

319

5. Unmount the testfs file system on client1, then mount with the mgssec=skpi mount
option:

cli1# mount -t lustre -o mgssec=skpi,skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs

6. Verify that client1’s MGC connection is using the SSK mechanism and skpi security
flavor. See Section 29.7, “Viewing Secure PtlRPC Contexts”.

29.6.3. Securing Server to Server Communications
This example illustrates how to configure SSK to apply Integrity protection, ski flavor, to
MDT-to-OST PtlRPC traffic on the tcp network.

This example builds on the previous example.

1. Create a Nodemap policy group named LustreServers on the MGS for the Lustre
Servers, enter:

mgs# lctl nodemap_add LustreServers

2. Add MDS and OSS NIDs to the LustreServers nodemap, enter:

mgs# lctl nodemap_add_range --name LustreServers --range 172.16.0.[1-3]@tcp

3. Create key file of type mgs,server for use with nodes in the LustreServers Nodemap
range.

mds# lgss_sk -t mgs,server -f testfs -g \
172.16.0.1@tcp,172.16.0.2@tcp -n LustreServers -w \
/secure_directory/testfs.LustreServers.key

4. Securely copy the /secure_directory/testfs.LustreServers.key key file
to the OSS.

mds# scp /secure_directory/testfs.LustreServers.key oss:/secure_directory/

5. On the MDS and OSS, copy /secure_directory/
testfs.LustreServers.key to /secure_directory/
testfs.LustreServers.client.key.

6. On each server modify the key file type of /secure_directory/
testfs.LustreServers.client.key to be of type client. This operation also
generates a prime number of Prime length to populate the Prime (p) attribute. Run:

mds# lgss_sk -t client -m \
/secure_directory/testfs.LustreServers.client.key
oss# lgss_sk -t client -m \
/secure_directory/testfs.LustreServers.client.key

7. Load the /secure_directory/testfs.LustreServers.key and /
secure_directory/testfs.LustreServers.client.key key files into the
keyring on the MDS and OSS, enter:

mds# lgss_sk -l /secure_directory/testfs.LustreServers.key
mds# lgss_sk -l /secure_directory/testfs.LustreServers.client.key
oss# lgss_sk -l /secure_directory/testfs.LustreServers.key



Configuring Shared-
Secret Key (SSK) Security

320

oss# lgss_sk -l /secure_directory/testfs.LustreServers.client.key

8. Set MDT to OST security flavor to SSK Integrity, ski:

mds# lctl conf_param testfs.srpc.flavor.tcp.mdt2ost=ski

9. Verify that the osc and osp connections to the OST have a secure ski security context.
See Section 29.7, “Viewing Secure PtlRPC Contexts”.

29.7. Viewing Secure PtlRPC Contexts
From the client (or servers which have mgc, osc, mdc contexts) you can view info regarding
all users’ contexts and the flavor in use for an import. For user’s contexts (srpc_context), SSK
and gssnull only support a single root UID so there should only be one context. The other file
in the import (srpc_info) has additional sptlrpc details. The rpc and bulk flavors allow you
to verify which security flavor is in use.

client1# lctl get_param *.*.srpc_*
mdc.testfs-MDT0000-mdc-ffff8800da9f0800.srpc_contexts=
ffff8800da9600c0: uid 0, ref 2, expire 1478531769(+604695), fl uptodate,cached,, seq 7, win 2048, key 27a24430(ref 1), hdl 0xf2020f47cbffa93d:0xc23f4df4bcfb7be7, mech: sk
mdc.testfs-MDT0000-mdc-ffff8800da9f0800.srpc_info=
rpc flavor:     skpi
bulk flavor:    skpi
flags:          rootonly,udesc,
id:             3
refcount:       3
nctx:   1
gc internal     3600
gc next 3505
mgc.MGC172.16.0.1@tcp.srpc_contexts=
ffff8800dbb09b40: uid 0, ref 2, expire 1478531769(+604695), fl uptodate,cached,, seq 18, win 2048, key 3e3f709f(ref 1), hdl 0xf2020f47cbffa93b:0xc23f4df4bcfb7be6, mech: sk
mgc.MGC172.16.0.1@tcp.srpc_info=
rpc flavor:     skpi
bulk flavor:    skpi
flags:          -,
id:             2
refcount:       3
nctx:   1
gc internal     3600
gc next 3505
osc.testfs-OST0000-osc-ffff8800da9f0800.srpc_contexts=
ffff8800db9e5600: uid 0, ref 2, expire 1478531770(+604696), fl uptodate,cached,, seq 3, win 2048, key 3f7c1d70(ref 1), hdl 0xf93e61c64b6b415d:0xc23f4df4bcfb7bea, mech: sk
osc.testfs-OST0000-osc-ffff8800da9f0800.srpc_info=
rpc flavor:     skpi
bulk flavor:    skpi
flags:          rootonly,bulk,
id:             6
refcount:       3
nctx:   1
gc internal     3600
gc next 3505



321

Chapter 30. Managing Security in a
Lustre File System

This chapter describes security features of the Lustre file system and includes the following sections:

• Section 30.1, “ Using ACLs”

• Section 30.2, “Using Root Squash”

• Section 30.3, “ Isolating Clients to a Sub-directory Tree”

• Section 30.4, “ Checking SELinux Policy Enforced by Lustre Clients”

• Section 30.5, “ Encrypting files and directories”

• Section 30.6, “ Configuring Kerberos (KRB) Security”

30.1.  Using ACLs
An access control list (ACL), is a set of data that informs an operating system about permissions or access
rights that each user or group has to specific system objects, such as directories or files. Each object has
a unique security attribute that identifies users who have access to it. The ACL lists each object and user
access privileges such as read, write or execute.

30.1.1. How ACLs Work
Implementing ACLs varies between operating systems. Systems that support the Portable Operating
System Interface (POSIX) family of standards share a simple yet powerful file system permission model,
which should be well-known to the Linux/UNIX administrator. ACLs add finer-grained permissions to
this model, allowing for more complicated permission schemes. For a detailed explanation of ACLs on
a Linux operating system, refer to the SUSE Labs article  Posix Access Control Lists on Linux [https://
www.usenix.org/legacyurl/posix-access-control-lists-linux].

We have implemented ACLs according to this model. The Lustre software works with the standard Linux
ACL tools, setfacl, getfacl, and the historical chacl, normally installed with the ACL package.

Note

ACL support is a system-range feature, meaning that all clients have ACL enabled or not. You
cannot specify which clients should enable ACL.

30.1.2. Using ACLs with the Lustre Software
POSIX Access Control Lists (ACLs) can be used with the Lustre software. An ACL consists of file entries
representing permissions based on standard POSIX file system object permissions that define three classes
of user (owner, group and other). Each class is associated with a set of permissions [read (r), write (w)
and execute (x)].

• Owner class permissions define access privileges of the file owner.

• Group class permissions define access privileges of the owning group.

https://www.usenix.org/legacyurl/posix-access-control-lists-linux
https://www.usenix.org/legacyurl/posix-access-control-lists-linux
https://www.usenix.org/legacyurl/posix-access-control-lists-linux


Managing Security in
a Lustre File System

322

• Other class permissions define access privileges of all users not in the owner or group class.

The ls -l command displays the owner, group, and other class permissions in the first column of its
output (for example, -rw-r- -- for a regular file with read and write access for the owner class, read
access for the group class, and no access for others).

Minimal ACLs have three entries. Extended ACLs have more than the three entries. Extended ACLs also
contain a mask entry and may contain any number of named user and named group entries.

To check ACLs on the MDS, check that the acl connect flag is listed (default since Lustre 1.8):

# lctl get_param -n mdc.home-MDT0000-mdc-*.connect_flags | grep acl
      

ACLs are enabled by default on a Lustre file system, and are controlled on a system-wide basis; either all
clients enable ACLs or none do. Activating ACLs is controlled by MDS mount options acl/noacl to
enable or disable ACLs, respectively. You do not need to change the client configuration, and the acl
string will not appear in the client mount options in /etc/mtab.

If ACLs are not enabled on the MDS, then any attempts to reference an ACL on a client return an
Operation not supported error.

30.1.3. Examples
These examples are taken directly from the POSIX paper referenced above. ACLs on a Lustre file system
work exactly like ACLs on any Linux file system. They are manipulated with the standard tools in the
standard manner. Below, we create a directory and allow a specific user access.

[phil@client lustre]$ umask 027
[phil@client lustre]$ mkdir rain
[phil@client lustre]$ ls -ld rain
drwxr-x---  2 phil dev 4096 Feb 20 06:50 rain
[phil@client lustre]$ getfacl rain
# file: rain
# owner: phil
# group: dev
user::rwx
group::r-x
other::---
 
[phil@client lustre]$ setfacl -m user:chirag:rwx rain
[phil@client lustre]$ ls -ld rain
drwxrwx---+ 2 phil dev 4096 Feb 20 06:50 rain
[phil@client lustre]$ getfacl --omit-header rain
user::rwx
user:chirag:rwx
group::r-x
mask::rwx
other::---

30.2. Using Root Squash
Root squash is a security feature which restricts super-user access rights to a Lustre file system. Without
the root squash feature enabled, Lustre file system users on untrusted clients could access or modify files



Managing Security in
a Lustre File System

323

owned by root on the file system, including deleting them. Using the root squash feature restricts file
access/modifications as the root user. Note, however, that this does not prevent users from accessing files
owned by other users.

The root squash feature works by re-mapping the user ID (UID) and group ID (GID) of the root user to
a UID and GID specified by the system administrator. The preferred way to configure root squash is via
nodemaps and the admin property. Nodemaps allow root squash on a per-client basis. With UID maps,
the clients can even have a local root UID without actually having root access to the filesystem itself.

Please refer to explanations about the admin property in the chapter dedicated to Nodemaps, in
Section 28.3.1, “Managing the Properties”.

30.3.  Isolating Clients to a Sub-directory Tree
Isolation is the Lustre implementation of the generic concept of multi-tenancy, which aims at providing
separated namespaces from a single filesystem. Lustre Isolation enables different populations of users on
the same file system beyond normal Unix permissions/ACLs, even when users on the clients may have
root access. Those tenants share the same file system, but they are isolated from each other: they cannot
access or even see each other’s files, and are not aware that they are sharing common file system resources.

Lustre Isolation leverages the Fileset feature (Section 44.16.3, “Fileset Feature”) to mount only a
subdirectory of the filesystem rather than the root directory. In order to achieve isolation, the subdirectory
mount, which presents to tenants only their own fileset, has to be imposed to the clients. To that extent,
we make use of the nodemap feature (Chapter 28, Mapping UIDs and GIDs with Nodemap). We group all
clients used by a tenant under a common nodemap entry, and we assign to this nodemap entry the fileset
to which the tenant is restricted.

30.3.1. Identifying Clients
Enforcing multi-tenancy on Lustre relies on the ability to properly identify the client nodes used by a tenant,
and trust those identities. This can be achieved by having physical hardware and/or network security, so
that client nodes have well-known NIDs. It is also possible to make use of strong authentication with
Kerberos or Shared-Secret Key (see Chapter 29, Configuring Shared-Secret Key (SSK) Security). Kerberos
prevents NID spoofing, as every client needs its own credentials, based on its NID, in order to connect to
the servers. Shared-Secret Key also prevents tenant impersonation, because keys can be linked to a specific
nodemap. See Section 29.5, “Role of Nodemap in SSK” for detailed explanations.

30.3.2. Configuring Isolation
Isolation on Lustre can be achieved by setting the fileset parameter on a nodemap entry. All clients
belonging to this nodemap entry will automatically mount this fileset instead of the root directory. For
example:

mgs# lctl nodemap_set_fileset --name tenant1 --fileset '/dir1'

So all clients matching the tenant1 nodemap will be automatically presented the fileset /dir1 when
mounting. This means these clients are doing an implicit subdirectory mount on the subdirectory /dir1.

Note

If subdirectory defined as fileset does not exist on the file system, it will prevent any client
belonging to the nodemap from mounting Lustre.

To delete the fileset parameter, just set it to an empty string:



Managing Security in
a Lustre File System

324

mgs# lctl nodemap_set_fileset --name tenant1 --fileset ''

30.3.3. Making Isolation Permanent
In order to make isolation permanent, the fileset parameter on the nodemap has to be set with lctl
set_param with the -P option.

mgs# lctl set_param nodemap.tenant1.fileset=/dir1
mgs# lctl set_param -P nodemap.tenant1.fileset=/dir1

This way the fileset parameter will be stored in the Lustre config logs, letting the servers retrieve the
information after a restart.

Introduced in Lustre 2.13

30.4.  Checking SELinux Policy Enforced
by Lustre Clients
SELinux provides a mechanism in Linux for supporting Mandatory Access Control (MAC) policies. When
a MAC policy is enforced, the operating system’s (OS) kernel defines application rights, firewalling
applications from compromising the entire system. Regular users do not have the ability to override the
policy.

One purpose of SELinux is to protect the OS from privilege escalation. To that extent, SELinux defines
confined and unconfined domains for processes and users. Each process, user, file is assigned a security
context, and rules define the allowed operations by processes and users on files.

Another purpose of SELinux can be to protect data sensitivity, thanks to Multi-Level Security (MLS).
MLS works on top of SELinux, by defining the concept of security levels in addition to domains. Each
process, user and file is assigned a security level, and the model states that processes and users can read
the same or lower security level, but can only write to their own or higher security level.

From a file system perspective, the security context of files must be stored permanently. Lustre makes
use of the security.selinux extended attributes on files to hold this information. Lustre supports
SELinux on the client side. All you have to do to have MAC and MLS on Lustre is to enforce the
appropriate SELinux policy (as provided by the Linux distribution) on all Lustre clients. No SELinux is
required on Lustre servers.

Because Lustre is a distributed file system, the specificity when using MLS is that Lustre really needs to
make sure data is always accessed by nodes with the SELinux MLS policy properly enforced. Otherwise,
data is not protected. This means Lustre has to check that SELinux is properly enforced on client side,
with the right, unaltered policy. And if SELinux is not enforced as expected on a client, the server denies
its access to Lustre.

30.4.1. Determining SELinux Policy Info
A string that represents the SELinux Status info will be used by servers as a reference, to check if clients
are enforcing SELinux properly. This reference string can be obtained on a client node known to enforce
the right SELinux policy, by calling the l_getsepol command line utility:

client# l_getsepol
SELinux status info: 1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f

The string describing the SELinux policy has the following syntax:



Managing Security in
a Lustre File System

325

mode:name:version:hash

where:

• mode is a digit telling if SELinux is in Permissive mode (0) or Enforcing mode (1)

• name is the name of the SELinux policy

• version is the version of the SELinux policy

• hash is the computed hash of the binary representation of the policy, as exported in /etc/selinux/name/
policy/policy. version

30.4.2. Enforcing SELinux Policy Check
SELinux policy check can be enforced by setting the sepol parameter on a nodemap entry. All clients
belonging to this nodemap entry must enforce the SELinux policy described by this parameter, otherwise
they are denied access to the Lustre file system. For example:

mgs# lctl nodemap_set_sepol --name restricted
     --sepol '1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f'

So all clients matching the restricted nodemap must enforce the SELinux policy which description
matches
1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f.
If not, they will get Permission Denied when trying to mount or access files on the Lustre file system.

To delete the sepol parameter, just set it to an empty string:

mgs# lctl nodemap_set_sepol --name restricted --sepol ''

See Chapter 28, Mapping UIDs and GIDs with Nodemap for more details about the Nodemap feature.

30.4.3. Making SELinux Policy Check Permanent
In order to make SELinux Policy check permanent, the sepol parameter on the nodemap has to be set with
lctl set_param with the -P option.

mgs# lctl set_param nodemap.restricted.sepol=1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f
mgs# lctl set_param -P nodemap.restricted.sepol=1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f

This way the sepol parameter will be stored in the Lustre config logs, letting the servers retrieve the
information after a restart.

30.4.4. Sending SELinux Status Info from Clients
In order for Lustre clients to send their SELinux status information, in case SELinux is enabled locally, the
send_sepol ptlrpc kernel module's parameter has to be set to a non-zero value. send_sepol accepts
various values:

• 0: do not send SELinux policy info;

• -1: fetch SELinux policy info for every request;

• N > 0: only fetch SELinux policy info every N seconds. Use N = 2^31-1 to have SELinux policy
info fetched only at mount time.



Managing Security in
a Lustre File System

326

Clients that are part of a nodemap on which sepol is defined must send SELinux status info. And the
SELinux policy they enforce must match the representation stored into the nodemap. Otherwise they will
be denied access to the Lustre file system.

Introduced in Lustre 2.14

30.5.  Encrypting files and directories
The purpose that client-side encryption wants to serve is to be able to provide a special directory for each
user, to safely store sensitive files. The goals are to protect data in transit between clients and servers, and
protect data at rest.

This feature is implemented directly at the Lustre client level. Lustre client-side encryption relies on kernel
fscrypt. fscrypt is a library which filesystems can hook into to support transparent encryption of
files and directories. As a consequence, the key points described below are extracted from fscrypt
documentation.

For full details, please refer to documentation available with the Lustre sources, under the
Documentation/client_side_encryption directory.

Note

The client-side encryption feature is available natively on Lustre clients running a Linux
distribution with at least kernel 5.4. It is also available thanks to an additional kernel library
provided by Lustre, on clients that run a Linux distribution with basic support for encryption,
including:

• CentOS/RHEL 8.1 and later;

• Ubuntu 18.04 and later;

• SLES 15 SP2 and later.

30.5.1. Client-side encryption access semantics
Only Lustre clients need access to encryption master keys. Keys are added to the filesystem-level
encryption keyring on the Lustre client.

• With the key

With the encryption key, encrypted regular files, directories, and symlinks behave very similarly to their
unencrypted counterparts --- after all, the encryption is intended to be transparent. However, astute users
may notice some differences in behavior:

• Unencrypted files, or files encrypted with a different encryption policy (i.e. different key, modes,
or flags), cannot be renamed or linked into an encrypted directory. However, encrypted files can be
renamed within an encrypted directory, or into an unencrypted directory.

Note

"moving" an unencrypted file into an encrypted directory, e.g. with the mv program, is
implemented in userspace by a copy followed by a delete. Be aware the original unencrypted
data may remain recoverable from free space on the disk; it is best to keep all files encrypted
from the very beginning.



Managing Security in
a Lustre File System

327

• On Lustre, Direct I/O is supported for encrypted files.

• The fallocate() operations FALLOC_FL_COLLAPSE_RANGE,
FALLOC_FL_INSERT_RANGE, and FALLOC_FL_ZERO_RANGE are not supported on encrypted
files and will fail with EOPNOTSUPP.

• DAX (Direct Access) is not supported on encrypted files.

•
Introduced in Lustre 2.15

The st_size of an encrypted symlink will not necessarily give the length of the symlink target as
required by POSIX. It will actually give the length of the ciphertext, which will be slightly longer
than the plaintext due to NUL-padding and an extra 2-byte overhead.

•
Introduced in Lustre 2.15

The maximum length of an encrypted symlink is 2 bytes shorter than the maximum length of an
unencrypted symlink.

• mmap is supported. This is possible because the pagecache for an encrypted file contains the plaintext,
not the ciphertext.

• Without the key

Some filesystem operations may be performed on encrypted regular files, directories, and symlinks even
before their encryption key has been added, or after their encryption key has been removed:

• File metadata may be read, e.g. using stat().

•
Introduced in Lustre 2.15

Directories may be listed, in which case the filenames will be listed in an encoded form derived from
their ciphertext. The algorithm is subject to change but it is guaranteed that the presented filenames
will be no longer than NAME_MAX bytes, will not contain the / or \0 characters, and will uniquely
identify directory entries. The . and .. directory entries are special. They are always present and
are not encrypted or encoded.

• Files may be deleted. That is, nondirectory files may be deleted with unlink() as usual, and empty
directories may be deleted with rmdir() as usual. Therefore, rm and rm -r will work as expected.

• Symlink targets may be read and followed, but they will be presented in encrypted form, similar to
filenames in directories. Hence, they are unlikely to point to anywhere useful.

Without the key, regular files cannot be opened or truncated. Attempts to do so will fail with ENOKEY.
This implies that any regular file operations that require a file descriptor, such as read(), write(),
mmap(), fallocate(), and ioctl(), are also forbidden.

Also without the key, files of any type (including directories) cannot be created or linked into an
encrypted directory, nor can a name in an encrypted directory be the source or target of a rename, nor
can an O_TMPFILE temporary file be created in an encrypted directory. All such operations will fail
with ENOKEY.

It is not currently possible to backup and restore encrypted files without the encryption key. This would
require special APIs which have not yet been implemented.

• Encryption policy enforcement



Managing Security in
a Lustre File System

328

After an encryption policy has been set on a directory, all regular files, directories, and symbolic links
created in that directory (recursively) will inherit that encryption policy. Special files --- that is, named
pipes, device nodes, and UNIX domain sockets --- will not be encrypted.

Except for those special files, it is forbidden to have unencrypted files, or files encrypted with a different
encryption policy, in an encrypted directory tree.

30.5.2. Client-side encryption key hierarchy
Each encrypted directory tree is protected by a master key.

To "unlock" an encrypted directory tree, userspace must provide the appropriate master key. There can
be any number of master keys, each of which protects any number of directory trees on any number of
filesystems.

30.5.3. Client-side encryption modes and usage
fscrypt allows one encryption mode to be specified for file contents and one encryption mode to
be specified for filenames. Different directory trees are permitted to use different encryption modes.
Currently, the following pairs of encryption modes are supported:

• AES-256-XTS for contents and AES-256-CTS-CBC for filenames

• AES-128-CBC for contents and AES-128-CTS-CBC for filenames

If unsure, you should use the (AES-256-XTS, AES-256-CTS-CBC) pair.

Warning

In Lustre 2.14, client-side encryption only supports content encryption, and not filename
encryption. As a consequence, only content encryption mode will be taken into account, and
filename encryption mode will be ignored to leave filenames in clear text.

Warning
Introduced in Lustre 2.15

When Lustre client is built against the embedded kernel library instead of the in-kernel
fscrypt, the ability to encrypt file and directory names is governed by new llite parameter
named enable_filename_encryption, introduced in 2.15, and set to 0 by default.
When this parameter is 0, new empty directories configured as encrypted use content
encryption only, and not name encryption. This mode is inherited for all subdirectories
and files. When enable_filename_encryption parameter is set to 1, new empty
directories configured as encrypted use full encryption capabilities by encrypting file content
and also file and directory names. This mode is inherited for all subdirectories and files. To
set the enable_filename_encryption parameter globally for all clients, one can do
on the MGS:

mgs# lctl set_param -P llite.*.enable_filename_encryption=1

Be aware that the enable_filename_encryption tuning parameter is not available
when Lustre client is built against in-kernel fscrypt. Indeed, the in-kernel fscrypt library
always encrypts file name along with file content.



Managing Security in
a Lustre File System

329

Also note that new files and directories under a parent encrypted directory created with Lustre
2.14 will not have their names encrypted. Also, because files created with Lustre 2.14 did
not have their names encrypted, they will remain so after upgrade to 2.15. To benefit from
name encryption for an old directory previously created with Lustre 2.14, you need to do the
following after upgrade to 2.15 is complete:

1. create a new encrypted directory. This can use an already existing protector.

2. unlock the old encrypted directory.

3. copy all files and directories recursively from the old encrypted directory to the newly
created encrypted directory. Note that this operation will re-encrypt all files contents in
addition to names.

4. remove the old encrypted directory.

30.5.4. Client-side encryption threat model
• Offline attacks

For the Lustre case, block devices are Lustre targets attached to the Lustre servers. Manipulating the
filesystem offline means accessing the filesystem on these targets while Lustre is offline.

Provided that a strong encryption key is chosen, fscrypt protects the confidentiality of file contents
in the event of a single point-in-time permanent offline compromise of the block device content.
Lustre client-side encryption does not protect the confidentiality of metadata, e.g. file names, file sizes,
file permissions, file timestamps, and extended attributes. Also, the existence and location of holes
(unallocated blocks which logically contain all zeroes) in files is not protected.

• Online attacks

• On Lustre client

After an encryption key has been added, fscrypt does not hide the plaintext file contents or
filenames from other users on the same node. Instead, existing access control mechanisms such as
file mode bits, POSIX ACLs, LSMs, or namespaces should be used for this purpose.

For the Lustre case, it means plaintext file contents or filenames are not hidden from other users on
the same Lustre client.

An attacker who compromises the system enough to read from arbitrary memory, e.g. by exploiting a
kernel security vulnerability, can compromise all encryption keys that are currently in use. However,
fscrypt allows encryption keys to be removed from the kernel, which may protect them from later
compromise. Key removal can be carried out by non-root users. In more detail, the key removal will
wipe the master encryption key from kernel memory. Moreover, it will try to evict all cached inodes
which had been "unlocked" using the key, thereby wiping their per-file keys and making them once
again appear "locked", i.e. in ciphertext or encrypted form.

• On Lustre server

An attacker on a Lustre server who compromises the system enough to read arbitrary memory,
e.g. by exploiting a kernel security vulnerability, cannot compromise Lustre files content. Indeed,
encryption keys are not forwarded to the Lustre servers, and servers do not carry out decryption or



Managing Security in
a Lustre File System

330

encryption. Moreover, bulk RPCs received by servers contain encrypted data, which is written as-is
to the underlying filesystem.

30.5.5. Manage encryption on directories
By default, Lustre client-side encryption is enabled, letting users define encryption policies on a per-
directory basis.

Note

Administrators can decide to prevent a Lustre client mount-point from using encryption by
specifying the noencrypt client mount option. This can be also enforced from server side
thanks to the forbid_encryption property on nodemaps. See Section 28.3, “Altering
Properties” for how to manage nodemaps.

fscrypt userspace tool can be used to manage encryption policies. See https://github.com/google/fscrypt
for comprehensive explanations. Below are examples on how to use this tool with Lustre. If not told
otherwise, commands must be run on Lustre client side.

• Two preliminary steps are required before actually deciding which directories to encrypt, and this is the
only functionality which requires root privileges. Administrator has to run:

# fscrypt setup
Customizing passphrase hashing difficulty for this system...
Created global config file at "/etc/fscrypt.conf".
Metadata directories created at "/.fscrypt".

This first command has to be run on all clients that want to use encryption, as it sets up global fscrypt
parameters outside of Lustre.

# fscrypt setup /mnt/lustre
Metadata directories created at "/mnt/lustre/.fscrypt"

This second command has to be run on just one Lustre client.

Note

The file /etc/fscrypt.conf can be edited. It is strongly recommended to set
policy_version to 2, so that fscrypt wipes files from memory when the encryption
key is removed.

• Now a regular user is able to select a directory to encrypt:

$ fscrypt encrypt /mnt/lustre/vault
The following protector sources are available:
1 - Your login passphrase (pam_passphrase)
2 - A custom passphrase (custom_passphrase)
3 - A raw 256-bit key (raw_key)
Enter the source number for the new protector [2 - custom_passphrase]: 2
Enter a name for the new protector: shield
Enter custom passphrase for protector "shield":
Confirm passphrase:
"/mnt/lustre/vault" is now encrypted, unlocked, and ready for use.

Starting from here, all files and directories created under /mnt/lustre/vault will be encrypted,
according to the policy defined at the previsous step.



Managing Security in
a Lustre File System

331

Note

The encryption policy is inherited by all subdirectories. It is not possible to change the policy
for a subdirectory.

• Another user can decide to encrypt a different directory with its own protector:

$ fscrypt encrypt /mnt/lustre/private
Should we create a new protector? [y/N] Y
The following protector sources are available:
1 - Your login passphrase (pam_passphrase)
2 - A custom passphrase (custom_passphrase)
3 - A raw 256-bit key (raw_key)
Enter the source number for the new protector [2 - custom_passphrase]: 2
Enter a name for the new protector: armor
Enter custom passphrase for protector "armor":
Confirm passphrase:
"/mnt/lustre/private" is now encrypted, unlocked, and ready for use.

• Users can decide to lock an encrypted directory at any time:

$ fscrypt lock /mnt/lustre/vault
"/mnt/lustre/vault" is now locked.

This action prevents access to encrypted content, and by removing the key from memory, it also wipes
files from memory if they are not still open.

• Users regain access to the encrypted directory with the command:

$ fscrypt unlock /mnt/lustre/vault
Enter custom passphrase for protector "shield":
"/mnt/lustre/vault" is now unlocked and ready for use.

• Actually, fscrypt does not give direct access to master keys, but to protectors that are used to encrypt
them. This mechanism gives the ability to change a passphrase:

$ fscrypt status /mnt/lustre
lustre filesystem "/mnt/lustre" has 2 protectors and 2 policies

PROTECTOR         LINKED  DESCRIPTION
deacab807bf0e788  No      custom protector "shield"
e691ae7a1990fc2a  No      custom protector "armor"

POLICY                            UNLOCKED  PROTECTORS
52b2b5aff0e59d8e0d58f962e715862e  No        deacab807bf0e788
374e8944e4294b527e50363d86fc9411  No        e691ae7a1990fc2a

$ fscrypt metadata change-passphrase --protector=/mnt/lustre:deacab807bf0e788
Enter old custom passphrase for protector "shield":
Enter new custom passphrase for protector "shield":
Confirm passphrase:
Passphrase for protector deacab807bf0e788 successfully changed.

It makes also possible to have multiple protectors for the same policy. This is really useful when several
users share an encrypted directory, because it avoids the need to share any secret between them.



Managing Security in
a Lustre File System

332

$ fscrypt status /mnt/lustre/vault
"/mnt/lustre/vault" is encrypted with fscrypt.

Policy:   52b2b5aff0e59d8e0d58f962e715862e
Options:  padding:32 contents:AES_256_XTS filenames:AES_256_CTS policy_version:2
Unlocked: No

Protected with 1 protector:
PROTECTOR         LINKED  DESCRIPTION
deacab807bf0e788  No      custom protector "shield"

$ fscrypt metadata create protector /mnt/lustre
Create new protector on "/mnt/lustre" [Y/n] Y
The following protector sources are available:
1 - Your login passphrase (pam_passphrase)
2 - A custom passphrase (custom_passphrase)
3 - A raw 256-bit key (raw_key)
Enter the source number for the new protector [2 - custom_passphrase]: 2
Enter a name for the new protector: bunker
Enter custom passphrase for protector "bunker":
Confirm passphrase:
Protector f3cc1b5cf9b8f41c created on filesystem "/mnt/lustre".

$ fscrypt metadata add-protector-to-policy
          --protector=/mnt/lustre:f3cc1b5cf9b8f41c
          --policy=/mnt/lustre:52b2b5aff0e59d8e0d58f962e715862e
WARNING: All files using this policy will be accessible with this protector!!
Protect policy 52b2b5aff0e59d8e0d58f962e715862e with protector f3cc1b5cf9b8f41c? [Y/n] Y
Enter custom passphrase for protector "bunker":
Enter custom passphrase for protector "shield":
Protector f3cc1b5cf9b8f41c now protecting policy 52b2b5aff0e59d8e0d58f962e715862e.

$ fscrypt status /mnt/lustre/vault
"/mnt/lustre/vault" is encrypted with fscrypt.

Policy:   52b2b5aff0e59d8e0d58f962e715862e
Options:  padding:32 contents:AES_256_XTS filenames:AES_256_CTS policy_version:2
Unlocked: No

Protected with 2 protectors:
PROTECTOR         LINKED  DESCRIPTION
deacab807bf0e788  No      custom protector "shield"
f3cc1b5cf9b8f41c  No      custom protector "bunker"

30.6.  Configuring Kerberos (KRB) Security
This chapter describes how to use Kerberos with Lustre.



Managing Security in
a Lustre File System

333

30.6.1. What Is Kerberos?
Kerberos is a mechanism for authenticating all entities (such as users and servers) on an "unsafe" network.
Each of these entities, known as "principals", negotiate a runtime key with the Kerberos server. This key
enables principals to verify that messages from the Kerberos server are authentic. By trusting the Kerberos
server, users and services can authenticate one another.

Setting up Lustre with Kerberos can provide advanced security protections for the Lustre network. Broadly,
Kerberos offers three types of benefit:

• Allows Lustre connection peers (MDS, OSS and clients) to authenticate one another.

• Protects the integrity of PTLRPC messages from being modified during network transfer.

• Protects the privacy of the PTLRPC message from being eavesdropped during network transfer.

Kerberos uses the “kernel keyring” client upcall mechanism.

30.6.2. Security Flavor
A security flavor is a string to describe what kind authentication and data transformation be performed
upon a PTLRPC connection. It covers both RPC message and BULK data.

The supported flavors are described in following table:

Base Flavor Authentication RPC Message
Protection

Bulk Data
Protection

Notes

null N/A N/A N/A

krb5n GSS/Kerberos5 null checksum No protection of
RPC message,
checksum
protection of
bulk data, light
performance
overhead.

krb5a GSS/Kerberos5 partial integrity
(krb5)

checksum Only header of
RPC message is
integrity protected,
and checksum
protection of
bulk data, more
performance
overhead compare
to krb5n.

krb5i GSS/Kerberos5 integrity (krb5) integrity (krb5) transformation
algorithm is
determined by
actual Kerberos
algorithms
enforced by KDC
and principals;
heavy performance
penalty.



Managing Security in
a Lustre File System

334

Base Flavor Authentication RPC Message
Protection

Bulk Data
Protection

Notes

krb5p GSS/Kerberos5 privacy (krb5) privacy (krb5) transformation
privacy protection
algorithm is
determined by
actual Kerberos
algorithms
enforced by KDC
and principals;
the heaviest
performance
penalty.

30.6.3. Kerberos Setup

30.6.3.1. Distribution

We only support MIT Kerberos 5, from version 1.3.

For environmental requirements in general, and clock synchronization in particular, please refer to section
Section 8.1.2, “Environmental Requirements”.

30.6.3.2. Principals Configuration

• Configure client nodes:

• For each client node, create a lustre_root principal and generate keytab.

kadmin> addprinc -randkey lustre_root/client_host.domain@REALM

kadmin> ktadd lustre_root/client_host.domain@REALM

• Install the keytab on the client node.

• Configure MGS nodes:

• For each MGS node, create a lustre_mgs principal and generate keytab.

kadmin> addprinc -randkey lustre_mgs/mgs_host.domain@REALM

kadmin> ktadd lustre_mds/mgs_host.domain@REALM

• Install the keytab on the MGS nodes.

• Configure MDS nodes:

• For each MDS node, create a lustre_mds principal and generate keytab.

kadmin> addprinc -randkey lustre_mds/mds_host.domain@REALM

kadmin> ktadd lustre_mds/mds_host.domain@REALM

• Install the keytab on the MDS nodes.

• Configure OSS nodes:



Managing Security in
a Lustre File System

335

• For each OSS node, create a lustre_oss principal and generate keytab.

kadmin> addprinc -randkey lustre_oss/oss_host.domain@REALM

kadmin> ktadd lustre_oss/oss_host.domain@REALM

• Install the keytab on the client node.

Note

• The host.domain should be the FQDN in your network, otherwise server might not recognize
any GSS request.

• As an alternative for the client keytab, if you want to save the trouble of assigning unique
keytab for each client node, you can create a general lustre_root principal and its keytab, and
install the same keytab on as many client nodes as you want. Be aware that in this way one
compromised client means all clients are insecure.

kadmin> addprinc -randkey lustre_root@REALM

kadmin> ktadd lustre_root@REALM

• Lustre support following enctypes for MIT Kerberos 5 version 1.3 or higher:

• aes128-cts

• aes256-cts

30.6.4. Networking
On networks for which name resolution to IP address is possible, like TCP or InfiniBand, the names used
in the principals must be the ones that resolve to the IP addresses used by the Lustre NIDs.

If you are using a network which is NOT TCP or InfiniBand (e.g. PTL4LND), you need to have a /
etc/lustre/nid2hostname script on each node, which purpose is to translate NID into hostname.
Following is a possible example for PTL4LND:

#!/bin/bash
set -x

# convert a NID for a LND to a hostname

# called with thre arguments: lnd netid nid
#   $lnd is the string "PTL4LND", etc.
#   $netid is the network identifier in hex string format
#   $nid is the NID in hex format
# output the corresponding hostname,
# or error message leaded by a '@' for error logging.

lnd=$1
netid=$2
# convert hex NID number to decimal
nid=$((0x$3))



Managing Security in
a Lustre File System

336

case $lnd in
    PTL4LND)   # simply add 'node' at the beginning
        echo "node$nid"
        ;;
    *)
 echo "@unknown LND: $lnd"
        ;;
esac

30.6.5. Required packages
Every node should have following packages installed:

• krb5-workstation

• krb5-libs

• keyutils

• keyutils-libs

On the node used to build Lustre with GSS support, following packages should be installed:

• krb5-devel

• keyutils-libs-devel

30.6.6. Build Lustre
Enable GSS at configuration time:

./configure --enable-gss --other-options

30.6.7. Running

30.6.7.1. GSS Daemons

Make sure to start the daemon process lsvcgssd on each server node (MGS, MDS and OSS) before
starting Lustre. The command syntax is:

lsvcgssd [-f] [-v] [-g] [-m] [-o] -k

• -f: run in foreground, instead of as daemon

• -v: increase verbosity by 1. For example, to set the verbose level to 3, run 'lsvcgssd -vvv'. Verbose
logging can help you make sure Kerberos is set up correctly.

• -g: service MGS

• -m: service MDS

• -o: service OSS

• -k: enable kerberos support



Managing Security in
a Lustre File System

337

30.6.7.2. Setting Security Flavors

Security flavors can be set by defining sptlrpc rules on the MGS. These rules are persistent, and are in
the form: <spec>=<flavor>

• To add a rule:

mgs> lctl conf_param <spec>=<flavor>

If there is an existing rule on <spec>, it will be overwritten.

• To delete a rule:

mgs> lctl conf_param -d <spec>

• To list existing rules:

msg> lctl get_param mgs.MGS.live.<fs-name> | grep "srpc.flavor"

Note

• If nothing is specified, by default all RPC connections will use null flavor, which means no
security.

• After you change a rule, it usually takes a few minutes to apply the new rule to all nodes,
depending on global system load.

• Before you change a rule, make sure affected nodes are ready for the new security flavor. E.g.
if you change flavor from null to krb5p but GSS/Kerberos environment is not properly
configured on affected nodes, those nodes might be evicted because they cannot communicate
with each other.

30.6.7.3. Rules Syntax & Examples

The general syntax is:  <target>.srpc.flavor.<network>[.<direction>]=flavor

• <target> can be filesystem name, or specific MDT/OST device name. For example testfs,
testfs-MDT0000, testfs-OST0001.

• <network> is the LNet network name, for example tcp0, o2ib0, or default to not filter on LNet
network.

• <direction> can be one of cli2mdt, cli2ost, mdt2mdt, mdt2ost. Direction is optional.

Examples:

• Apply krb5i on ALL connections for file system testfs:

mgs> lctl conf_param testfs.srpc.flavor.default=krb5i

• Nodes in network tcp0 use krb5p; all other nodes use null.

mgs> lctl conf_param testfs.srpc.flavor.tcp0=krb5p
mgs> lctl conf_param testfs.srpc.flavor.default=null

• Nodes in network tcp0 use krb5p; nodes in o2ib0 use krb5n; among other nodes, clients use
krb5i to MDT/OST, MDTs use null to other MDTs, MDTs use krb5a to OSTs.



Managing Security in
a Lustre File System

338

mgs> lctl conf_param testfs.srpc.flavor.tcp0=krb5p
mgs> lctl conf_param testfs.srpc.flavor.o2ib0=krb5n
mgs> lctl conf_param testfs.srpc.flavor.default.cli2mdt=krb5i
mgs> lctl conf_param testfs.srpc.flavor.default.cli2ost=krb5i
mgs> lctl conf_param testfs.srpc.flavor.default.mdt2mdt=null
mgs> lctl conf_param testfs.srpc.flavor.default.mdt2ost=krb5a

30.6.7.4. Regular Users Authentication

On client nodes, non-root users need to issue kinit before accessing Lustre, just like other Kerberized
applications.

• Required by kerberos, the user's principal (username@REALM) should be added to the KDC.

• Client and MDT nodes should have the same user database used for name and uid/gid translation.

Regular users can destroy the established security contexts before logging out, by issuing:

lfs flushctx -k -r <mount point>

Here -k is to destroy the on-disk Kerberos credential cache, similar to kdestroy, and -r is to reap
the revoked keys from the keyring when flushing the GSS context. Otherwise it only destroys established
contexts in kernel memory.

30.6.8. Secure MGS connection
Each node can specify which flavor to use to connect to the MGS, by using the mgssec=flavor mount
option. Once a flavor is chosen, it cannot be changed until re-mount.

Because a Lustre node only has one connection to the MGS, if there is more than one target or client on
the node, they necessarily use the same security flavor to the MGS, being the one enforced when the first
connection to the MGS was established.

By default, the MGS accepts RPCs with any flavor. But it is possible to configure the MGS to only accept
a given flavor. The syntax is identical to what is explained in paragraph Section 30.6.7.3, “Rules Syntax
& Examples”, but with special target _mgs:

mgs> lctl conf_param _mgs.srpc.flavor.<network>=<flavor>



339

Introduced in Lustre 2.10

Chapter 31. Lustre ZFS Snapshots
This chapter describes the ZFS Snapshot feature support in Lustre and contains following
sections:

• Section 31.1, “Introduction”

• Section 31.2, “Configuration ”

• Section 31.3, “Snapshot Operations”

• Section 31.4, “Global Write Barriers”

• Section 31.5, “Snapshot Logs”

• Section 31.6, “Lustre Configuration Logs”

31.1. Introduction
Snapshots provide fast recovery of files from a previously created checkpoint without recourse
to an offline backup or remote replica. Snapshots also provide a means to version-control
storage, and can be used to recover lost files or previous versions of files.

Filesystem snapshots are intended to be mounted on user-accessible nodes, such as login
nodes, so that users can restore files (e.g. after accidental delete or overwrite) without
administrator intervention. It would be possible to mount the snapshot filesystem(s) via
automount when users access them, rather than mounting all snapshots, to reduce overhead
on login nodes when the snapshots are not in use.

Recovery of lost files from a snapshot is usually considerably faster than from any offline
backup or remote replica. However, note that snapshots do not improve storage reliability and
are just as exposed to hardware failure as any other storage volume.

31.1.1. Requirements
All Lustre server targets must be ZFS file systems running Lustre version 2.10 or later. In
addition, the MGS must be able to communicate via ssh or another remote access protocol,
without password authentication, to all other servers.

The feature is enabled by default and cannot be disabled. The management of snapshots is
done through lctl commands on the MGS.

Lustre snapshot is based on Copy-On-Write; the snapshot and file system may share a single
copy of the data until a file is changed on the file system. The snapshot will prevent the space
of deleted or overwritten files from being released until the snapshot(s) referencing those files
is deleted. The file system administrator needs to establish a snapshot create/backup/remove
policy according to their system’s actual size and usage.

31.2. Configuration
The snapshot tool loads system configuration from the /etc/ldev.conf file on the MGS
and calls related ZFS commands to maintian the Lustre snapshot pieces on all targets (MGS/
MDT/OST). Please note that the /etc/ldev.conf file is used for other purposes as well.



Lustre ZFS Snapshots

340

The format of the file is:

<host> foreign/- <label> <device> [journal-path]/- [raidtab]

The format of <label> is:

fsname-<role><index> or <role><index>

The format of <device> is:

[md|zfs:][pool_dir/]<pool>/<filesystem>

Snapshot only uses the fields <host>, <label> and <device>.

Example 1:

mgs# cat /etc/ldev.conf
host-mdt1 - myfs-MDT0000 zfs:/tmp/myfs-mdt1/mdt1
host-mdt2 - myfs-MDT0001 zfs:myfs-mdt2/mdt2
host-ost1 - OST0000 zfs:/tmp/myfs-ost1/ost1
host-ost2 - OST0001 zfs:myfs-ost2/ost2

Example 2:

For the given mounted MGS/OST on single node:
singlenode# mount | grep "lustre-[m|o]"
lustre-mdt1/mdt1 on /mnt/lustre-mds1 type lustre (rw,svname=lustre-MDT0000,mgs,osd=osd-zfs)
lustre-ost1/ost1 on /mnt/lustre-ost1 type lustre (rw,svname=lustre-OST0000, mgsnode=x.x.x.x@tcp, osd=osd-zfs)

The corresponding /etc/ldev.conf would be
singlenode# cat /etc/ldev.conf
centos79z1 - lustre-MDT0000 zfs:/tmp/lustre-mdt1/mdt1 - -
centos79z1 - lustre-OST0000 zfs:/tmp/lustre-ost1/ost1 - -

Where:
        

Fields Description

centos79z1 Hostname

- Not Used

lustre-OST0000 Device label

zfs:/tmp/lustre-ost1/ost1 Device Name

- Not Used

- Not Used

The configuration file is edited manually.

Once the configuration file is updated to reflect the current file system setup, you are ready
to create a file system snapshot.



Lustre ZFS Snapshots

341

31.3. Snapshot Operations

31.3.1. Creating a Snapshot
To create a snapshot of an existing Lustre file system, run the following lctl command on
the MGS:

lctl snapshot_create [-b | --barrier [on | off]] [-c | --comment
comment] -F | --fsname fsname> [-h | --help] -n | --name ssname>
[-r | --rsh remote_shell][-t | --timeout timeout]

Option Description

-b set write barrier before creating snapshot. The
default value is 'on'.

-c a description for the purpose of the snapshot

-F the filesystem name

-h help information

-n the name of the snapshot

-r the remote shell used for communication with
remote target. The default value is 'ssh'

-t the lifetime (seconds) for write barrier. The
default value is 30 seconds

31.3.2. Delete a Snapshot
To delete an existing snapshot, run the following lctl command on the MGS:

lctl snapshot_destroy [-f | --force] <-F | --fsname fsname>
<-n | --name ssname> [-r | --rsh remote_shell]

Option Description

-f destroy the snapshot by force

-F the filesystem name

-h help information

-n the name of the snapshot

-r the remote shell used for communication with
remote target. The default value is 'ssh'

31.3.3. Mounting a Snapshot
Snapshots are treated as separate file systems and can be mounted on Lustre clients. The
snapshot file system must be mounted as a read-only file system with the -o ro option. If
the mount command does not include the read-only option, the mount will fail.

Note

Before a snapshot can be mounted on the client, the snapshot must first be mounted
on the servers using the lctl utility.



Lustre ZFS Snapshots

342

To mount a snapshot on the server, run the following lctl command on the MGS:

lctl snapshot_mount <-F | --fsname fsname> [-h | --help]
<-n | --name ssname> [-r | --rsh remote_shell]

Option Description

-F the filesystem name

-h help information

-n the name of the snapshot

-r the remote shell used for communication with
remote target. The default value is 'ssh'

After the successful mounting of the snapshot on the server, clients can now mount
the snapshot as a read-only filesystem. For example, to mount a snapshot named
snapshot_20170602 for a filesystem named myfs, the following mount command would
be used:

mgs# lctl snapshot_mount -F myfs -n snapshot_20170602

After mounting on the server, use lctl snapshot_list to get the fsname for the snapshot
itself as follows:

ss_fsname=$(lctl snapshot_list -F myfs -n snapshot_20170602 |
          awk '/^snapshot_fsname/ { print $2 }')

Finally, mount the snapshot on the client:

mount -t lustre -o ro $MGS_nid:/$ss_fsname $local_mount_point

31.3.4. Unmounting a Snapshot
To unmount a snapshot from the servers, first unmount the snapshot file system from all clients,
using the standard umount command on each client. For example, to unmount the snapshot
file system named snapshot_20170602 run the following command on each client that
has it mounted:

client# umount $local_mount_point

After all clients have unmounted the snapshot file system, run the following lctlcommand
on a server node where the snapshot is mounted:

lctl snapshot_umount [-F | --fsname fsname] [-h | --help]
<-n | -- name ssname> [-r | --rsh remote_shell]

Option Description

-F the filesystem name

-h help information

-n the name of the snapshot

-r the remote shell used for communication with
remote target. The default value is 'ssh'

For example:



Lustre ZFS Snapshots

343

lctl snapshot_umount -F myfs -n snapshot_20170602

31.3.5. List Snapshots
To list the available snapshots for a given file system, use the following lctl command on
the MGS:

lctl snapshot_list [-d | --detail] <-F | --fsname fsname>
[-h | -- help] [-n | --name ssname] [-r | --rsh remote_shell]

Option Description

-d list every piece for the specified snapshot

-F the filesystem name

-h help information

-n the snapshot's name. If the snapshot name is
not supplied, all snapshots for this file system
will be displayed

-r the remote shell used for communication with
remote target. The default value is 'ssh'

31.3.6. Modify Snapshot Attributes
Currently, Lustre snapshot has five user visible attributes; snapshot name, snapshot comment,
create time, modification time, and snapshot file system name. Among them, the former two
attributes can be modified. Renaming follows the general ZFS snapshot name rules, such as
the maximum length is 256 bytes, cannot conflict with the reserved names, and so on.

To modify a snapshot’s attributes, use the following lctl command on the MGS:

lctl snapshot_modify [-c | --comment comment]
<-F | --fsname fsname> [-h | --help] <-n | --name ssname>
[-N | --new new_ssname] [-r | --rsh remote_shell]

Option Description

-c update the snapshot's comment

-F the filesystem name

-h help information

-n the snapshot's name

-N rename the snapshot's name as new_ssname

-r the remote shell used for communication with
remote target. The default value is 'ssh'

31.4. Global Write Barriers
Snapshots are non-atomic across multiple MDTs and OSTs, which means that if there is
activity on the file system while a snapshot is being taken, there may be user-visible namespace
inconsistencies with files created or destroyed in the interval between the MDT and OST
snapshots. In order to create a consistent snapshot of the file system, we are able to set a global



Lustre ZFS Snapshots

344

write barrier, or “freeze” the system. Once set, all metadata modifications will be blocked
until the write barrier is actively removed (“thawed”) or expired. The user can set a timeout
parameter on a global barrier or the barrier can be explicitly removed. The default timeout
period is 30 seconds.

It is important to note that snapshots are usable without the global barrier. Only files that are
currently being modified by clients (write, create, unlink) may be inconsistent as noted above
if the barrier is not used. Other files not curently being modified would be usable even without
the barrier.

The snapshot create command will call the write barrier internally when requested using the -
b option to lctl snapshot_create. So, explicit use of the barrier is not required when
using snapshots but included here as an option to quiet the file system before a snapshot is
created.

31.4.1. Impose Barrier
To impose a global write barrier, run the lctl barrier_freeze command on the MGS:

lctl barrier_freeze <fsname> [timeout (in seconds)]
where timeout default is 30.

For example, to freeze the filesystem testfs for 15 seconds:

mgs# lctl barrier_freeze testfs 15

If the command is successful, there will be no output from the command. Otherwise, an error
message will be printed.

31.4.2. Remove Barrier
To remove a global write barrier, run the lctl barrier_thaw command on the MGS:

lctl barrier_thaw <fsname>

For example, to thaw the write barrier for the filesystem testfs:

mgs# lctl barrier_thaw testfs

If the command is successful, there will be no output from the command. Otherwise, an error
message will be printed.

31.4.3. Query Barrier
To see how much time is left on a global write barrier, run the lctl barrier_stat
command on the MGS:

# lctl barrier_stat <fsname>

For example, to stat the write barrier for the filesystem testfs:

mgs# lctl barrier_stat testfs
The barrier for testfs is in 'frozen'
The barrier will be expired after 7 seconds



Lustre ZFS Snapshots

345

If the command is successful, a status from the table below will be printed. Otherwise, an error
message will be printed.

The possible status and related meanings for the write barrier are as follows:

Table 31.1. Write Barrier Status

Status Meaning

init barrier has never been set on the system

freezing_p1 In the first stage of setting the write barrier

freezing_p2 the second stage of setting the write barrier

frozen the write barrier has been set successfully

thawing In thawing the write barrier

thawed The write barrier has been thawed

failed Failed to set write barrier

expired The write barrier is expired

rescan In scanning the MDTs status, see the
command barrier_rescan

unknown Other cases

If the barrier is in ’freezing_p1’, ’freezing_p2’ or ’frozen’ status, then the remaining lifetime
will be returned also.

31.4.4. Rescan Barrier
To rescan a global write barrier to check which MDTs are active, run the lctl
barrier_rescan command on the MGS:

lctl barrier_rescan <fsname> [timeout (in seconds)],
where the default timeout is 30 seconds.

For example, to rescan the barrier for filesystem testfs:

mgs# lctl barrier_rescan testfs
1 of 4 MDT(s) in the filesystem testfs are inactive

If the command is successful, the number of MDTs that are unavailable against the total MDTs
will be reported. Otherwise, an error message will be printed.

31.5. Snapshot Logs
A log of all snapshot activity can be found in the following file: /var/log/
lsnapshot.log. This file contains information on when a snapshot was created, an
attribute was changed, when it was mounted, and other snapshot information.

The following is a sample /var/log/lsnapshot file:

Mon Mar 21 19:43:06 2016
(15826:jt_snapshot_create:1138:scratch:ssh): Create snapshot lss_0_0
successfully with comment <(null)>, barrier <enable>, timeout <30>



Lustre ZFS Snapshots

346

Mon Mar 21 19:43:11 2016(13030:jt_snapshot_create:1138:scratch:ssh):
Create snapshot lss_0_1 successfully with comment <(null)>, barrier
<disable>, timeout <-1>
Mon Mar 21 19:44:38 2016 (17161:jt_snapshot_mount:2013:scratch:ssh):
The snapshot lss_1a_0 is mounted
Mon Mar 21 19:44:46 2016
(17662:jt_snapshot_umount:2167:scratch:ssh): the snapshot lss_1a_0
have been umounted
Mon Mar 21 19:47:12 2016
(20897:jt_snapshot_destroy:1312:scratch:ssh): Destroy snapshot
lss_2_0 successfully with force <disable>

31.6. Lustre Configuration Logs
A snapshot is independent from the original file system that it is derived from and is treated
as a new file system name that can be mounted by Lustre client nodes. The file system name
is part of the configuration log names and exists in configuration log entries. Two commands
exist to manipulate configuration logs: lctl fork_lcfg and lctl erase_lcfg.

The snapshot commands will use configuration log functionality internally when needed. So,
use of the barrier is not required to use snapshots but included here as an option. The following
configuration log commands are independent of snapshots and can be used independent of
snapshot use.

To fork a configuration log, run the following lctl command on the MGS:

lctl fork_lcfg

Usage: fork_lcfg <fsname> <newname>

To erase a configuration log, run the following lctl command on the MGS:

lctl erase_lcfg

Usage: erase_lcfg <fsname>



Part IV. Tuning a Lustre File
System for Performance

Part IV describes tools and procedures used to tune a Lustre file system for optimum performance. You will find
information in this section about:

• Testing Lustre Network Performance (LNet Self-Test)

• Benchmarking Lustre File System Performance (Lustre I/O Kit)

• Tuning a Lustre File System



348

Table of Contents
32. Testing Lustre Network Performance (LNet Self-Test) .................................................. 350

32.1. LNet Self-Test Overview ..................................................................................  350
32.1.1. Prerequisites .........................................................................................  351

32.2. Using LNet Self-Test .......................................................................................  351
32.2.1. Creating a Session .................................................................................  351
32.2.2. Setting Up Groups ................................................................................  352
32.2.3. Defining and Running the Tests ...............................................................  352
32.2.4. Sample Script .......................................................................................  353

32.3. LNet Self-Test Command Reference ...................................................................  354
32.3.1. Session Commands ...............................................................................  354
32.3.2. Group Commands .................................................................................  355
32.3.3. Batch and Test Commands .....................................................................  357
32.3.4. Other Commands ..................................................................................  360

33. Benchmarking Lustre File System Performance (Lustre I/O Kit) ...................................  363
33.1. Using Lustre I/O Kit Tools ...............................................................................  363

33.1.1. Contents of the Lustre I/O Kit .................................................................  363
33.1.2. Preparing to Use the Lustre I/O Kit ..........................................................  363

33.2. Testing I/O Performance of Raw Hardware (sgpdd-survey) ................................  364
33.2.1. Tuning Linux Storage Devices ................................................................  365
33.2.2. Running sgpdd-survey ...........................................................................  365

33.3. Testing OST Performance (obdfilter-survey) ..............................................  366
33.3.1. Testing Local Disk Performance ..............................................................  367
33.3.2. Testing Network Performance .................................................................  369
33.3.3. Testing Remote Disk Performance ...........................................................  370
33.3.4. Output Files .........................................................................................  371

33.4. Testing OST I/O Performance (ost-survey) .....................................................  372
33.5. Testing MDS Performance (mds-survey) .........................................................  373

33.5.1. Output Files .........................................................................................  374
33.5.2. Script Output ........................................................................................ 374

33.6. Collecting Application Profiling Information ( stats-collect) ...........................  375
33.6.1. Using stats-collect .......................................................................  375

34. Tuning a Lustre File System ......................................................................................  377
34.1. Optimizing the Number of Service Threads ..........................................................  377

34.1.1. Specifying the OSS Service Thread Count .................................................  378
34.1.2. Specifying the MDS Service Thread Count ................................................  378

34.2. Binding MDS Service Thread to CPU Partitions .................................................... 379
34.3. Tuning LNet Parameters ...................................................................................  379

34.3.1. Transmit and Receive Buffer Size ............................................................  379
34.3.2. Hardware Interrupts ( enable_irq_affinity) .....................................  379
34.3.3. Binding Network Interface Against CPU Partitions ......................................  380
34.3.4. Network Interface Credits .......................................................................  380
34.3.5. Router Buffers ......................................................................................  380
34.3.6. Portal Round-Robin ...............................................................................  381
34.3.7. LNet Peer Health ..................................................................................  382

34.4. libcfs Tuning ..................................................................................................  384
34.4.1. CPU Partition String Patterns ..................................................................  384

34.5. LND Tuning ...................................................................................................  385
34.5.1. ko2iblnd Tuning ...................................................................................  385

34.6. Network Request Scheduler (NRS) Tuning ...........................................................  387
34.6.1. First In, First Out (FIFO) policy ..............................................................  390
34.6.2. Client Round-Robin over NIDs (CRR-N) policy .........................................  390



Tuning a Lustre File
System for Performance

349

34.6.3. Object-based Round-Robin (ORR) policy ..................................................  391
34.6.4. Target-based Round-Robin (TRR) policy ...................................................  394
34.6.5. Token Bucket Filter (TBF) policy ....................................................  L 2.6 394
34.6.6. Delay policy ..............................................................................  L 2.10 401

34.7. Lockless I/O Tunables ......................................................................................  403
34.8. Server-Side Advice and Hinting .................................................................  L 2.9 404

34.8.1. Overview .............................................................................................  404
34.8.2. Examples .............................................................................................  405

34.9. Large Bulk IO (16MB RPC) .....................................................................  L 2.9 406
34.9.1. Overview .............................................................................................  406
34.9.2. Usage .................................................................................................  406

34.10. Improving Lustre I/O Performance for Small Files ...............................................  407
34.11. Understanding Why Write Performance is Better Than Read Performance .................  407



350

Chapter 32. Testing Lustre Network
Performance (LNet Self-Test)

This chapter describes the LNet self-test, which is used by site administrators to confirm that Lustre
Networking (LNet) has been properly installed and configured, and that underlying network software and
hardware are performing according to expectations. The chapter includes:

• Section 32.1, “ LNet Self-Test Overview”

• Section 32.2, “Using LNet Self-Test”

• Section 32.3, “LNet Self-Test Command Reference”

32.1.  LNet Self-Test Overview
LNet self-test is a kernel module that runs over LNet and the Lustre network drivers (LNDs). It is designed
to:

• Test the connection ability of the Lustre network

• Run regression tests of the Lustre network

• Test performance of the Lustre network

After you have obtained performance results for your Lustre network, refer to Chapter 34, Tuning a Lustre
File System for information about parameters that can be used to tune LNet for optimum performance.

Note

Apart from the performance impact, LNet self-test is invisible to the Lustre file system.

An LNet self-test cluster includes two types of nodes:

• Console node - A node used to control and monitor an LNet self-test cluster. The console node serves
as the user interface of the LNet self-test system and can be any node in the test cluster. All self-test
commands are entered from the console node. From the console node, a user can control and monitor the
status of the entire LNet self-test cluster (session). The console node is exclusive in that a user cannot
control two different sessions from one console node.

• Test nodes - The nodes on which the tests are run. Test nodes are controlled by the user from the console
node; the user does not need to log into them directly.

LNet self-test has two user utilities:

• lst  - The user interface for the self-test console (run on the console node). It provides a list of
commands to control the entire test system, including commands to create a session, create test groups,
etc.

• lstclient  - The userspace LNet self-test program (run on a test node). The lstclient utility is
linked with userspace LNDs and LNet. This utility is not needed if only kernel space LNet and LNDs
are used.



Testing Lustre Network
Performance (LNet Self-Test)

351

Note

Test nodes can be in either kernel or userspace. A console node can invite a kernel test node to
join the session by running lst add_group NID, but the console node cannot actively add a
userspace test node to the session. A console node can passively accept a test node to the session
while the test node is running lstclient to connect to the console node.

32.1.1. Prerequisites
To run LNet self-test, these modules must be loaded on both console nodes and test nodes:

• libcfs

• net

• lnet_selftest

• klnds: A kernel Lustre network driver (LND) (i.e, ksocklnd, ko2iblnd...) as needed by your
network configuration.

To load the required modules, run:

modprobe lnet_selftest 

This command recursively loads the modules on which LNet self-test depends.

Note

While the console node and test nodes require all the prerequisite modules to be loaded, userspace
test nodes do not require these modules.

32.2. Using LNet Self-Test
This section describes how to create and run an LNet self-test. The examples shown are for a test that
simulates the traffic pattern of a set of Lustre servers on a TCP network accessed by Lustre clients on an
InfiniBand network connected via LNet routers. In this example, half the clients are reading and half the
clients are writing.

32.2.1. Creating a Session
A session is a set of processes that run on a test node. Only one session can be run at a time on a test node to
ensure that the session has exclusive use of the node. The console node is used to create, change or destroy
a session (new_session, end_session, show_session). For more about session parameters, see
Section 32.3.1, “Session Commands”.

Almost all operations should be performed within the context of a session. From the console node, a user
can only operate nodes in his own session. If a session ends, the session context in all test nodes is stopped.

The following commands set the LST_SESSION environment variable to identify the session on the
console node and create a session called read_write:

export LST_SESSION=$$



Testing Lustre Network
Performance (LNet Self-Test)

352

lst new_session read_write

32.2.2. Setting Up Groups
A group is a named collection of nodes. Any number of groups can exist in a single LNet self-test session.
Group membership is not restricted in that a test node can be included in any number of groups.

Each node in a group has a rank, determined by the order in which it was added to the group. The rank
is used to establish test traffic patterns.

A user can only control nodes in his/her session. To allocate nodes to the session, the user needs to add
nodes to a group (of the session). All nodes in a group can be referenced by the group name. A node can
be allocated to multiple groups of a session.

In the following example, three groups are established on a console node:

lst add_group servers 192.168.10.[8,10,12-16]@tcp
lst add_group readers 192.168.1.[1-253/2]@o2ib
lst add_group writers 192.168.1.[2-254/2]@o2ib

These three groups include:

• Nodes that will function as 'servers' to be accessed by 'clients' during the LNet self-test session

• Nodes that will function as 'clients' that will simulate reading data from the 'servers'

• Nodes that will function as 'clients' that will simulate writing data to the 'servers'

Note

A console node can associate kernel space test nodes with the session by running lst
add_group NIDs, but a userspace test node cannot be actively added to the session. A console
node can passively "accept" a test node to associate with a test session while the test node running
lstclient connects to the console node, i.e: lstclient --sesid CONSOLE_NID --
group NAME).

32.2.3. Defining and Running the Tests
A test generates a network load between two groups of nodes, a source group identified using the --from
parameter and a target group identified using the --to parameter. When a test is running, each node in
the --from group simulates a client by sending requests to nodes in the --to group, which are
simulating a set of servers, and then receives responses in return. This activity is designed to mimic Lustre
file system RPC traffic.

A batch is a collection of tests that are started and stopped together and run in parallel. A test must always
be run as part of a batch, even if it is just a single test. Users can only run or stop a test batch, not individual
tests.

Tests in a batch are non-destructive to the file system, and can be run in a normal Lustre file system
environment (provided the performance impact is acceptable).

A simple batch might contain a single test, for example, to determine whether the network bandwidth
presents an I/O bottleneck. In this example, the --to group could be comprised of Lustre OSSs and
--from group the compute nodes. A second test could be added to perform pings from a login node
to the MDS to see how checkpointing affects the ls -l process.



Testing Lustre Network
Performance (LNet Self-Test)

353

Two types of tests are available:

• ping - A ping generates a short request message, which results in a short response. Pings are useful
to determine latency and small message overhead and to simulate Lustre metadata traffic.

• brw - In a brw ('bulk read write') test, data is transferred from the target to the source (brwread) or
data is transferred from the source to the target (brwwrite). The size of the bulk transfer is set using the
size parameter. A brw test is useful to determine network bandwidth and to simulate Lustre I/O traffic.

In the example below, a batch is created called bulk_rw. Then two brw tests are added. In the first test,
1M of data is sent from the servers to the clients as a simulated read operation with a simple data validation
check. In the second test, 4K of data is sent from the clients to the servers as a simulated write operation
with a full data validation check.

lst add_batch bulk_rw
lst add_test --batch bulk_rw --from readers --to servers \
  brw read check=simple size=1M
lst add_test --batch bulk_rw --from writers --to servers \
  brw write check=full size=4K

The traffic pattern and test intensity is determined by several properties such as test type, distribution of
test nodes, concurrency of test, and RDMA operation type. For more details, see Section 32.3.3, “Batch
and Test Commands”.

32.2.4. Sample Script
This sample LNet self-test script simulates the traffic pattern of a set of Lustre servers on a TCP network,
accessed by Lustre clients on an InfiniBand network (connected via LNet routers). In this example, half
the clients are reading and half the clients are writing.

Run this script on the console node:

#!/bin/bash
export LST_SESSION=$$
lst new_session read/write
lst add_group servers 192.168.10.[8,10,12-16]@tcp
lst add_group readers 192.168.1.[1-253/2]@o2ib
lst add_group writers 192.168.1.[2-254/2]@o2ib
lst add_batch bulk_rw
lst add_test --batch bulk_rw --from readers --to servers \
brw read check=simple size=1M
lst add_test --batch bulk_rw --from writers --to servers \
brw write check=full size=4K
# start running
lst run bulk_rw
# display server stats for 30 seconds
lst stat servers & sleep 30; kill $!
# tear down
lst end_session

Note

This script can be easily adapted to pass the group NIDs by shell variables or command line
arguments (making it good for general-purpose use).



Testing Lustre Network
Performance (LNet Self-Test)

354

32.3. LNet Self-Test Command Reference
The LNet self-test (lst) utility is used to issue LNet self-test commands. The lst utility takes a number
of command line arguments. The first argument is the command name and subsequent arguments are
command-specific.

32.3.1. Session Commands
This section describes lst session commands.

LST_FEATURES

The lst utility uses the LST_FEATURES environmental variable to determine what optional features
should be enabled. All features are disabled by default. The supported values for LST_FEATURES are:

• 1 - Enable the Variable Page Size feature for LNet Selftest.

Example:

export LST_FEATURES=1

LST_SESSION

The lst utility uses the LST_SESSION environmental variable to identify the session locally on the
self-test console node. This should be a numeric value that uniquely identifies all session processes on the
node. It is convenient to set this to the process ID of the shell both for interactive use and in shell scripts.
Almost all lst commands require LST_SESSION to be set.

Example:

export LST_SESSION=$$

new_session [--timeout SECONDS] [--force] SESSNAME

Creates a new session session named SESSNAME.

Parameter Description

--timeout seconds Console timeout value of the session. The session
ends automatically if it remains idle (i.e., no
commands are issued) for this period.

--force Ends conflicting sessions. This determines who
'wins' when one session conflicts with another. For
example, if there is already an active session on this
node, then the attempt to create a new session fails
unless the --force flag is specified. If the --
force flag is specified, then the active session is
ended. Similarly, if a session attempts to add a node
that is already 'owned' by another session, the --
force flag allows this session to 'steal' the node.

name A human-readable string to print when listing
sessions or reporting session conflicts.

Example:



Testing Lustre Network
Performance (LNet Self-Test)

355

$ lst new_session --force read_write

end_session

Stops all operations and tests in the current session and clears the session's status.

$ lst end_session

show_session

Shows the session information. This command prints information about the current session. It does not
require LST_SESSION to be defined in the process environment.

$ lst show_session

32.3.2. Group Commands
This section describes lst group commands.

add_group name NIDS [NIDs...]

Creates the group and adds a list of test nodes to the group.

Parameter Description

name Name of the group.

NIDs A string that may be expanded to include one or
more LNet NIDs.

Example:

$ lst add_group servers 192.168.10.[35,40-45]@tcp
$ lst add_group clients 192.168.1.[10-100]@tcp 192.168.[2,4].\
  [10-20]@tcp

update_group name [--refresh] [--clean status] [--remove NIDs]

Updates the state of nodes in a group or adjusts a group's membership. This command is useful if some
nodes have crashed and should be excluded from the group.

Parameter Description

--refresh Refreshes the state of all inactive nodes in the group.

--clean status Removes nodes with a specified status from the group. Status may be:

active The node is in the current session.

busy The node is now owned by
another session.

down The node has been marked down.

unknown The node's status has yet to be
determined.

invalid Any state but active.

--remove NIDs Removes specified nodes from the group.



Testing Lustre Network
Performance (LNet Self-Test)

356

Example:

$ lst update_group clients --refresh
$ lst update_group clients --clean busy
$ lst update_group clients --clean invalid // \
  invalid == busy || down || unknown
$ lst update_group clients --remove \192.168.1.[10-20]@tcp

list_group [name] [--active] [--busy] [--down] [--unknown] [--all]

Prints information about a group or lists all groups in the current session if no group is specified.

Parameter Description

name The name of the group.

--active Lists the active nodes.

--busy Lists the busy nodes.

--down Lists the down nodes.

--unknown Lists unknown nodes.

--all Lists all nodes.

Example:

$ lst list_group
1) clients
2) servers
Total 2 groups
$ lst list_group clients
ACTIVE BUSY DOWN UNKNOWN TOTAL
3 1 2 0 6
$ lst list_group clients --all
192.168.1.10@tcp Active
192.168.1.11@tcp Active
192.168.1.12@tcp Busy
192.168.1.13@tcp Active
192.168.1.14@tcp DOWN
192.168.1.15@tcp DOWN
Total 6 nodes
$ lst list_group clients --busy
192.168.1.12@tcp Busy
Total 1 node

del_group name

Removes a group from the session. If the group is referred to by any test, then the operation fails. If nodes
in the group are referred to only by this group, then they are kicked out from the current session; otherwise,
they are still in the current session.

$ lst del_group clients

lstclient --sesid NID --group name [--server_mode]

Use lstclient to run the userland self-test client. The lstclient command should be executed after
creating a session on the console. There are only two mandatory options for lstclient:



Testing Lustre Network
Performance (LNet Self-Test)

357

Parameter Description

--sesid NID The first console's NID.

--group name The test group to join.

--server_mode When included, forces LNet to behave as a server,
such as starting an acceptor if the underlying NID
needs it or using privileged ports. Only root is
allowed to use the --server_mode option.

Example:

Console $ lst new_session testsession
Client1 $ lstclient --sesid 192.168.1.52@tcp --group clients

Example:

Client1 $ lstclient --sesid 192.168.1.52@tcp |--group clients --server_mode

32.3.3. Batch and Test Commands
This section describes lst batch and test commands.

add_batch name

A default batch test set named batch is created when the session is started. You can specify a batch name
by using add_batch:

$ lst add_batch bulkperf

Creates a batch test called bulkperf.

add_test --batch batchname [--loop loop_count] [--concurrency active_count] [--distribute source_count:sink_count] \
         --from group --to group brw|ping test_options
        

Adds a test to a batch. The parameters are described below.

Parameter Description

--batch batchname Names a group of tests for later execution.

--loop loop_count Number of times to run the test.

--concurrency
active_count

The number of requests that are active at one time.

--distribute
source_count:sink_count

Determines the ratio of client nodes to server nodes for the specified
test. This allows you to specify a wide range of topologies, including
one-to-one and all-to-all. Distribution divides the source group into
subsets, which are paired with equivalent subsets from the target
group so only nodes in matching subsets communicate.

--from group The source group (test client).

--to group The target group (test server).

ping Sends a small request message, resulting in a small reply message. For
more details, see Section 32.2.3, “Defining and Running the Tests”.
ping does not have any additional options.



Testing Lustre Network
Performance (LNet Self-Test)

358

Parameter Description

brw Sends a small request message followed by a bulk data transfer,
resulting in a small reply message. Section 32.2.3, “Defining and
Running the Tests”. Options are:

read | write Read or write. The default is read.

size=bytes[KM] I/O size in bytes, kilobytes, or
Megabytes (i.e., size=1024,
size=4K, size=1M). The
default is 4 kilobytes.

check=full|simple A data validation check
(checksum of data). The default is
that no check is done.

Examples showing use of the distribute parameter:

Clients: (C1, C2, C3, C4, C5, C6)
Server: (S1, S2, S3)
--distribute 1:1 (C1->S1), (C2->S2), (C3->S3), (C4->S1), (C5->S2),
\(C6->S3) /* -> means test conversation */ --distribute 2:1 (C1,C2->S1), (C3,C4->S2), (C5,C6->S3)
--distribute 3:1 (C1,C2,C3->S1), (C4,C5,C6->S2), (NULL->S3)
--distribute 3:2 (C1,C2,C3->S1,S2), (C4,C5,C6->S3,S1)
--distribute 4:1 (C1,C2,C3,C4->S1), (C5,C6->S2), (NULL->S3)
--distribute 4:2 (C1,C2,C3,C4->S1,S2), (C5, C6->S3, S1)
--distribute 6:3 (C1,C2,C3,C4,C5,C6->S1,S2,S3)

The setting --distribute 1:1 is the default setting where each source node communicates with one
target node.

When the setting --distribute 1: n (where n is the size of the target group) is used, each source
node communicates with every node in the target group.

Note that if there are more source nodes than target nodes, some source nodes may share the same target
nodes. Also, if there are more target nodes than source nodes, some higher-ranked target nodes will be idle.

Example showing a brw test:

$ lst add_group clients 192.168.1.[10-17]@tcp
$ lst add_group servers 192.168.10.[100-103]@tcp
$ lst add_batch bulkperf
$ lst add_test --batch bulkperf --loop 100 --concurrency 4 \
  --distribute 4:2 --from clients brw WRITE size=16K

In the example above, a batch test called bulkperf that will do a 16 kbyte bulk write request. In this test,
two groups of four clients (sources) write to each of four servers (targets) as shown below:

• 192.168.1.[10-13] will write to 192.168.10.[100,101]

• 192.168.1.[14-17] will write to 192.168.10.[102,103]

list_batch [name] [--test index] [--active] [--invalid] [--server|
client]

Lists batches in the current session or lists client and server nodes in a batch or a test.



Testing Lustre Network
Performance (LNet Self-Test)

359

Parameter Description

--test index Lists tests in a batch. If no option is used, all tests in the batch are
listed. If one of these options are used, only specified tests in the batch
are listed:

active Lists only active batch tests.

invalid Lists only invalid batch tests.

server | client Lists client and server nodes in a
batch test.

Example:

$ lst list_batchbulkperf
$ lst list_batch bulkperf
Batch: bulkperf Tests: 1 State: Idle
ACTIVE BUSY DOWN UNKNOWN TOTAL
client 8 0 0 0 8
server 4 0 0 0 4
Test 1(brw) (loop: 100, concurrency: 4)
ACTIVE BUSY DOWN UNKNOWN TOTAL
client 8 0 0 0 8
server 4 0 0 0 4
$ lst list_batch bulkperf --server --active
192.168.10.100@tcp Active
192.168.10.101@tcp Active
192.168.10.102@tcp Active
192.168.10.103@tcp Active

run name

Runs the batch.

$ lst run bulkperf

stop name

Stops the batch.

$ lst stop bulkperf

query name [--test index] [--timeout seconds] [--loop loopcount] [--
delay seconds] [--all]

Queries the batch status.

Parameter Description

--test index Only queries the specified test. The test index starts
from 1.

--timeout seconds The timeout value to wait for RPC. The default is
5 seconds.

--loop # The loop count of the query.

--delay seconds The interval of each query. The default is 5 seconds.



Testing Lustre Network
Performance (LNet Self-Test)

360

Parameter Description

--all The list status of all nodes in a batch or a test.

Example:

$ lst run bulkperf
$ lst query bulkperf --loop 5 --delay 3
Batch is running
Batch is running
Batch is running
Batch is running
Batch is running
$ lst query bulkperf --all
192.168.1.10@tcp Running
192.168.1.11@tcp Running
192.168.1.12@tcp Running
192.168.1.13@tcp Running
192.168.1.14@tcp Running
192.168.1.15@tcp Running
192.168.1.16@tcp Running
192.168.1.17@tcp Running
$ lst stop bulkperf
$ lst query bulkperf
Batch is idle

32.3.4. Other Commands
This section describes other lst commands.

ping [-session] [--group name] [--nodes NIDs] [--batch name] [--server]
[--timeout seconds]

Sends a 'hello' query to the nodes.

Parameter Description

--session Pings all nodes in the current session.

--group name Pings all nodes in a specified group.

--nodes NIDs Pings all specified nodes.

--batch name Pings all client nodes in a batch.

--server Sends RPC to all server nodes instead of client
nodes. This option is only used with --batch
name.

--timeout seconds The RPC timeout value.

Example:

# lst ping 192.168.10.[15-20]@tcp
192.168.1.15@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.16@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.17@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.18@tcp Busy [session: Isaac id: 192.168.10.10@tcp]



Testing Lustre Network
Performance (LNet Self-Test)

361

192.168.1.19@tcp Down [session: <NULL> id: LNET_NID_ANY]
192.168.1.20@tcp Down [session: <NULL> id: LNET_NID_ANY]

stat [--bw] [--rate] [--read] [--write] [--max] [--min] [--avg] " " [--
timeout seconds] [--delay seconds] group|NIDs [group|NIDs]

The collection performance and RPC statistics of one or more nodes.

Parameter Description

--bw Displays the bandwidth of the specified group/
nodes.

--rate Displays the rate of RPCs of the specified group/
nodes.

--read Displays the read statistics of the specified group/
nodes.

--write Displays the write statistics of the specified group/
nodes.

--max Displays the maximum value of the statistics.

--min Displays the minimum value of the statistics.

--avg Displays the average of the statistics.

--timeout seconds The timeout of the statistics RPC. The default is 5
seconds.

--delay seconds The interval of the statistics (in seconds).

Example:

$ lst run bulkperf
$ lst stat clients
[LNet Rates of clients]
[W] Avg: 1108 RPC/s Min: 1060 RPC/s Max: 1155 RPC/s
[R] Avg: 2215 RPC/s Min: 2121 RPC/s Max: 2310 RPC/s
[LNet Bandwidth of clients]
[W] Avg: 16.60 MB/s Min: 16.10 MB/s Max: 17.1 MB/s
[R] Avg: 40.49 MB/s Min: 40.30 MB/s Max: 40.68 MB/s

Specifying a group name ( group ) causes statistics to be gathered for all nodes in a test group. For
example:

$ lst stat servers

where servers is the name of a test group created by lst add_group

Specifying a NID range (NIDs) causes statistics to be gathered for selected nodes. For example:

$ lst stat 192.168.0.[1-100/2]@tcp

Only LNet performance statistics are available. By default, all statistics information is displayed. Users
can specify additional information with these options.

show_error [--session] [group|NIDs]...

Lists the number of failed RPCs on test nodes.



Testing Lustre Network
Performance (LNet Self-Test)

362

Parameter Description

--session Lists errors in the current test session. With this
option, historical RPC errors are not listed.

Example:

$ lst show_error client
sclients
12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors] \
  [RPC: 20 errors, 0 dropped,
12345-192.168.1.16@tcp: [Session: 0 brw errors, 0 ping errors] \
  [RPC: 1 errors, 0 dropped, Total 2 error nodes in clients
$ lst show_error --session clients
clients
12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors]
Total 1 error nodes in clients



363

Chapter 33. Benchmarking Lustre File
System Performance (Lustre I/O Kit)

This chapter describes the Lustre I/O kit, a collection of I/O benchmarking tools for a Lustre cluster. It
includes:

• Section 33.1, “ Using Lustre I/O Kit Tools”

• Section 33.2, “ Testing I/O Performance of Raw Hardware (sgpdd-survey) ”

• Section 33.3, “Testing OST Performance (obdfilter-survey) ”

• Section 33.4, “ Testing OST I/O Performance (ost-survey)”

• Section 33.5, “ Testing MDS Performance (mds-survey)”

• Section 33.6, “ Collecting Application Profiling Information ( stats-collect)”

33.1.      Using Lustre I/O Kit Tools
The tools in the Lustre I/O Kit are used to benchmark Lustre file system hardware and validate that
it is working as expected before you install the Lustre software. It can also be used to to validate the
performance of the various hardware and software layers in the cluster and also to find and troubleshoot
I/O issues.

Typically, performance is measured starting with single raw devices and then proceeding to groups of
devices. Once raw performance has been established, other software layers are then added incrementally
and tested.

33.1.1. Contents of the Lustre I/O Kit
The I/O kit contains three tests, each of which tests a progressively higher layer in the Lustre software stack:

• sgpdd-survey - Measure basic 'bare metal' performance of devices while bypassing the kernel block
device layers, buffer cache, and file system.

• obdfilter-survey - Measure the performance of one or more OSTs directly on the OSS node or
alternately over the network from a Lustre client.

• ost-survey - Performs I/O against OSTs individually to allow performance comparisons to detect
if an OST is performing sub-optimally due to hardware issues.

Typically with these tests, a Lustre file system should deliver 85-90% of the raw device performance.

A utility stats-collect is also provided to collect application profiling information from Lustre
clients and servers. See Section 33.6, “ Collecting Application Profiling Information ( stats-
collect)” for more information.

33.1.2. Preparing to Use the Lustre I/O Kit
The following prerequisites must be met to use the tests in the Lustre I/O kit:



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

364

• Password-free remote access to nodes in the system (provided by ssh or rsh).

• LNet self-test completed to test that Lustre networking has been properly installed and configured. See
Chapter 32, Testing Lustre Network Performance (LNet Self-Test).

• Lustre file system software installed.

• sg3_utils package providing the sgp_dd tool (sg3_utils is a separate RPM package available
online using YUM).

Download the Lustre I/O kit (lustre-iokit)from:

https://downloads.whamcloud.com/

33.2.  Testing I/O Performance of Raw
Hardware (sgpdd-survey)

The sgpdd-survey tool is used to test bare metal I/O performance of the raw hardware, while bypassing
as much of the kernel as possible. This survey may be used to characterize the performance of a SCSI
device by simulating an OST serving multiple stripe files. The data gathered by this survey can help set
expectations for the performance of a Lustre OST using this device.

The script uses sgp_dd to carry out raw sequential disk I/O. It runs with variable numbers of sgp_dd
threads to show how performance varies with different request queue depths.

The script spawns variable numbers of sgp_dd instances, each reading or writing a separate area of the
disk to demonstrate performance variance within a number of concurrent stripe files.

Several tips and insights for disk performance measurement are described below. Some of this information
is specific to RAID arrays and/or the Linux RAID implementation.

• Performance is limited by the slowest disk.

Before creating a RAID array, benchmark all disks individually. We have frequently encountered
situations where drive performance was not consistent for all devices in the array. Replace any disks
that are significantly slower than the rest.

• Disks and arrays are very sensitive to request size.

To identify the optimal request size for a given disk, benchmark the disk with different record sizes
ranging from 4 KB to 1 to 2 MB.

Caution

The sgpdd-survey script overwrites the device being tested, which results in the  LOSS OF
ALL DATA on that device. Exercise caution when selecting the device to be tested.

Note

Array performance with all LUNs loaded does not always match the performance of a single
LUN when tested in isolation.

Prerequisites:

https://downloads.whamcloud.com/


Benchmarking Lustre File System
Performance (Lustre I/O Kit)

365

• sgp_dd tool in the sg3_utils package

• Lustre software is NOT required

The device(s) being tested must meet one of these two requirements:

• If the device is a SCSI device, it must appear in the output of sg_map (make sure the kernel module
sg is loaded).

• If the device is a raw device, it must appear in the output of raw -qa.

Raw and SCSI devices cannot be mixed in the test specification.

Note

If you need to create raw devices to use the sgpdd-survey tool, note that raw device 0 cannot
be used due to a bug in certain versions of the "raw" utility (including the version shipped with
Red Hat Enterprise Linux 4U4.)

33.2.1.  Tuning Linux Storage Devices
To get large I/O transfers (1 MB) to disk, it may be necessary to tune several kernel parameters as specified:

/sys/block/sdN/queue/max_sectors_kb = 4096
/sys/block/sdN/queue/max_phys_segments = 256
/proc/scsi/sg/allow_dio = 1
/sys/module/ib_srp/parameters/srp_sg_tablesize = 255
/sys/block/sdN/queue/scheduler

Note

Recommended schedulers are deadline  and noop. The scheduler is set by default to deadline,
unless it has already been set to noop.

33.2.2. Running sgpdd-survey
The sgpdd-survey script must be customized for the particular device being tested and for the location
where the script saves its working and result files (by specifying the ${rslt} variable). Customization
variables are described at the beginning of the script.

When the sgpdd-survey script runs, it creates a number of working files and a pair of result files. The
names of all the files created start with the prefix defined in the variable ${rslt}. (The default value
is /tmp. ) The files include:

• File containing standard output data (same as stdout)

rslt_date_time.summary

• Temporary (tmp) files

rslt_date_time_*

• Collected tmp files for post-mortem

rslt_date_time.detail



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

366

The stdout and the .summary file will contain lines like this:

total_size 8388608K rsz 1024 thr 1 crg 1 180.45 MB/s 1 x 180.50 \
        = 180.50 MB/s

Each line corresponds to a run of the test. Each test run will have a different number of threads, record
size, or number of regions.

• total_size - Size of file being tested in KBs (8 GB in above example).

• rsz - Record size in KBs (1 MB in above example).

• thr - Number of threads generating I/O (1 thread in above example).

• crg - Current regions, the number of disjoint areas on the disk to which I/O is being sent (1 region in
above example, indicating that no seeking is done).

• MB/s - Aggregate bandwidth measured by dividing the total amount of data by the elapsed time (180.45
MB/s in the above example).

• MB/s - The remaining numbers show the number of regions X performance of the slowest disk as a
sanity check on the aggregate bandwidth.

If there are so many threads that the sgp_dd script is unlikely to be able to allocate I/O buffers, then
ENOMEM is printed in place of the aggregate bandwidth result.

If one or more sgp_dd instances do not successfully report a bandwidth number, then FAILED is printed
in place of the aggregate bandwidth result.

33.3. Testing OST Performance (obdfilter-
survey)

The obdfilter-survey script generates sequential I/O from varying numbers of threads and objects
(files) to simulate the I/O patterns of a Lustre client.

The obdfilter-survey script can be run directly on the OSS node to measure the OST storage
performance without any intervening network, or it can be run remotely on a Lustre client to measure the
OST performance including network overhead.

The obdfilter-survey is used to characterize the performance of the following:

• Local file system - In this mode, the obdfilter-survey script exercises one or more instances of
the obdfilter directly. The script may run on one or more OSS nodes, for example, when the OSSs are
all attached to the same multi-ported disk subsystem.

Run the script using the case=disk parameter to run the test against all the local OSTs. The script
automatically detects all local OSTs and includes them in the survey.

To run the test against only specific OSTs, run the script using the targets=parameter to list the
OSTs to be tested explicitly. If some OSTs are on remote nodes, specify their hostnames in addition to
the OST name (for example, oss2:lustre-OST0004).

All obdfilter instances are driven directly. The script automatically loads the obdecho module
(if required) and creates one instance of echo_client for each obdfilter instance in order to
generate I/O requests directly to the OST.



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

367

For more details, see Section 33.3.1, “ Testing Local Disk Performance”.

• Network - In this mode, the Lustre client generates I/O requests over the network but these requests
are not sent to the OST file system. The OSS node runs the obdecho server to receive the requests but
discards them before they are sent to the disk.

Pass the parameters case=network and targets=hostname|IP_of_server  to the script.
For each network case, the script does the required setup.

For more details, see Section 33.3.2, “ Testing Network Performance”

• Remote file system over the network  - In this mode the obdfilter-survey script generates I/O
from a Lustre client to a remote OSS to write the data to the file system.

To run the test against all the local OSCs, pass the parameter case=netdisk to the script. Alternately
you can pass the target= parameter with one or more OSC devices (e.g., lustre-OST0000-osc-
ffff88007754bc00) against which the tests are to be run.

For more details, see Section 33.3.3, “ Testing Remote Disk Performance”.

Caution

The obdfilter-survey script is potentially destructive and there is a small risk data may be
lost. To reduce this risk, obdfilter-survey should not be run on devices that contain data
that needs to be preserved. Thus, the best time to run obdfilter-survey is before the Lustre
file system is put into production. The reason obdfilter-survey may be safe to run on a
production file system is because it creates objects with object sequence 2. Normal file system
objects are typically created with object sequence 0.

Note

If the obdfilter-survey test is terminated before it completes, some small amount of space
is leaked. you can either ignore it or reformat the file system.

Note

The obdfilter-survey script is NOT scalable beyond tens of OSTs since it is only intended
to measure the I/O performance of individual storage subsystems, not the scalability of the entire
system.

Note

The obdfilter-survey script must be customized, depending on the components under test
and where the script's working files should be kept. Customization variables are described at the
beginning of the obdfilter-survey script. In particular, pay attention to the listed maximum
values listed for each parameter in the script.

33.3.1.  Testing Local Disk Performance
The obdfilter-survey script can be run automatically or manually against a local disk. This script
profiles the overall throughput of storage hardware, including the file system and RAID layers managing
the storage, by sending workloads to the OSTs that vary in thread count, object count, and I/O size.

When the obdfilter-survey script is run, it provides information about the performance abilities of
the storage hardware and shows the saturation points.



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

368

The plot-obdfilter script generates from the output of the obdfilter-survey a CSV file and
parameters for importing into a spreadsheet or gnuplot to visualize the data.

To run the obdfilter-survey script, create a standard Lustre file system configuration; no special
setup is needed.

To perform an automatic run:

1. Start the Lustre OSTs.

The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required
to be mounted at this time.

2. Verify that the obdecho module is loaded. Run:

modprobe obdecho

3. Run the obdfilter-survey script with the parameter case=disk.

For example, to run a local test with up to two objects (nobjhi), up to two threads (thrhi), and 1024
MB transfer size (size):

$ nobjhi=2 thrhi=2 size=1024 case=disk sh obdfilter-survey

4. Performance measurements for write, rewrite, read etc are provided below:

# example output
Fri Sep 25 11:14:03 EDT 2015 Obdfilter-survey for case=disk from hds1fnb6123
ost 10 sz 167772160K rsz 1024K obj   10 thr   10 write 10982.73 [ 601.97,2912.91] rewrite 15696.54 [1160.92,3450.85] read 12358.60 [ 938.96,2634.87] 
...

The file ./lustre-iokit/obdfilter-survey/README.obdfilter-survey provides
an explaination for the output as follows:

ost 10          is the total number of OSTs under test.
sz 167772160K   is the total amount of data read or written (in bytes).
rsz 1024K       is the record size (size of each echo_client I/O, in bytes).
obj    10       is the total number of objects over all OSTs
thr    10       is the total number of threads over all OSTs and objects
write           is the test name.  If more tests have been specified they
           all appear on the same line.
10982.73        is the aggregate bandwidth over all OSTs measured by
           dividing the total number of MB by the elapsed time.
[601.97,2912.91] are the minimum and maximum instantaneous bandwidths seen on
           any individual OST.
Note that although the numbers of threads and objects are specifed per-OST
in the customization section of the script, results are reported aggregated
over all OSTs.

To perform a manual run:

1. Start the Lustre OSTs.

The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required
to be mounted at this time.

2. Verify that the obdecho module is loaded. Run:



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

369

modprobe obdecho

3. Determine the OST names.

On the OSS nodes to be tested, run the lctl dl command. The OST device names are listed in the
fourth column of the output. For example:

$ lctl dl |grep obdfilter
0 UP obdfilter lustre-OST0001 lustre-OST0001_UUID 1159
2 UP obdfilter lustre-OST0002 lustre-OST0002_UUID 1159
...

4. List all OSTs you want to test.

Use the targets=parameter to list the OSTs separated by spaces. List the individual OSTs by
name using the format  fsname-OSTnumber  (for example, lustre-OST0001). You do not
have to specify an MDS or LOV.

5. Run the obdfilter-survey script with the targets=parameter.

For example, to run a local test with up to two objects (nobjhi), up to two threads ( thrhi), and
1024 Mb (size) transfer size:

$ nobjhi=2 thrhi=2 size=1024 targets="lustre-OST0001 \
          lustre-OST0002" sh obdfilter-survey

33.3.2.  Testing Network Performance
The obdfilter-survey script can only be run automatically against a network; no manual test is
provided.

To run the network test, a specific Lustre file system setup is needed. Make sure that these configuration
requirements have been met.

To perform an automatic run:

1. Start the Lustre OSTs.

The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required
to be mounted at this time.

2. Verify that the obdecho module is loaded. Run:

modprobe obdecho

3. Start lctl and check the device list, which must be empty. Run:

lctl dl

4. Run the obdfilter-survey script with the parameters case=network and
targets=hostname|ip_of_server . For example:

$ nobjhi=2 thrhi=2 size=1024 targets="oss0 oss1" \
            case=network sh obdfilter-survey

5. On the server side, view the statistics at:



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

370

lctl get_param obdecho.echo_srv.stats

where echo_srv is the obdecho server created by the script.

33.3.3.  Testing Remote Disk Performance
The obdfilter-survey script can be run automatically or manually against a network disk. To run
the network disk test, start with a standard Lustre configuration. No special setup is needed.

To perform an automatic run:

1. Start the Lustre OSTs.

The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required
to be mounted at this time.

2. Verify that the obdecho module is loaded. Run:

modprobe obdecho

3. Run the obdfilter-survey script with the parameter case=netdisk. For example:

$ nobjhi=2 thrhi=2 size=1024 case=netdisk sh obdfilter-survey

To perform a manual run:

1. Start the Lustre OSTs.

The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required
to be mounted at this time.

2. Verify that the obdecho module is loaded. Run:

modprobe obdecho

3. Determine the OSC names.

On the OSS nodes to be tested, run the lctl dl command. The OSC device names are listed in the
fourth column of the output. For example:

$ lctl dl |grep obdfilter
3 UP osc lustre-OST0000-osc-ffff88007754bc00 \
           54b91eab-0ea9-1516-b571-5e6df349592e 5
4 UP osc lustre-OST0001-osc-ffff88007754bc00 \
           54b91eab-0ea9-1516-b571-5e6df349592e 5
...

4. List all OSCs you want to test.

Use the targets=parameter to list the OSCs separated by spaces. List the individual OSCs by
name separated by spaces using the format  fsname-OST_name-osc-instance  (for example,
lustre-OST0000-osc-ffff88007754bc00). You do not have to specify an MDS or LOV.

5. Run the obdfilter-survey script with the targets=osc and case=netdisk.

An example of a local test run with up to two objects (nobjhi), up to two threads (thrhi), and 1024
Mb (size) transfer size is shown below:



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

371

$ nobjhi=2 thrhi=2 size=1024 \
targets="lustre-OST0000-osc-ffff88007754bc00 \
lustre-OST0001-osc-ffff88007754bc00" sh obdfilter-survey

33.3.4. Output Files
When the obdfilter-survey script runs, it creates a number of working files and a pair of result files.
All files start with the prefix defined in the variable ${rslt}.

File Description

${rslt}.summary Same as stdout

${rslt}.script_* Per-host test script files

${rslt}.detail_tmp* Per-OST result files

${rslt}.detail Collected result files for post-mortem

The obdfilter-survey script iterates over the given number of threads and objects performing the
specified tests and checks that all test processes have completed successfully.

Note

The obdfilter-survey script may not clean up properly if it is aborted or if it encounters an
unrecoverable error. In this case, a manual cleanup may be required, possibly including killing
any running instances of lctl (local or remote), removing echo_client instances created
by the script and unloading obdecho.

33.3.4.1. Script Output

The .summary file and stdout of the obdfilter-survey script contain lines like:

ost 8 sz 67108864K rsz 1024 obj 8 thr 8 write 613.54 [ 64.00, 82.00]

Where:

Parameter and value Description

ost 8 Total number of OSTs being tested.

sz 67108864K Total amount of data read or written (in KB).

rsz 1024 Record size (size of each echo_client I/O, in KB).

obj 8 Total number of objects over all OSTs.

thr 8 Total number of threads over all OSTs and objects.

write Test name. If more tests have been specified, they
all appear on the same line.

613.54 Aggregate bandwidth over all OSTs (measured by
dividing the total number of MB by the elapsed
time).

[64, 82.00] Minimum and maximum instantaneous bandwidths
on an individual OST.



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

372

Note

Although the numbers of threads and objects are specified per-OST in the customization section
of the script, the reported results are aggregated over all OSTs.

33.3.4.2. Visualizing Results

It is useful to import the obdfilter-survey script summary data (it is fixed width) into Excel (or
any graphing package) and graph the bandwidth versus the number of threads for varying numbers of
concurrent regions. This shows how the OSS performs for a given number of concurrently-accessed objects
(files) with varying numbers of I/Os in flight.

It is also useful to monitor and record average disk I/O sizes during each test using the 'disk io
size' histogram in the file lctl get_param obdfilter.*.brw_stats (see Section 39.3.5,
“Monitoring the OST Block I/O Stream” for details). These numbers help identify problems in the system
when full-sized I/Os are not submitted to the underlying disk. This may be caused by problems in the
device driver or Linux block layer.

The plot-obdfilter script included in the I/O toolkit is an example of processing output files to a .csv
format and plotting a graph using gnuplot.

33.4.  Testing OST I/O Performance (ost-
survey)

The ost-survey tool is a shell script that uses lfs setstripe to perform I/O against a single OST.
The script writes a file (currently using dd) to each OST in the Lustre file system, and compares read
and write speeds. The ost-survey tool is used to detect anomalies between otherwise identical disk
subsystems.

Note

We have frequently discovered wide performance variations across all LUNs in a cluster. This
may be caused by faulty disks, RAID parity reconstruction during the test, or faulty network
hardware.

To run the ost-survey script, supply a file size (in KB) and the Lustre file system mount point. For
example, run:

$ ./ost-survey.sh -s 10 /mnt/lustre

Typical output is:

Number of Active OST devices : 4
Worst  Read OST indx: 2 speed: 2835.272725
Best   Read OST indx: 3 speed: 2872.889668
Read Average: 2852.508999 +/- 16.444792 MB/s
Worst  Write OST indx: 3 speed: 17.705545
Best   Write OST indx: 2 speed: 128.172576
Write Average: 95.437735 +/- 45.518117 MB/s
Ost#  Read(MB/s)  Write(MB/s)  Read-time  Write-time
----------------------------------------------------



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

373

0     2837.440       126.918        0.035      0.788
1     2864.433       108.954        0.035      0.918
2     2835.273       128.173        0.035      0.780
3     2872.890       17.706        0.035      5.648

33.5.  Testing MDS Performance (mds-survey)
The mds-survey script tests the local metadata performance using the echo_client to drive the
MDD layer of the MDS stack. It can be used with the following classes of operations:

• Open-create/mkdir/create

• Lookup/getattr/setxattr

• Delete/destroy

• Unlink/rmdir

These operations will be run by a variable number of concurrent threads and will test with the number of
directories specified by the user. The run can be executed such that all threads operate in a single directory
(dir_count=1) or in private/unique directory (dir_count=x thrlo=x thrhi=x).

The mdd instance is driven directly. The script automatically loads the obdecho module if required and
creates instance of echo_client.

This script can also create OST objects by providing stripe_count greater than zero.

To perform a run:

1. Start the Lustre MDT.

The Lustre MDT should be mounted on the MDS node to be tested.

2. Start the Lustre OSTs (optional, only required when test with OST objects)

The Lustre OSTs should be mounted on the OSS node(s).

3. Run the mds-survey script as explain below

The script must be customized according to the components under test and where it should keep its
working files. Customization variables are described as followed:

• thrlo - threads to start testing. skipped if less than dir_count

• thrhi - maximum number of threads to test

• targets - MDT instance

• file_count - number of files per thread to test

• dir_count - total number of directories to test. Must be less than or equal to thrhi

• stripe_count - number stripe on OST objects

• tests_str - test operations. Must have at least "create" and "destroy"

• start_number - base number for each thread to prevent name collisions



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

374

• layer - MDS stack's layer to be tested

Run without OST objects creation:

Setup the Lustre MDS without OST mounted. Then invoke the mds-survey script

$ thrhi=64 file_count=200000 sh mds-survey

Run with OST objects creation:

Setup the Lustre MDS with at least one OST mounted. Then invoke the mds-survey script with
stripe_count parameter

$ thrhi=64 file_count=200000 stripe_count=2 sh mds-survey

Note: a specific MDT instance can be specified using targets variable.

$ targets=lustre-MDT0000 thrhi=64 file_count=200000 stripe_count=2 sh mds-survey

33.5.1. Output Files
When the mds-survey script runs, it creates a number of working files and a pair of result files. All files
start with the prefix defined in the variable ${rslt}.

File Description

${rslt}.summary Same as stdout

${rslt}.script_* Per-host test script files

${rslt}.detail_tmp* Per-mdt result files

${rslt}.detail Collected result files for post-mortem

The mds-survey script iterates over the given number of threads performing the specified tests and
checks that all test processes have completed successfully.

Note

The mds-survey script may not clean up properly if it is aborted or if it encounters an
unrecoverable error. In this case, a manual cleanup may be required, possibly including killing
any running instances of lctl, removing echo_client instances created by the script and
unloading obdecho.

33.5.2. Script Output
The .summary file and stdout of the mds-survey script contain lines like:

mdt 1 file 100000 dir 4 thr 4 create 5652.05 [ 999.01,46940.48] destroy 5797.79 [ 0.00,52951.55] 

Where:

Parameter and value Description

mdt 1 Total number of MDT under test

file 100000 Total number of files per thread to operate



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

375

Parameter and value Description

dir 4 Total number of directories to operate

thr 4 Total number of threads operate over all directories

create, destroy Tests name. More tests will be displayed on the
same line.

565.05 Aggregate operations over MDT measured by
dividing the total number of operations by the
elapsed time.

[999.01,46940.48] Minimum and maximum instantaneous operation
seen on any individual MDT

Note

If script output has "ERROR", this usually means there is issue during the run such as running
out of space on the MDT and/or OST. More detailed debug information is available in the
${rslt}.detail file

33.6.  Collecting Application Profiling
Information ( stats-collect)

The stats-collect utility contains the following scripts used to collect application profiling
information from Lustre clients and servers:

• lstat.sh - Script for a single node that is run on each profile node.

• gather_stats_everywhere.sh - Script that collect statistics.

• config.sh - Script that contains customized configuration descriptions.

The stats-collect utility requires:

• Lustre software to be installed and set up on your cluster

• SSH and SCP access to these nodes without requiring a password

33.6.1. Using stats-collect
The stats-collect utility is configured by including profiling configuration variables in the config.sh script.
Each configuration variable takes the following form, where 0 indicates statistics are to be collected only
when the script starts and stops and n indicates the interval in seconds at which statistics are to be collected:

statistic_INTERVAL=0|n

Statistics that can be collected include:

• VMSTAT - Memory and CPU usage and aggregate read/write operations

• SERVICE - Lustre OST and MDT RPC service statistics

• BRW - OST bulk read/write statistics (brw_stats)

• SDIO - SCSI disk IO statistics (sd_iostats)



Benchmarking Lustre File System
Performance (Lustre I/O Kit)

376

• MBALLOC - ldiskfs block allocation statistics

• IO - Lustre target operations statistics

• JBD - ldiskfs journal statistics

• CLIENT - Lustre OSC request statistics

To collect profile information:

Begin collecting statistics on each node specified in the config.sh script.

1. Starting the collect profile daemon on each node by entering:

sh gather_stats_everywhere.sh config.sh start 

2. Run the test.

3. Stop collecting statistics on each node, clean up the temporary file, and create a profiling tarball.

Enter:

sh gather_stats_everywhere.sh config.sh stop log_name.tgz

When log_name.tgz is specified, a profile tarball /tmp/log_name.tgz is created.

4. Analyze the collected statistics and create a csv tarball for the specified profiling data.

sh gather_stats_everywhere.sh config.sh analyse log_tarball.tgz csv



377

Chapter 34. Tuning a Lustre File
System

This chapter contains information about tuning a Lustre file system for better performance.

Note

Many options in the Lustre software are set by means of kernel module parameters. These
parameters are contained in the /etc/modprobe.d/lustre.conf file.

34.1.   Optimizing the Number of Service
Threads

An OSS can have a minimum of two service threads and a maximum of 512 service threads. The number
of service threads is a function of how much RAM and how many CPUs are on each OSS node (1 thread /
128MB * num_cpus). If the load on the OSS node is high, new service threads will be started in order
to process more requests concurrently, up to 4x the initial number of threads (subject to the maximum of
512). For a 2GB 2-CPU system, the default thread count is 32 and the maximum thread count is 128.

Increasing the size of the thread pool may help when:

• Several OSTs are exported from a single OSS

• Back-end storage is running synchronously

• I/O completions take excessive time due to slow storage

Decreasing the size of the thread pool may help if:

• Clients are overwhelming the storage capacity

• There are lots of "slow I/O" or similar messages

Increasing the number of I/O threads allows the kernel and storage to aggregate many writes together
for more efficient disk I/O. The OSS thread pool is shared--each thread allocates approximately 1.5 MB
(maximum RPC size + 0.5 MB) for internal I/O buffers.

It is very important to consider memory consumption when increasing the thread pool size. Drives are
only able to sustain a certain amount of parallel I/O activity before performance is degraded, due to the
high number of seeks and the OST threads just waiting for I/O. In this situation, it may be advisable to
decrease the load by decreasing the number of OST threads.

Determining the optimum number of OSS threads is a process of trial and error, and varies for each
particular configuration. Variables include the number of OSTs on each OSS, number and speed of disks,
RAID configuration, and available RAM. You may want to start with a number of OST threads equal to
the number of actual disk spindles on the node. If you use RAID, subtract any dead spindles not used for
actual data (e.g., 1 of N of spindles for RAID5, 2 of N spindles for RAID6), and monitor the performance
of clients during usual workloads. If performance is degraded, increase the thread count and see how that
works until performance is degraded again or you reach satisfactory performance.



Tuning a Lustre File System

378

Note

If there are too many threads, the latency for individual I/O requests can become very high
and should be avoided. Set the desired maximum thread count permanently using the method
described above.

34.1.1.  Specifying the OSS Service Thread Count
The oss_num_threads parameter enables the number of OST service threads to be specified at module
load time on the OSS nodes:

options ost oss_num_threads={N}

After startup, the minimum and maximum number of OSS thread counts can be set via the
{service}.thread_{min,max,started} tunable. To change the tunable at runtime, run:

lctl {get,set}_param {service}.thread_{min,max,started}

This works in a similar fashion to binding of threads on MDS. MDS thread tuning is covered in
Section 34.2, “ Binding MDS Service Thread to CPU Partitions”.

• oss_cpts=[EXPRESSION] binds the default OSS service on CPTs defined by [EXPRESSION].

• oss_io_cpts=[EXPRESSION] binds the IO OSS service on CPTs defined by [EXPRESSION].

For further details, see Section 39.9, “Setting MDS and OSS Thread Counts”.

34.1.2.  Specifying the MDS Service Thread Count
The mds_num_threads parameter enables the number of MDS service threads to be specified at module
load time on the MDS node:

options mds mds_num_threads={N}

After startup, the minimum and maximum number of MDS thread counts can be set via the
{service}.thread_{min,max,started} tunable. To change the tunable at runtime, run:

lctl {get,set}_param {service}.thread_{min,max,started}

For details, see Section 39.9, “Setting MDS and OSS Thread Counts”.

The number of MDS service threads started depends on system size and the load on the server, and has a
default maximum of 64. The maximum potential number of threads (MDS_MAX_THREADS) is 1024.

Note

The OSS and MDS start two threads per service per CPT at mount time, and dynamically increase
the number of running service threads in response to server load. Setting the *_num_threads
module parameter starts the specified number of threads for that service immediately and disables
automatic thread creation behavior.

Parameters are available to provide administrators control over the number of service threads.

• mds_rdpg_num_threads controls the number of threads in providing the read page service. The
read page service handles file close and readdir operations.



Tuning a Lustre File System

379

34.2.  Binding MDS Service Thread to CPU
Partitions

With the Node Affinity (Node affinity) feature, MDS threads can be bound to particular CPU partitions
(CPTs) to improve CPU cache usage and memory locality. Default values for CPT counts and CPU core
bindings are selected automatically to provide good overall performance for a given CPU count. However,
an administrator can deviate from these setting if they choose. For details on specifying the mapping of
CPU cores to CPTs see Section 34.4, “ libcfs Tuning”.

• mds_num_cpts=[EXPRESSION] binds the default MDS service threads to CPTs defined by
EXPRESSION. For example mds_num_cpts=[0-3] will bind the MDS service threads to
CPT[0,1,2,3].

• mds_rdpg_num_cpts=[EXPRESSION] binds the read page service threads to CPTs defined
by EXPRESSION. The read page service handles file close and readdir requests. For example
mds_rdpg_num_cpts=[4] will bind the read page threads to CPT4.

Parameters must be set before module load in the file /etc/modprobe.d/lustre.conf. For
example:

Example 34.1. lustre.conf

options lnet networks=tcp0(eth0)
options mdt mds_num_cpts=[0]

34.3.   Tuning LNet Parameters
This section describes LNet tunables, the use of which may be necessary on some systems to improve
performance. To test the performance of your Lustre network, see Chapter 32, Testing Lustre Network
Performance (LNet Self-Test).

34.3.1. Transmit and Receive Buffer Size
The kernel allocates buffers for sending and receiving messages on a network.

ksocklnd has separate parameters for the transmit and receive buffers.

options ksocklnd tx_buffer_size=0 rx_buffer_size=0

If these parameters are left at the default value (0), the system automatically tunes the transmit and receive
buffer size. In almost every case, this default produces the best performance. Do not attempt to tune these
parameters unless you are a network expert.

34.3.2. Hardware Interrupts ( enable_irq_affinity)
The hardware interrupts that are generated by network adapters may be handled by any CPU in the system.
In some cases, we would like network traffic to remain local to a single CPU to help keep the processor
cache warm and minimize the impact of context switches. This is helpful when an SMP system has more
than one network interface and ideal when the number of interfaces equals the number of CPUs. To enable
the enable_irq_affinity parameter, enter:

options ksocklnd enable_irq_affinity=1



Tuning a Lustre File System

380

In other cases, if you have an SMP platform with a single fast interface such as 10 Gb Ethernet and more
than two CPUs, you may see performance improve by turning this parameter off.

options ksocklnd enable_irq_affinity=0

By default, this parameter is off. As always, you should test the performance to compare the impact of
changing this parameter.

34.3.3.  Binding Network Interface Against CPU
Partitions

Lustre allows enhanced network interface control. This means that an administrator can bind an interface to
one or more CPU partitions. Bindings are specified as options to the LNet modules. For more information
on specifying module options, see Section 43.1, “ Introduction”

For example, o2ib0(ib0)[0,1] will ensure that all messages for o2ib0 will be handled by LND
threads executing on CPT0 and CPT1. An additional example might be: tcp1(eth0)[0]. Messages
for tcp1 are handled by threads on CPT0.

34.3.4.  Network Interface Credits
Network interface (NI) credits are shared across all CPU partitions (CPT). For example, if a machine has
four CPTs and the number of NI credits is 512, then each partition has 128 credits. If a large number of
CPTs exist on the system, LNet checks and validates the NI credits for each CPT to ensure each CPT has
a workable number of credits. For example, if a machine has 16 CPTs and the number of NI credits is 256,
then each partition only has 16 credits. 16 NI credits is low and could negatively impact performance. As a
result, LNet automatically adjusts the credits to 8* peer_credits( peer_credits is 8 by default),
so each partition has 64 credits.

Increasing the number of credits/ peer_credits can improve the performance of high latency
networks (at the cost of consuming more memory) by enabling LNet to send more inflight messages to a
specific network/peer and keep the pipeline saturated.

An administrator can modify the NI credit count using ksoclnd or ko2iblnd. In the example below,
256 credits are applied to TCP connections.

ksocklnd credits=256

Applying 256 credits to IB connections can be achieved with:

ko2iblnd credits=256

Note

LNet may revalidate the NI credits, so the administrator's request may not persist.

34.3.5.  Router Buffers
When a node is set up as an LNet router, three pools of buffers are allocated: tiny, small and large.
These pools are allocated per CPU partition and are used to buffer messages that arrive at the router to be
forwarded to the next hop. The three different buffer sizes accommodate different size messages.



Tuning a Lustre File System

381

If a message arrives that can fit in a tiny buffer then a tiny buffer is used, if a message doesn’t fit in a tiny
buffer, but fits in a small buffer, then a small buffer is used. Finally if a message does not fit in either a
tiny buffer or a small buffer, a large buffer is used.

Router buffers are shared by all CPU partitions. For a machine with a large number of CPTs, the router
buffer number may need to be specified manually for best performance. A low number of router buffers
risks starving the CPU partitions of resources.

• tiny_router_buffers: Zero payload buffers used for signals and acknowledgements.

• small_router_buffers: 4 KB payload buffers for small messages

• large_router_buffers: 1 MB maximum payload buffers, corresponding to the recommended
RPC size of 1 MB.

The default setting for router buffers typically results in acceptable performance. LNet automatically
sets a default value to reduce the likelihood of resource starvation. The size of a router buffer can be
modified as shown in the example below. In this example, the size of the large buffer is modified using
the large_router_buffers parameter.

lnet large_router_buffers=8192

Note

LNet may revalidate the router buffer setting, so the administrator's request may not persist.

34.3.6.  Portal Round-Robin

Portal round-robin defines the policy LNet applies to deliver events and messages to the upper layers. The
upper layers are PLRPC service or LNet selftest.

If portal round-robin is disabled, LNet will deliver messages to CPTs based on a hash of the source NID.
Hence, all messages from a specific peer will be handled by the same CPT. This can reduce data traffic
between CPUs. However, for some workloads, this behavior may result in poorly balancing loads across
the CPU.

If portal round-robin is enabled, LNet will round-robin incoming events across all CPTs. This may balance
load better across the CPU but can incur a cross CPU overhead.

The current policy can be changed by an administrator with lctl set_param
portal_rotor=value. There are four options for  value :

• OFF

Disable portal round-robin on all incoming requests.

• ON

Enable portal round-robin on all incoming requests.

• RR_RT

Enable portal round-robin only for routed messages.



Tuning a Lustre File System

382

• HASH_RT

Routed messages will be delivered to the upper layer by hash of source NID (instead of NID of router.)
This is the default value.

34.3.7. LNet Peer Health
Two options are available to help determine peer health:

• peer_timeout- The timeout (in seconds) before an aliveness query is sent to a peer. For example,
if peer_timeout is set to 180sec, an aliveness query is sent to the peer every 180 seconds. This
feature only takes effect if the node is configured as an LNet router.

In a routed environment, the peer_timeout feature should always be on (set to a value in seconds)
on routers. If the router checker has been enabled, the feature should be turned off by setting it to 0
on clients and servers.

For a non-routed scenario, enabling the peer_timeout option provides health information such as
whether a peer is alive or not. For example, a client is able to determine if an MGS or OST is up when
it sends it a message. If a response is received, the peer is alive; otherwise a timeout occurs when the
request is made.

In general, peer_timeout should be set to no less than the LND timeout setting. For more
information about LND timeouts, see Section 39.5.2, “Setting Static Timeouts”.

When the o2iblnd(IB) driver is used, peer_timeout should be at least twice the value of the
ko2iblnd keepalive option. for more information about keepalive options, see Section 43.2.2, “
SOCKLND Kernel TCP/IP LND”.

• avoid_asym_router_failure– When set to 1, this parameter adds the additional requirement
that for a route to be considered up the gateway of the route must have at least one NI up on the remote
network of the route. This new requirement applies only to routes that are single-hop, which means that
either the route's hop value is explicitly set to 1, or that it can be inferred that the route is single-hop.
The default setting is 1.

The inference of a single-hop routes works as follows: If the router checker is running on a node, the
node will periodically ping all of its gateways, which are routers on the same lnet that are listed in the
node's routes. The gateways' responses will include the status of all their network interfaces (NIs). If a
node A has a route R through gateway B to network C, and node A sees that router B has at least one
NI that connects directly to network C (in a ping response from B), node A will infer that R is a single-
hop route. This aspect of single-hop is independent of the hop value of the route. For more information
about the LNet routes parameter, see Section 9.5, “Setting the LNet Module routes Parameter”

It is recommended to specify hop=1 when creating a single-hop route when this feature is enabled.
When a route truly has only 1 hop, it is still recommended to explicitly set hop=1 because the single-
hop inference mechanism will fail in cases where NIs fail to ever come up at all. This is because for the
route inference to work, the NIs must at least come up or the gateway won't even mention them in the
ping response, so the node won't see any mention of the remote net of the route in the gateway's NIs,
and will mistakenly consider the route to be multi-hop, and avoid_asym_router_failure will
then have no effect unless hop=1 is set explicitly when the route is created.

In the following examples, nodes running lnet are circles, networks are squares, and NIs are lines labeled
by their NIDs. There is a client C and a router X. C has routes to networks o2ib0 and o2ib1 with
X as the gateway. If an NI is red with it's name crossed out, C considers it to be down, otherwise C
considers it to be up.



Tuning a Lustre File System

383

Figure 34.1. One of Two Connections to o2ib0 Down

In the above figure, one of two NIs that connect to o2ib0 is up, so the route to o2ib0 is considered up.

Figure 34.2. Both Connections to o2ib0 Down

In the above figure, zero NIs that connect to o2ib0 are up, so the route to o2ib0 is down.

Figure 34.3. Connection to o2ib1 Down

In the above figure, zero NIs that connect to o2ib1 are up, so the route to o2ib1 is down.

Figure 34.4. Connection to o2ib1 Never Came Up

Compare Figures 34.3 and 34.4. In 34.4, X4@o2ib1 never came up (rather than coming up and then
going down). Consequently, X did not list X4@o2ib1 in its ping response, so C cannot infer that X
should be directly connected to o2ib1. If C has a route to o2ib1 through X, and the hop count is not
set to 1 by the sysadmin, LNet assumes that X has a route to o2ib1 through some remote router node,
such as Y. The gray part of Figure 34.4 shows the sort of configuration that LNet incorrectly assumes in
this situation. Therefore, C will try to send messages for o2ib1 through X, where they will be dropped.
If the sysadmin explicitly sets hop=1 for the route to o2ib1 (on C), LNet will know that if X does not
report an NI on o2ib1, that the route should be marked as down.

The following router checker parameters must be set to the maximum value of the corresponding setting
for this option on any client or server:



Tuning a Lustre File System

384

• dead_router_check_interval

• live_router_check_interval

• router_ping_timeout

For example, the dead_router_check_interval parameter on any router must be MAX.

34.4.  libcfs Tuning
Lustre allows binding service threads via CPU Partition Tables (CPTs). This allows the system
administrator to fine-tune on which CPU cores the Lustre service threads are run, for both OSS and MDS
services, as well as on the client.

CPTs are useful to reserve some cores on the OSS or MDS nodes for system functions such as system
monitoring, HA heartbeat, or similar tasks. On the client it may be useful to restrict Lustre RPC service
threads to a small subset of cores so that they do not interfere with computation, or because these cores
are directly attached to the network interfaces.

By default, the Lustre software will automatically generate CPU partitions (CPT) based on the
number of CPUs in the system. The CPT count can be explicitly set on the libcfs module using
cpu_npartitions=NUMBER. The value of cpu_npartitions must be an integer between 1 and
the number of online CPUs.

Introduced in Lustre 2.9

In Lustre 2.9 and later the default is to use one CPT per NUMA node. In earlier versions of Lustre, by
default there was a single CPT if the online CPU core count was four or fewer, and additional CPTs would
be created depending on the number of CPU cores, typically with 4-8 cores per CPT.

Tip

Setting cpu_npartitions=1 will disable most of the SMP Node Affinity functionality.

34.4.1. CPU Partition String Patterns
CPU partitions can be described using string pattern notation. If cpu_pattern=N is used, then there
will be one CPT for each NUMA node in the system, with each CPT mapping all of the CPU cores for
that NUMA node.

It is also possible to explicitly specify the mapping between CPU cores and CPTs, for example:

• cpu_pattern="0[2,4,6] 1[3,5,7]

Create two CPTs, CPT0 contains cores 2, 4, and 6, while CPT1 contains cores 3, 5, 7. CPU cores 0
and 1 will not be used by Lustre service threads, and could be used for node services such as system
monitoring, HA heartbeat threads, etc. The binding of non-Lustre services to those CPU cores may be
done in userspace using numactl(8) or other application-specific methods, but is beyond the scope
of this document.

• cpu_pattern="N 0[0-3] 1[4-7]

Create two CPTs, with CPT0 containing all CPUs in NUMA node[0-3], while CPT1 contains all CPUs
in NUMA node [4-7].



Tuning a Lustre File System

385

The current configuration of the CPU partition can be read via lctl get_parm
cpu_partition_table. For example, a simple 4-core system has a single CPT with all four CPU
cores:

$ lctl get_param cpu_partition_table
cpu_partition_table=0 : 0 1 2 3

while a larger NUMA system with four 12-core CPUs may have four CPTs:

$ lctl get_param cpu_partition_table
cpu_partition_table=
0 : 0 1 2 3 4 5 6 7 8 9 10 11
1 : 12 13 14 15 16 17 18 19 20 21 22 23
2 : 24 25 26 27 28 29 30 31 32 33 34 35
3 : 36 37 38 39 40 41 42 43 44 45 46 47

34.5.  LND Tuning
LND tuning allows the number of threads per CPU partition to be specified. An administrator can set the
threads for both ko2iblnd and ksocklnd using the nscheds parameter. This adjusts the number of
threads for each partition, not the overall number of threads on the LND.

Note

The default number of threads for ko2iblnd and ksocklnd are automatically set and are
chosen to work well across a number of typical scenarios, for systems with both high and low
core counts.

34.5.1. ko2iblnd Tuning
The following table outlines the ko2iblnd module parameters to be used for tuning:

Module Parameter Default Value Description

service 987 Service number (within
RDMA_PS_TCP).

cksum 0 Set non-zero to enable message
(not RDMA) checksums.

timeout 50 Timeout in seconds.

nscheds 0 Number of threads in each
scheduler pool (per CPT). Value
of zero means we derive the
number from the number of cores.

conns_per_peer 4 (OmniPath), 1
(Everything else)

Introduced in 2.10. Number
of connections to each peer.
Messages are sent round-robin
over the connection pool.
Provides significant improvement
with OmniPath.

ntx 512 Number of message descriptors
allocated for each pool at startup.
Grows at runtime. Shared by all
CPTs.



Tuning a Lustre File System

386

Module Parameter Default Value Description

credits 256 Number of concurrent sends on
network.

peer_credits 8 Number of concurrent sends to 1
peer. Related/limited by IB queue
size.

peer_credits_hiw 0 When eagerly to return credits.

peer_buffer_credits 0 Number per-peer router buffer
credits.

peer_timeout 180 Seconds without aliveness news
to declare peer dead (less than or
equal to 0 to disable).

ipif_name ib0 IPoIB interface name.

retry_count 5 Retransmissions when no ACK
received.

rnr_retry_count 6 RNR retransmissions.

keepalive 100 Idle time in seconds before
sending a keepalive.

ib_mtu 0 IB MTU
256/512/1024/2048/4096.

concurrent_sends 0 Send work-queue sizing. If zero,
derived from map_on_demand
and peer_credits.

map_on_demand 0 (pre-4.8 Linux) 1
(4.8 Linux onward) 32
(OmniPath)

Number of fragments reserved for
connection. If zero, use global
memory region (found to be
security issue). If non-zero, use
FMR or FastReg for memory
registration. Value needs to agree
between both peers of connection.

fmr_pool_size 512 Size of fmr pool on each CPT (>=
ntx / 4). Grows at runtime.

fmr_flush_trigger 384 Number dirty FMRs that triggers
pool flush.

fmr_cache 1 Non-zero to enable FMR caching.

dev_failover 0 HCA failover for bonding (0 OFF,
1 ON, other values reserved).

require_privileged_port 0 Require privileged port when
accepting connection.

use_privileged_port 1 Use privileged port when
initiating connection.

wrq_sge 2 Introduced in 2.10. Number
scatter/gather element groups per
work request. Used to deal
with fragmentations which can



Tuning a Lustre File System

387

Module Parameter Default Value Description

consume double the number of
work requests.

34.6.  Network Request Scheduler (NRS)
Tuning

The Network Request Scheduler (NRS) allows the administrator to influence the order in which RPCs are
handled at servers, on a per-PTLRPC service basis, by providing different policies that can be activated
and tuned in order to influence the RPC ordering. The aim of this is to provide for better performance, and
possibly discrete performance characteristics using future policies.

The NRS policy state of a PTLRPC service can be read and set via the {service}.nrs_policies
tunable. To read a PTLRPC service's NRS policy state, run:

lctl get_param {service}.nrs_policies

For example, to read the NRS policy state of the ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_policies
ost.OSS.ost_io.nrs_policies=

regular_requests:
  - name: fifo
    state: started
    fallback: yes
    queued: 0
    active: 0

  - name: crrn
    state: stopped
    fallback: no
    queued: 0
    active: 0

  - name: orr
    state: stopped
    fallback: no
    queued: 0
    active: 0

  - name: trr
    state: started
    fallback: no
    queued: 2420
    active: 268

  - name: tbf
    state: stopped
    fallback: no



Tuning a Lustre File System

388

    queued: 0
    active: 0

  - name: delay
    state: stopped
    fallback: no
    queued: 0
    active: 0

high_priority_requests:
  - name: fifo
    state: started
    fallback: yes
    queued: 0
    active: 0

  - name: crrn
    state: stopped
    fallback: no
    queued: 0
    active: 0

  - name: orr
    state: stopped
    fallback: no
    queued: 0
    active: 0

  - name: trr
    state: stopped
    fallback: no
    queued: 0
    active: 0

  - name: tbf
    state: stopped
    fallback: no
    queued: 0
    active: 0

  - name: delay
    state: stopped
    fallback: no
    queued: 0
    active: 0

NRS policy state is shown in either one or two sections, depending on the PTLRPC service being queried.
The first section is named regular_requests and is available for all PTLRPC services, optionally
followed by a second section which is named high_priority_requests. This is because some
PTLRPC services are able to treat some types of RPCs as higher priority ones, such that they are handled
by the server with higher priority compared to other, regular RPC traffic. For PTLRPC services that do
not support high-priority RPCs, you will only see the regular_requests section.



Tuning a Lustre File System

389

There is a separate instance of each NRS policy on each PTLRPC service for handling regular and high-
priority RPCs (if the service supports high-priority RPCs). For each policy instance, the following fields
are shown:

Field Description

name The name of the policy.

state The state of the policy; this can be any
of invalid, stopping, stopped,
starting, started. A fully enabled policy is
in the started state.

fallback Whether the policy is acting as a fallback policy
or not. A fallback policy is used to handle RPCs
that other enabled policies fail to handle, or do not
support the handling of. The possible values are no,
yes. Currently, only the FIFO policy can act as a
fallback policy.

queued The number of RPCs that the policy has waiting to
be serviced.

active The number of RPCs that the policy is currently
handling.

To enable an NRS policy on a PTLRPC service run:

lctl set_param {service}.nrs_policies=
policy_name

This will enable the policy policy_namefor both regular and high-priority RPCs (if the PLRPC service
supports high-priority RPCs) on the given service. For example, to enable the CRR-N NRS policy for the
ldlm_cbd service, run:

$ lctl set_param ldlm.services.ldlm_cbd.nrs_policies=crrn
ldlm.services.ldlm_cbd.nrs_policies=crrn
      

For PTLRPC services that support high-priority RPCs, you can also supply an optional reg|hptoken,
in order to enable an NRS policy for handling only regular or high-priority RPCs on a given PTLRPC
service, by running:

lctl set_param {service}.nrs_policies="
policy_name 
reg|hp"

For example, to enable the TRR policy for handling only regular, but not high-priority RPCs on the
ost_io service, run:

$ lctl set_param ost.OSS.ost_io.nrs_policies="trr reg"
ost.OSS.ost_io.nrs_policies="trr reg"
      



Tuning a Lustre File System

390

Note

When enabling an NRS policy, the policy name must be given in lower-case characters, otherwise
the operation will fail with an error message.

34.6.1.  First In, First Out (FIFO) policy
The first in, first out (FIFO) policy handles RPCs in a service in the same order as they arrive from the
LNet layer, so no special processing takes place to modify the RPC handling stream. FIFO is the default
policy for all types of RPCs on all PTLRPC services, and is always enabled irrespective of the state of
other policies, so that it can be used as a backup policy, in case a more elaborate policy that has been
enabled fails to handle an RPC, or does not support handling a given type of RPC.

The FIFO policy has no tunables that adjust its behaviour.

34.6.2.  Client Round-Robin over NIDs (CRR-N) policy
The client round-robin over NIDs (CRR-N) policy performs batched round-robin scheduling of all types of
RPCs, with each batch consisting of RPCs originating from the same client node, as identified by its NID.
CRR-N aims to provide for better resource utilization across the cluster, and to help shorten completion
times of jobs in some cases, by distributing available bandwidth more evenly across all clients.

The CRR-N policy can be enabled on all types of PTLRPC services, and has the following tunable that
can be used to adjust its behavior:

• {service}.nrs_crrn_quantum

The {service}.nrs_crrn_quantum tunable determines the maximum allowed size of each batch
of RPCs; the unit of measure is in number of RPCs. To read the maximum allowed batch size of a CRR-
N policy, run:

lctl get_param {service}.nrs_crrn_quantum

For example, to read the maximum allowed batch size of a CRR-N policy on the ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_crrn_quantum
ost.OSS.ost_io.nrs_crrn_quantum=reg_quantum:16
hp_quantum:8
          

You can see that there is a separate maximum allowed batch size value for regular ( reg_quantum)
and high-priority ( hp_quantum) RPCs (if the PTLRPC service supports high-priority RPCs).

To set the maximum allowed batch size of a CRR-N policy on a given service, run:

lctl set_param {service}.nrs_crrn_quantum=
1-65535

This will set the maximum allowed batch size on a given service, for both regular and high-priority
RPCs (if the PLRPC service supports high-priority RPCs), to the indicated value.

For example, to set the maximum allowed batch size on the ldlm_canceld service to 16 RPCs, run:



Tuning a Lustre File System

391

$ lctl set_param ldlm.services.ldlm_canceld.nrs_crrn_quantum=16
ldlm.services.ldlm_canceld.nrs_crrn_quantum=16
          

For PTLRPC services that support high-priority RPCs, you can also specify a different maximum
allowed batch size for regular and high-priority RPCs, by running:

$ lctl set_param {service}.nrs_crrn_quantum=
reg_quantum|hp_quantum:
1-65535"

For example, to set the maximum allowed batch size on the ldlm_canceld service, for high-priority
RPCs to 32, run:

$ lctl set_param ldlm.services.ldlm_canceld.nrs_crrn_quantum="hp_quantum:32"
ldlm.services.ldlm_canceld.nrs_crrn_quantum=hp_quantum:32
          

By using the last method, you can also set the maximum regular and high-priority RPC batch sizes to
different values, in a single command invocation.

34.6.3.  Object-based Round-Robin (ORR) policy

The object-based round-robin (ORR) policy performs batched round-robin scheduling of bulk read write
(brw) RPCs, with each batch consisting of RPCs that pertain to the same backend-file system object, as
identified by its OST FID.

The ORR policy is only available for use on the ost_io service. The RPC batches it forms can potentially
consist of mixed bulk read and bulk write RPCs. The RPCs in each batch are ordered in an ascending
manner, based on either the file offsets, or the physical disk offsets of each RPC (only applicable to bulk
read RPCs).

The aim of the ORR policy is to provide for increased bulk read throughput in some cases, by ordering
bulk read RPCs (and potentially bulk write RPCs), and thus minimizing costly disk seek operations.
Performance may also benefit from any resulting improvement in resource utilization, or by taking
advantage of better locality of reference between RPCs.

The ORR policy has the following tunables that can be used to adjust its behaviour:

• ost.OSS.ost_io.nrs_orr_quantum

The ost.OSS.ost_io.nrs_orr_quantum tunable determines the maximum allowed size of
each batch of RPCs; the unit of measure is in number of RPCs. To read the maximum allowed batch
size of the ORR policy, run:

$ lctl get_param ost.OSS.ost_io.nrs_orr_quantum
ost.OSS.ost_io.nrs_orr_quantum=reg_quantum:256
hp_quantum:16
          



Tuning a Lustre File System

392

You can see that there is a separate maximum allowed batch size value for regular ( reg_quantum)
and high-priority ( hp_quantum) RPCs (if the PTLRPC service supports high-priority RPCs).

To set the maximum allowed batch size for the ORR policy, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_quantum=
1-65535

This will set the maximum allowed batch size for both regular and high-priority RPCs, to the indicated
value.

You can also specify a different maximum allowed batch size for regular and high-priority RPCs, by
running:

$ lctl set_param ost.OSS.ost_io.nrs_orr_quantum=
reg_quantum|hp_quantum:
1-65535

For example, to set the maximum allowed batch size for regular RPCs to 128, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_quantum=reg_quantum:128
ost.OSS.ost_io.nrs_orr_quantum=reg_quantum:128
          

By using the last method, you can also set the maximum regular and high-priority RPC batch sizes to
different values, in a single command invocation.

• ost.OSS.ost_io.nrs_orr_offset_type

The ost.OSS.ost_io.nrs_orr_offset_type tunable determines whether the ORR policy
orders RPCs within each batch based on logical file offsets or physical disk offsets. To read the offset
type value for the ORR policy, run:

$ lctl get_param ost.OSS.ost_io.nrs_orr_offset_type
ost.OSS.ost_io.nrs_orr_offset_type=reg_offset_type:physical
hp_offset_type:logical
          

You can see that there is a separate offset type value for regular ( reg_offset_type) and high-
priority ( hp_offset_type) RPCs.

To set the ordering type for the ORR policy, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_offset_type=
physical|logical

This will set the offset type for both regular and high-priority RPCs, to the indicated value.

You can also specify a different offset type for regular and high-priority RPCs, by running:



Tuning a Lustre File System

393

$ lctl set_param ost.OSS.ost_io.nrs_orr_offset_type=
reg_offset_type|hp_offset_type:
physical|logical

For example, to set the offset type for high-priority RPCs to physical disk offsets, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_offset_type=hp_offset_type:physical
ost.OSS.ost_io.nrs_orr_offset_type=hp_offset_type:physical

By using the last method, you can also set offset type for regular and high-priority RPCs to different
values, in a single command invocation.

Note

Irrespective of the value of this tunable, only logical offsets can, and are used for ordering bulk
write RPCs.

• ost.OSS.ost_io.nrs_orr_supported

The ost.OSS.ost_io.nrs_orr_supported tunable determines the type of RPCs that the ORR
policy will handle. To read the types of supported RPCs by the ORR policy, run:

$ lctl get_param ost.OSS.ost_io.nrs_orr_supported
ost.OSS.ost_io.nrs_orr_supported=reg_supported:reads
hp_supported=reads_and_writes
          

You can see that there is a separate supported 'RPC types' value for regular ( reg_supported) and
high-priority ( hp_supported) RPCs.

To set the supported RPC types for the ORR policy, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_supported=
reads|writes|reads_and_writes

This will set the supported RPC types for both regular and high-priority RPCs, to the indicated value.

You can also specify a different supported 'RPC types' value for regular and high-priority RPCs, by
running:

$ lctl set_param ost.OSS.ost_io.nrs_orr_supported=
reg_supported|hp_supported:
reads|writes|reads_and_writes

For example, to set the supported RPC types to bulk read and bulk write RPCs for regular requests, run:

$ lctl set_param
ost.OSS.ost_io.nrs_orr_supported=reg_supported:reads_and_writes
ost.OSS.ost_io.nrs_orr_supported=reg_supported:reads_and_writes
          



Tuning a Lustre File System

394

By using the last method, you can also set the supported RPC types for regular and high-priority RPC
to different values, in a single command invocation.

34.6.4.  Target-based Round-Robin (TRR) policy
The target-based round-robin (TRR) policy performs batched round-robin scheduling of brw RPCs, with
each batch consisting of RPCs that pertain to the same OST, as identified by its OST index.

The TRR policy is identical to the object-based round-robin (ORR) policy, apart from using the brw RPC's
target OST index instead of the backend-fs object's OST FID, for determining the RPC scheduling order.
The goals of TRR are effectively the same as for ORR, and it uses the following tunables to adjust its
behaviour:

• ost.OSS.ost_io.nrs_trr_quantum

The purpose of this tunable is exactly the same as for the ost.OSS.ost_io.nrs_orr_quantum
tunable for the ORR policy, and you can use it in exactly the same way.

• ost.OSS.ost_io.nrs_trr_offset_type

The purpose of this tunable is exactly the same as for the
ost.OSS.ost_io.nrs_orr_offset_type tunable for the ORR policy, and you can use it in
exactly the same way.

• ost.OSS.ost_io.nrs_trr_supported

The purpose of this tunable is exactly the same as for the
ost.OSS.ost_io.nrs_orr_supported tunable for the ORR policy, and you can use it in
exactly the sme way.

Introduced in Lustre 2.6

34.6.5.  Token Bucket Filter (TBF) policy
The TBF (Token Bucket Filter) is a Lustre NRS policy which enables Lustre services to enforce the RPC
rate limit on clients/jobs for QoS (Quality of Service) purposes.

Figure 34.5. The internal structure of TBF policy

When a RPC request arrives, TBF policy puts it to a waiting queue according to its classification. The
classification of RPC requests is based on either NID or JobID of the RPC according to the configure of



Tuning a Lustre File System

395

TBF. TBF policy maintains multiple queues in the system, one queue for each category in the classification
of RPC requests. The requests waits for tokens in the FIFO queue before they have been handled so as
to keep the RPC rates under the limits.

When Lustre services are too busy to handle all of the requests in time, all of the specified rates of the
queues will not be satisfied. Nothing bad will happen except some of the RPC rates are slower than
configured. In this case, the queue with higher rate will have an advantage over the queues with lower
rates, but none of them will be starved.

To manage the RPC rate of queues, we don't need to set the rate of each queue manually. Instead, we define
rules which TBF policy matches to determine RPC rate limits. All of the defined rules are organized as
an ordered list. Whenever a queue is newly created, it goes though the rule list and takes the first matched
rule as its rule, so that the queue knows its RPC token rate. A rule can be added to or removed from the
list at run time. Whenever the list of rules is changed, the queues will update their matched rules.

34.6.5.1. Enable TBF policy

Command:

lctl set_param ost.OSS.ost_io.nrs_policies="tbf <policy>"
 

For now, the RPCs can be classified into the different types according to their NID, JOBID, OPCode and
UID/GID. When enabling TBF policy, you can specify one of the types, or just use "tbf" to enable all of
them to do a fine-grained RPC requests classification.

Example:

$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf nid"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf jobid"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf opcode"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf uid"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf gid"

34.6.5.2. Start a TBF rule

The TBF rule is defined in the parameter ost.OSS.ost_io.nrs_tbf_rule.

Command:

lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] start rule_name arguments..."
 

'rule_name' is a string up to 15 characters which identifies the TBF policy rule's name. Alphanumeric
characters and underscores are accepted (e.g: "test_rule_A1").

'arguments' is a string to specify the detailed rule according to the different types.

Next, the different types of TBF policies will be described.

• NID based TBF policy

Command:

lctl set_param x.x.x.nrs_tbf_rule=



Tuning a Lustre File System

396

"[reg|hp] start rule_name nid={nidlist} rate=rate"
     

'nidlist' uses the same format as configuring LNET route. 'rate' is the (upper limit) RPC rate of
the rule.

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start other_clients nid={192.168.*.*@tcp} rate=50"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start computes nid={192.168.1.[2-128]@tcp} rate=500"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start loginnode nid={192.168.1.1@tcp} rate=100"

In this example, the rate of processing RPC requests from compute nodes is at most 5x as fast as those
from login nodes. The output of ost.OSS.ost_io.nrs_tbf_rule is like:

lctl get_param ost.OSS.ost_io.nrs_tbf_rule
ost.OSS.ost_io.nrs_tbf_rule=
regular_requests:
CPT 0:
loginnode {192.168.1.1@tcp} 100, ref 0
computes {192.168.1.[2-128]@tcp} 500, ref 0
other_clients {192.168.*.*@tcp} 50, ref 0
default {*} 10000, ref 0
high_priority_requests:
CPT 0:
loginnode {192.168.1.1@tcp} 100, ref 0
computes {192.168.1.[2-128]@tcp} 500, ref 0
other_clients {192.168.*.*@tcp} 50, ref 0
default {*} 10000, ref 0

Also, the rule can be written in reg and hp formats:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg start loginnode nid={192.168.1.1@tcp} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp start loginnode nid={192.168.1.1@tcp} rate=100"

• JobID based TBF policy

For the JobID, please see Section 12.2, “ Lustre Jobstats” for more details.

Command:

lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] start rule_name jobid={jobid_list} rate=rate"
     

Wildcard is supported in {jobid_list}.

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start iozone_user jobid={iozone.500} rate=100"



Tuning a Lustre File System

397

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start dd_user jobid={dd.*} rate=50"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user1 jobid={*.600} rate=10"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user2 jobid={io*.10* *.500} rate=200"

Also, the rule can be written in reg and hp formats:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp start iozone_user1 jobid={iozone.500} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg start iozone_user1 jobid={iozone.500} rate=100"

• Opcode based TBF policy

Command:

$ lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] start rule_name opcode={opcode_list} rate=rate"
     

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user1 opcode={ost_read} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start iozone_user1 opcode={ost_read ost_write} rate=200"

Also, the rule can be written in reg and hp formats:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp start iozone_user1 opcode={ost_read} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg start iozone_user1 opcode={ost_read} rate=100"

• UID/GID based TBF policy

Command:

$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"[reg][hp] start rule_name uid={uid} rate=rate"
$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"[reg][hp] start rule_name gid={gid} rate=rate"

Exapmle:

Limit the rate of RPC requests of the uid 500

$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"start tbf_name uid={500} rate=100"

Limit the rate of RPC requests of the gid 500

$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"start tbf_name gid={500} rate=100"



Tuning a Lustre File System

398

Also, you can use the following rule to control all reqs to mds:

Start the tbf uid QoS on MDS:

$ lctl set_param mds.MDS.*.nrs_policies="tbf uid"

Limit the rate of RPC requests of the uid 500

$ lctl set_param mds.MDS.*.nrs_tbf_rule=\
"start tbf_name uid={500} rate=100"

• Policy combination

To support TBF rules with complex expressions of conditions, TBF classifier is extented to classify
RPC in a more fine-grained way. This feature supports logical conditional conjunction and disjunction
operations among different types. In the rule: "&" represents the conditional conjunction and ","
represents the conditional disjunction.

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start comp_rule opcode={ost_write}&jobid={dd.0},\
nid={192.168.1.[1-128]@tcp 0@lo} rate=100"

In this example, those RPCs whose opcode is ost_write and jobid is dd.0, or nid satisfies the
condition of {192.168.1.[1-128]@tcp 0@lo} will be processed at the rate of 100 req/sec. The output of
ost.OSS.ost_io.nrs_tbf_ruleis like:

$ lctl get_param ost.OSS.ost_io.nrs_tbf_rule
ost.OSS.ost_io.nrs_tbf_rule=
regular_requests:
CPT 0:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0
CPT 1:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0
high_priority_requests:
CPT 0:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0
CPT 1:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0

Example:

$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"start tbf_name uid={500}&gid={500} rate=100"

In this example, those RPC requests whose uid is 500 and gid is 500 will be processed at the rate of
100 req/sec.



Tuning a Lustre File System

399

34.6.5.3. Change a TBF rule

Command:

lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] change rule_name rate=rate"
          

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"change loginnode rate=200"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg change loginnode rate=200"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp change loginnode rate=200"

34.6.5.4. Stop a TBF rule

Command:

lctl set_param x.x.x.nrs_tbf_rule="[reg|hp] stop
rule_name"

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="stop loginnode"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="reg stop loginnode"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="hp stop loginnode"

34.6.5.5. Rule options

To support more flexible rule conditions, the following options are added.

• Reordering of TBF rules

By default, a newly started rule is prior to the old ones, but by specifying the argument 'rank=' when
inserting a new rule with "start" command, the rank of the rule can be changed. Also, it can be
changed by "change" command.

Command:

lctl set_param ost.OSS.ost_io.nrs_tbf_rule=
"start rule_name arguments... rank=obj_rule_name"
lctl set_param ost.OSS.ost_io.nrs_tbf_rule=
"change rule_name rate=rate rank=obj_rule_name"

By specifying the existing rule 'obj_rule_name', the new rule 'rule_name' will be moved to the
front of 'obj_rule_name'.

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start computes nid={192.168.1.[2-128]@tcp} rate=500"



Tuning a Lustre File System

400

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user1 jobid={iozone.500 dd.500} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start iozone_user1 opcode={ost_read ost_write} rate=200 rank=computes"

In this example, rule "iozone_user1" is added to the front of rule "computes". We can see the order by
the following command:

$ lctl get_param ost.OSS.ost_io.nrs_tbf_rule
ost.OSS.ost_io.nrs_tbf_rule=
regular_requests:
CPT 0:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0
CPT 1:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0
high_priority_requests:
CPT 0:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0
CPT 1:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0

• TBF realtime policies under congestion

During TBF evaluation, we find that when the sum of I/O bandwidth requirements for all classes exceeds
the system capacity, the classes with the same rate limits get less bandwidth than if preconfigured evenly.
The reason for this is the heavy load on a congested server will result in some missed deadlines for some
classes. The number of the calculated tokens may be larger than 1 during dequeuing. In the original
implementation, all classes are equally handled to simply discard exceeding tokens.

Thus, a Hard Token Compensation (HTC) strategy has been implemented. A class can be configured
with the HTC feature by the rule it matches. This feature means that requests in this kind of class
queues have high real-time requirements and that the bandwidth assignment must be satisfied as good as
possible. When deadline misses happen, the class keeps the deadline unchanged and the time residue(the
remainder of elapsed time divided by 1/r) is compensated to the next round. This ensures that the next
idle I/O thread will always select this class to serve until all accumulated exceeding tokens are handled
or there are no pending requests in the class queue.

Command:

A new command format is added to enable the realtime feature for a rule:

lctl set_param x.x.x.nrs_tbf_rule=\
"start rule_name arguments... realtime=1



Tuning a Lustre File System

401

Example:

$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=
"start realjob jobid={dd.0} rate=100 realtime=1

This example rule means the RPC requests whose JobID is dd.0 will be processed at the rate of 100req/
sec in realtime.

Introduced in Lustre 2.10

34.6.6.  Delay policy
The NRS Delay policy seeks to perturb the timing of request processing at the PtlRPC layer, with the goal of
simulating high server load, and finding and exposing timing related problems. When this policy is active,
upon arrival of a request the policy will calculate an offset, within a defined, user-configurable range, from
the request arrival time, to determine a time after which the request should be handled. The request is then
stored using the cfs_binheap implementation, which sorts the request according to the assigned start time.
Requests are removed from the binheap for handling once their start time has been passed.

The Delay policy can be enabled on all types of PtlRPC services, and has the following tunables that can
be used to adjust its behavior:

• {service}.nrs_delay_min

The {service}.nrs_delay_min tunable controls the minimum amount of time, in seconds, that
a request will be delayed by this policy. The default is 5 seconds. To read this value run:

lctl get_param {service}.nrs_delay_min

For example, to read the minimum delay set on the ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_delay_min
ost.OSS.ost_io.nrs_delay_min=reg_delay_min:5
hp_delay_min:5

To set the minimum delay in RPC processing, run:

lctl set_param {service}.nrs_delay_min=0-65535

This will set the minimum delay time on a given service, for both regular and high-priority RPCs (if the
PtlRPC service supports high-priority RPCs), to the indicated value.

For example, to set the minimum delay time on the ost_io service to 10, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_min=10
ost.OSS.ost_io.nrs_delay_min=10

For PtlRPC services that support high-priority RPCs, to set a different minimum delay time for regular
and high-priority RPCs, run:



Tuning a Lustre File System

402

lctl set_param {service}.nrs_delay_min=reg_delay_min|hp_delay_min:0-65535
        

For example, to set the minimum delay time on the ost_io service for high-priority RPCs to 3, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_min=hp_delay_min:3
ost.OSS.ost_io.nrs_delay_min=hp_delay_min:3

Note, in all cases the minimum delay time cannot exceed the maximum delay time.

• {service}.nrs_delay_max

The {service}.nrs_delay_max tunable controls the maximum amount of time, in seconds, that
a request will be delayed by this policy. The default is 300 seconds. To read this value run:

lctl get_param {service}.nrs_delay_max

For example, to read the maximum delay set on the ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_delay_max
ost.OSS.ost_io.nrs_delay_max=reg_delay_max:300
hp_delay_max:300

To set the maximum delay in RPC processing, run:

lctl set_param {service}.nrs_delay_max=0-65535

This will set the maximum delay time on a given service, for both regular and high-priority RPCs (if
the PtlRPC service supports high-priority RPCs), to the indicated value.

For example, to set the maximum delay time on the ost_io service to 60, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_max=60
ost.OSS.ost_io.nrs_delay_max=60

For PtlRPC services that support high-priority RPCs, to set a different maximum delay time for regular
and high-priority RPCs, run:

lctl set_param {service}.nrs_delay_max=reg_delay_max|hp_delay_max:0-65535

For example, to set the maximum delay time on the ost_io service for high-priority RPCs to 30, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_max=hp_delay_max:30
ost.OSS.ost_io.nrs_delay_max=hp_delay_max:30

Note, in all cases the maximum delay time cannot be less than the minimum delay time.

• {service}.nrs_delay_pct

The {service}.nrs_delay_pct tunable controls the percentage of requests that will be delayed
by this policy. The default is 100. Note, when a request is not selected for handling by the delay policy
due to this variable then the request will be handled by whatever fallback policy is defined for that



Tuning a Lustre File System

403

service. If no other fallback policy is defined then the request will be handled by the FIFO policy. To
read this value run:

lctl get_param {service}.nrs_delay_pct

For example, to read the percentage of requests being delayed on the ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_delay_pct
ost.OSS.ost_io.nrs_delay_pct=reg_delay_pct:100
hp_delay_pct:100

To set the percentage of delayed requests, run:

lctl set_param {service}.nrs_delay_pct=0-100

This will set the percentage of requests delayed on a given service, for both regular and high-priority
RPCs (if the PtlRPC service supports high-priority RPCs), to the indicated value.

For example, to set the percentage of delayed requests on the ost_io service to 50, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_pct=50
ost.OSS.ost_io.nrs_delay_pct=50

For PtlRPC services that support high-priority RPCs, to set a different delay percentage for regular and
high-priority RPCs, run:

lctl set_param {service}.nrs_delay_pct=reg_delay_pct|hp_delay_pct:0-100

For example, to set the percentage of delayed requests on the ost_io service for high-priority RPCs to
5, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_pct=hp_delay_pct:5
ost.OSS.ost_io.nrs_delay_pct=hp_delay_pct:5

34.7.  Lockless I/O Tunables
The lockless I/O tunable feature allows servers to ask clients to do lockless I/O (the server does the locking
on behalf of clients) for contended files to avoid lock ping-pong.

The lockless I/O patch introduces these tunables:

• OST-side:

ldlm.namespaces.filter-fsname-*.

contended_locks- If the number of lock conflicts in the scan of granted and waiting queues at
contended_locks is exceeded, the resource is considered to be contended.

contention_seconds- The resource keeps itself in a contended state as set in the parameter.



Tuning a Lustre File System

404

max_nolock_bytes- Server-side locking set only for requests less than the blocks set in the
max_nolock_bytes parameter. If this tunable is set to zero (0), it disables server-side locking for
read/write requests.

• Client-side:

llite.fsname-*

contention_seconds- llite inode remembers its contended state for the time specified in this
parameter.

• Client-side statistics:

The llite.fsname-*.stats parameter has several entries for lockless I/O statistics.

lockless_read_bytes and lockless_write_bytes- To count the total bytes read or written,
the client makes its own decisions based on the request size. The client does not communicate with the
server if the request size is smaller than the min_nolock_size, without acquiring locks by the client.

Introduced in Lustre 2.9

34.8.   Server-Side Advice and Hinting

34.8.1. Overview
Use the lfs ladvise command to give file access advices or hints to servers.

lfs ladvise [--advice|-a ADVICE ] [--background|-b]
[--start|-s START[kMGT]]
{[--end|-e END[kMGT]] | [--length|-l LENGTH[kMGT]]}
file ...
      

Option Description

-a, --advice= ADVICE Give advice or hint of type ADVICE. Advice types
are:

willread to prefetch data into server cache

dontneed to cleanup data cache on server

lockahead Request an LDLM extent lock of the
given mode on the given byte range

noexpand Disable extent lock expansion behavior
for I/O to this file descriptor

-b, --background Enable the advices to be sent and handled
asynchronously.

-s, --start= START_OFFSET File range starts from START_OFFSET

-e, --end= END_OFFSET File range ends at (not including) END_OFFSET.
This option may not be specified at the same time
as the -l option.



Tuning a Lustre File System

405

Option Description

-l, --length= LENGTH File range has length of LENGTH. This option may
not be specified at the same time as the -e option.

-m, --mode= MODE Lockahead request mode {READ,WRITE}.
Request a lock with this mode.

Typically, lfs ladvise forwards the advice to Lustre servers without guaranteeing when and what
servers will react to the advice. Actions may or may not triggered when the advices are recieved, depending
on the type of the advice, as well as the real-time decision of the affected server-side components.

A typical usage of ladvise is to enable applications and users with external knowledge to intervene in
server-side cache management. For example, if a bunch of different clients are doing small random reads
of a file, prefetching pages into OSS cache with big linear reads before the random IO is a net benefit.
Fetching that data into each client cache with fadvise() may not be, due to much more data being sent
to the client.

ladvise lockahead is different in that it attempts to control LDLM locking behavior by explicitly
requesting LDLM locks in advance of use. This does not directly affect caching behavior, instead it is used
in special cases to avoid pathological results (lock exchange) from the normal LDLM locking behavior.

Note that the noexpand advice works on a specific file descriptor, so using it via lfs has no effect. It
must be used on a particular file descriptor which is used for i/o to have any effect.

The main difference between the Linux fadvise() system call and lfs ladvise is that fadvise()
is only a client side mechanism that does not pass the advice to the filesystem, while ladvise can send
advices or hints to the Lustre server side.

34.8.2. Examples
The following example gives the OST(s) holding the first 1GB of /mnt/lustre/file1a hint that the
first 1GB of the file will be read soon.

client1$ lfs ladvise -a willread -s 0 -e 1048576000 /mnt/lustre/file1
        

The following example gives the OST(s) holding the first 1GB of /mnt/lustre/file1 a hint that
the first 1GB of file will not be read in the near future, thus the OST(s) could clear the cache of the file
in the memory.

client1$ lfs ladvise -a dontneed -s 0 -e 1048576000 /mnt/lustre/file1
        

The following example requests an LDLM read lock on the first 1 MiB of /mnt/lustre/file1. This
will attempt to request a lock from the OST holding that region of the file.

client1$ lfs ladvise -a lockahead -m READ -s 0 -e 1M /mnt/lustre/file1
        

The following example requests an LDLM write lock on [3 MiB, 10 MiB] of /mnt/lustre/file1.
This will attempt to request a lock from the OST holding that region of the file.

client1$ lfs ladvise -a lockahead -m WRITE -s 3M -e 10M /mnt/lustre/file1
        



Tuning a Lustre File System

406

Introduced in Lustre 2.9

34.9.   Large Bulk IO (16MB RPC)

34.9.1. Overview
Beginning with Lustre 2.9, Lustre is extended to support RPCs up to 16MB in size. By enabling a larger
RPC size, fewer RPCs will be required to transfer the same amount of data between clients and servers.
With a larger RPC size, the OSS can submit more data to the underlying disks at once, therefore it can
produce larger disk I/Os to fully utilize the increasing bandwidth of disks.

At client connection time, clients will negotiate with servers what the maximum RPC size it is possible to
use, but the client can always send RPCs smaller than this maximum.

The parameter brw_size is used on the OST to tell the client the maximum (preferred) IO size. All
clients that talk to this target should never send an RPC greater than this size. Clients can individually set
a smaller RPC size limit via the osc.*.max_pages_per_rpc tunable.

Note

The smallest brw_size that can be set for ZFS OSTs is the recordsize of that dataset. This
ensures that the client can always write a full ZFS file block if it has enough dirty data, and does
not otherwise force it to do read- modify-write operations for every RPC.

34.9.2. Usage
In order to enable a larger RPC size, brw_size must be changed to an IO size value up to 16MB. To
temporarily change brw_size, the following command should be run on the OSS:

oss# lctl set_param obdfilter.fsname-OST*.brw_size=16

To persistently change brw_size, the following command should be run:

oss# lctl set_param -P obdfilter.fsname-OST*.brw_size=16

When a client connects to an OST target, it will fetch brw_size from the target and pick the maximum
value of brw_size and its local setting for max_pages_per_rpc as the actual RPC size. Therefore,
the max_pages_per_rpc on the client side would have to be set to 16M, or 4096 if the PAGESIZE
is 4KB, to enable a 16MB RPC. To temporarily make the change, the following command should be run
on the client to set max_pages_per_rpc:

client$ lctl set_param osc.fsname-OST*.max_pages_per_rpc=16M

To persistently make this change, the following command should be run:

client$ lctl set_param -P obdfilter.fsname-OST*.osc.max_pages_per_rpc=16M

Caution

The brw_size of an OST can be changed on the fly. However, clients have to be remounted
to renegotiate the new maximum RPC size.



Tuning a Lustre File System

407

34.10.  Improving Lustre I/O Performance for
Small Files

An environment where an application writes small file chunks from many clients to a single file can result
in poor I/O performance. To improve the performance of the Lustre file system with small files:

• Have the application aggregate writes some amount before submitting them to the Lustre file system.
By default, the Lustre software enforces POSIX coherency semantics, so it results in lock ping-pong
between client nodes if they are all writing to the same file at one time.

Using MPI-IO Collective Write functionality in the Lustre ADIO driver is one way to achieve this in a
straight forward manner if the application is already using MPI-IO.

• Have the application do 4kB O_DIRECT sized I/O to the file and disable locking on the output file. This
avoids partial-page IO submissions and, by disabling locking, you avoid contention between clients.

• Have the application write contiguous data.

• Add more disks or use SSD disks for the OSTs. This dramatically improves the IOPS rate. Consider
creating larger OSTs rather than many smaller OSTs due to less overhead (journal, connections, etc).

• Use RAID-1+0 OSTs instead of RAID-5/6. There is RAID parity overhead for writing small chunks
of data to disk.

34.11.  Understanding Why Write Performance
is Better Than Read Performance

Typically, the performance of write operations on a Lustre cluster is better than read operations. When
doing writes, all clients are sending write RPCs asynchronously. The RPCs are allocated, and written to
disk in the order they arrive. In many cases, this allows the back-end storage to aggregate writes efficiently.

In the case of read operations, the reads from clients may come in a different order and need a lot of seeking
to get read from the disk. This noticeably hampers the read throughput.

Currently, there is no readahead on the OSTs themselves, though the clients do readahead. If there are
lots of clients doing reads it would not be possible to do any readahead in any case because of memory
consumption (consider that even a single RPC (1 MB) readahead for 1000 clients would consume 1 GB
of RAM).

For file systems that use socklnd (TCP, Ethernet) as interconnect, there is also additional CPU overhead
because the client cannot receive data without copying it from the network buffers. In the write case, the
client CAN send data without the additional data copy. This means that the client is more likely to become
CPU-bound during reads than writes.



Part V. Troubleshooting
a Lustre File System

Part V provides information about troubleshooting a Lustre file system. You will find information in this section about:

• Lustre File System Troubleshooting

• Troubleshooting Recovery

• Debugging a Lustre File System



409

Table of Contents
35. Lustre File System Troubleshooting ...........................................................................  410

35.1. Lustre Error Messages ......................................................................................  410
35.1.1. Error Numbers ...................................................................................... 410
35.1.2. Viewing Error Messages ........................................................................  411

35.2. Reporting a Lustre File System Bug ...................................................................  411
35.2.1. Searching Jira*for Duplicate Tickets .........................................................  412

35.3. Common Lustre File System Problems ................................................................  412
35.3.1. OST Object is Missing or Damaged .........................................................  413
35.3.2. OSTs Become Read-Only .......................................................................  413
35.3.3. Identifying a Missing OST ...................................................................... 414
35.3.4. Fixing a Bad LAST_ID on an OST ..........................................................  415
35.3.5. Handling/Debugging "Bind: Address already in use" Error ...........  415
35.3.6. Handling/Debugging Error "- 28" .............................................................  416
35.3.7. Triggering Watchdog for PID NNN ..........................................................  418
35.3.8. Handling Timeouts on Initial Lustre File System Setup ................................. 418
35.3.9. Handling/Debugging "LustreError: xxx went back in time" ...........................  419
35.3.10. Lustre Error: "Slow Start_Page_Write" .........................................  419
35.3.11. Drawbacks in Doing Multi-client O_APPEND Writes ................................  419
35.3.12. Slowdown Occurs During Lustre File System Startup .................................  420
35.3.13. Log Message 'Out of Memory' on OST .............................................  420
35.3.14. Setting SCSI I/O Sizes .........................................................................  420

36. Troubleshooting Recovery .........................................................................................  421
36.1. Recovering from Errors or Corruption on a Backing ldiskfs File System .....................  421
36.2. Recovering from Corruption in the Lustre File System ...........................................  422

36.2.1. Working with Orphaned Objects ..............................................................  422
36.3. Recovering from an Unavailable OST .................................................................  422
36.4. Checking the file system with LFSCK .................................................................  423

36.4.1. LFSCK switch interface .........................................................................  424
36.4.2. Check the LFSCK global status .......................................................  L 2.9 426
36.4.3. LFSCK status interface ..........................................................................  427
36.4.4. LFSCK adjustment interface ...................................................................  433

37. Debugging a Lustre File System .................................................................................  435
37.1. Diagnostic and Debugging Tools ........................................................................  435

37.1.1. Lustre Debugging Tools .........................................................................  435
37.1.2. External Debugging Tools ......................................................................  436

37.2. Lustre Debugging Procedures ............................................................................  437
37.2.1. Understanding the Lustre Debug Messaging Format ..................................... 437
37.2.2. Using the lctl Tool to View Debug Messages .............................................  439
37.2.3. Dumping the Buffer to a File (debug_daemon) ........................................  440
37.2.4. Controlling Information Written to the Kernel Debug Log .............................  441
37.2.5. Troubleshooting with strace ................................................................  442
37.2.6. Looking at Disk Content ........................................................................  442
37.2.7. Finding the Lustre UUID of an OST ......................................................... 443
37.2.8. Printing Debug Messages to the Console ...................................................  444
37.2.9. Tracing Lock Traffic .............................................................................  444
37.2.10. Controlling Console Message Rate Limiting .............................................  444

37.3. Lustre Debugging for Developers .......................................................................  444
37.3.1. Adding Debugging to the Lustre Source Code ............................................  444
37.3.2. Accessing the ptlrpc Request History ....................................................  447
37.3.3. Finding Memory Leaks Using leak_finder.pl .....................................  448



410

Chapter 35. Lustre File System
Troubleshooting

This chapter provides information about troubleshooting a Lustre file system, submitting a bug to the Jira
bug tracking system, and Lustre file system performance tips. It includes the following sections:

• Section 35.1, “ Lustre Error Messages”

• Section 35.2, “Reporting a Lustre File System Bug”

• Section 35.3, “Common Lustre File System Problems”

35.1.     Lustre Error Messages
Several resources are available to help troubleshoot an issue in a Lustre file system. This section describes
error numbers, error messages and logs.

35.1.1. Error Numbers
Error numbers are generated by the Linux operating system and are located in /usr/include/asm-
generic/errno.h. The Lustre software does not use all of the available Linux error numbers. The
exact meaning of an error number depends on where it is used. Here is a summary of the basic errors that
Lustre file system users may encounter.

Error Number Error Name Description

-1 -EPERM Permission is denied.

-2 -ENOENT The requested file or directory
does not exist.

-4 -EINTR The operation was interrupted
(usually CTRL-C or a killing
process).

-5 -EIO The operation failed with a read or
write error.

-19 -ENODEV No such device is available. The
server stopped or failed over.

-22 -EINVAL The parameter contains an invalid
value.

-28 -ENOSPC The file system is out-of-space or
out of inodes. Use lfs df (query
the amount of file system space)
or lfs df -i (query the number
of inodes).

-30 -EROFS The file system is read-only, likely
due to a detected error.

-43 -EIDRM The UID/GID does not match any
known UID/GID on the MDS.
Update etc/hosts and etc/group on



Lustre File System Troubleshooting

411

Error Number Error Name Description

the MDS to add the missing user
or group.

-107 -ENOTCONN The client is not connected to this
server.

-110 -ETIMEDOUT The operation took too long and
timed out.

-122 -EDQUOT The operation exceeded the user
disk quota and was aborted.

35.1.2. Viewing Error Messages
As Lustre software code runs on the kernel, single-digit error codes display to the application; these error
codes are an indication of the problem. Refer to the kernel console log (dmesg) for all recent kernel
messages from that node. On the node, /var/log/messages holds a log of all messages for at least
the past day.

The error message initiates with "LustreError" in the console log and provides a short description of:

• What the problem is

• Which process ID had trouble

• Which server node it was communicating with, and so on.

Lustre logs are dumped to the pathname stored in the parameter lnet.debug_path.

Collect the first group of messages related to a problem, and any messages that precede "LBUG" or
"assertion failure" errors. Messages that mention server nodes (OST or MDS) are specific to that server;
you must collect similar messages from the relevant server console logs.

Another Lustre debug log holds information for a short period of time for action by the Lustre software,
which, in turn, depends on the processes on the Lustre node. Use the following command to extract debug
logs on each of the nodes, run

$ lctl dk filename

Note

LBUG freezes the thread to allow capture of the panic stack. A system reboot is needed to clear
the thread.

35.2. Reporting a Lustre File System Bug
If you cannot resolve a problem by troubleshooting your Lustre file system, other options are:

• Post a question to the lustre-discuss [http://lists.lustre.org/listinfo.cgi/lustre-discuss-lustre.org] email list
or search the archives for information about your issue.

• Submit a ticket to the Jira [https://jira.whamcloud.com/] * bug tracking and project management tool
used for the Lustre project. If you are a first-time user, you'll need to open an account by clicking on
Sign up on the Welcome page.

To submit a Jira ticket, follow these steps:

http://lists.lustre.org/listinfo.cgi/lustre-discuss-lustre.org
http://lists.lustre.org/listinfo.cgi/lustre-discuss-lustre.org
https://jira.whamcloud.com/
https://jira.whamcloud.com/


Lustre File System Troubleshooting

412

1. To avoid filing a duplicate ticket, search for existing tickets for your issue. For search tips, see
Section 35.2.1, “Searching Jira*for Duplicate Tickets”.

2. To create a ticket, click +Create Issue in the upper right corner. Create a separate ticket for each issue
you wish to submit.

3. In the form displayed, enter the following information:

• Project - Select Lustre or Lustre Documentation or an appropriate project.

• Issue type - Select Bug.

• Summary - Enter a short description of the issue. Use terms that would be useful for someone
searching for a similar issue. A LustreError or ASSERT/panic message often makes a good summary.

• Affects version(s) - Select your Lustre release.

• Environment - Enter your kernel with version number.

• Description - Include a detailed description of visible symptoms and, if possible, how the problem is
produced. Other useful information may include the behavior you expect to see and what you have
tried so far to diagnose the problem.

• Attachments - Attach log sources such as Lustre debug log dumps (see Section 37.1, “ Diagnostic
and Debugging Tools”), syslogs, or console logs. Note: Lustre debug logs must be processed using
lctl df prior to attaching to a Jira ticket. For more information, see Section 37.2.2, “Using the
lctl Tool to View Debug Messages”.

Other fields in the form are used for project tracking and are irrelevant to reporting an issue. You can
leave these in their default state.

35.2.1. Searching Jira*for Duplicate Tickets
Before submitting a ticket, always search the Jira bug tracker for an existing ticket for your issue. This
avoids duplicating effort and may immediately provide you with a solution to your problem.

To do a search in the Jira bug tracker, select the Issues tab and click on New filter. Use the filters provided
to select criteria for your search. To search for specific text, enter the text in the "Contains text" field and
click the magnifying glass icon.

When searching for text such as an ASSERTION or LustreError message, you can remove NIDs, pointers,
and other installation-specific and possibly version-specific text from your search string such as line
numbers by following the example below.

Original error message:

"(filter_io_26.c: 791:filter_commitrw_write()) ASSERTION(oti-
>oti_transno<=obd->obd_last_committed) failed: oti_transno 752
last_committed 750 "

Optimized search string

filter_commitrw_write ASSERTION oti_transno obd_last_committed failed:

35.3. Common Lustre File System Problems
This section describes how to address common issues encountered with a Lustre file system.



Lustre File System Troubleshooting

413

35.3.1. OST Object is Missing or Damaged

If the OSS fails to find an object or finds a damaged object, this message appears:

OST object missing or damaged (OST "ost1", object 98148, error -2)

If the reported error is -2 (-ENOENT, or "No such file or directory"), then the object is no longer present
on the OST, even though a file on the MDT is referencing it. This can occur either because the MDT and
OST are out of sync, or because an OST object was corrupted and deleted by e2fsck.

If you have recovered the file system from a disk failure by using e2fsck, then unrecoverable objects may
have been deleted or moved to /lost+found in the underlying OST filesystem. Because files on the MDT
still reference these objects, attempts to access them produce this error.

If you have restored the filesystem from a backup of the raw MDT or OST partition, then the restored
partition is very likely to be out of sync with the rest of your cluster. No matter which server partition
you restored from backup, files on the MDT may reference objects which no longer exist (or did not exist
when the backup was taken); accessing those files produces this error.

If neither of those descriptions is applicable to your situation, then it is possible that you have discovered a
programming error that allowed the servers to get out of sync. Please submit a Jira ticket (see Section 35.2,
“Reporting a Lustre File System Bug”).

If the reported error is anything else (such as -5, "I/O error"), it likely indicates a storage device failure.
The low-level file system returns this error if it is unable to read from the storage device.

Suggested Action

If the reported error is -2, you can consider checking in lost+found/ on your raw OST device, to see
if the missing object is there. However, it is likely that this object is lost forever, and that the file that
references the object is now partially or completely lost. Restore this file from backup, or salvage what
you can using dd conv=noerrorand delete it using the unlink command.

If the reported error is anything else, then you should immediately inspect this server for storage problems.

35.3.2. OSTs Become Read-Only

If the SCSI devices are inaccessible to the Lustre file system at the block device level, then ldiskfs
remounts the device read-only to prevent file system corruption. This is a normal behavior. The status in
the parameter health_check also shows "not healthy" on the affected nodes.

To determine what caused the "not healthy" condition:

• Examine the consoles of all servers for any error indications

• Examine the syslogs of all servers for any LustreErrors or LBUG

• Check the health of your system hardware and network. (Are the disks working as expected, is the
network dropping packets?)

• Consider what was happening on the cluster at the time. Does this relate to a specific user workload or
a system load condition? Is the condition reproducible? Does it happen at a specific time (day, week
or month)?



Lustre File System Troubleshooting

414

To recover from this problem, you must restart Lustre services using these file systems. There is no other
way to know that the I/O made it to disk, and the state of the cache may be inconsistent with what is on disk.

35.3.3. Identifying a Missing OST

If an OST is missing for any reason, you may need to know what files are affected. Although an OST
is missing, the files system should be operational. From any mounted client node, generate a list of files
that reside on the affected OST. It is advisable to mark the missing OST as 'unavailable' so clients and the
MDS do not time out trying to contact it.

1. Generate a list of devices and determine the OST's device number. Run:

$ lctl dl 

The lctl dl command output lists the device name and number, along with the device UUID and the
number of references on the device.

2. Deactivate the OST (on the OSS at the MDS). Run:

$ lctl --device lustre_device_number deactivate

The OST device number or device name is generated by the lctl dl command.

The deactivate command prevents clients from creating new objects on the specified OST,
although you can still access the OST for reading.

Note

If the OST later becomes available it needs to be reactivated, run:

# lctl --device lustre_device_number activate

3. Determine all files that are striped over the missing OST, run:

# lfs find -O {OST_UUID} /mountpoint

This returns a simple list of filenames from the affected file system.

4. If necessary, you can read the valid parts of a striped file, run:

# dd if=filename of=new_filename bs=4k conv=sync,noerror

5. You can delete these files with the unlink command.

# unlink filename {filename ...} 

Note

When you run the unlink command, it may return an error that the file could not be found,
but the file on the MDS has been permanently removed.

If the file system cannot be mounted, currently there is no way that parses metadata directly from an MDS.
If the bad OST does not start, options to mount the file system are to provide a loop device OST in its
place or replace it with a newly-formatted OST. In that case, the missing objects are created and are read
as zero-filled.



Lustre File System Troubleshooting

415

35.3.4. Fixing a Bad LAST_ID on an OST
Each OST contains a LAST_ID file, which holds the last object (pre-)created by the MDS 1. The MDT
contains a lov_objid file, with values that represent the last object the MDS has allocated to a file.

During normal operation, the MDT keeps pre-created (but unused) objects on the OST, and normally
LAST_ID should be larger than lov_objid. Any small difference in the values is a result of objects
being precreated on the OST to improve MDS file creation performance. These precreated objects are not
yet allocated to a file, since they are of zero length (empty).

However, in the case where lov_objid is larger than LAST_ID, it indicates the MDS has allocated
objects to files that do not exist on the OST. Conversely, if lov_objid is significantly less than
LAST_ID (by at least 20,000 objects) it indicates the OST previously allocated objects at the request of
the MDS (which likely contain data) but it doesn't know about them.

Introduced in Lustre 2.5

Since Lustre 2.5 the MDS and OSS will resync the lov_objid and LAST_ID files automatically if they
become out of sync. This may result in some space on the OSTs becoming unavailable until LFSCK is
next run, but avoids issues with mounting the filesystem.

Introduced in Lustre 2.6

Since Lustre 2.6 the LFSCK will repair the LAST_ID file on the OST automatically based on the objects
that exist on the OST, in case it was corrupted.

In situations where there is on-disk corruption of the OST, for example caused by the disk write cache
being lost, or if the OST was restored from an old backup or reformatted, the LAST_ID value may become
inconsistent and result in a message similar to:

"myth-OST0002: Too many FIDs to precreate,
OST replaced or reformatted: LFSCK will clean up"

A related situation may happen if there is a significant discrepancy between the record of previously-
created objects on the OST and the previously-allocated objects on the MDT, for example if the MDT
has been corrupted, or restored from backup, which would cause significant data loss if left unchecked.
This produces a message like:

"myth-OST0002: too large difference between
MDS LAST_ID [0x1000200000000:0x100048:0x0] (1048648) and
OST LAST_ID [0x1000200000000:0x2232123:0x0] (35856675), trust the OST"

In such cases, the MDS will advance the lov_objid value to match that of the OST to avoid deleting
existing objects, which may contain data. Files on the MDT that reference these objects will not be lost.
Any unreferenced OST objects will be attached to the .lustre/lost+found directory the next time
LFSCK layout check is run.

35.3.5. Handling/Debugging "Bind: Address already
in use" Error

During startup, the Lustre software may report a bind: Address already in use error and reject
to start the operation. This is caused by a portmap service (often NFS locking) that starts before the Lustre

1The contents of the LAST_ID file must be accurate regarding the actual objects that exist on the OST.



Lustre File System Troubleshooting

416

file system and binds to the default port 988. You must have port 988 open from firewall or IP tables for
incoming connections on the client, OSS, and MDS nodes. LNet will create three outgoing connections
on available, reserved ports to each client-server pair, starting with 1023, 1022 and 1021.

Unfortunately, you cannot set sunprc to avoid port 988. If you receive this error, do the following:

• Start the Lustre file system before starting any service that uses sunrpc.

• Use a port other than 988 for the Lustre file system. This is configured in /etc/modprobe.d/
lustre.conf as an option to the LNet module. For example:

options lnet accept_port=988

• Add modprobe ptlrpc to your system startup scripts before the service that uses sunrpc. This causes the
Lustre file system to bind to port 988 and sunrpc to select a different port.

Note

You can also use the sysctl command to mitigate the NFS client from grabbing the Lustre
service port. However, this is a partial workaround as other user-space RPC servers still have the
ability to grab the port.

35.3.6. Handling/Debugging Error "- 28"
A Linux error -28 (ENOSPC) that occurs during a write or sync operation indicates that an existing file
residing on an OST could not be rewritten or updated because the OST was full, or nearly full. To verify
if this is the case, run on a client:

client$ lfs df -h
UUID                       bytes        Used   Available Use% Mounted on
myth-MDT0000_UUID          12.9G        1.5G       10.6G  12% /myth[MDT:0]
myth-OST0000_UUID           3.6T        3.1T      388.9G  89% /myth[OST:0]
myth-OST0001_UUID           3.6T        3.6T       64.0K 100% /myth[OST:1]
myth-OST0002_UUID           3.6T        3.1T      394.6G  89% /myth[OST:2]
myth-OST0003_UUID           5.4T        5.0T      267.8G  95% /myth[OST:3]
myth-OST0004_UUID           5.4T        2.9T        2.2T  57% /myth[OST:4]

filesystem_summary:        21.6T       17.8T        3.2T  85% /myth
        

To address this issue, you can expand the disk space on the OST, or use the lfs_migrate command
to migrate (move) files to a less full OST. For details on both of these options see Section 14.8, “ Adding
a New OST to a Lustre File System”

Introduced in Lustre 2.6

In some cases, there may be processes holding files open that are consuming a significant amount of space
(e.g. runaway process writing lots of data to an open file that has been deleted). It is possible to get a list
of all open file handles in the filesystem from the MDS:

mds# lctl get_param mdt.*.exports.*.open_files
mdt.myth-MDT0000.exports.192.168.20.159@tcp.open_files=
[0x200003ab4:0x435:0x0]
[0x20001e863:0x1c1:0x0]



Lustre File System Troubleshooting

417

[0x20001e863:0x1c2:0x0]
:
:
        

These file handles can be converted into pathnames on any client via the lfs fid2path command
(as root):

client# lfs fid2path /myth [0x200003ab4:0x435:0x0] [0x20001e863:0x1c1:0x0] [0x20001e863:0x1c2:0x0]
lfs fid2path: cannot find '[0x200003ab4:0x435:0x0]': No such file or directory
/myth/tmp/4M
/myth/tmp/1G
:
:
        

In some cases, if the file has been deleted from the filesystem, fid2path will return an error that the file
is not found. You can use the client NID (192.168.20.159@tcp in the above example) to determine
which node the file is open on, and lsof to find and kill the process that is holding the file open:

# lsof /myth
COMMAND   PID   USER  FD TYPE    DEVICE      SIZE/OFF               NODE NAME
logger  13806 mythtv  0r REG  35,632494 1901048576384 144115440203858997 /myth/logs/job.1283929.log (deleted)
 

A Linux error -28 (ENOSPC) that occurs when a new file is being created may indicate that the MDT has
run out of inodes and needs to be made larger. Newly created files are not written to full OSTs, while
existing files continue to reside on the OST where they were initially created. To view inode information
on the MDT, run on a client:

lfs df -i
UUID                      Inodes       IUsed       IFree IUse% Mounted on
myth-MDT0000_UUID        1910263     1910263           0 100% /myth[MDT:0]
myth-OST0000_UUID         947456      360059      587397  89% /myth[OST:0]
myth-OST0001_UUID         948864      233748      715116  91% /myth[OST:1]
myth-OST0002_UUID         947456      549961      397495  89% /myth[OST:2]
myth-OST0003_UUID        1426144      477595      948549  95% /myth[OST:3]
myth-OST0004_UUID        1426080      465248     1420832  57% /myth[OST:4]

filesystem_summary:      1910263     1910263           0 100% /myth
        

Typically, the Lustre software reports this error to your application. If the application is checking the return
code from its function calls, then it decodes it into a textual error message such as No space left on
device. The numeric error message may also appear in the system log.

For more information about the lfs df command, see Section 19.8.1, “Checking File System Free
Space”.

You can also use the lctl get_param command to monitor the space and object usage on the OSTs
and MDTs from any client:



Lustre File System Troubleshooting

418

lctl get_param {osc,mdc}.*.{kbytes,files}{free,avail,total}
        

Note

You can find other numeric error codes along with a short name and text description in /usr/
include/asm/errno.h.

35.3.7. Triggering Watchdog for PID NNN
In some cases, a server node triggers a watchdog timer and this causes a process stack to be dumped to
the console along with a Lustre kernel debug log being dumped into /tmp (by default). The presence of
a watchdog timer does NOT mean that the thread OOPSed, but rather that it is taking longer time than
expected to complete a given operation. In some cases, this situation is expected.

For example, if a RAID rebuild is really slowing down I/O on an OST, it might trigger watchdog timers to
trip. But another message follows shortly thereafter, indicating that the thread in question has completed
processing (after some number of seconds). Generally, this indicates a transient problem. In other cases,
it may legitimately signal that a thread is stuck because of a software error (lock inversion, for example).

Lustre: 0:0:(watchdog.c:122:lcw_cb()) 

The above message indicates that the watchdog is active for pid 933:

It was inactive for 100000ms:

Lustre: 0:0:(linux-debug.c:132:portals_debug_dumpstack()) 

Showing stack for process:

933 ll_ost_25     D F896071A     0   933      1    934   932 (L-TLB)
f6d87c60 00000046 00000000 f896071a f8def7cc 00002710 00001822 2da48cae
0008cf1a f6d7c220 f6d7c3d0 f6d86000 f3529648 f6d87cc4 f3529640 f8961d3d
00000010 f6d87c9c ca65a13c 00001fff 00000001 00000001 00000000 00000001

Call trace:

filter_do_bio+0x3dd/0xb90 [obdfilter]
default_wake_function+0x0/0x20
filter_direct_io+0x2fb/0x990 [obdfilter]
filter_preprw_read+0x5c5/0xe00 [obdfilter]
lustre_swab_niobuf_remote+0x0/0x30 [ptlrpc]
ost_brw_read+0x18df/0x2400 [ost]
ost_handle+0x14c2/0x42d0 [ost]
ptlrpc_server_handle_request+0x870/0x10b0 [ptlrpc]
ptlrpc_main+0x42e/0x7c0 [ptlrpc]

35.3.8. Handling Timeouts on Initial Lustre File System
Setup

If you come across timeouts or hangs on the initial setup of your Lustre file system, verify that name
resolution for servers and clients is working correctly. Some distributions configure /etc/hosts so the
name of the local machine (as reported by the 'hostname' command) is mapped to local host (127.0.0.1)
instead of a proper IP address.



Lustre File System Troubleshooting

419

This might produce this error:

LustreError:(ldlm_handle_cancel()) received cancel for unknown lock cookie
0xe74021a4b41b954e from nid 0x7f000001 (0:127.0.0.1)

35.3.9. Handling/Debugging "LustreError: xxx went back
in time"

Each time the MDS or OSS modifies the state of the MDT or OST disk filesystem for a client, it records a
per-target increasing transaction number for the operation and returns it to the client along with the reply to
that operation. Periodically, when the server commits these transactions to disk, the last_committed
transaction number is returned to the client to allow it to discard pending operations from memory, as they
will no longer be needed for recovery in case of server failure.

In some cases error messages similar to the following have been observed after a server was restarted or
failed over:

LustreError: 3769:0:(import.c:517:ptlrpc_connect_interpret())
testfs-ost12_UUID went back in time (transno 831 was previously committed,
server now claims 791)!
      

This situation arises when:

• You are using a disk device that claims to have data written to disk before it actually does, as in case
of a device with a large cache. If that disk device crashes or loses power in a way that causes the loss
of the cache, there can be a loss of transactions that you believe are committed. This is a very serious
event, and you should run e2fsck against that storage before restarting the Lustre file system.

• As required by the Lustre software, the shared storage used for failover is completely cache-coherent.
This ensures that if one server takes over for another, it sees the most up-to-date and accurate copy of
the data. In case of the failover of the server, if the shared storage does not provide cache coherency
between all of its ports, then the Lustre software can produce an error.

If you know the exact reason for the error, then it is safe to proceed with no further action. If you do not
know the reason, then this is a serious issue and you should explore it with your disk vendor.

If the error occurs during failover, examine your disk cache settings. If it occurs after a restart without
failover, try to determine how the disk can report that a write succeeded, then lose the Data Device
corruption or Disk Errors.

35.3.10. Lustre Error: "Slow Start_Page_Write"
The slow start_page_write message appears when the operation takes an extremely long time to
allocate a batch of memory pages. Use these pages to receive network traffic first, and then write to disk.

35.3.11. Drawbacks in Doing Multi-client O_APPEND
Writes

It is possible to do multi-client O_APPEND writes to a single file, but there are few drawbacks that may
make this a sub-optimal solution. These drawbacks are:



Lustre File System Troubleshooting

420

• Each client needs to take an EOF lock on all the OSTs, as it is difficult to know which OST holds the
end of the file until you check all the OSTs. As all the clients are using the same O_APPEND, there is
significant locking overhead.

• The second client cannot get all locks until the end of the writing of the first client, as the taking serializes
all writes from the clients.

• To avoid deadlocks, the taking of these locks occurs in a known, consistent order. As a client cannot
know which OST holds the next piece of the file until the client has locks on all OSTS, there is a need
of these locks in case of a striped file.

35.3.12. Slowdown Occurs During Lustre File System
Startup

When a Lustre file system starts, it needs to read in data from the disk. For the very first mdsrate run after
the reboot, the MDS needs to wait on all the OSTs for object pre-creation. This causes a slowdown to
occur when the file system starts up.

After the file system has been running for some time, it contains more data in cache and hence, the
variability caused by reading critical metadata from disk is mostly eliminated. The file system now reads
data from the cache.

35.3.13. Log Message 'Out of Memory' on OST
When planning the hardware for an OSS node, consider the memory usage of several components in the
Lustre file system. If insufficient memory is available, an 'out of memory' message can be logged.

During normal operation, several conditions indicate insufficient RAM on a server node:

• kernel "Out of memory" and/or "oom-killer" messages

• Lustre "kmalloc of 'mmm' (NNNN bytes) failed..." messages

• Lustre or kernel stack traces showing processes stuck in "try_to_free_pages"

For information on determining the MDS memory and OSS memory requirements, see Section 5.5,
“Determining Memory Requirements”.

35.3.14. Setting SCSI I/O Sizes
Some SCSI drivers default to a maximum I/O size that is too small for good Lustre file system performance.
we have fixed quite a few drivers, but you may still find that some drivers give unsatisfactory performance
with the Lustre file system. As the default value is hard-coded, you need to recompile the drivers to change
their default. On the other hand, some drivers may have a wrong default set.

If you suspect bad I/O performance and an analysis of Lustre file system statistics indicates that I/O is not
1 MB, check /sys/block/device/queue/max_sectors_kb. If the max_sectors_kb value
is less than 1024, set it to at least 1024 to improve performance. If changing max_sectors_kb does not
change the I/O size as reported by the Lustre software, you may want to examine the SCSI driver code.



421

Chapter 36. Troubleshooting Recovery
This chapter describes what to do if something goes wrong during recovery. It describes:

• Section 36.1, “ Recovering from Errors or Corruption on a Backing ldiskfs File System”

• Section 36.2, “ Recovering from Corruption in the Lustre File System”

• Section 36.3, “ Recovering from an Unavailable OST”

• Section 36.4, “ Checking the file system with LFSCK”

36.1.  Recovering from Errors or Corruption on
a Backing ldiskfs File System

When an OSS, MDS, or MGS server crash occurs, it is not necessary to run e2fsck on the file system.
ldiskfs journaling ensures that the file system remains consistent over a system crash. The backing
file systems are never accessed directly from the client, so client crashes are not relevant for server file
system consistency.

The only time it is REQUIRED that e2fsck be run on a device is when an event causes problems that
ldiskfs journaling is unable to handle, such as a hardware device failure or I/O error. If the ldiskfs kernel
code detects corruption on the disk, it mounts the file system as read-only to prevent further corruption, but
still allows read access to the device. This appears as error "-30" ( EROFS) in the syslogs on the server, e.g.:

Dec 29 14:11:32 mookie kernel: LDISKFS-fs error (device sdz):
            ldiskfs_lookup: unlinked inode 5384166 in dir #145170469
Dec 29 14:11:32 mookie kernel: Remounting filesystem read-only 

In such a situation, it is normally required that e2fsck only be run on the bad device before placing the
device back into service.

In the vast majority of cases, the Lustre software can cope with any inconsistencies found on the disk and
between other devices in the file system.

For problem analysis, it is strongly recommended that e2fsck be run under a logger, like script, to
record all of the output and changes that are made to the file system in case this information is needed later.

If time permits, it is also a good idea to first run e2fsck in non-fixing mode (-n option) to assess the type
and extent of damage to the file system. The drawback is that in this mode, e2fsck does not recover the
file system journal, so there may appear to be file system corruption when none really exists.

To address concern about whether corruption is real or only due to the journal not being replayed, you
can briefly mount and unmount the ldiskfs file system directly on the node with the Lustre file system
stopped, using a command similar to:

mount -t ldiskfs /dev/{ostdev} /mnt/ost; umount /mnt/ost

This causes the journal to be recovered.

The e2fsck utility works well when fixing file system corruption (better than similar file system recovery
tools and a primary reason why ldiskfs was chosen over other file systems). However, it is often useful



Troubleshooting Recovery

422

to identify the type of damage that has occurred so an ldiskfs expert can make intelligent decisions
about what needs fixing, in place of e2fsck.

root# {stop lustre services for this device, if running}
root# script /tmp/e2fsck.sda
Script started, file is /tmp/e2fsck.sda
root# mount -t ldiskfs /dev/sda /mnt/ost
root# umount /mnt/ost
root# e2fsck -fn /dev/sda   # don't fix file system, just check for corruption
:
[e2fsck output]
:
root# e2fsck -fp /dev/sda   # fix errors with prudent answers (usually yes)

36.2.  Recovering from Corruption in the Lustre
File System

In cases where an ldiskfs MDT or OST becomes corrupt, you need to run e2fsck to ensure local
filesystem consistency, then use LFSCK to run a distributed check on the file system to resolve any
inconsistencies between the MDTs and OSTs, or among MDTs.

1. Stop the Lustre file system.

2. Run e2fsck -f on the individual MDT/OST that had problems to fix any local file system damage.

We recommend running e2fsck under script, to create a log of changes made to the file system in
case it is needed later. After e2fsck is run, bring up the file system, if necessary, to reduce the outage
window.

36.2.1.  Working with Orphaned Objects
The simplest problem to resolve is that of orphaned objects. When the LFSCK layout check is run, these
objects are linked to new files and put into .lustre/lost+found/MDTxxxx in the Lustre file system
(where MDTxxxx is the index of the MDT on which the orphan was found), where they can be examined
and saved or deleted as necessary.

Introduced in Lustre 2.7

With Lustre version 2.7 and later, LFSCK will identify and process orphan objects found on MDTs as well.

36.3.  Recovering from an Unavailable OST
One problem encountered in a Lustre file system environment is when an OST becomes unavailable due
to a network partition, OSS node crash, etc. When this happens, the OST's clients pause and wait for the
OST to become available again, either on the primary OSS or a failover OSS. When the OST comes back
online, the Lustre file system starts a recovery process to enable clients to reconnect to the OST. Lustre
servers put a limit on the time they will wait in recovery for clients to reconnect.

During recovery, clients reconnect and replay their requests serially, in the same order they were done
originally. Until a client receives a confirmation that a given transaction has been written to stable storage,
the client holds on to the transaction, in case it needs to be replayed. Periodically, a progress message prints
to the log, stating how_many/expected clients have reconnected. If the recovery is aborted, this log shows



Troubleshooting Recovery

423

how many clients managed to reconnect. When all clients have completed recovery, or if the recovery
timeout is reached, the recovery period ends and the OST resumes normal request processing.

If some clients fail to replay their requests during the recovery period, this will not stop the recovery from
completing. You may have a situation where the OST recovers, but some clients are not able to participate
in recovery (e.g. network problems or client failure), so they are evicted and their requests are not replayed.
This would result in any operations on the evicted clients failing, including in-progress writes, which
would cause cached writes to be lost. This is a normal outcome; the recovery cannot wait indefinitely, or
the file system would be hung any time a client failed. The lost transactions are an unfortunate result of
the recovery process.

Note

The failure of client recovery does not indicate or lead to filesystem corruption. This is a normal
event that is handled by the MDT and OST, and should not result in any inconsistencies between
servers.

Note

The version-based recovery (VBR) feature enables a failed client to be ''skipped'', so remaining
clients can replay their requests, resulting in a more successful recovery from a downed OST. For
more information about the VBR feature, see Chapter 38, Lustre File System Recovery(Version-
based Recovery).

36.4.   Checking the file system with LFSCK
LFSCK is an administrative tool for checking and repair of the attributes specific to a mounted Lustre
file system. It is similar in concept to an offline fsck repair tool for a local filesystem, but LFSCK is
implemented to run as part of the Lustre file system while the file system is mounted and in use. This
allows consistency checking and repair of Lustre-specific metadata without unnecessary downtime, and
can be run on the largest Lustre file systems with minimal impact to normal operations.

LFSCK can verify and repair the Object Index (OI) table that is used internally to map Lustre File
Identifiers (FIDs) to MDT internal ldiskfs inode numbers, in an internal table called the OI Table. An
OI Scrub traverses the OI table and makes corrections where necessary. An OI Scrub is required after
restoring from a file-level MDT backup ( Section 18.2, “ Backing Up and Restoring an MDT or OST
(ldiskfs Device Level)”), or in case the OI Table is otherwise corrupted. Later phases of LFSCK will add
further checks to the Lustre distributed file system state. LFSCK namespace scanning can verify and repair
the directory FID-in-dirent and LinkEA consistency.

Introduced in Lustre 2.6

In Lustre software release 2.6, LFSCK layout scanning can verify and repair MDT-OST file layout
inconsistencies. File layout inconsistencies between MDT-objects and OST-objects that are checked and
corrected include dangling reference, unreferenced OST-objects, mismatched references and multiple
references.

Introduced in Lustre 2.7

In Lustre software release 2.7, LFSCK layout scanning is enhanced to support verify and repair
inconsistencies between multiple MDTs.

Control and monitoring of LFSCK is through LFSCK and the lctl get_param command. LFSCK
supports three types of interface: switch interface, status interface, and adjustment interface. These
interfaces are detailed below.



Troubleshooting Recovery

424

36.4.1. LFSCK switch interface

36.4.1.1. Manually Starting LFSCK

36.4.1.1.1. Description

LFSCK can be started after the MDT is mounted using the lctl lfsck_start command.

36.4.1.1.2. Usage

lctl lfsck_start <-M | --device [MDT,OST]_device> \
                    [-A | --all] \
                    [-c | --create_ostobj on | off] \
                    [-C | --create_mdtobj on | off] \
                    [-d | --delay_create_ostobj on | off] \
                    [-e | --error {continue | abort}] \
                    [-h | --help] \
                    [-n | --dryrun on | off] \
                    [-o | --orphan] \
                    [-r | --reset] \
                    [-s | --speed ops_per_sec_limit] \
                    [-t | --type check_type[,check_type...]] \
                    [-w | --window_size size]

36.4.1.1.3. Options

The various lfsck_start options are listed and described below. For a complete list of available
options, type lctl lfsck_start -h.

Option Description

-M | --device The MDT or OST target to start LFSCK on.

-A | --all
Introduced in Lustre 2.6

Start LFSCK on all targets on all servers simultaneously. By default, both
layout and namespace consistency checking and repair are started.

-c | --create_ostobj
Introduced in Lustre 2.6

Create the lost OST-object for dangling LOV EA, off(default) or on. If
not specified, then the default behaviour is to keep the dangling LOV EA
there without creating the lost OST-object.

-C | --create_mdtobj
Introduced in Lustre 2.7

Create the lost MDT-object for dangling name entry, off(default) or on.
If not specified, then the default behaviour is to keep the dangling name
entry there without creating the lost MDT-object.

-d | --
delay_create_ostobj

Introduced in Lustre 2.9

Delay creating the lost OST-object for dangling LOV EA until the orphan
OST-objects are handled. off(default) or on.



Troubleshooting Recovery

425

Option Description

-e | --error Error handle, continue(default) or abort. Specify whether the
LFSCK will stop or not if fails to repair something. If it is not specified,
the saved value (when resuming from checkpoint) will be used if present.
This option cannot be changed while LFSCK is running.

-h | --help Operating help information.

-n | --dryrun Perform a trial without making any changes. off(default) or on.

-o | --orphan
Introduced in Lustre 2.6

Repair orphan OST-objects for layout LFSCK.

-r | --reset Reset the start position for the object iteration to the beginning for the
specified MDT. By default the iterator will resume scanning from the last
checkpoint (saved periodically by LFSCK) provided it is available.

-s | --speed Set the upper speed limit of LFSCK processing in objects per second.
If it is not specified, the saved value (when resuming from checkpoint)
or default value of 0 (0 = run as fast as possible) is used. Speed can be
adjusted while LFSCK is running with the adjustment interface.

-t | --type The type of checking/repairing that should be performed. The new
LFSCK framework provides a single interface for a variety of system
consistency checking/repairing operations including:

Without a specified option, the LFSCK component(s) which ran last time
and did not finish or the component(s) corresponding to some known
system inconsistency, will be started. Anytime the LFSCK is triggered,
the OI scrub will run automatically, so there is no need to specify
OI_scrub in that case.

namespace: check and repair FID-in-dirent and LinkEA consistency.

Introduced in Lustre 2.7

Lustre-2.7 enhances namespace consistency verification under DNE
mode.

Introduced in Lustre 2.6

layout: check and repair MDT-OST inconsistency.

-w | --window_size
Introduced in Lustre 2.6

The window size for the async request pipeline. The LFSCK async
request pipeline's input/output may have quite different processing
speeds, and there may be too many requests in the pipeline as to cause
abnormal memory/network pressure. If not specified, then the default
window size for the async request pipeline is 1024.



Troubleshooting Recovery

426

36.4.1.2. Manually Stopping LFSCK

36.4.1.2.1. Description

To stop LFSCK when the MDT is mounted, use the lctl lfsck_stop command.

36.4.1.2.2. Usage

lctl lfsck_stop <-M | --device [MDT,OST]_device> \
                    [-A | --all] \
                    [-h | --help]

36.4.1.2.3. Options

The various lfsck_stop options are listed and described below. For a complete list of available options,
type lctl lfsck_stop -h.

Option Description

-M | --device The MDT or OST target to stop LFSCK on.

-A | --all Stop LFSCK on all targets on all servers simultaneously.

-h | --help Operating help information.

Introduced in Lustre 2.9

36.4.2. Check the LFSCK global status

36.4.2.1. Description

Check the LFSCK global status via a single lctl lfsck_query command on the MDS.

36.4.2.2. Usage

lctl lfsck_query <-M | --device MDT_device> \
                    [-h | --help] \
                    [-t | --type lfsck_type[,lfsck_type...]] \
                    [-w | --wait]

36.4.2.3. Options

The various lfsck_query options are listed and described below. For a complete list of available
options, type lctl lfsck_query -h.

Option Description

-M | --device The device to query for LFSCK status.

-h | --help Operating help information.

-t | --type The LFSCK type(s) that should be queried, including: layout, namespace.

-w | --wait will wait if the LFSCK is in scanning.



Troubleshooting Recovery

427

36.4.3. LFSCK status interface

36.4.3.1. LFSCK status of OI Scrub via procfs

36.4.3.1.1. Description

For each LFSCK component there is a dedicated procfs interface to trace the corresponding LFSCK
component status. For OI Scrub, the interface is the OSD layer procfs interface, named oi_scrub. To
display OI Scrub status, the standard lctl get_param command is used as shown in the usage below.

36.4.3.1.2. Usage

lctl get_param -n osd-ldiskfs.FSNAME-[MDT_target|OST_target].oi_scrub

36.4.3.1.3. Output

Information Detail

General Information • Name: OI_scrub.

• OI scrub magic id (an identifier unique to OI scrub).

• OI files count.

• Status: one of the status - init, scanning, completed, failed,
stopped, paused, or crashed.

• Flags: including - recreated(OI file(s) is/are removed/recreated),
inconsistent(restored from file-level backup), auto(triggered
by non-UI mechanism), and upgrade(from Lustre software release
1.8 IGIF format.)

• Parameters: OI scrub parameters, like failout.

• Time Since Last Completed.

• Time Since Latest Start.

• Time Since Last Checkpoint.

• Latest Start Position: the position for the latest scrub started from.

• Last Checkpoint Position.

• First Failure Position: the position for the first object to be repaired.

• Current Position.

Statistics • Checked total number of objects scanned.

• Updated total number of objects repaired.

• Failed total number of objects that failed to be repaired.

• No Scrub total number of objects marked
LDISKFS_STATE_LUSTRE_NOSCRUB and skipped.



Troubleshooting Recovery

428

Information Detail

• IGIF total number of objects IGIF scanned.

• Prior Updated how many objects have been repaired which are
triggered by parallel RPC.

• Success Count total number of completed OI_scrub runs on the
target.

• Run Time how long the scrub has run, tally from the time of scanning
from the beginning of the specified MDT target, not include the paused/
failure time among checkpoints.

• Average Speed calculated by dividing Checked by run_time.

• Real-Time Speed the speed since last checkpoint if the OI_scrub
is running.

• Scanned total number of objects under /lost+found that have been
scanned.

• Repaired total number of objects under /lost+found that have been
recovered.

• Failed total number of objects under /lost+found failed to be scanned
or failed to be recovered.

36.4.3.2. LFSCK status of namespace via procfs

36.4.3.2.1. Description

The namespace component is responsible for checks described in Section 36.4, “ Checking the
file system with LFSCK”. The procfs interface for this component is in the MDD layer, named
lfsck_namespace. To show the status of this component, lctl get_param should be used as
described in the usage below.

The LFSCK namespace status output refers to phase 1 and phase 2. Phase 1 is when the LFSCK main
engine, which runs on each MDT, linearly scans its local device, guaranteeing that all local objects are
checked. However, there are certain cases in which LFSCK cannot know whether an object is consistent or
cannot repair an inconsistency until the phase 1 scanning is completed. During phase 2 of the namespace
check, objects with multiple hard-links, objects with remote parents, and other objects which couldn't be
verified during phase 1 will be checked.

36.4.3.2.2. Usage

lctl get_param -n mdd. FSNAME-MDT_target.lfsck_namespace

36.4.3.2.3. Output

Information Detail

General Information • Name: lfsck_namespace

• LFSCK namespace magic.

• LFSCK namespace version..



Troubleshooting Recovery

429

Information Detail

• Status: one of the status - init, scanning-phase1, scanning-
phase2, completed, failed, stopped, paused, partial,
co-failed, co-stopped or co-paused.

• Flags: including - scanned-once(the first cycle scanning has been
completed), inconsistent(one or more inconsistent FID-in-dirent
or LinkEA entries that have been discovered), upgrade(from Lustre
software release 1.8 IGIF format.)

• Parameters: including dryrun, all_targets, failout,
broadcast, orphan, create_ostobj and create_mdtobj.

• Time Since Last Completed.

• Time Since Latest Start.

• Time Since Last Checkpoint.

• Latest Start Position: the position the checking began most recently.

• Last Checkpoint Position.

• First Failure Position: the position for the first object to be repaired.

• Current Position.

Statistics • Checked Phase1 total number of objects scanned during
scanning-phase1.

• Checked Phase2 total number of objects scanned during
scanning-phase2.

• Updated Phase1 total number of objects repaired during
scanning-phase1.

• Updated Phase2 total number of objects repaired during
scanning-phase2.

• Failed Phase1 total number of objets that failed to be repaired
during scanning-phase1.

• Failed Phase2 total number of objets that failed to be repaired
during scanning-phase2.

• directories total number of directories scanned.

• multiple_linked_checked total number of multiple-linked
objects that have been scanned.

• dirent_repaired total number of FID-in-dirent entries that have
been repaired.

• linkea_repaired total number of linkEA entries that have been
repaired.



Troubleshooting Recovery

430

Information Detail

• unknown_inconsistency total number of undefined
inconsistencies found in scanning-phase2.

• unmatched_pairs_repaired total number of unmatched pairs
that have been repaired.

• dangling_repaired total number of dangling name entries that
have been found/repaired.

• multi_referenced_repaired total number of multiple
referenced name entries that have been found/repaired.

• bad_file_type_repaired total number of name entries with
bad file type that have been repaired.

• lost_dirent_repaired total number of lost name entries that
have been re-inserted.

• striped_dirs_scanned total number of striped directories
(master) that have been scanned.

• striped_dirs_repaired total number of striped directories
(master) that have been repaired.

• striped_dirs_failed total number of striped directories
(master) that have failed to be verified.

• striped_dirs_disabled total number of striped directories
(master) that have been disabled.

• striped_dirs_skipped total number of striped directories
(master) that have been skipped (for shards verification) because of
lost master LMV EA.

• striped_shards_scanned total number of striped directory
shards (slave) that have been scanned.

• striped_shards_repaired total number of striped directory
shards (slave) that have been repaired.

• striped_shards_failed total number of striped directory
shards (slave) that have failed to be verified.

• striped_shards_skipped total number of striped directory
shards (slave) that have been skipped (for name hash verification)
because LFSCK does not know whether the slave LMV EA is valid
or not.

• name_hash_repaired total number of name entries under striped
directory with bad name hash that have been repaired.

• nlinks_repaired total number of objects with nlink fixed.

• mul_linked_repaired total number of multiple-linked objects
that have been repaired.



Troubleshooting Recovery

431

Information Detail

• local_lost_found_scanned total number of objects under /lost
+found that have been scanned.

• local_lost_found_moved total number of objects under /lost
+found that have been moved to namespace visible directory.

• local_lost_found_skipped total number of objects under /lost
+found that have been skipped.

• local_lost_found_failed total number of objects under /lost
+found that have failed to be processed.

• Success Count the total number of completed LFSCK runs on the
target.

• Run Time Phase1 the duration of the LFSCK run during
scanning-phase1. Excluding the time spent paused between
checkpoints.

• Run Time Phase2 the duration of the LFSCK run during
scanning-phase2. Excluding the time spent paused between
checkpoints.

• Average Speed Phase1 calculated by dividing
checked_phase1 by run_time_phase1.

• Average Speed Phase2 calculated by dividing
checked_phase2 by run_time_phase1.

• Real-Time Speed Phase1 the speed since the last checkpoint if
the LFSCK is running scanning-phase1.

• Real-Time Speed Phase2 the speed since the last checkpoint if
the LFSCK is running scanning-phase2.

Introduced in Lustre 2.6

36.4.3.3. LFSCK status of layout via procfs

36.4.3.3.1. Description

The layout component is responsible for checking and repairing MDT-OST inconsistency. The procfs
interface for this component is in the MDD layer, named lfsck_layout, and in the OBD layer, named
lfsck_layout. To show the status of this component lctl get_param should be used as described
in the usage below.

The LFSCK layout status output refers to phase 1 and phase 2. Phase 1 is when the LFSCK main engine,
which runs on each MDT/OST, linearly scans its local device, guaranteeing that all local objects are
checked. During phase 1 of layout LFSCK, the OST-objects which are not referenced by any MDT-object
are recorded in a bitmap. During phase 2 of the layout check, the OST-objects in the bitmap will be re-
scanned to check whether they are really orphan objects.

36.4.3.3.2. Usage

lctl get_param -n mdd.



Troubleshooting Recovery

432

FSNAME-
MDT_target.lfsck_layout
lctl get_param -n obdfilter.
FSNAME-
OST_target.lfsck_layout

36.4.3.3.3. Output

Information Detail

General Information • Name: lfsck_layout

• LFSCK namespace magic.

• LFSCK namespace version..

• Status: one of the status - init, scanning-phase1, scanning-
phase2, completed, failed, stopped, paused, crashed,
partial, co-failed, co-stopped, or co-paused.

• Flags: including - scanned-once(the first cycle scanning has been
completed), inconsistent(one or more MDT-OST inconsistencies
have been discovered), incomplete(some MDT or OST did
not participate in the LFSCK or failed to finish the LFSCK) or
crashed_lastid(the lastid files on the OST crashed and needs to
be rebuilt).

• Parameters: including dryrun, all_targets and failout.

• Time Since Last Completed.

• Time Since Latest Start.

• Time Since Last Checkpoint.

• Latest Start Position: the position the checking began most recently.

• Last Checkpoint Position.

• First Failure Position: the position for the first object to be repaired.

• Current Position.

Statistics • Success Count: the total number of completed LFSCK runs on
the target.

• Repaired Dangling: total number of MDT-objects with dangling
reference have been repaired in the scanning-phase1.

• Repaired Unmatched Pairs total number of unmatched MDT
and OST-object pairs have been repaired in the scanning-phase1

• Repaired Multiple Referenced total number of OST-objects
with multiple reference have been repaired in the scanning-phase1.

• Repaired Orphan total number of orphan OST-objects have been
repaired in the scanning-phase2.



Troubleshooting Recovery

433

Information Detail

• Repaired Inconsistent Owner total number.of OST-objects
with incorrect owner information have been repaired in the scanning-
phase1.

• Repaired Others total number of.other inconsistency repaired in
the scanning phases.

• Skipped Number of skipped objects.

• Failed Phase1 total number of objects that failed to be repaired
during scanning-phase1.

• Failed Phase2 total number of objects that failed to be repaired
during scanning-phase2.

• Checked Phase1 total number of objects scanned during
scanning-phase1.

• Checked Phase2 total number of objects scanned during
scanning-phase2.

• Run Time Phase1 the duration of the LFSCK run during
scanning-phase1. Excluding the time spent paused between
checkpoints.

• Run Time Phase2 the duration of the LFSCK run during
scanning-phase2. Excluding the time spent paused between
checkpoints.

• Average Speed Phase1 calculated by dividing
checked_phase1 by run_time_phase1.

• Average Speed Phase2 calculated by dividing
checked_phase2 by run_time_phase1.

• Real-Time Speed Phase1 the speed since the last checkpoint if
the LFSCK is running scanning-phase1.

• Real-Time Speed Phase2 the speed since the last checkpoint if
the LFSCK is running scanning-phase2.

36.4.4. LFSCK adjustment interface
Introduced in Lustre 2.6

36.4.4.1. Rate control

36.4.4.1.1. Description

The LFSCK upper speed limit can be changed using lctl set_param as shown in the usage below.

36.4.4.1.2. Usage

lctl set_param mdd.${FSNAME}-${MDT_target}.lfsck_speed_limit=



Troubleshooting Recovery

434

N
lctl set_param obdfilter.${FSNAME}-${OST_target}.lfsck_speed_limit=
N

36.4.4.1.3. Values

0 No speed limit (run at maximum speed.)

positive integer Maximum number of objects to scan per second.

36.4.4.2. Auto scrub

36.4.4.2.1. Description

The auto_scrub parameter controls whether OI scrub will be triggered when an inconsistency is
detected during OI lookup. It can be set as described in the usage and values sections below.

There is also a noscrub mount option (see Section 44.13, “ mount.lustre”) which can be used to disable
automatic OI scrub upon detection of a file-level backup at mount time. If the noscrub mount option is
specified, auto_scrub will also be disabled, so OI scrub will not be triggered when an OI inconsistency
is detected. Auto scrub can be renabled after the mount using the command shown in the usage. Manually
starting LFSCK after mounting provides finer control over the starting conditions.

36.4.4.2.2. Usage

lctl set_param osd_ldiskfs.${FSNAME}-${MDT_target}.auto_scrub=N

where Nis an integer as described below.

Introduced in Lustre 2.5

Note

Lustre software 2.5 and later supports -P option that makes the set_param permanent.

36.4.4.2.3. Values

0 Do not start OI Scrub automatically.

positive integer Automatically start OI Scrub if inconsistency is detected during OI
lookup.



435

Chapter 37. Debugging a Lustre File
System

This chapter describes tips and information to debug a Lustre file system, and includes the following
sections:

• Section 37.1, “ Diagnostic and Debugging Tools”

• Section 37.2, “Lustre Debugging Procedures”

• Section 37.3, “Lustre Debugging for Developers”

37.1.  Diagnostic and Debugging Tools
A variety of diagnostic and analysis tools are available to debug issues with the Lustre software. Some
of these are provided in Linux distributions, while others have been developed and are made available
by the Lustre project.

37.1.1.  Lustre Debugging Tools
The following in-kernel debug mechanisms are incorporated into the Lustre software:

• Debug logs - A circular debug buffer to which Lustre internal debug messages are written (in contrast to
error messages, which are printed to the syslog or console). Entries in the Lustre debug log are controlled
by a mask set by lctl set_param debug=mask. The log size defaults to 5 MB per CPU but
can be increased as a busy system will quickly overwrite 5 MB. When the buffer fills, the oldest log
records are discarded.

• lctl get_param debug  - This shows the current debug mask used to delimit the debugging
information written out to the kernel debug logs.

• lctl debug_kernel file  - Dump the Lustre kernel debug log to the specified file as ASCII
text for further debugging and analysis.

• lctl set_param debug_mb=size  - This sets the maximum size of the in-kernel Lustre debug
buffer, in units of MiB.

• Debug daemon - The debug daemon controls the continuous logging of debug messages to a log file
in userspace.

The following tools are also provided with the Lustre software:

• lctl  - This tool is used with the debug_kernel option to manually dump the Lustre debugging log or
post-process debugging logs that are dumped automatically. For more information about the lctl tool,
see Section 37.2.2, “Using the lctl Tool to View Debug Messages” and Section 44.2, “ lctl”.

• Lustre subsystem asserts - A panic-style assertion (LBUG) in the kernel causes the Lustre file system
to dump the debug log to the file /tmp/lustre-log.timestamp where it can be retrieved after a
reboot. For more information, see Section 35.1.2, “Viewing Error Messages”.

• lfs  - This utility provides access to the layout of of a Lustre file, along with other information relevant
to users. For more information about lfs, see Section 40.1, “ lfs ”.



Debugging a Lustre File System

436

37.1.2. External Debugging Tools
The tools described in this section are provided in the Linux kernel or are available at an external website.
For information about using some of these tools for Lustre debugging, see Section 37.2, “Lustre Debugging
Procedures” and Section 37.3, “Lustre Debugging for Developers”.

37.1.2.1. Tools for Administrators and Developers

Some general debugging tools provided as a part of the standard Linux distribution are:

• strace  . This tool allows a system call to be traced.

• /var/log/messages  . syslogd prints fatal or serious messages at this log.

• Crash dumps . On crash-dump enabled kernels, sysrq c produces a crash dump. The Lustre software
enhances this crash dump with a log dump (the last 64 KB of the log) to the console.

• debugfs . Interactive file system debugger.

The following logging and data collection tools can be used to collect information for debugging Lustre
kernel issues:

• kdump. A Linux kernel crash utility useful for debugging a system running Red Hat Enterprise Linux.
For more information about kdump, see the Red Hat knowledge base article How to troubleshoot
kernel crashes, hangs, or reboots with kdump on Red Hat Enterprise Linux [https://access.redhat.com/
solutions/6038]. To download kdump, install the RPM package via yum install kexec-tools.

• netconsole. Enables kernel-level network logging over UDP. A system requires (SysRq) allows
users to collect relevant data through netconsole.

• wireshark . A network packet inspection tool that allows debugging of information that was
sent between the various Lustre nodes. This tool is built on top of tcpdump and can read packet
dumps generated by it. There are plug-ins available to dissassemble the LNet and Lustre protocols.
They are included with wireshark since version 2.6.0. See also the Wireshark Website [https://
www.wireshark.org/] for more details.

37.1.2.2. Tools for Developers

The tools described in this section may be useful for debugging a Lustre file system in a development
environment.

Of general interest is:

• leak_finder.pl  . This program provided with the Lustre software is useful for finding memory
leaks in the code.

A virtual machine is often used to create an isolated development and test environment. Some commonly-
used virtual machines are:

• VirtualBox Open Source Edition. Provides enterprise-class virtualization capability for all
major platforms and is available free at  https://www.virtualbox.org/wiki/Downloads [https://
www.virtualbox.org/wiki/Downloads].

• VMware Server. Virtualization platform available as free introductory software at  https://
my.vmware.com/web/vmware/downloads/ [https://my.vmware.com/web/vmware/downloads/].

https://access.redhat.com/solutions/6038
https://access.redhat.com/solutions/6038
https://access.redhat.com/solutions/6038
https://access.redhat.com/solutions/6038
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://my.vmware.com/web/vmware/downloads/
https://my.vmware.com/web/vmware/downloads/
https://my.vmware.com/web/vmware/downloads/


Debugging a Lustre File System

437

• Xen. A para-virtualized environment with virtualization capabilities similar to VMware Server and
Virtual Box. However, Xen allows the use of modified kernels to provide near-native performance and
the ability to emulate shared storage. For more information, go to https://xen.org/.

A variety of debuggers and analysis tools are available including:

• kgdb  . The Linux Kernel Source Level Debugger kgdb is used in conjunction with the GNU
Debugger gdb for debugging the Linux kernel. For more information about using kgdb with
gdb, see  Chapter 6. Running Programs Under gdb [https://www.linuxtopia.org/online_books/
redhat_linux_debugging_with_gdb/running.html] in the Red Hat Linux 4 Debugging with GDB guide.

• crash  . Used to analyze saved crash dump data when a system had panicked or locked up or appears
unresponsive. For more information about using crash to analyze a crash dump, see:

• Overview on how to use crash by the author:  White Paper: Red Hat Crash Utility [https://crash-
utility.github.io/crash_whitepaper.html]

37.2. Lustre Debugging Procedures
The procedures below may be useful to administrators or developers debugging a Lustre files system.

37.2.1. Understanding the Lustre Debug Messaging
Format

Lustre debug messages are categorized by originating subsystem, message type, and location in the source
code. For a list of subsystems and message types, see Section 44.2, “ lctl”.

Note

For a current list of subsystems and debug message types, see libcfs/include/libcfs/
libcfs_debug.h in the Lustre software tree

The elements of a Lustre debug message are described in Section 37.2.1.2, “Format of Lustre Debug
Messages” Format of Lustre Debug Messages.

37.2.1.1. Lustre Debug Messages

Each Lustre debug message has the tag of the subsystem it originated in, the message type, and the location
in the source code. The subsystems and debug types used are as follows:

• Standard Subsystems:

mdc, mds, osc, ost, obdclass, obdfilter, llite, ptlrpc, portals, lnd, ldlm, lov

• Debug Types:

• Types Description

trace Function entry/exit markers

dlmtrace Distributed locking-related information

inode

super

https://xen.org/
https://www.linuxtopia.org/online_books/redhat_linux_debugging_with_gdb/running.html
https://www.linuxtopia.org/online_books/redhat_linux_debugging_with_gdb/running.html
https://www.linuxtopia.org/online_books/redhat_linux_debugging_with_gdb/running.html
https://crash-utility.github.io/crash_whitepaper.html
https://crash-utility.github.io/crash_whitepaper.html
https://crash-utility.github.io/crash_whitepaper.html


Debugging a Lustre File System

438

Types Description

malloc Memory allocation or free information

cache Cache-related information

info Non-critical general information

dentry kernel namespace cache handling

mmap Memory-mapped IO interface

page Page cache and bulk data transfers

info Miscellaneous informational messages

net LNet network related debugging

console Significant system events, printed to console

warning Significant but non-fatal exceptions, printed to
console

error Critical error messages, printed to console

neterror Significant LNet error messages

emerg Fatal system errors, printed to console

config Configuration and setup, enabled by default

ha Failover and recovery-related information,
enabled by default

hsm Hierarchical space management/tiering

ioctl IOCTL-related information, enabled by default

layout File layout handling (PFL, FLR, DoM)

lfsck Filesystem consistency checking, enabled by
default

other Miscellaneious other debug messages

quota Space accounting and management

reada Client readahead management

rpctrace Remote request/reply tracing and debugging

sec Security, Kerberos, Shared Secret Key handling

snapshot Filesystem snapshot management

vfstrace Kernel VFS interface operations

37.2.1.2. Format of Lustre Debug Messages

The Lustre software uses the CDEBUG() and CERROR() macros to print the debug or error messages.
To print the message, the CDEBUG() macro uses the function libcfs_debug_msg() (libcfs/
libcfs/tracefile.c). The message format is described below, along with an example.

Description Parameter

subsystem 800000

debug mask 000010

smp_processor_id 0

seconds.microseconds 1081880847.677302



Debugging a Lustre File System

439

Description Parameter

stack size 1204

pid 2973

host pid (UML only) or zero 31070

(file:line #:function_name()) (obd_mount.c:2089:lustre_fill_super())

debug message kmalloced '*obj': 24 at a375571c (tot 17447717)

37.2.1.3. Lustre Debug Messages Buffer

Lustre debug messages are maintained in a buffer, with the maximum buffer size specified (in MBs) by
the debug_mb parameter (lctl get_param debug_mb). The buffer is circular, so debug messages
are kept until the allocated buffer limit is reached, and then the first messages are overwritten.

37.2.2. Using the lctl Tool to View Debug Messages
The lctl tool allows debug messages to be filtered based on subsystems and message types to extract
information useful for troubleshooting from a kernel debug log. For a command reference, see Section 44.2,
“ lctl”.

You can use lctl to:

• Obtain a list of all the types and subsystems:

lctl > debug_list subsystems|types

• Filter the debug log:

lctl > filter subsystem_name|debug_type

Note

When lctl filters, it removes unwanted lines from the displayed output. This does not affect the
contents of the debug log in the kernel's memory. As a result, you can print the log many times
with different filtering levels without worrying about losing data.

• Show debug messages belonging to certain subsystem or type:

lctl > show subsystem_name|debug_type

debug_kernel pulls the data from the kernel logs, filters it appropriately, and displays or saves it
as per the specified options

lctl > debug_kernel [output filename]

If the debugging is being done on User Mode Linux (UML), it might be useful to save the logs on the
host machine so that they can be used at a later time.

• Filter a log on disk, if you already have a debug log saved to disk (likely from a crash):

lctl > debug_file input_file [output_file] 

During the debug session, you can add markers or breaks to the log for any reason:

lctl > mark [marker text] 



Debugging a Lustre File System

440

The marker text defaults to the current date and time in the debug log (similar to the example shown
below):

DEBUG MARKER: Tue Mar 5 16:06:44 EST 2002 

• Completely flush the kernel debug buffer:

lctl > clear

Note

Debug messages displayed with lctl are also subject to the kernel debug masks; the filters are
additive.

37.2.2.1. Sample lctl Run

Below is a sample run using the lctl command.

bash-2.04# ./lctl 
lctl > debug_kernel /tmp/lustre_logs/log_all 
Debug log: 324 lines, 324 kept, 0 dropped. 
lctl > filter trace 
Disabling output of type "trace" 
lctl > debug_kernel /tmp/lustre_logs/log_notrace 
Debug log: 324 lines, 282 kept, 42 dropped. 
lctl > show trace 
Enabling output of type "trace" 
lctl > filter portals 
Disabling output from subsystem "portals" 
lctl > debug_kernel /tmp/lustre_logs/log_noportals 
Debug log: 324 lines, 258 kept, 66 dropped. 

37.2.3. Dumping the Buffer to a File (debug_daemon)
The lctl debug_daemon command is used to continuously dump the debug_kernel buffer to a
user-specified file. This functionality uses a kernel thread to continuously dump the messages from the
kernel debug log, so that much larger debug logs can be saved over a longer time than would fit in the
kernel ringbuffer.

The debug_daemon is highly dependent on file system write speed. File system write operations may
not be fast enough to flush out all of the debug_buffer if the Lustre file system is under heavy system
load and continues to log debug messages to the debug_buffer. The debug_daemon will write
the message DEBUG MARKER: Trace buffer full into the debug_buffer to indicate the
debug_buffer contents are overlapping before the debug_daemon flushes data to a file.

Users can use the lctl debug_daemon command to start or stop the Lustre daemon from dumping
the debug_buffer to a file.

37.2.3.1. lctl debug_daemon Commands

To initiate the debug_daemon to start dumping the debug_buffer into a file, run as the root user:

lctl debug_daemon start filename [megabytes]



Debugging a Lustre File System

441

The debug log will be written to the specified filename from the kernel. The file will be limited to the
optionally specified number of megabytes.

The daemon wraps around and dumps data to the beginning of the file when the output file size is over
the limit of the user-specified file size. To decode the dumped file to ASCII and sort the log entries by
time, run:

lctl debug_file filename > newfile

The output is internally sorted by the lctl command.

To stop the debug_daemon operation and flush the file output, run:

lctl debug_daemon stop

Otherwise, debug_daemon is shut down as part of the Lustre file system shutdown process. Users can
restart debug_daemon by using start command after each stop command issued.

This is an example using debug_daemon with the interactive mode of lctl to dump debug logs to a
40 MB file.

lctl

lctl > debug_daemon start /var/log/lustre.40.bin 40 

run filesystem operations to debug

lctl > debug_daemon stop 

lctl > debug_file /var/log/lustre.bin /var/log/lustre.log

To start another daemon with an unlimited file size, run:

lctl > debug_daemon start /var/log/lustre.bin 

The text message *** End of debug_daemon trace log *** appears at the end of each
output file.

37.2.4. Controlling Information Written to the Kernel
Debug Log

The lctl set_param subsystem_debug=subsystem_mask and lctl set_param
debug=debug_mask are used to determine which information is written to the debug log. The
subsystem_debug mask determines the information written to the log based on the functional area of the
code (such as lnet, osc, or ldlm). The debug mask controls information based on the message type (such
as info, error, trace, or malloc). For a complete list of possible debug masks use the lctl debug_list
types command.

To turn off Lustre debugging completely:

lctl set_param debug=0 

To turn on full Lustre debugging:

lctl set_param debug=-1 

To list all possible debug masks:



Debugging a Lustre File System

442

lctl debug_list types

To log only messages related to network communications:

lctl set_param debug=net 

To turn on logging of messages related to network communications and existing debug flags:

lctl set_param debug=+net 

To turn off network logging with changing existing flags:

lctl set_param debug=-net 

The various options available to print to kernel debug logs are listed in libcfs/include/libcfs/
libcfs.h

37.2.5. Troubleshooting with strace
The strace utility provided with the Linux distribution enables system calls to be traced by intercepting
all the system calls made by a process and recording the system call name, arguments, and return values.

To invoke strace on a program, enter:

$ strace program [arguments] 

Sometimes, a system call may fork child processes. In this situation, use the -f option of strace to
trace the child processes:

$ strace -f program [arguments] 

To redirect the strace output to a file, enter:

$ strace -o filename program [arguments] 

Use the -ff option, along with -o, to save the trace output in filename.pid, where pid is the process
ID of the process being traced. Use the -ttt option to timestamp all lines in the strace output, so they
can be correlated to operations in the lustre kernel debug log.

37.2.6. Looking at Disk Content
In a Lustre file system, the inodes on the metadata server contain extended attributes (EAs) that store
information about file striping. EAs contain a list of all object IDs and their locations (that is, the OST that
stores them). The lfs tool can be used to obtain this information for a given file using the getstripe
subcommand. Use a corresponding lfs setstripe command to specify striping attributes for a new
file or directory.

The lfs getstripe command takes a Lustre filename as input and lists all the objects that form a part
of this file. To obtain this information for the file /mnt/testfs/frog in a Lustre file system, run:

$ lfs getstripe /mnt/testfs/frog
lmm_stripe_count:   2
lmm_stripe_size:    1048576
lmm_pattern:        1
lmm_layout_gen:     0
lmm_stripe_offset:  2
        obdidx           objid          objid           group



Debugging a Lustre File System

443

             2          818855        0xc7ea7               0
             0          873123        0xd52a3               0
        

The debugfs tool is provided in the e2fsprogs package. It can be used for interactive debugging of an
ldiskfs file system. The debugfs tool can either be used to check status or modify information in the
file system. In a Lustre file system, all objects that belong to a file are stored in an underlying ldiskfs
file system on the OSTs. The file system uses the object IDs as the file names. Once the object IDs are
known, use the debugfs tool to obtain the attributes of all objects from different OSTs.

A sample run for the /mnt/testfs/frog file used in the above example is shown here:

$ debugfs -c -R "stat O/0/d$((818855 % 32))/818855" /dev/vgmyth/lvmythost2

debugfs 1.41.90.wc3 (28-May-2011)
/dev/vgmyth/lvmythost2: catastrophic mode - not reading inode or group bitmaps
Inode: 227649   Type: regular    Mode:  0666   Flags: 0x80000
Generation: 1375019198    Version: 0x0000002f:0000728f
User:  1000   Group:  1000   Size: 2800
File ACL: 0    Directory ACL: 0
Links: 1   Blockcount: 8
Fragment:  Address: 0    Number: 0    Size: 0
 ctime: 0x4e177fe5:00000000 -- Fri Jul  8 16:08:37 2011
 atime: 0x4d2e2397:00000000 -- Wed Jan 12 14:56:39 2011
 mtime: 0x4e177fe5:00000000 -- Fri Jul  8 16:08:37 2011
crtime: 0x4c3b5820:a364117c -- Mon Jul 12 12:00:00 2010
Size of extra inode fields: 28
Extended attributes stored in inode body: 
  fid = "08 80 24 00 00 00 00 00 28 8a e7 fc 00 00 00 00 a7 7e 0c 00 00 00 00 00
 00 00 00 00 00 00 00 00 " (32)
  fid: objid=818855 seq=0 parent=[0x248008:0xfce78a28:0x0] stripe=0
EXTENTS:
(0):63331288
      

37.2.7. Finding the Lustre UUID of an OST
To determine the Lustre UUID of an OST disk (for example, if you mix up the cables on your OST devices
or the SCSI bus numbering suddenly changes and the SCSI devices get new names), it is possible to extract
this from the last_rcvd file using debugfs:

debugfs -c -R "dump last_rcvd /tmp/last_rcvd" /dev/sdc
strings /tmp/last_rcvd | head -1
myth-OST0004_UUID
      

It is also possible (and easier) to extract this from the file system label using the dumpe2fs command:

dumpe2fs -h /dev/sdc | grep volume
dumpe2fs 1.41.90.wc3 (28-May-2011)
Filesystem volume name:   myth-OST0004
      

The debugfs and dumpe2fs commands are well documented in the debugfs(8) and dumpe2fs(8)
manual pages.



Debugging a Lustre File System

444

37.2.8. Printing Debug Messages to the Console
To dump debug messages to the console (/var/log/messages), set the corresponding debug mask
in the printk flag:

lctl set_param printk=-1 

This slows down the system dramatically. It is also possible to selectively enable or disable this capability
for particular flags using:lctl set_param printk=+vfstrace and lctl set_param
printk=-vfstrace .

It is possible to disable warning, error, and console messages, though it is strongly recommended to have
something like lctl debug_daemon running to capture this data to a local file system for failure
detection purposes.

37.2.9. Tracing Lock Traffic
The Lustre software provides a specific debug type category for tracing lock traffic. Use:

lctl> filter all_types 
lctl> show dlmtrace 
lctl> debug_kernel [filename] 

37.2.10. Controlling Console Message Rate Limiting
Some console messages which are printed by Lustre are rate limited. When such messages are printed, they
may be followed by a message saying "Skipped N previous similar message(s)," where N is the number
of messages skipped. This rate limiting can be completely disabled by a libcfs module parameter called
libcfs_console_ratelimit. To disable console message rate limiting, add this line to /etc/
modprobe.d/lustre.conf and then reload Lustre modules.

options libcfs libcfs_console_ratelimit=0

It is also possible to set the minimum and maximum delays between rate-limited console messages using
the module parameters libcfs_console_max_delay and libcfs_console_min_delay. Set
these in /etc/modprobe.d/lustre.conf and then reload Lustre modules. Additional information
on libcfs module parameters is available via modinfo:

modinfo libcfs

37.3. Lustre Debugging for Developers
The procedures in this section may be useful to developers debugging Lustre source code.

37.3.1. Adding Debugging to the Lustre Source Code
The debugging infrastructure provides a number of macros that can be used in Lustre source code to aid
in debugging or reporting serious errors.

To use these macros, you will need to set the DEBUG_SUBSYSTEM variable at the top of the file as shown
below:

#define DEBUG_SUBSYSTEM S_PORTALS



Debugging a Lustre File System

445

A list of available macros with descriptions is provided in the table below.

Macro Description

LBUG() A panic-style assertion in the kernel which causes
the Lustre file system to dump its circular log
to the /tmp/lustre-log file. This file can be
retrieved after a reboot. LBUG() freezes the thread
to allow capture of the panic stack. A system reboot
is needed to clear the thread.

LASSERT() Validates a given expression as true, otherwise
calls LBUG(). The failed expression is printed on
the console, although the values that make up the
expression are not printed.

LASSERTF() Similar to LASSERT() but allows a free-format
message to be printed, like printf/printk.

CDEBUG() The basic, most commonly used debug macro
that takes just one more argument than standard
printf() - the debug type. This message
adds to the debug log with the debug mask set
accordingly. Later, when a user retrieves the log for
troubleshooting, they can filter based on this type.

CDEBUG(D_INFO, "debug message: rc=
%d\n", number);

CDEBUG_LIMIT() Behaves similarly to CDEBUG(), but rate limits this
message when printing to the console (for D_WARN,
D_ERROR, and D_CONSOLE message types. This is
useful for messages that use a variable debug mask:

CDEBUG(mask, "maybe bad: rc=%d\n",
rc);

CERROR() Internally using
CDEBUG_LIMIT(D_ERROR, ...), which
unconditionally prints the message in the debug log
and to the console. This is appropriate for serious
errors or fatal conditions. Messages printed to the
console are prefixed with LustreError:, and
are rate-limited, to avoid flooding the console with
duplicates.

CERROR("Something bad happened: rc=
%d\n", rc);

CWARN() Behaves similarly to CERROR(), but prefixes
the messages with Lustre:. This is appropriate
for important, but not fatal conditions. Messages
printed to the console are rate-limited.

CNETERR() Behaves similarly to CERROR(), but prints error
messages for LNet if D_NETERR is set in the
debug mask. This is appropriate for serious
networking errors. Messages printed to the console
are rate-limited.



Debugging a Lustre File System

446

Macro Description

DEBUG_REQ() Prints information about the given
ptlrpc_request structure.

DEBUG_REQ(D_RPCTRACE, req,
""Handled RPC: rc=%d\n", rc);

ENTRY Add messages to the entry of a function to aid
in call tracing (takes no arguments). When using
these macros, cover all exit conditions with a single
EXIT, GOTO(), or RETURN() macro to avoid
confusion when the debug log reports that a function
was entered, but never exited.

EXIT Mark the exit of a function, to match ENTRY (takes
no arguments).

GOTO() Mark when code jumps via goto to the end of
a function, to match ENTRY, and prints out the
goto label and function return code in signed and
unsigned decimal, and hexadecimal format.

RETURN() Mark the exit of a function, to match ENTRY, and
prints out the function return code in signed and
unsigned decimal, and hexadecimal format.

LDLM_DEBUG()

LDLM_DEBUG_NOLOCK()

Used when tracing LDLM locking operations.
These macros build a thin trace that shows the
locking requests on a node, and can also be linked
across the client and server node using the printed
lock handles.

OBD_FAIL_CHECK() Allows insertion of failure points into the Lustre
source code. This is useful to generate regression
tests that can hit a very specific sequence of
events. This works in conjunction with "lctl
set_param fail_loc=fail_loc" to set
a specific failure point for which a given
OBD_FAIL_CHECK() will test.

OBD_FAIL_TIMEOUT() Similar to OBD_FAIL_CHECK(). Useful to
simulate hung, blocked or busy processes or
network devices. If the given fail_loc is hit,
OBD_FAIL_TIMEOUT() waits for the specified
number of seconds.

OBD_RACE() Similar to OBD_FAIL_CHECK(). Useful to
have multiple processes execute the same code
concurrently to provoke locking races. The first
process to hit OBD_RACE() sleeps until a second
process hits OBD_RACE(), then both processes
continue.

OBD_FAIL_ONCE A flag set on a fail_loc breakpoint to cause
the OBD_FAIL_CHECK() condition to be hit only
one time. Otherwise, a fail_loc is permanent
until it is cleared with "lctl set_param
fail_loc=0".



Debugging a Lustre File System

447

Macro Description

OBD_FAIL_RAND A flag set on a fail_loc breakpoint to
cause OBD_FAIL_CHECK() to fail randomly; on
average every (1 / fail_val) times.

OBD_FAIL_SKIP A flag set on a fail_loc breakpoint to cause
OBD_FAIL_CHECK() to succeed fail_val
times, and then fail permanently or once with
OBD_FAIL_ONCE.

OBD_FAIL_SOME A flag set on fail_loc breakpoint to cause
OBD_FAIL_CHECK to fail fail_val times, and
then succeed.

37.3.2. Accessing the ptlrpc Request History
Each service maintains a request history, which can be useful for first occurrence troubleshooting.

ptlrpc is an RPC protocol layered on LNet that deals with stateful servers and has semantics and built-
in support for recovery.

The ptlrpc request history works as follows:

1. request_in_callback() adds the new request to the service's request history.

2. When a request buffer becomes idle, it is added to the service's request buffer history list.

3. Buffers are culled from the service request buffer history if it has grown above
req_buffer_history_max and its reqs are removed from the service request history.

Request history is accessed and controlled using the following parameters for each service:

• req_buffer_history_len

Number of request buffers currently in the history

• req_buffer_history_max

Maximum number of request buffers to keep

• req_history

The request history

Requests in the history include "live" requests that are currently being handled. Each line in
req_history looks like:

sequence:target_NID:client_NID:cliet_xid:request_length:rpc_phase service_specific_data 

Parameter Description

seq Request sequence number

target NID Destination NID of the incoming request

client ID Client PID and NID

xid rq_xid

length Size of the request message



Debugging a Lustre File System

448

Parameter Description

phase • New (waiting to be handled or could not be
unpacked)

• Interpret (unpacked or being handled)

• Complete (handled)

svc specific Service-specific request printout. Currently, the
only service that does this is the OST (which
prints the opcode if the message has been unpacked
successfully

37.3.3. Finding Memory Leaks Using leak_finder.pl
Memory leaks can occur in code when memory has been allocated and then not freed once it is no longer
required. The leak_finder.pl program provides a way to find memory leaks.

Before running this program, you must turn on debugging to collect all malloc and free entries. Run:

lctl set_param debug=+malloc 

Then complete the following steps:

1. Dump the log into a user-specified log file using lctl (see Section 37.2.2, “Using the lctl Tool to View
Debug Messages”).

2. Run the leak finder on the newly-created log dump:

perl leak_finder.pl ascii-logname

The output is:

malloced 8bytes at a3116744 (called pathcopy) 
(lprocfs_status.c:lprocfs_add_vars:80) 
freed 8bytes at a3116744 (called pathcopy) 
(lprocfs_status.c:lprocfs_add_vars:80) 

The tool displays the following output to show the leaks found:

Leak:32bytes allocated at a23a8fc(service.c:ptlrpc_init_svc:144,debug file line 241)



Part VI. Reference
Part VI includes reference information about Lustre file system user utilities, configuration files and module
parameters, programming interfaces, system configuration utilities, and system limits. You will find information in
this section about:

• Lustre File System Recovery

• Lustre Parameters

• User Utilities

• Programming Interfaces

• Setting Lustre Properties in a C Program (llapi)

• Configuration Files and Module Parameters

• System Configuration Utilities



450

Table of Contents
38. Lustre File System Recovery .....................................................................................  455

38.1. Recovery Overview .........................................................................................  455
38.1.1. Client Failure .......................................................................................  455
38.1.2. Client Eviction .....................................................................................  456
38.1.3. MDS Failure (Failover) ..........................................................................  456
38.1.4. OST Failure (Failover) ...........................................................................  457
38.1.5. Network Partition ..................................................................................  457
38.1.6. Failed Recovery ....................................................................................  458

38.2. Metadata Replay .............................................................................................  458
38.2.1. XID Numbers .......................................................................................  458
38.2.2. Transaction Numbers .............................................................................  458
38.2.3. Replay and Resend ................................................................................  459
38.2.4. Client Replay List .................................................................................  459
38.2.5. Server Recovery ...................................................................................  459
38.2.6. Request Replay .....................................................................................  460
38.2.7. Gaps in the Replay Sequence ..................................................................  460
38.2.8. Lock Recovery .....................................................................................  460
38.2.9. Request Resend ....................................................................................  461

38.3. Reply Reconstruction .......................................................................................  461
38.3.1. Required State ......................................................................................  461
38.3.2. Reconstruction of Open Replies ...............................................................  461
38.3.3. Multiple Reply Data per Client ........................................................  L 2.8 462

38.4. Version-based Recovery ...................................................................................  462
38.4.1. VBR Messages .....................................................................................  463
38.4.2. Tips for Using VBR ..............................................................................  463

38.5. Commit on Share ............................................................................................  463
38.5.1. Working with Commit on Share ..............................................................  463
38.5.2. Tuning Commit On Share .......................................................................  464

38.6. Imperative Recovery ........................................................................................  464
38.6.1. MGS role ............................................................................................  464
38.6.2. Tuning Imperative Recovery ...................................................................  465
38.6.3. Configuration Suggestions for Imperative Recovery .....................................  467

38.7. Suppressing Pings ............................................................................................ 468
38.7.1. "suppress_pings" Kernel Module Parameter ...............................................  468
38.7.2. Client Death Notification ........................................................................  468

39. Lustre Parameters ....................................................................................................  469
39.1. Introduction to Lustre Parameters .......................................................................  469

39.1.1. Identifying Lustre File Systems and Servers ...............................................  470
39.2. Tuning Multi-Block Allocation (mballoc) ............................................................  472
39.3. Monitoring Lustre File System I/O .....................................................................  473

39.3.1. Monitoring the Client RPC Stream ...........................................................  474
39.3.2. Monitoring Client Activity ......................................................................  475
39.3.3. Monitoring Client Read-Write Offset Statistics ...........................................  477
39.3.4. Monitoring Client Read-Write Extent Statistics ...........................................  478
39.3.5. Monitoring the OST Block I/O Stream ......................................................  480

39.4. Tuning Lustre File System I/O ...........................................................................  482
39.4.1. Tuning the Client I/O RPC Stream ...........................................................  482
39.4.2. Tuning File Readahead and Directory Statahead .......................................... 484
39.4.3. Tuning Server Read Cache .....................................................................  485
39.4.4. Enabling OSS Asynchronous Journal Commit ............................................  488
39.4.5. Tuning the Client Metadata RPC Stream ...........................................  L 2.8 489



Reference

451

39.5. Configuring Timeouts in a Lustre File System ......................................................  490
39.5.1. Configuring Adaptive Timeouts ...............................................................  491
39.5.2. Setting Static Timeouts ..........................................................................  493

39.6. Monitoring LNet .............................................................................................  495
39.7. Allocating Free Space on OSTs .........................................................................  496
39.8. Configuring Locking ........................................................................................  497
39.9. Setting MDS and OSS Thread Counts .................................................................  498
39.10. Enabling and Interpreting Debugging Logs .........................................................  499

39.10.1. Interpreting OST Statistics ....................................................................  501
39.10.2. Interpreting MDT Statistics ...................................................................  503

40. User Utilities ............................................................................................................  504
40.1. lfs ..............................................................................................................  504

40.1.1. Synopsis ..............................................................................................  504
40.1.2. Description ..........................................................................................  505
40.1.3. Options ...............................................................................................  505
40.1.4. Examples .............................................................................................  510
40.1.5. See Also .............................................................................................. 512

40.2. lfs_migrate ..............................................................................................  512
40.2.1. Synopsis ..............................................................................................  512
40.2.2. Description ..........................................................................................  512
40.2.3. Options ...............................................................................................  513
40.2.4. Examples .............................................................................................  514
40.2.5. See Also .............................................................................................. 514

40.3. filefrag ....................................................................................................  514
40.3.1. Synopsis ..............................................................................................  514
40.3.2. Description ..........................................................................................  514
40.3.3. Options ...............................................................................................  515
40.3.4. Examples .............................................................................................  515

40.4. mount ..........................................................................................................  516
40.5. Handling Timeouts ..........................................................................................  516

41. Programming Interfaces ............................................................................................  518
41.1. User/Group Upcall ...........................................................................................  518

41.1.1. Synopsis ..............................................................................................  518
41.1.2. Description ..........................................................................................  518
41.1.3. Data Structures .....................................................................................  519

42. Setting Lustre Properties in a C Program (llapi) ......................................................  520
42.1. llapi_file_create ................................................................................... 520

42.1.1. Synopsis ..............................................................................................  520
42.1.2. Description ..........................................................................................  520
42.1.3. Examples .............................................................................................  521

42.2. llapi_file_get_stripe ..........................................................................................  521
42.2.1. Synopsis ..............................................................................................  521
42.2.2. Description ..........................................................................................  522
42.2.3. Return Values ......................................................................................  523
42.2.4. Errors .................................................................................................  523
42.2.5. Examples .............................................................................................  523

42.3. llapi_file_open ......................................................................................  524
42.3.1. Synopsis ..............................................................................................  524
42.3.2. Description ..........................................................................................  524
42.3.3. Return Values ......................................................................................  525
42.3.4. Errors .................................................................................................  525
42.3.5. Example ..............................................................................................  525

42.4. llapi_quotactl ........................................................................................  526
42.4.1. Synopsis ..............................................................................................  526



Reference

452

42.4.2. Description ..........................................................................................  526
42.4.3. Return Values ......................................................................................  527
42.4.4. Errors .................................................................................................  527

42.5. llapi_path2fid ........................................................................................  528
42.5.1. Synopsis ..............................................................................................  528
42.5.2. Description ..........................................................................................  528
42.5.3. Return Values ......................................................................................  528

42.6. llapi_ladvise ..................................................................................  L 2.9 528
42.6.1. Synopsis ..............................................................................................  528
42.6.2. Description ..........................................................................................  529
42.6.3. Return Values ......................................................................................  530
42.6.4. Errors .................................................................................................  530

42.7. Example Using the llapi Library ..................................................................... 530
42.7.1. See Also .............................................................................................. 534

43. Configuration Files and Module Parameters ................................................................ 535
43.1. Introduction ....................................................................................................  535
43.2. Module Options ..............................................................................................  535

43.2.1. LNet Options .......................................................................................  536
43.2.2. SOCKLND Kernel TCP/IP LND ...............................................................  539

44. System Configuration Utilities ...................................................................................  542
44.1. l_getidentity ...................................................................................................  542

44.1.1. Synopsis ..............................................................................................  542
44.1.2. Description ..........................................................................................  542
44.1.3. Options ...............................................................................................  543
44.1.4. Files ...................................................................................................  543

44.2. lctl ................................................................................................................  543
44.2.1. Synopsis ..............................................................................................  543
44.2.2. Description ..........................................................................................  543
44.2.3. Setting Parameters with lctl ....................................................................  543
44.2.4. Options ...............................................................................................  548
44.2.5. Examples .............................................................................................  548
44.2.6. See Also .............................................................................................. 548

44.3. ll_decode_filter_fid ..........................................................................................  548
44.3.1. Synopsis ..............................................................................................  548
44.3.2. Description ..........................................................................................  548
44.3.3. Examples .............................................................................................  549

44.4. llobdstat .........................................................................................................  549
44.4.1. Synopsis ..............................................................................................  549
44.4.2. Description ..........................................................................................  549
44.4.3. Example ..............................................................................................  549
44.4.4. Files ...................................................................................................  550

44.5. llog_reader .....................................................................................................  550
44.5.1. Synopsis ..............................................................................................  550
44.5.2. Description ..........................................................................................  550
44.5.3. See Also .............................................................................................. 550

44.6. llstat ..............................................................................................................  550
44.6.1. Synopsis ..............................................................................................  550
44.6.2. Description ..........................................................................................  550
44.6.3. Options ...............................................................................................  551
44.6.4. Example ..............................................................................................  551
44.6.5. Files ...................................................................................................  551

44.7. llverdev .........................................................................................................  551
44.7.1. Synopsis ..............................................................................................  551
44.7.2. Description ..........................................................................................  551



Reference

453

44.7.3. Options ...............................................................................................  552
44.7.4. Examples .............................................................................................  552

44.8. lshowmount ....................................................................................................  553
44.8.1. Synopsis ..............................................................................................  553
44.8.2. Description ..........................................................................................  553
44.8.3. Options ...............................................................................................  553
44.8.4. Files ...................................................................................................  553

44.9. lst .................................................................................................................  553
44.9.1. Synopsis ..............................................................................................  553
44.9.2. Description ..........................................................................................  554
44.9.3. Modules ..............................................................................................  554
44.9.4. Utilities ...............................................................................................  554
44.9.5. Example Script .....................................................................................  554

44.10. lustre_rmmod.sh ............................................................................................  555
44.11. lustre_rsync ..................................................................................................  555

44.11.1. Synopsis ............................................................................................  555
44.11.2. Description .........................................................................................  555
44.11.3. Options ..............................................................................................  556
44.11.4. Examples ...........................................................................................  557
44.11.5. See Also ............................................................................................  557

44.12. mkfs.lustre ....................................................................................................  558
44.12.1. Synopsis ............................................................................................  558
44.12.2. Description .........................................................................................  558
44.12.3. Examples ...........................................................................................  560
44.12.4. See Also ............................................................................................  560

44.13. mount.lustre ..................................................................................................  560
44.13.1. Synopsis ............................................................................................  560
44.13.2. Description .........................................................................................  560
44.13.3. Options ..............................................................................................  561
44.13.4. Examples ...........................................................................................  564
44.13.5. See Also ............................................................................................  565

44.14. routerstat ......................................................................................................  565
44.14.1. Synopsis ............................................................................................  565
44.14.2. Description .........................................................................................  565
44.14.3. Output ...............................................................................................  565
44.14.4. Example ............................................................................................  566
44.14.5. Files ..................................................................................................  566

44.15. tunefs.lustre ..................................................................................................  566
44.15.1. Synopsis ............................................................................................  566
44.15.2. Description .........................................................................................  566
44.15.3. Options ..............................................................................................  567
44.15.4. Examples ...........................................................................................  569
44.15.5. See Also ............................................................................................  569

44.16. Additional System Configuration Utilities ..........................................................  569
44.16.1. More Statistics for Application Profiling ..................................................  569
44.16.2. Testing / Debugging Utilities .................................................................  569
44.16.3. Fileset Feature ............................................................................  L 2.9 570

45. LNet Configuration C-API ........................................................................................  573
45.1. General API Information ..................................................................................  573

45.1.1. API Return Code ..................................................................................  573
45.1.2. API Common Input Parameters ...............................................................  573
45.1.3. API Common Output Parameters .............................................................  573

45.2. The LNet Configuration C-API ..........................................................................  575
45.2.1. Configuring LNet ..................................................................................  575



Reference

454

45.2.2. Enabling and Disabling Routing ..............................................................  575
45.2.3. Adding Routes ...................................................................................... 576
45.2.4. Deleting Routes ....................................................................................  577
45.2.5. Showing Routes ....................................................................................  577
45.2.6. Adding a Network Interface ....................................................................  578
45.2.7. Deleting a Network Interface ..................................................................  579
45.2.8. Showing Network Interfaces ...................................................................  580
45.2.9. Adjusting Router Buffer Pools .................................................................  581
45.2.10. Showing Routing information ................................................................  582
45.2.11. Showing LNet Traffic Statistics .............................................................  583
45.2.12. Adding/Deleting/Showing Parameters through a YAML Block .....................  584
45.2.13. Adding a route code example ................................................................  585



455

Chapter 38. Lustre File System
Recovery

This chapter describes how recovery is implemented in a Lustre file system and includes the following
sections:

• Section 38.1, “ Recovery Overview”

• Section 38.2, “Metadata Replay”

• Section 38.3, “Reply Reconstruction”

• Section 38.4, “Version-based Recovery”

• Section 38.5, “Commit on Share”

• Section 38.6, “Imperative Recovery”

38.1.      Recovery Overview
The recovery feature provided in the Lustre software is responsible for dealing with node or network failure
and returning the cluster to a consistent, performant state. Because the Lustre software allows servers
to perform asynchronous update operations to the on-disk file system (i.e., the server can reply without
waiting for the update to synchronously commit to disk), the clients may have state in memory that is
newer than what the server can recover from disk after a crash.

A handful of different types of failures can cause recovery to occur:

• Client (compute node) failure

• MDS failure (and failover)

• OST failure (and failover)

• Transient network partition

For Lustre, all Lustre file system failure and recovery operations are based on the concept of connection
failure; all imports or exports associated with a given connection are considered to fail if any of them fail.
The Section 38.6, “Imperative Recovery” feature allows the MGS to actively inform clients when a target
restarts after a failure, failover, or other interruption to speed up recovery.

For information on Lustre file system recovery, see Section 38.2, “Metadata Replay”. For information on
recovering from a corrupt file system, see Section 38.5, “Commit on Share”. For information on resolving
orphaned objects, a common issue after recovery, see Section 36.2.1, “ Working with Orphaned Objects”.
For information on imperative recovery see Section 38.6, “Imperative Recovery”

38.1.1. Client Failure
Recovery from client failure in a Lustre file system is based on lock revocation and other resources, so
surviving clients can continue their work uninterrupted. If a client fails to timely respond to a blocking
lock callback from the Distributed Lock Manager (DLM) or fails to communicate with the server in a long



Lustre File System Recovery

456

period of time (i.e., no pings), the client is forcibly removed from the cluster (evicted). This enables other
clients to acquire locks blocked by the dead client's locks, and also frees resources (file handles, export
data) associated with that client. Note that this scenario can be caused by a network partition, as well as an
actual client node system failure. Section 38.1.5, “Network Partition” describes this case in more detail.

38.1.2. Client Eviction
If a client is not behaving properly from the server's point of view, it will be evicted. This ensures that the
whole file system can continue to function in the presence of failed or misbehaving clients. An evicted
client must invalidate all locks, which in turn, results in all cached inodes becoming invalidated and all
cached data being flushed.

Reasons why a client might be evicted:

• Failure to respond to a server request in a timely manner

• Blocking lock callback (i.e., client holds lock that another client/server wants)

• Lock completion callback (i.e., client is granted lock previously held by another client)

• Lock glimpse callback (i.e., client is asked for size of object by another client)

• Server shutdown notification (with simplified interoperability)

• Failure to ping the server in a timely manner, unless the server is receiving no RPC traffic at all (which
may indicate a network partition).

38.1.3. MDS Failure (Failover)
Highly-available (HA) Lustre file system operation requires that the metadata server have a peer configured
for failover, including the use of a shared storage device for the MDT backing file system. The actual
mechanism for detecting peer failure, power off (STONITH) of the failed peer (to prevent it from
continuing to modify the shared disk), and takeover of the Lustre MDS service on the backup node depends
on external HA software such as Heartbeat. It is also possible to have MDS recovery with a single MDS
node. In this case, recovery will take as long as is needed for the single MDS to be restarted.

When Section 38.6, “Imperative Recovery” is enabled, clients are notified of an MDS restart (either the
backup or a restored primary). Clients always may detect an MDS failure either by timeouts of in-flight
requests or idle-time ping messages. In either case the clients then connect to the new backup MDS and
use the Metadata Replay protocol. Metadata Replay is responsible for ensuring that the backup MDS re-
acquires state resulting from transactions whose effects were made visible to clients, but which were not
committed to the disk.

The reconnection to a new (or restarted) MDS is managed by the file system configuration loaded by
the client when the file system is first mounted. If a failover MDS has been configured (using the --
failnode= option to mkfs.lustre or tunefs.lustre), the client tries to reconnect to both the
primary and backup MDS until one of them responds that the failed MDT is again available. At that point,
the client begins recovery. For more information, see Section 38.2, “Metadata Replay”.

Transaction numbers are used to ensure that operations are replayed in the order they were originally
performed, so that they are guaranteed to succeed and present the same file system state as before the
failure. In addition, clients inform the new server of their existing lock state (including locks that have
not yet been granted). All metadata and lock replay must complete before new, non-recovery operations
are permitted. In addition, only clients that were connected at the time of MDS failure are permitted to



Lustre File System Recovery

457

reconnect during the recovery window, to avoid the introduction of state changes that might conflict with
what is being replayed by previously-connected clients.

If multiple MDTs are in use, active-active failover is possible (e.g. two MDS nodes, each actively serving
one or more different MDTs for the same filesystem). See Section 3.2.2, “ MDT Failover Configuration
(Active/Active)” for more information.

38.1.4. OST Failure (Failover)
When an OST fails or has communication problems with the client, the default action is that the
corresponding OSC enters recovery, and I/O requests going to that OST are blocked waiting for OST
recovery or failover. It is possible to administratively mark the OSC as inactive on the client, in which
case file operations that involve the failed OST will return an IO error (-EIO). Otherwise, the application
waits until the OST has recovered or the client process is interrupted (e.g. ,with CTRL-C).

The MDS (via the LOV) detects that an OST is unavailable and skips it when assigning objects to new
files. When the OST is restarted or re-establishes communication with the MDS, the MDS and OST
automatically perform orphan recovery to destroy any objects that belong to files that were deleted while
the OST was unavailable. For more information, see Chapter 36, Troubleshooting Recovery (Working
with Orphaned Objects).

While the OSC to OST operation recovery protocol is the same as that between the MDC and MDT using
the Metadata Replay protocol, typically the OST commits bulk write operations to disk synchronously
and each reply indicates that the request is already committed and the data does not need to be saved
for recovery. In some cases, the OST replies to the client before the operation is committed to disk (e.g.
truncate, destroy, setattr, and I/O operations in newer releases of the Lustre software), and normal replay
and resend handling is done, including resending of the bulk writes. In this case, the client keeps a copy
of the data available in memory until the server indicates that the write has committed to disk.

To force an OST recovery, unmount the OST and then mount it again. If the OST was connected to clients
before it failed, then a recovery process starts after the remount, enabling clients to reconnect to the OST
and replay transactions in their queue. When the OST is in recovery mode, all new client connections are
refused until the recovery finishes. The recovery is complete when either all previously-connected clients
reconnect and their transactions are replayed or a client connection attempt times out. If a connection
attempt times out, then all clients waiting to reconnect (and their transactions) are lost.

Note

If you know an OST will not recover a previously-connected client (if, for example, the client
has crashed), you can manually abort the recovery using this command:

oss# lctl --device lustre_device_number abort_recovery

To determine an OST's device number and device name, run the lctl dl command. Sample
lctl dl command output is shown below:

7 UP obdfilter ddn_data-OST0009 ddn_data-OST0009_UUID 1159 

In this example, 7 is the OST device number. The device name is ddn_data-OST0009. In
most instances, the device name can be used in place of the device number.

38.1.5. Network Partition
Network failures may be transient. To avoid invoking recovery, the client tries, initially, to re-send any
timed out request to the server. If the resend also fails, the client tries to re-establish a connection to the



Lustre File System Recovery

458

server. Clients can detect harmless partition upon reconnect if the server has not had any reason to evict
the client.

If a request was processed by the server, but the reply was dropped (i.e., did not arrive back at the client),
the server must reconstruct the reply when the client resends the request, rather than performing the same
request twice.

38.1.6. Failed Recovery
In the case of failed recovery, a client is evicted by the server and must reconnect after having flushed its
saved state related to that server, as described in Section 38.1.2, “Client Eviction”, above. Failed recovery
might occur for a number of reasons, including:

• Failure of recovery

• Recovery fails if the operations of one client directly depend on the operations of another client
that failed to participate in recovery. Otherwise, Version Based Recovery (VBR) allows recovery to
proceed for all of the connected clients, and only missing clients are evicted.

• Manual abort of recovery

• Manual eviction by the administrator

38.2. Metadata Replay
Highly available Lustre file system operation requires that the MDS have a peer configured for failover,
including the use of a shared storage device for the MDS backing file system. When a client detects an
MDS failure, it connects to the new MDS and uses the metadata replay protocol to replay its requests.

Metadata replay ensures that the failover MDS re-accumulates state resulting from transactions whose
effects were made visible to clients, but which were not committed to the disk.

38.2.1. XID Numbers
Each request sent by the client contains an XID number, which is a client-unique, monotonically increasing
64-bit integer. The initial value of the XID is chosen so that it is highly unlikely that the same client node
reconnecting to the same server after a reboot would have the same XID sequence. The XID is used by the
client to order all of the requests that it sends, until such a time that the request is assigned a transaction
number. The XID is also used in Reply Reconstruction to uniquely identify per-client requests at the server.

38.2.2. Transaction Numbers
Each client request processed by the server that involves any state change (metadata update, file open,
write, etc., depending on server type) is assigned a transaction number by the server that is a target-
unique, monotonically increasing, server-wide 64-bit integer. The transaction number for each file system-
modifying request is sent back to the client along with the reply to that client request. The transaction
numbers allow the client and server to unambiguously order every modification to the file system in case
recovery is needed.

Each reply sent to a client (regardless of request type) also contains the last committed transaction number
that indicates the highest transaction number committed to the file system. The ldiskfs and ZFS backing
file systems that the Lustre software uses enforces the requirement that any earlier disk operation will
always be committed to disk before a later disk operation, so the last committed transaction number also
reports that any requests with a lower transaction number have been committed to disk.



Lustre File System Recovery

459

38.2.3. Replay and Resend
Lustre file system recovery can be separated into two distinct types of operations: replay and resend.

Replay operations are those for which the client received a reply from the server that the operation had
been successfully completed. These operations need to be redone in exactly the same manner after a server
restart as had been reported before the server failed. Replay can only happen if the server failed; otherwise
it will not have lost any state in memory.

Resend operations are those for which the client never received a reply, so their final state is unknown to the
client. The client sends unanswered requests to the server again in XID order, and again awaits a reply for
each one. In some cases, resent requests have been handled and committed to disk by the server (possibly
also having dependent operations committed), in which case, the server performs reply reconstruction for
the lost reply. In other cases, the server did not receive the lost request at all and processing proceeds as
with any normal request. These are what happen in the case of a network interruption. It is also possible
that the server received the request, but was unable to reply or commit it to disk before failure.

38.2.4. Client Replay List
All file system-modifying requests have the potential to be required for server state recovery (replay)
in case of a server failure. Replies that have an assigned transaction number that is higher than the last
committed transaction number received in any reply from each server are preserved for later replay in a
per-server replay list. As each reply is received from the server, it is checked to see if it has a higher last
committed transaction number than the previous highest last committed number. Most requests that now
have a lower transaction number can safely be removed from the replay list. One exception to this rule is
for open requests, which need to be saved for replay until the file is closed so that the MDS can properly
reference count open-unlinked files.

38.2.5. Server Recovery
A server enters recovery if it was not shut down cleanly. If, upon startup, if any client entries are in the
last_rcvd file for any previously connected clients, the server enters recovery mode and waits for these
previously-connected clients to reconnect and begin replaying or resending their requests. This allows the
server to recreate state that was exposed to clients (a request that completed successfully) but was not
committed to disk before failure.

In the absence of any client connection attempts, the server waits indefinitely for the clients to reconnect.
This is intended to handle the case where the server has a network problem and clients are unable to
reconnect and/or if the server needs to be restarted repeatedly to resolve some problem with hardware or
software. Once the server detects client connection attempts - either new clients or previously-connected
clients - a recovery timer starts and forces recovery to finish in a finite time regardless of whether the
previously-connected clients are available or not.

If no client entries are present in the last_rcvd file, or if the administrator manually aborts recovery,
the server does not wait for client reconnection and proceeds to allow all clients to connect.

As clients connect, the server gathers information from each one to determine how long the recovery
needs to take. Each client reports its connection UUID, and the server does a lookup for this UUID in
the last_rcvd file to determine if this client was previously connected. If not, the client is refused
connection and it will retry until recovery is completed. Each client reports its last seen transaction, so the
server knows when all transactions have been replayed. The client also reports the amount of time that it
was previously waiting for request completion so that the server can estimate how long some clients might
need to detect the server failure and reconnect.



Lustre File System Recovery

460

If the client times out during replay, it attempts to reconnect. If the client is unable to reconnect, REPLAY
fails and it returns to DISCON state. It is possible that clients will timeout frequently during REPLAY,
so reconnection should not delay an already slow process more than necessary. We can mitigate this by
increasing the timeout during replay.

38.2.6. Request Replay
If a client was previously connected, it gets a response from the server telling it that the server is in recovery
and what the last committed transaction number on disk is. The client can then iterate through its replay
list and use this last committed transaction number to prune any previously-committed requests. It replays
any newer requests to the server in transaction number order, one at a time, waiting for a reply from the
server before replaying the next request.

Open requests that are on the replay list may have a transaction number lower than the server's last
committed transaction number. The server processes those open requests immediately. The server then
processes replayed requests from all of the clients in transaction number order, starting at the last
committed transaction number to ensure that the state is updated on disk in exactly the same manner as it
was before the crash. As each replayed request is processed, the last committed transaction is incremented.
If the server receives a replay request from a client that is higher than the current last committed transaction,
that request is put aside until other clients provide the intervening transactions. In this manner, the server
replays requests in the same sequence as they were previously executed on the server until either all clients
are out of requests to replay or there is a gap in a sequence.

38.2.7. Gaps in the Replay Sequence
In some cases, a gap may occur in the reply sequence. This might be caused by lost replies, where the
request was processed and committed to disk but the reply was not received by the client. It can also be
caused by clients missing from recovery due to partial network failure or client death.

In the case where all clients have reconnected, but there is a gap in the replay sequence the only possibility
is that some requests were processed by the server but the reply was lost. Since the client must still have
these requests in its resend list, they are processed after recovery is finished.

In the case where all clients have not reconnected, it is likely that the failed clients had requests that will
no longer be replayed. The VBR feature is used to determine if a request following a transaction gap is
safe to be replayed. Each item in the file system (MDS inode or OST object) stores on disk the number
of the last transaction in which it was modified. Each reply from the server contains the previous version
number of the objects that it affects. During VBR replay, the server matches the previous version numbers
in the resend request against the current version number. If the versions match, the request is the next
one that affects the object and can be safely replayed. For more information, see Section 38.4, “Version-
based Recovery”.

38.2.8. Lock Recovery
If all requests were replayed successfully and all clients reconnected, clients then do lock replay locks --
that is, every client sends information about every lock it holds from this server and its state (whenever
it was granted or not, what mode, what properties and so on), and then recovery completes successfully.
Currently, the Lustre software does not do lock verification and just trusts clients to present an accurate
lock state. This does not impart any security concerns since Lustre software release 1.x clients are trusted
for other information (e.g. user ID) during normal operation also.

After all of the saved requests and locks have been replayed, the client sends an MDS_GETSTATUS request
with last-replay flag set. The reply to that request is held back until all clients have completed replay (sent



Lustre File System Recovery

461

the same flagged getstatus request), so that clients don't send non-recovery requests before recovery is
complete.

38.2.9. Request Resend
Once all of the previously-shared state has been recovered on the server (the target file system is up-to-
date with client cache and the server has recreated locks representing the locks held by the client), the
client can resend any requests that did not receive an earlier reply. This processing is done like normal
request processing, and, in some cases, the server may do reply reconstruction.

38.3. Reply Reconstruction
When a reply is dropped, the MDS needs to be able to reconstruct the reply when the original request is re-
sent. This must be done without repeating any non-idempotent operations, while preserving the integrity
of the locking system. In the event of MDS failover, the information used to reconstruct the reply must be
serialized on the disk in transactions that are joined or nested with those operating on the disk.

38.3.1. Required State
For the majority of requests, it is sufficient for the server to store three pieces of data in the last_rcvd
file:

• XID of the request

• Resulting transno (if any)

• Result code (req->rq_status)

For open requests, the "disposition" of the open must also be stored.

38.3.2. Reconstruction of Open Replies
An open reply consists of up to three pieces of information (in addition to the contents of the "request log"):

• File handle

• Lock handle

• mds_body with information about the file created (for O_CREAT)

The disposition, status and request data (re-sent intact by the client) are sufficient to determine which
type of lock handle was granted, whether an open file handle was created, and which resource should be
described in the mds_body.

38.3.2.1. Finding the File Handle

The file handle can be found in the XID of the request and the list of per-export open file handles. The
file handle contains the resource/FID.

38.3.2.2. Finding the Resource/fid

The file handle contains the resource/fid.



Lustre File System Recovery

462

38.3.2.3. Finding the Lock Handle

The lock handle can be found by walking the list of granted locks for the resource looking for one with
the appropriate remote file handle (present in the re-sent request). Verify that the lock has the right mode
(determined by performing the disposition/request/status analysis above) and is granted to the proper client.

Introduced in Lustre 2.8

38.3.3. Multiple Reply Data per Client
Since Lustre 2.8, the MDS is able to save several reply data per client. The reply data are stored in the
reply_data internal file of the MDT. Additionally to the XID of the request, the transaction number,
the result code and the open "disposition", the reply data contains a generation number that identifies the
client thanks to the content of the last_rcvd file.

38.4. Version-based Recovery
The Version-based Recovery (VBR) feature improves Lustre file system reliability in cases where client
requests (RPCs) fail to replay during recovery 1.

In pre-VBR releases of the Lustre software, if the MGS or an OST went down and then recovered, a
recovery process was triggered in which clients attempted to replay their requests. Clients were only
allowed to replay RPCs in serial order. If a particular client could not replay its requests, then those requests
were lost as well as the requests of clients later in the sequence. The ''downstream'' clients never got to
replay their requests because of the wait on the earlier client's RPCs. Eventually, the recovery period would
time out (so the component could accept new requests), leaving some number of clients evicted and their
requests and data lost.

With VBR, the recovery mechanism does not result in the loss of clients or their data, because changes
in inode versions are tracked, and more clients are able to reintegrate into the cluster. With VBR, inode
tracking looks like this:

• Each inode2 stores a version, that is, the number of the last transaction (transno) in which the inode
was changed.

• When an inode is about to be changed, a pre-operation version of the inode is saved in the client's data.

• The client keeps the pre-operation inode version and the post-operation version (transaction number)
for replay, and sends them in the event of a server failure.

• If the pre-operation version matches, then the request is replayed. The post-operation version is assigned
on all inodes modified in the request.

Note

An RPC can contain up to four pre-operation versions, because several inodes can be involved in
an operation. In the case of a ''rename'' operation, four different inodes can be modified.

During normal operation, the server:

1There are two scenarios under which client RPCs are not replayed: (1) Non-functioning or isolated clients do not reconnect, and they cannot replay
their RPCs, causing a gap in the replay sequence. These clients get errors and are evicted. (2) Functioning clients connect, but they cannot replay some
or all of their RPCs that occurred after the gap caused by the non-functioning/isolated clients. These clients get errors (caused by the failed clients).
With VBR, these requests have a better chance to replay because the "gaps" are only related to specific files that the missing client(s) changed.
2Usually, there are two inodes, a parent and a child.



Lustre File System Recovery

463

• Updates the versions of all inodes involved in a given operation

• Returns the old and new inode versions to the client with the reply

When the recovery mechanism is underway, VBR follows these steps:

1. VBR only allows clients to replay transactions if the affected inodes have the same version as during
the original execution of the transactions, even if there is gap in transactions due to a missed client.

2. The server attempts to execute every transaction that the client offers, even if it encounters a re-
integration failure.

3. When the replay is complete, the client and server check if a replay failed on any transaction because
of inode version mismatch. If the versions match, the client gets a successful re-integration message.
If the versions do not match, then the client is evicted.

VBR recovery is fully transparent to users. It may lead to slightly longer recovery times if the cluster loses
several clients during server recovery.

38.4.1. VBR Messages
The VBR feature is built into the Lustre file system recovery functionality. It cannot be disabled. These
are some VBR messages that may be displayed:

DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");

This message indicates why the client was evicted. No action is needed.

CWARN("%s: version recovery fails, reconnecting\n");

This message indicates why the recovery failed. No action is needed.

38.4.2. Tips for Using VBR
VBR will be successful for clients which do not share data with other client. Therefore, the strategy for
reliable use of VBR is to store a client's data in its own directory, where possible. VBR can recover these
clients, even if other clients are lost.

38.5. Commit on Share
The commit-on-share (COS) feature makes Lustre file system recovery more reliable by preventing
missing clients from causing cascading evictions of other clients. With COS enabled, if some Lustre clients
miss the recovery window after a reboot or a server failure, the remaining clients are not evicted.

Note

The commit-on-share feature is enabled, by default.

38.5.1. Working with Commit on Share
To illustrate how COS works, let's first look at the old recovery scenario. After a service restart, the
MDS would boot and enter recovery mode. Clients began reconnecting and replaying their uncommitted
transactions. Clients could replay transactions independently as long as their transactions did not depend
on each other (one client's transactions did not depend on a different client's transactions). The MDS is able
to determine whether one transaction is dependent on another transaction via the Section 38.4, “Version-
based Recovery” feature.



Lustre File System Recovery

464

If there was a dependency between client transactions (for example, creating and deleting the same file),
and one or more clients did not reconnect in time, then some clients may have been evicted because their
transactions depended on transactions from the missing clients. Evictions of those clients caused more
clients to be evicted and so on, resulting in "cascading" client evictions.

COS addresses the problem of cascading evictions by eliminating dependent transactions between clients.
It ensures that one transaction is committed to disk if another client performs a transaction dependent
on the first one. With no dependent, uncommitted transactions to apply, the clients replay their requests
independently without the risk of being evicted.

38.5.2. Tuning Commit On Share
Commit on Share can be enabled or disabled using the mdt.commit_on_sharing tunable (0/1). This
tunable can be set when the MDS is created (mkfs.lustre) or when the Lustre file system is active,
using the lctl set/get_param or lctl conf_param commands.

To set a default value for COS (disable/enable) when the file system is created, use:

--param mdt.commit_on_sharing=0/1

To disable or enable COS when the file system is running, use:

lctl set_param mdt.*.commit_on_sharing=0/1

Note

Enabling COS may cause the MDS to do a large number of synchronous disk operations, hurting
performance. Placing the ldiskfs journal on a low-latency external device may improve file
system performance.

38.6. Imperative Recovery
Large-scale Lustre filesystems will experience server hardware failures over their lifetime, and it is
important that servers can recover in a timely manner after such failures. High Availability software can
move storage targets over to a backup server automatically. Clients can detect the server failure by RPC
timeouts, which must be scaled with system size to prevent false diagnosis of server death in cases of
heavy load. The purpose of imperative recovery is to reduce the recovery window by actively informing
clients of server failure. The resulting reduction in the recovery window will minimize target downtime
and therefore increase overall system availability.

Imperative Recovery does not remove previous recovery mechanisms, and client timeout-based recovery
actions can occur in a cluster when IR is enabled as each client can still independently disconnect and
reconnect from a target. In case of a mix of IR and non-IR clients connecting to an OST or MDT, the server
cannot reduce its recovery timeout window, because it cannot be sure that all clients have been notified of
the server restart in a timely manner. Even in such mixed environments the time to complete recovery may
be reduced, since IR-enabled clients will still be notified to reconnect to the server promptly and allow
recovery to complete as soon as the last non-IR client detects the server failure.

38.6.1. MGS role
The MGS now holds additional information about Lustre targets, in the form of a Target Status Table.
Whenever a target registers with the MGS, there is a corresponding entry in this table identifying the target.
This entry includes NID information, and state/version information for the target. When a client mounts
the file system, it caches a locked copy of this table, in the form of a Lustre configuration log. When a
target restart occurs, the MGS revokes the client lock, forcing all clients to reload the table. Any new



Lustre File System Recovery

465

targets will have an updated version number, the client detects this and reconnects to the restarted target.
Since successful IR notification of server restart depends on all clients being registered with the MGS, and
there is no other node to notify clients in case of MGS restart, the MGS will disable IR for a period when
it first starts. This interval is configurable, as shown in Section 38.6.2, “Tuning Imperative Recovery”

Because of the increased importance of the MGS in recovery, it is strongly recommended that the MGS
node be separate from the MDS. If the MGS is co-located on the MDS node, then in case of MDS/MGS
failure there will be no IR notification for the MDS restart, and clients will always use timeout-based
recovery for the MDS. IR notification would still be used in the case of OSS failure and recovery.

Unfortunately, it’s impossible for the MGS to know how many clients have been successfully notified or
whether a specific client has received the restarting target information. The only thing the MGS can do is
tell the target that, for example, all clients are imperative recovery-capable, so it is not necessary to wait
as long for all clients to reconnect. For this reason, we still require a timeout policy on the target side, but
this timeout value can be much shorter than normal recovery.

38.6.2. Tuning Imperative Recovery
Imperative recovery has a default parameter set which means it can work without any extra configuration.
However, the default parameter set only fits a generic configuration. The following sections discuss the
configuration items for imperative recovery.

38.6.2.1. ir_factor

Ir_factor is used to control targets’ recovery window. If imperative recovery is enabled, the recovery
timeout window on the restarting target is calculated by: new timeout = recovery_time * ir_factor / 10
Ir_factor must be a value in range of [1, 10]. The default value of ir_factor is 5. The following example
will set imperative recovery timeout to 80% of normal recovery timeout on the target testfs-OST0000:

lctl conf_param obdfilter.testfs-OST0000.ir_factor=8

Note

If this value is too small for the system, clients may be unnecessarily evicted

You can read the current value of the parameter in the standard manner with lctl get_param:

# lctl get_param obdfilter.testfs-OST0000.ir_factor
# obdfilter.testfs-OST0000.ir_factor=8

38.6.2.2. Disabling Imperative Recovery

Imperative recovery can be disabled manually by a mount option. For example, imperative recovery can
be disabled on an OST by:

# mount -t lustre -onoir /dev/sda /mnt/ost1

Imperative recovery can also be disabled on the client side with the same mount option:

# mount -t lustre -onoir mymgsnid@tcp:/testfs /mnt/testfs

Note

When a single client is deactivated in this manner, the MGS will deactivate imperative recovery
for the whole cluster. IR-enabled clients will still get notification of target restart, but targets will
not be allowed to shorten the recovery window.



Lustre File System Recovery

466

You can also disable imperative recovery globally on the MGS by writing `state=disabled’ to the
controlling procfs entry

# lctl set_param mgs.MGS.live.testfs="state=disabled"

The above command will disable imperative recovery for file system named testfs

38.6.2.3. Checking Imperative Recovery State - MGS

You can get the imperative recovery state from the MGS. Let’s take an example and explain states of
imperative recovery:

[mgs]$ lctl get_param mgs.MGS.live.testfs
...
imperative_recovery_state:
    state: full
    nonir_clients: 0
    nidtbl_version: 242
    notify_duration_total: 0.470000
    notify_duation_max: 0.041000
    notify_count: 38

Item Meaning

state • full: IR is working, all clients are connected and
can be notified.

• partial: some clients are not IR capable.

• disabled: IR is disabled, no client notification.

• startup: the MGS was just restarted, so not all
clients may reconnect to the MGS.

nonir_clients Number of non-IR capable clients in the system.

nidtbl_version Version number of the target status table. Client
version must match MGS.

notify_duration_total [Seconds.microseconds] Total time spent by MGS
notifying clients

notify_duration_max [Seconds.microseconds] Maximum notification
time for the MGS to notify a single IR client.

notify_count Number of MGS restarts - to
obtain average notification time, divide
notify_duration_total by
notify_count

38.6.2.4. Checking Imperative Recovery State - client

A ̀ client’ in IR means a Lustre client or a MDT. You can get the IR state on any node which running client
or MDT, those nodes will always have an MGC running. An example from a client:

[client]$ lctl get_param mgc.*.ir_state



Lustre File System Recovery

467

mgc.MGC192.168.127.6@tcp.ir_state=
imperative_recovery: ON
client_state:
    - { client: testfs-client, nidtbl_version: 242 }
 

An example from a MDT:

mgc.MGC192.168.127.6@tcp.ir_state=
imperative_recovery: ON
client_state:
    - { client: testfs-MDT0000, nidtbl_version: 242 }
 

Item Meaning

imperative_recovery imperative_recoverycan be ON or OFF. If
it’s OFF state, then IR is disabled by administrator
at mount time. Normally this should be ON state.

client_state: client: The name of the client

client_state: nidtbl_version Version number of the target status table. Client
version must match MGS.

38.6.2.5. Target Instance Number

The Target Instance number is used to determine if a client is connecting to the latest instance of a target.
We use the lowest 32 bit of mount count as target instance number. For an OST you can get the target
instance number of testfs-OST0001 in this way (the command is run from an OSS login prompt):

$ lctl get_param obdfilter.testfs-OST0001*.instance
obdfilter.testfs-OST0001.instance=5

From a client, query the relevant OSC:

$ lctl get_param osc.testfs-OST0001-osc-*.import |grep instance
    instance: 5

38.6.3. Configuration Suggestions for Imperative
Recovery

We used to build the MGS and MDT0000 on the same target to save a server node. However, to make IR
work efficiently, we strongly recommend running the MGS node on a separate node for any significant
Lustre file system installation. There are three main advantages of doing this:

1. Be able to notify clients when MDT0000 recovered.

2. Improved load balance. The load on the MDS may be very high which may make the MGS unable to
notify the clients in time.

3. Robustness. The MGS code is simpler and much smaller compared to the MDS code. This means the
chance of an MGS downtime due to a software bug is very low.



Lustre File System Recovery

468

38.7. Suppressing Pings
On clusters with large numbers of clients and OSTs, OBD_PING messages may impose significant
performance overheads. There is an option to suppress pings, allowing ping overheads to be considerably
reduced. Before turning on this option, administrators should consider the following requirements and
understand the trade-offs involved:

• When suppressing pings, a server cannot detect client deaths, since clients do not send pings that are
only to keep their connections alive. Therefore, a mechanism external to the Lustre file system shall be
set up to notify Lustre targets of client deaths in a timely manner, so that stale connections do not exist
for too long and lock callbacks to dead clients do not always have to wait for timeouts.

• Without pings, a client has to rely on Imperative Recovery to notify it of target failures, in order to join
recoveries in time. This dictates that the client shall eargerly keep its MGS connection alive. Thus, a
highly available standalone MGS is recommended and, on the other hand, MGS pings are always sent
regardless of how the option is set.

• If a client has uncommitted requests to a target and it is not sending any new requests on the connection,
it will still ping that target even when pings should be suppressed. This is because the client needs to
query the target's last committed transaction numbers in order to free up local uncommitted requests (and
possibly other resources associated). However, these pings shall stop as soon as all the uncommitted
requests have been freed or new requests need to be sent, rendering the pings unnecessary.

38.7.1. "suppress_pings" Kernel Module Parameter
The new option that controls whether pings are suppressed is implemented as the ptlrpc kernel module
parameter "suppress_pings". Setting it to "1" on a server turns on ping suppressing for all targets on
that server, while leaving it with the default value "0" gives previous pinging behavior. The parameter
is ignored on clients and the MGS. While the parameter is recommended to be set persistently via the
modprobe.conf(5) mechanism, it also accept online changes through sysfs. Note that an online change
only affects connections established later; existing connections' pinging behaviors stay the same.

38.7.2. Client Death Notification
The required external client death notification shall write UUIDs of dead clients into targets'
evict_client procfs entries in order to remove stale clients from recovery.

A client UUID can be obtained from their uuid procfs entry and that UUID can be used to evict the
client, like:

client$ lctl get_param llite.testfs-*.uuid
llite.testfs-ffff991ae1992000.uuid=dd599d28-0a85-a9e4-82cd-dc6357a42c77
oss# lctl set_param obdfilter.testfs-*.evict_client=dd599d28-0a85-a9e4-82cd-dc6357a42c77
mds# lctl set_param mdt.testfs-*.evict_client=dd599d28-0a85-a9e4-82cd-dc6357a42c77



469

Chapter 39. Lustre Parameters
There are many parameters for Lustre that can tune client and server performance, change behavior of the
system, and report statistics about various subsystems. This chapter describes the various parameters and
tunables that are useful for optimizing and monitoring aspects of a Lustre file system. It includes these
sections:

• Section 39.10, “Enabling and Interpreting Debugging Logs”

.

39.1. Introduction to Lustre Parameters
Lustre parameters and statistics files provide an interface to internal data structures in the kernel that
enables monitoring and tuning of many aspects of Lustre file system and application performance. These
data structures include settings and metrics for components such as memory, networking, file systems, and
kernel housekeeping routines, which are available throughout the hierarchical file layout.

Typically, metrics are accessed via lctl get_param files and settings are changed by via lctl
set_param. They allow getting and setting multiple parameters with a single command, through the use
of wildcards in one or more part of the parameter name. While each of these parameters maps to files in
/proc and /sys directly, the location of these parameters may change between Lustre releases, so it is
recommended to always use lctl to access the parameters from userspace scripts. Some data is server-
only, some data is client-only, and some data is exported from the client to the server and is thus duplicated
in both locations.

Note

In the examples in this chapter, # indicates a command is entered as root. Lustre servers are
named according to the convention fsname-MDT|OSTnumber. The standard UNIX wildcard
designation (*) is used to represent any part of a single component of the parameter name,
excluding "." and "/". It is also possible to use brace {}expansion to specify a list of parameter
names efficiently.

Some examples are shown below:

• To list available OST targets on a Lustre client:

# lctl list_param -F osc.*
osc.testfs-OST0000-osc-ffff881071d5cc00/
osc.testfs-OST0001-osc-ffff881071d5cc00/
osc.testfs-OST0002-osc-ffff881071d5cc00/
osc.testfs-OST0003-osc-ffff881071d5cc00/
osc.testfs-OST0004-osc-ffff881071d5cc00/
osc.testfs-OST0005-osc-ffff881071d5cc00/
osc.testfs-OST0006-osc-ffff881071d5cc00/
osc.testfs-OST0007-osc-ffff881071d5cc00/
osc.testfs-OST0008-osc-ffff881071d5cc00/

In this example, information about OST connections available on a client is displayed (indicated by
"osc"). Each of these connections may have numerous sub-parameters as well.

• To see multiple levels of parameters, use multiple wildcards:



Lustre Parameters

470

# lctl list_param osc.*.*
osc.testfs-OST0000-osc-ffff881071d5cc00.active
osc.testfs-OST0000-osc-ffff881071d5cc00.blocksize
osc.testfs-OST0000-osc-ffff881071d5cc00.checksum_type
osc.testfs-OST0000-osc-ffff881071d5cc00.checksums
osc.testfs-OST0000-osc-ffff881071d5cc00.connect_flags
osc.testfs-OST0000-osc-ffff881071d5cc00.contention_seconds
osc.testfs-OST0000-osc-ffff881071d5cc00.cur_dirty_bytes
...
osc.testfs-OST0000-osc-ffff881071d5cc00.rpc_stats

• To see a specific subset of parameters, use braces, like:

# lctl list_param osc.*.{checksum,connect}*
osc.testfs-OST0000-osc-ffff881071d5cc00.checksum_type
osc.testfs-OST0000-osc-ffff881071d5cc00.checksums
osc.testfs-OST0000-osc-ffff881071d5cc00.connect_flags

• To view a specific file, use lctl get_param:

# lctl get_param osc.lustre-OST0000*.rpc_stats

For more information about using lctl, see Section 13.12.3, “Setting Parameters with lctl”.

Data can also be viewed using the cat command with the full path to the file. The form of the cat
command is similar to that of the lctl get_param command with some differences. Unfortunately, as
the Linux kernel has changed over the years, the location of statistics and parameter files has also changed,
which means that the Lustre parameter files may be located in either the /proc directory, in the /sys
directory, and/or in the /sys/kernel/debug directory, depending on the kernel version and the Lustre
version being used. The lctl command insulates scripts from these changes and is preferred over direct
file access, unless as part of a high-performance monitoring system.

Introduced in before Lustre 2.5

Note

Starting in Lustre 2.12, there is lctl get_param and lctl set_param command can
provide tab completion when using an interactive shell with bash-completion installed. This
simplifies the use of get_param significantly, since it provides an interactive list of available
parameters.

The llstat utility can be used to monitor some Lustre file system I/O activity over a specified time
period. For more details, see Section 44.6, “ llstat”

Some data is imported from attached clients and is available in a directory called exports located in the
corresponding per-service directory on a Lustre server. For example:

oss:/root# lctl list_param obdfilter.testfs-OST0000.exports.*
# hash ldlm_stats stats uuid

39.1.1. Identifying Lustre File Systems and Servers
Several parameter files on the MGS list existing Lustre file systems and file system servers. The examples
below are for a Lustre file system called testfs with one MDT and three OSTs.

• To view all known Lustre file systems, enter:



Lustre Parameters

471

mgs# lctl get_param mgs.*.filesystems
testfs

• To view the names of the servers in a file system in which least one server is running, enter:

lctl get_param mgs.*.live.<filesystem name>

For example:

mgs# lctl get_param mgs.*.live.testfs
fsname: testfs
flags: 0x20     gen: 45
testfs-MDT0000
testfs-OST0000
testfs-OST0001
testfs-OST0002 

Secure RPC Config Rules: 

imperative_recovery_state:
    state: startup
    nonir_clients: 0
    nidtbl_version: 6
    notify_duration_total: 0.001000
    notify_duation_max:  0.001000
    notify_count: 4

• To list all configured devices on the local node, enter:

# lctl device_list
0 UP mgs MGS MGS 11
1 UP mgc MGC192.168.10.34@tcp 1f45bb57-d9be-2ddb-c0b0-5431a49226705
2 UP mdt MDS MDS_uuid 3
3 UP lov testfs-mdtlov testfs-mdtlov_UUID 4
4 UP mds testfs-MDT0000 testfs-MDT0000_UUID 7
5 UP osc testfs-OST0000-osc testfs-mdtlov_UUID 5
6 UP osc testfs-OST0001-osc testfs-mdtlov_UUID 5
7 UP lov testfs-clilov-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa04
8 UP mdc testfs-MDT0000-mdc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
9 UP osc testfs-OST0000-osc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
10 UP osc testfs-OST0001-osc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05

The information provided on each line includes:

- Device number

- Device status (UP, INactive, or STopping)

- Device name

- Device UUID

- Reference count (how many users this device has)

• To display the name of any server, view the device label:



Lustre Parameters

472

mds# e2label /dev/sda
testfs-MDT0000

39.2. Tuning Multi-Block Allocation (mballoc)
Capabilities supported by mballoc include:

• Pre-allocation for single files to help to reduce fragmentation.

• Pre-allocation for a group of files to enable packing of small files into large, contiguous chunks.

• Stream allocation to help decrease the seek rate.

The following mballoc tunables are available:

Field Description

mb_max_to_scan Maximum number of free chunks that mballoc finds before a final
decision to avoid a livelock situation.

mb_min_to_scan Minimum number of free chunks that mballoc searches before picking
the best chunk for allocation. This is useful for small requests to reduce
fragmentation of big free chunks.

mb_order2_req For requests equal to 2^N, where N >= mb_order2_req, a fast search
is done using a base 2 buddy allocation service.

mb_small_req

mb_large_req

mb_small_req - Defines (in MB) the upper bound of "small requests".

mb_large_req - Defines (in MB) the lower bound of "large requests".

Requests are handled differently based on size:

• < mb_small_req - Requests are packed together to form large,
aggregated requests.

• > mb_small_req and < mb_large_req - Requests are primarily
allocated linearly.

• > mb_large_req - Requests are allocated since hard disk seek time
is less of a concern in this case.

In general, small requests are combined to create larger requests, which
are then placed close to one another to minimize the number of seeks
required to access the data.

prealloc_table A table of values used to preallocate space when a new request is received.
By default, the table looks like this:

prealloc_table
4 8 16 32 64 128 256 512 1024 2048 

When a new request is received, space is preallocated at the next higher
increment specified in the table. For example, for requests of less than
4 file system blocks, 4 blocks of space are preallocated; for requests
between 4 and 8, 8 blocks are preallocated; and so forth



Lustre Parameters

473

Field Description

Although customized values can be entered in the table, the performance
of general usage file systems will not typically be improved by modifying
the table (in fact, in ext4 systems, the table values are fixed). However,
for some specialized workloads, tuning the prealloc_table values
may result in smarter preallocation decisions.

mb_group_prealloc The amount of space (in kilobytes) preallocated for groups of small
requests.

Buddy group cache information found in /sys/fs/ldiskfs/disk_device/mb_groups may be
useful for assessing on-disk fragmentation. For example:

cat /proc/fs/ldiskfs/loop0/mb_groups 
#group: free free frags first pa [ 2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 
     2^10 2^11 2^12 2^13] 
#0    : 2936 2936 1     42    0  [ 0   0   0   1   1   1   1   2   0   1 
     2    0    0    0   ]

In this example, the columns show:

• #group number

• Available blocks in the group

• Blocks free on a disk

• Number of free fragments

• First free block in the group

• Number of preallocated chunks (not blocks)

• A series of available chunks of different sizes

39.3. Monitoring Lustre File System I/O
A number of system utilities are provided to enable collection of data related to I/O activity in a Lustre
file system. In general, the data collected describes:

• Data transfer rates and throughput of inputs and outputs external to the Lustre file system, such as
network requests or disk I/O operations performed

• Data about the throughput or transfer rates of internal Lustre file system data, such as locks or allocations.

Note

It is highly recommended that you complete baseline testing for your Lustre file system to
determine normal I/O activity for your hardware, network, and system workloads. Baseline data
will allow you to easily determine when performance becomes degraded in your system. Two
particularly useful baseline statistics are:

• brw_stats – Histogram data characterizing I/O requests to the OSTs. For more details, see
Section 39.3.5, “Monitoring the OST Block I/O Stream”.



Lustre Parameters

474

• rpc_stats – Histogram data showing information about RPCs made by clients. For more
details, see Section 39.3.1, “Monitoring the Client RPC Stream”.

39.3.1. Monitoring the Client RPC Stream
The rpc_stats file contains histogram data showing information about remote procedure calls (RPCs)
that have been made since this file was last cleared. The histogram data can be cleared by writing any
value into the rpc_stats file.

Example:

# lctl get_param osc.testfs-OST0000-osc-ffff810058d2f800.rpc_stats
snapshot_time:            1372786692.389858 (secs.usecs)
read RPCs in flight:      0
write RPCs in flight:     1
dio read RPCs in flight:  0
dio write RPCs in flight: 0
pending write pages:      256
pending read pages:       0

                     read                   write
pages per rpc   rpcs   % cum % |       rpcs   % cum %
1:                 0   0   0   |          0   0   0
2:                 0   0   0   |          1   0   0
4:                 0   0   0   |          0   0   0
8:                 0   0   0   |          0   0   0
16:                0   0   0   |          0   0   0
32:                0   0   0   |          2   0   0
64:                0   0   0   |          2   0   0
128:               0   0   0   |          5   0   0
256:             850 100 100   |      18346  99 100

                     read                   write
rpcs in flight  rpcs   % cum % |       rpcs   % cum %
0:               691  81  81   |       1740   9   9
1:                48   5  86   |        938   5  14
2:                29   3  90   |       1059   5  20
3:                17   2  92   |       1052   5  26
4:                13   1  93   |        920   5  31
5:                12   1  95   |        425   2  33
6:                10   1  96   |        389   2  35
7:                30   3 100   |      11373  61  97
8:                 0   0 100   |        460   2 100

                     read                   write
offset          rpcs   % cum % |       rpcs   % cum %
0:               850 100 100   |      18347  99  99
1:                 0   0 100   |          0   0  99
2:                 0   0 100   |          0   0  99
4:                 0   0 100   |          0   0  99
8:                 0   0 100   |          0   0  99
16:                0   0 100   |          1   0  99
32:                0   0 100   |          1   0  99
64:                0   0 100   |          3   0  99



Lustre Parameters

475

128:               0   0 100   |          4   0 100

The header information includes:

• snapshot_time - UNIX epoch instant the file was read.

• read RPCs in flight - Number of read RPCs issued by the OSC, but not complete at the time
of the snapshot. This value should always be less than or equal to max_rpcs_in_flight.

• write RPCs in flight - Number of write RPCs issued by the OSC, but not complete at the time
of the snapshot. This value should always be less than or equal to max_rpcs_in_flight.

• dio read RPCs in flight - Direct I/O (as opposed to block I/O) read RPCs issued but not
completed at the time of the snapshot.

• dio write RPCs in flight - Direct I/O (as opposed to block I/O) write RPCs issued but not
completed at the time of the snapshot.

• pending write pages - Number of pending write pages that have been queued for I/O in the OSC.

• pending read pages - Number of pending read pages that have been queued for I/O in the OSC.

The tabular data is described in the table below. Each row in the table shows the number of reads or writes
(ios) occurring for the statistic, the relative percentage (%) of total reads or writes, and the cumulative
percentage (cum %) to that point in the table for the statistic.

Field Description

pages per RPC Shows cumulative RPC reads and writes organized according
to the number of pages in the RPC. A single page RPC
increments the 0: row.

RPCs in flight Shows the number of RPCs that are pending when an RPC is
sent. When the first RPC is sent, the 0: row is incremented.
If the first RPC is sent while another RPC is pending, the 1:
row is incremented and so on.

offset The page index of the first page read from or written to the
object by the RPC.

Analysis:

This table provides a way to visualize the concurrency of the RPC stream. Ideally, you will see a large
clump around the max_rpcs_in_flight value, which shows that the network is being kept busy.

For information about optimizing the client I/O RPC stream, see Section 39.4.1, “Tuning the Client I/O
RPC Stream”.

39.3.2. Monitoring Client Activity

The stats file maintains statistics accumulate during typical operation of a client across the VFS interface
of the Lustre file system. Only non-zero parameters are displayed in the file.

Client statistics are enabled by default.



Lustre Parameters

476

Note

Statistics for all mounted file systems can be discovered by entering:

lctl get_param llite.*.stats

Example:

client# lctl get_param llite.*.stats
snapshot_time          1308343279.169704 secs.usecs
dirty_pages_hits       14819716 samples [regs]
dirty_pages_misses     81473472 samples [regs]
read_bytes             36502963 samples [bytes] 1 26843582 55488794
write_bytes            22985001 samples [bytes] 0 125912 3379002
brw_read               2279 samples [pages] 1 1 2270
ioctl                  186749 samples [regs]
open                   3304805 samples [regs]
close                  3331323 samples [regs]
seek                   48222475 samples [regs]
fsync                  963 samples [regs]
truncate               9073 samples [regs]
setxattr               19059 samples [regs]
getxattr               61169 samples [regs]

The statistics can be cleared by echoing an empty string into the stats file or by using the command:

lctl set_param llite.*.stats=0

The statistics displayed are described in the table below.

Entry Description

snapshot_time UNIX epoch instant the stats file was read.

dirty_page_hits The number of write operations that have been satisfied by the dirty page
cache. See Section 39.4.1, “Tuning the Client I/O RPC Stream” for more
information about dirty cache behavior in a Lustre file system.

dirty_page_misses The number of write operations that were not satisfied by the dirty page
cache.

read_bytes The number of read operations that have occurred. Three additional
parameters are displayed:

min The minimum number of bytes read in a single request since the
counter was reset.

max The maximum number of bytes read in a single request since the
counter was reset.

sum The accumulated sum of bytes of all read requests since the
counter was reset.

write_bytes The number of write operations that have occurred. Three additional
parameters are displayed:

min The minimum number of bytes written in a single request since
the counter was reset.



Lustre Parameters

477

Entry Description

max The maximum number of bytes written in a single request since
the counter was reset.

sum The accumulated sum of bytes of all write requests since the
counter was reset.

brw_read The number of pages that have been read. Three additional parameters
are displayed:

min The minimum number of bytes read in a single block read/write
(brw) read request since the counter was reset.

max The maximum number of bytes read in a single brw read requests
since the counter was reset.

sum The accumulated sum of bytes of all brw read requests since the
counter was reset.

ioctl The number of combined file and directory ioctl operations.

open The number of open operations that have succeeded.

close The number of close operations that have succeeded.

seek The number of times seek has been called.

fsync The number of times fsync has been called.

truncate The total number of calls to both locked and lockless truncate.

setxattr The number of times extended attributes have been set.

getxattr The number of times value(s) of extended attributes have been fetched.

Analysis:

Information is provided about the amount and type of I/O activity is taking place on the client.

39.3.3. Monitoring Client Read-Write Offset Statistics
When the offset_stats parameter is set, statistics are maintained for occurrences of a series of read
or write calls from a process that did not access the next sequential location. The OFFSET field is reset
to 0 (zero) whenever a different file is read or written.

Note

By default, statistics are not collected in the offset_stats, extents_stats, and
extents_stats_per_process files to reduce monitoring overhead when this information
is not needed. The collection of statistics in all three of these files is activated by writing anything,
except for 0 (zero) and "disable", into any one of the files.

Example:

# lctl get_param llite.testfs-f57dee0.offset_stats
snapshot_time: 1155748884.591028 (secs.usecs)
             RANGE   RANGE    SMALLEST   LARGEST
R/W   PID    START   END      EXTENT     EXTENT    OFFSET
R     8385   0       128      128        128       0
R     8385   0       224      224        224       -128



Lustre Parameters

478

W     8385   0       250      50         100       0
W     8385   100     1110     10         500       -150
W     8384   0       5233     5233       5233      0
R     8385   500     600      100        100       -610

In this example, snapshot_time is the UNIX epoch instant the file was read. The tabular data is
described in the table below.

The offset_stats file can be cleared by entering:

lctl set_param llite.*.offset_stats=0

Field Description

R/W Indicates if the non-sequential call was a read or
write

PID Process ID of the process that made the read/write
call.

RANGE START/RANGE END Range in which the read/write calls were sequential.

SMALLEST EXTENT Smallest single read/write in the corresponding
range (in bytes).

LARGEST EXTENT Largest single read/write in the corresponding range
(in bytes).

OFFSET Difference between the previous range end and the
current range start.

Analysis:

This data provides an indication of how contiguous or fragmented the data is. For example, the fourth
entry in the example above shows the writes for this RPC were sequential in the range 100 to 1110 with
the minimum write 10 bytes and the maximum write 500 bytes. The range started with an offset of -150
from the RANGE END of the previous entry in the example.

39.3.4. Monitoring Client Read-Write Extent Statistics
For in-depth troubleshooting, client read-write extent statistics can be accessed to obtain more detail about
read/write I/O extents for the file system or for a particular process.

Note

By default, statistics are not collected in the offset_stats, extents_stats, and
extents_stats_per_process files to reduce monitoring overhead when this information
is not needed. The collection of statistics in all three of these files is activated by writing anything,
except for 0 (zero) and "disable", into any one of the files.

39.3.4.1. Client-Based I/O Extent Size Survey

The extents_stats histogram in the llite directory shows the statistics for the sizes of the read/
write I/O extents. This file does not maintain the per process statistics.

Example:

# lctl get_param llite.testfs-*.extents_stats
snapshot_time:                     1213828728.348516 (secs.usecs)



Lustre Parameters

479

                       read           |            write
extents          calls  %      cum%   |     calls  %     cum%

0K - 4K :        0      0      0      |     2      2     2
4K - 8K :        0      0      0      |     0      0     2
8K - 16K :       0      0      0      |     0      0     2
16K - 32K :      0      0      0      |     20     23    26
32K - 64K :      0      0      0      |     0      0     26
64K - 128K :     0      0      0      |     51     60    86
128K - 256K :    0      0      0      |     0      0     86
256K - 512K :    0      0      0      |     0      0     86
512K - 1024K :   0      0      0      |     0      0     86
1M - 2M :        0      0      0      |     11     13    100

In this example, snapshot_time is the UNIX epoch instant the file was read. The table shows
cumulative extents organized according to size with statistics provided separately for reads and writes.
Each row in the table shows the number of RPCs for reads and writes respectively (calls), the relative
percentage of total calls (%), and the cumulative percentage to that point in the table of calls (cum %).

The file can be cleared by issuing the following command:

# lctl set_param llite.testfs-*.extents_stats=1

39.3.4.2. Per-Process Client I/O Statistics

The extents_stats_per_process file maintains the I/O extent size statistics on a per-process
basis.

Example:

# lctl get_param llite.testfs-*.extents_stats_per_process
snapshot_time:                     1213828762.204440 (secs.usecs)
                          read            |             write
extents            calls   %      cum%    |      calls   %       cum%
 
PID: 11488
   0K - 4K :       0       0       0      |      0       0       0
   4K - 8K :       0       0       0      |      0       0       0
   8K - 16K :      0       0       0      |      0       0       0
   16K - 32K :     0       0       0      |      0       0       0
   32K - 64K :     0       0       0      |      0       0       0
   64K - 128K :    0       0       0      |      0       0       0
   128K - 256K :   0       0       0      |      0       0       0
   256K - 512K :   0       0       0      |      0       0       0
   512K - 1024K :  0       0       0      |      0       0       0
   1M - 2M :       0       0       0      |      10      100     100
 
PID: 11491
   0K - 4K :       0       0       0      |      0       0       0
   4K - 8K :       0       0       0      |      0       0       0
   8K - 16K :      0       0       0      |      0       0       0
   16K - 32K :     0       0       0      |      20      100     100
   
PID: 11424
   0K - 4K :       0       0       0      |      0       0       0



Lustre Parameters

480

   4K - 8K :       0       0       0      |      0       0       0
   8K - 16K :      0       0       0      |      0       0       0
   16K - 32K :     0       0       0      |      0       0       0
   32K - 64K :     0       0       0      |      0       0       0
   64K - 128K :    0       0       0      |      16      100     100
 
PID: 11426
   0K - 4K :       0       0       0      |      1       100     100
 
PID: 11429
   0K - 4K :       0       0       0      |      1       100     100
 

This table shows cumulative extents organized according to size for each process ID (PID) with statistics
provided separately for reads and writes. Each row in the table shows the number of RPCs for reads and
writes respectively (calls), the relative percentage of total calls (%), and the cumulative percentage to
that point in the table of calls (cum %).

39.3.5. Monitoring the OST Block I/O Stream
The brw_stats parameter file below the osd-ldiskfs or osd-zfs directory contains histogram
data showing statistics for number of I/O requests sent to the disk, their size, and whether they are
contiguous on the disk or not.

Example:

Enter on the OSS or MDS:

oss# lctl get_param osd-*.*.brw_stats 
snapshot_time:         1372775039.769045 (secs.usecs)
                           read      |      write
pages per bulk r/w     rpcs  % cum % |  rpcs   % cum %
1:                     108 100 100   |    39   0   0
2:                       0   0 100   |     6   0   0
4:                       0   0 100   |     1   0   0
8:                       0   0 100   |     0   0   0
16:                      0   0 100   |     4   0   0
32:                      0   0 100   |    17   0   0
64:                      0   0 100   |    12   0   0
128:                     0   0 100   |    24   0   0
256:                     0   0 100   | 23142  99 100

                           read      |      write
discontiguous pages    rpcs  % cum % |  rpcs   % cum %
0:                     108 100 100   | 23245 100 100

                           read      |      write
discontiguous blocks   rpcs  % cum % |  rpcs   % cum %
0:                     108 100 100   | 23243  99  99
1:                       0   0 100   |     2   0 100

                           read      |      write
disk fragmented I/Os   ios   % cum % |   ios   % cum %
0:                      94  87  87   |     0   0   0
1:                      14  12 100   | 23243  99  99



Lustre Parameters

481

2:                       0   0 100   |     2   0 100

                           read      |      write
disk I/Os in flight    ios   % cum % |   ios   % cum %
1:                      14 100 100   | 20896  89  89
2:                       0   0 100   |  1071   4  94
3:                       0   0 100   |   573   2  96
4:                       0   0 100   |   300   1  98
5:                       0   0 100   |   166   0  98
6:                       0   0 100   |   108   0  99
7:                       0   0 100   |    81   0  99
8:                       0   0 100   |    47   0  99
9:                       0   0 100   |     5   0 100

                           read      |      write
I/O time (1/1000s)     ios   % cum % |   ios   % cum %
1:                      94  87  87   |     0   0   0
2:                       0   0  87   |     7   0   0
4:                      14  12 100   |    27   0   0
8:                       0   0 100   |    14   0   0
16:                      0   0 100   |    31   0   0
32:                      0   0 100   |    38   0   0
64:                      0   0 100   | 18979  81  82
128:                     0   0 100   |   943   4  86
256:                     0   0 100   |  1233   5  91
512:                     0   0 100   |  1825   7  99
1K:                      0   0 100   |   99   0  99
2K:                      0   0 100   |     0   0  99
4K:                      0   0 100   |     0   0  99
8K:                      0   0 100   |    49   0 100

                           read      |      write
disk I/O size          ios   % cum % |   ios   % cum %
4K:                     14 100 100   |    41   0   0
8K:                      0   0 100   |     6   0   0
16K:                     0   0 100   |     1   0   0
32K:                     0   0 100   |     0   0   0
64K:                     0   0 100   |     4   0   0
128K:                    0   0 100   |    17   0   0
256K:                    0   0 100   |    12   0   0
512K:                    0   0 100   |    24   0   0
1M:                      0   0 100   | 23142  99 100

The tabular data is described in the table below. Each row in the table shows the number of reads and writes
occurring for the statistic (ios), the relative percentage of total reads or writes (%), and the cumulative
percentage to that point in the table for the statistic (cum %).

Field Description

pages per bulk r/w Number of pages per RPC request, which should
match aggregate client rpc_stats (see Section 39.3.1,
“Monitoring the Client RPC Stream”).

discontiguous pages Number of discontinuities in the logical file offset of each page
in a single RPC.



Lustre Parameters

482

Field Description

discontiguous blocks Number of discontinuities in the physical block allocation in
the file system for a single RPC.

disk fragmented I/Os Number of I/Os that were not written entirely sequentially.

disk I/Os in flight Number of disk I/Os currently pending.

I/O time (1/1000s) Amount of time for each I/O operation to complete.

disk I/O size Size of each I/O operation.

Analysis:

This data provides an indication of extent size and distribution in the file system.

39.4. Tuning Lustre File System I/O
Each OSC has its own tree of tunables. For example:

$ lctl lctl list_param osc.*.*
osc.myth-OST0000-osc-ffff8804296c2800.active
osc.myth-OST0000-osc-ffff8804296c2800.blocksize
osc.myth-OST0000-osc-ffff8804296c2800.checksum_dump
osc.myth-OST0000-osc-ffff8804296c2800.checksum_type
osc.myth-OST0000-osc-ffff8804296c2800.checksums
osc.myth-OST0000-osc-ffff8804296c2800.connect_flags
:
:
osc.myth-OST0000-osc-ffff8804296c2800.state
osc.myth-OST0000-osc-ffff8804296c2800.stats
osc.myth-OST0000-osc-ffff8804296c2800.timeouts
osc.myth-OST0000-osc-ffff8804296c2800.unstable_stats
osc.myth-OST0000-osc-ffff8804296c2800.uuid
osc.myth-OST0001-osc-ffff8804296c2800.active
osc.myth-OST0001-osc-ffff8804296c2800.blocksize
osc.myth-OST0001-osc-ffff8804296c2800.checksum_dump
osc.myth-OST0001-osc-ffff8804296c2800.checksum_type
:
:

The following sections describe some of the parameters that can be tuned in a Lustre file system.

39.4.1. Tuning the Client I/O RPC Stream
Ideally, an optimal amount of data is packed into each I/O RPC and a consistent number of issued RPCs are
in progress at any time. To help optimize the client I/O RPC stream, several tuning variables are provided
to adjust behavior according to network conditions and cluster size. For information about monitoring the
client I/O RPC stream, see Section 39.3.1, “Monitoring the Client RPC Stream”.

RPC stream tunables include:

• osc.osc_instance.checksums - Controls whether the client will calculate data integrity
checksums for the bulk data transferred to the OST. Data integrity checksums are enabled by default.
The algorithm used can be set using the checksum_type parameter.



Lustre Parameters

483

• osc.osc_instance.checksum_type - Controls the data integrity checksum algorithm used by
the client. The available algorithms are determined by the set of algorihtms. The checksum algorithm
used by default is determined by first selecting the fastest algorithms available on the OST, and then
selecting the fastest of those algorithms on the client, which depends on available optimizations in the
CPU hardware and kernel. The default algorithm can be overridden by writing the algorithm name into
the checksum_type parameter. Available checksum types can be seen on the client by reading the
checksum_type parameter. Currently supported checksum types are: adler, crc32, crc32c

Introduced in Lustre 2.12

In Lustre release 2.12 additional checksum types were added to allow end-to-end checksum integration
with T10-PI capable hardware. The client will compute the appropriate checksum type, based on the
checksum type used by the storage, for the RPC checksum, which will be verified by the server and
passed on to the storage. The T10-PI checksum types are: t10ip512, t10ip4K, t10crc512,
t10crc4K

• osc.osc_instance.max_dirty_mb - Controls how many MiB of dirty data can be written into
the client pagecache for writes by each OSC. When this limit is reached, additional writes block until
previously-cached data is written to the server. This may be changed by the lctl set_param
command. Only values larger than 0 and smaller than the lesser of 2048 MiB or 1/4 of client RAM are
valid. Performance can suffers if the client cannot aggregate enough data per OSC to form a full RPC (as
set by the max_pages_per_rpc) parameter, unless the application is doing very large writes itself.

To maximize performance, the value for max_dirty_mb is recommended to be at least 4 *
max_pages_per_rpc * max_rpcs_in_flight.

• osc.osc_instance.cur_dirty_bytes - A read-only value that returns the current number of
bytes written and cached by this OSC.

• osc.osc_instance.max_pages_per_rpc - The maximum number of pages that will be sent
in a single RPC request to the OST. The minimum value is one page and the maximum value is 16 MiB
(4096 on systems with PAGE_SIZE of 4 KiB), with the default value of 4 MiB in one RPC. The upper
limit may also be constrained by ofd.*.brw_size setting on the OSS, and applies to all clients
connected to that OST. It is also possible to specify a units suffix (e.g. max_pages_per_rpc=4M),
so the RPC size can be set independently of the client PAGE_SIZE.

• osc.osc_instance.max_rpcs_in_flight - The maximum number of concurrent RPCs in
flight from an OSC to its OST. If the OSC tries to initiate an RPC but finds that it already has the same
number of RPCs outstanding, it will wait to issue further RPCs until some complete. The minimum
setting is 1 and maximum setting is 256. The default value is 8 RPCs.

To improve small file I/O performance, increase the max_rpcs_in_flight value.

• llite.fsname_instance.max_cached_mb - Maximum amount of read+write data cached by
the client. The default value is 1/2 of the client RAM.

Note

The value for osc_instance and fsname_instance are unique to each mount point to
allow associating osc, mdc, lov, lmv, and llite parameters with the same mount point. However, it
is common for scripts to use a wildcard * or a filesystem-specific wildcard fsname-* to specify
the parameter settings uniformly on all clients. For example:

client$ lctl get_param osc.testfs-OST0000*.rpc_stats



Lustre Parameters

484

osc.testfs-OST0000-osc-ffff88107412f400.rpc_stats=
snapshot_time:         1375743284.337839 (secs.usecs)
read RPCs in flight:  0
write RPCs in flight: 0

39.4.2. Tuning File Readahead and Directory Statahead
File readahead and directory statahead enable reading of data into memory before a process requests the
data. File readahead prefetches file content data into memory for read() related calls, while directory
statahead fetches file metadata into memory for readdir() and stat() related calls. When readahead
and statahead work well, a process that accesses data finds that the information it needs is available
immediately in memory on the client when requested without the delay of network I/O.

39.4.2.1. Tuning File Readahead

File readahead is triggered when two or more sequential reads by an application fail to be satisfied by data
in the Linux buffer cache. The size of the initial readahead is determined by the RPC size and the file stripe
size, but will typically be at least 1 MiB. Additional readaheads grow linearly and increment until the per-
file or per-system readahead cache limit on the client is reached.

Readahead tunables include:

• llite.fsname_instance.max_read_ahead_mb - Controls the maximum amount of data
readahead on all files. Files are read ahead in RPC-sized chunks (4 MiB, or the size of the read()
call, if larger) after the second sequential read on a file descriptor. Random reads are done at the size of
the read() call only (no readahead). Reads to non-contiguous regions of the file reset the readahead
algorithm, and readahead is not triggered until sequential reads take place again.

This is the global limit for all files and cannot be larger than 1/2 of the client RAM. To disable readahead,
set max_read_ahead_mb=0.

• llite.fsname_instance.max_read_ahead_per_file_mb - Controls the maximum
number of megabytes (MiB) of data that should be prefetched by the client when sequential
reads are detected on one file. This is the per-file readahead limit and cannot be larger than
max_read_ahead_mb.

• llite.fsname_instance.max_read_ahead_whole_mb - Controls the maximum size of a
file in MiB that is read in its entirety upon access, regardless of the size of the read() call. This
avoids multiple small read RPCs on relatively small files, when it is not possible to efficiently detect a
sequential read pattern before the whole file has been read.

The default value is the greater of 2 MiB or the size of one RPC, as given by max_pages_per_rpc.

39.4.2.2. Tuning Directory Statahead and AGL

Many system commands, such as ls –l, du, and find, traverse a directory sequentially. To make these
commands run efficiently, the directory statahead can be enabled to improve the performance of directory
traversal.

The statahead tunables are:

• statahead_max - Controls the maximum number of file attributes that will be prefetched by the
statahead thread. By default, statahead is enabled and statahead_max is 32 files.

To disable statahead, set statahead_max to zero via the following command on the client:



Lustre Parameters

485

lctl set_param llite.*.statahead_max=0

To change the maximum statahead window size on a client:

lctl set_param llite.*.statahead_max=n

The maximum statahead_max is 8192 files.

The directory statahead thread will also prefetch the file size/block attributes from the OSTs, so that
all file attributes are available on the client when requested by an application. This is controlled by the
asynchronous glimpse lock (AGL) setting. The AGL behaviour can be disabled by setting:

lctl set_param llite.*.statahead_agl=0

• statahead_stats - A read-only interface that provides current statahead and AGL statistics, such
as how many times statahead/AGL has been triggered since the last mount, how many statahead/AGL
failures have occurred due to an incorrect prediction or other causes.

Note

AGL behaviour is affected by statahead since the inodes processed by AGL are built by the
statahead thread. If statahead is disabled, then AGL is also disabled.

39.4.3. Tuning Server Read Cache
The server read cache feature provides read-only caching of file data on an OSS or MDS (for Data-on-
MDT). This functionality uses the Linux page cache to store the data and uses as much physical memory
as is allocated.

The server read cache can improves Lustre file system performance in these situations:

• Many clients are accessing the same data set (as in HPC applications or when diskless clients boot from
the Lustre file system).

• One client is writing data while another client is reading it (i.e., clients are exchanging data via the
filesystem).

• A client has very limited caching of its own.

The server read cache offers these benefits:

• Allows servers to cache read data more frequently.

• Improves repeated reads to match network speeds instead of storage speeds.

• Provides the building blocks for server write cache (small-write aggregation).

39.4.3.1. Using Server Read Cache

The server read cache is implemented on the OSS and MDS, and does not require any special support
on the client side. Since the server read cache uses the memory available in the Linux page cache, the
appropriate amount of memory for the cache should be determined based on I/O patterns. If the data is
mostly reads, then more cache is beneficial on the server than would be needed for mostly writes.

The server read cache is managed using the following tunables. Many tunables are available for both osd-
ldiskfs and osd-zfs, but in some cases the implementation of osd-zfs prevents their use.



Lustre Parameters

486

• read_cache_enable - High-level control of whether data read from storage during a read request
is kept in memory and available for later read requests for the same data, without having to re-read
it from storage. By default, read cache is enabled (read_cache_enable=1) for HDD OSDs and
automatically disabled for flash OSDs (nonrotational=1). The read cache cannot be disabled for
osd-zfs, and as a result this parameter is unavailable for that backend.

When the server receives a read request from a client, it reads data from storage into its memory and
sends the data to the client. If read cache is enabled for the target, and the RPC and object size also meet
the other criterion below, this data may stay in memory after the client request has completed. If later
read requests for the same data are received, if the data is still in cache the server skips reading it from
storage. The cache is managed by the Linux kernel globally across all targets on that server so that the
infrequently used cache pages are dropped from memory when the free memory is running low.

If read cache is disabled (read_cache_enable=0), or the read or object is large enough that it will
not benefit from caching, the server discards the data after the read request from the client is completed.
For subsequent read requests the server again reads the data from storage.

To disable read cache on all targets of a server, run:

              oss1# lctl set_param osd-*.*.read_cache_enable=0
            

To re-enable read cache on one target, run:

              oss1# lctl set_param osd-*.{target_name}.read_cache_enable=1
            

To check if read cache is enabled on targets on a server, run:

              oss1# lctl get_param osd-*.*.read_cache_enable
            

• writethrough_cache_enable - High-level control of whether data sent to the server as a write
request is kept in the read cache and available for later reads, or if it is discarded when the write
completes. By default, writethrough cache is enabled (writethrough_cache_enable=1) for
HDD OSDs and automatically disabled for flash OSDs (nonrotational=1). The write cache cannot
be disabled for osd-zfs, and as a result this parameter is unavailable for that backend.

When the server receives write requests from a client, it fetches data from the client into its memory and
writes the data to storage. If the writethrough cache is enabled for the target, and the RPC and object
size meet the other criterion below, this data may stay in memory after the write request has completed.
If later read or partial-block write requests for this same data are received, if the data is still in cache
the server skips reading it from storage.

If the writethrough cache is disabled (writethrough_cache_enabled=0), or the write or object
is large enough that it will not benefit from caching, the server discards the data after the write request
from the client is completed. For subsequent read requests, or partial-page write requests, the server
must re-read the data from storage.

Enabling writethrough cache is advisable if clients are doing small or unaligned writes that would cause
partial-page updates, or if the files written by one node are immediately being read by other nodes. Some
examples where enabling writethrough cache might be useful include producer-consumer I/O models
or shared-file writes that are not aligned on 4096-byte boundaries.



Lustre Parameters

487

Disabling the writethrough cache is advisable when files are mostly written to the file system but are
not re-read within a short time period, or files are only written and re-read by the same node, regardless
of whether the I/O is aligned or not.

To disable writethrough cache on all targets on a server, run:

              oss1# lctl set_param osd-*.*.writethrough_cache_enable=0
            

To re-enable the writethrough cache on one OST, run:

              oss1# lctl set_param osd-*.{OST_name}.writethrough_cache_enable=1
            

To check if the writethrough cache is enabled, run:

              oss1# lctl get_param osd-*.*.writethrough_cache_enable
            

• readcache_max_filesize - Controls the maximum size of an object that both the read cache and
writethrough cache will try to keep in memory. Objects larger than readcache_max_filesize
will not be kept in cache for either reads or writes regardless of the read_cache_enable or
writethrough_cache_enable settings.

Setting this tunable can be useful for workloads where relatively small objects are repeatedly accessed
by many clients, such as job startup objects, executables, log objects, etc., but large objects are read or
written only once. By not putting the larger objects into the cache, it is much more likely that more of
the smaller objects will remain in cache for a longer time.

When setting readcache_max_filesize, the input value can be specified in bytes, or can have a
suffix to indicate other binary units such as K (kibibytes), M (mebibytes), G (gibibytes), T (tebibytes),
or P (pebibytes).

To limit the maximum cached object size to 64 MiB on all OSTs of a server, run:

              oss1# lctl set_param osd-*.*.readcache_max_filesize=64M
            

To disable the maximum cached object size on all targets, run:

              oss1# lctl set_param osd-*.*.readcache_max_filesize=-1
            

To check the current maximum cached object size on all targets of a server, run:

              oss1# lctl get_param osd-*.*.readcache_max_filesize
            

• readcache_max_io_mb - Controls the maximum size of a single read IO that will be cached in
memory. Reads larger than readcache_max_io_mb will be read directly from storage and bypass



Lustre Parameters

488

the page cache completely. This avoids significant CPU overhead at high IO rates. The read cache
cannot be disabled for osd-zfs, and as a result this parameter is unavailable for that backend.

When setting readcache_max_io_mb, the input value can be specified in mebibytes, or can have
a suffix to indicate other binary units such as K (kibibytes), M (mebibytes), G (gibibytes), T (tebibytes),
or P (pebibytes).

• writethrough_max_io_mb - Controls the maximum size of a single writes IO that will be cached
in memory. Writes larger than writethrough_max_io_mb will be written directly to storage and
bypass the page cache entirely. This avoids significant CPU overhead at high IO rates. The write cache
cannot be disabled for osd-zfs, and as a result this parameter is unavailable for that backend.

When setting writethrough_max_io_mb, the input value can be specified in mebibytes, or can
have a suffix to indicate other binary units such as K (kibibytes), M (mebibytes), G (gibibytes), T
(tebibytes), or P (pebibytes).

39.4.4. Enabling OSS Asynchronous Journal Commit
The OSS asynchronous journal commit feature asynchronously writes data to disk without forcing a journal
flush. This reduces the number of seeks and significantly improves performance on some hardware.

Note

Asynchronous journal commit cannot work with direct I/O-originated writes (O_DIRECT flag
set). In this case, a journal flush is forced.

When the asynchronous journal commit feature is enabled, client nodes keep data in the page cache (a
page reference). Lustre clients monitor the last committed transaction number (transno) in messages
sent from the OSS to the clients. When a client sees that the last committed transno reported by the OSS
is at least equal to the bulk write transno, it releases the reference on the corresponding pages. To avoid
page references being held for too long on clients after a bulk write, a 7 second ping request is scheduled
(the default OSS file system commit time interval is 5 seconds) after the bulk write reply is received, so
the OSS has an opportunity to report the last committed transno.

If the OSS crashes before the journal commit occurs, then intermediate data is lost. However, OSS recovery
functionality incorporated into the asynchronous journal commit feature causes clients to replay their write
requests and compensate for the missing disk updates by restoring the state of the file system.

By default, sync_journal is enabled (sync_journal=1), so that journal entries are committed
synchronously. To enable asynchronous journal commit, set the sync_journal parameter to 0 by
entering:

$ lctl set_param obdfilter.*.sync_journal=0 
obdfilter.lol-OST0001.sync_journal=0

An associated sync-on-lock-cancel feature (enabled by default) addresses a data consistency issue
that can result if an OSS crashes after multiple clients have written data into intersecting regions of an
object, and then one of the clients also crashes. A condition is created in which the POSIX requirement for
continuous writes is violated along with a potential for corrupted data. With sync-on-lock-cancel
enabled, if a cancelled lock has any volatile writes attached to it, the OSS synchronously writes the journal
to disk on lock cancellation. Disabling the sync-on-lock-cancel feature may enhance performance
for concurrent write workloads, but it is recommended that you not disable this feature.

The sync_on_lock_cancel parameter can be set to the following values:



Lustre Parameters

489

• always - Always force a journal flush on lock cancellation (default when async_journal is
enabled).

• blocking - Force a journal flush only when the local cancellation is due to a blocking callback.

• never - Do not force any journal flush (default when async_journal is disabled).

For example, to set sync_on_lock_cancel to not to force a journal flush, use a command similar to:

$ lctl get_param obdfilter.*.sync_on_lock_cancel
obdfilter.lol-OST0001.sync_on_lock_cancel=never

Introduced in Lustre 2.8

39.4.5.   Tuning the Client Metadata RPC Stream
The client metadata RPC stream represents the metadata RPCs issued in parallel by a client to a MDT
target. The metadata RPCs can be split in two categories: the requests that do not modify the file
system (like getattr operation), and the requests that do modify the file system (like create, unlink, setattr
operations). To help optimize the client metadata RPC stream, several tuning variables are provided to
adjust behavior according to network conditions and cluster size.

Note that increasing the number of metadata RPCs issued in parallel might improve the performance
metadata intensive parallel applications, but as a consequence it will consume more memory on the client
and on the MDS.

39.4.5.1. Configuring the Client Metadata RPC Stream

The MDC max_rpcs_in_flight parameter defines the maximum number of metadata RPCs, both
modifying and non-modifying RPCs, that can be sent in parallel by a client to a MDT target. This includes
every file system metadata operations, such as file or directory stat, creation, unlink. The default setting
is 8, minimum setting is 2 and maximum setting is 512.

To set the max_rpcs_in_flight parameter, run the following command on the Lustre client:

client$ lctl set_param mdc.*.max_rpcs_in_flight=16

The MDC max_mod_rpcs_in_flight parameter defines the maximum number of file system
modifying RPCs that can be sent in parallel by a client to a MDT target. For example, the Lustre client
sends modify RPCs when it performs file or directory creation, unlink, access permission modification or
ownership modification. The default setting is 7, minimum setting is 1 and maximum setting is 511.

To set the max_mod_rpcs_in_flight parameter, run the following command on the Lustre client:

client$ lctl set_param mdc.*.max_mod_rpcs_in_flight=12

The max_mod_rpcs_in_flight value must be strictly less than the max_rpcs_in_flight value.
It must also be less or equal to the MDT max_mod_rpcs_per_client value. If one of theses
conditions is not enforced, the setting fails and an explicit message is written in the Lustre log.

The MDT max_mod_rpcs_per_client parameter is a tunable of the kernel module mdt that defines
the maximum number of file system modifying RPCs in flight allowed per client. The parameter can be
updated at runtime, but the change is effective to new client connections only. The default setting is 8.

To set the max_mod_rpcs_per_client parameter, run the following command on the MDS:

mds$ echo 12 > /sys/module/mdt/parameters/max_mod_rpcs_per_client



Lustre Parameters

490

39.4.5.2. Monitoring the Client Metadata RPC Stream

The rpc_stats file contains histogram data showing information about modify metadata RPCs. It can
be helpful to identify the level of parallelism achieved by an application doing modify metadata operations.

Example:

client$ lctl get_param mdc.*.rpc_stats
snapshot_time:         1441876896.567070 (secs.usecs)
modify_RPCs_in_flight:  0

                        modify
rpcs in flight        rpcs   % cum %
0:                       0   0   0
1:                      56   0   0
2:                      40   0   0
3:                      70   0   0
4                       41   0   0
5:                      51   0   1
6:                      88   0   1
7:                     366   1   2
8:                    1321   5   8
9:                    3624  15  23
10:                   6482  27  50
11:                   7321  30  81
12:                   4540  18 100

The file information includes:

• snapshot_time - UNIX epoch instant the file was read.

• modify_RPCs_in_flight - Number of modify RPCs issued by the MDC, but not completed at the
time of the snapshot. This value should always be less than or equal to max_mod_rpcs_in_flight.

• rpcs in flight - Number of modify RPCs that are pending when a RPC is sent, the relative
percentage (%) of total modify RPCs, and the cumulative percentage (cum %) to that point.

If a large proportion of modify metadata RPCs are issued with a number of pending metadata RPCs close
to the max_mod_rpcs_in_flight value, it means the max_mod_rpcs_in_flight value could
be increased to improve the modify metadata performance.

39.5. Configuring Timeouts in a Lustre File
System

In a Lustre file system, RPC timeouts are set using an adaptive timeouts mechanism, which is enabled
by default. Servers track RPC completion times and then report back to clients estimates for completion
times for future RPCs. Clients use these estimates to set RPC timeout values. If the processing of server
requests slows down for any reason, the server estimates for RPC completion increase, and clients then
revise RPC timeout values to allow more time for RPC completion.

If the RPCs queued on the server approach the RPC timeout specified by the client, to avoid RPC timeouts
and disconnect/reconnect cycles, the server sends an "early reply" to the client, telling the client to allow
more time. Conversely, as server processing speeds up, RPC timeout values decrease, resulting in faster
detection if the server becomes non-responsive and quicker connection to the failover partner of the server.



Lustre Parameters

491

39.5.1. Configuring Adaptive Timeouts
The adaptive timeout parameters in the table below can be set persistently system-wide using lctl
set_param -P on the MGS. For example, the following command sets the at_max value for all servers
and clients associated with the file systems connected to this MGS:

mgs# lctl set_param -P at_max=1500

Note

Clients that access multiple Lustre file systems must use the same adaptive timeout values for
all file systems.

Introduced in Lustre 2.16

Since Lustre 2.16 it is preferred to set at_min as a per-target tunable using the *.fsname*.at_min
parameter instead of the global at_min parameter. This avoids issues if a single client mounts two
separate filesystems with different at_min tunable settings.

mgs# lctl set_param -P *.testfs-*.at_max=1500

Parameter Description

at_min Minimum adaptive timeout (in seconds). The default value is 5 (since 2.16).
The at_min parameter is the minimum processing time that a server will
report. Ideally, at_min should be left at its default value. Clients base their
timeouts on this value, but they do not use this value directly.

If, for some reason (usually due to temporary network outages or sudden
spikes in load immediately after mount), the adaptive timeout value is too
short and clients time out their RPCs, you can increase the at_min value
to compensate for this.

Introduced in Lustre 2.16

Since Lustre 2.16 it is preferred to set at_min as a per-target tunable
using the *.fsname*.at_min parameter instead of the global at_min
parameter. This avoids issues if a single client mounts two separate
filesystems with different at_min tunable settings.

at_max Maximum adaptive timeout (in seconds). The at_max parameter is an
upper-limit on the service time estimate. If at_max is reached, an RPC
request times out.

Setting at_max to 0 causes adaptive timeouts to be disabled and a fixed
timeout method to be used instead (see Section 39.5.2, “Setting Static
Timeouts”

Introduced in Lustre 2.16

Since Lustre 2.16 it is preferred to set at_max as a per-target tunable
using the *.fsname*.at_max parameter instead of the global at_max
parameter. This avoids issues if a single client mounts two separate
filesystems with different at_max settings.



Lustre Parameters

492

Parameter Description

Note

If slow hardware causes the service estimate to increase beyond
the default at_max value, increase at_max to the maximum time
you are willing to wait for an RPC completion.

at_history Time period (in seconds) within which adaptive timeouts remember the
slowest event that occurred. The default is 600.

Introduced in Lustre 2.16

Since Lustre 2.16 it is preferred to set at_history as a per-target tunable
using the *.fsname*.at_history parameter instead of the global
at_history parameter. This avoids issues if a single client mounts two
filesystems with different at_history values.

at_early_margin Amount of time before the Lustre server sends an early reply (in seconds).
Default is 5.

at_extra Incremental amount of time that a server requests with each early reply (in
seconds). The server does not know how much time the RPC will take, so it
asks for a fixed value. The default is 30, which provides a balance between
sending too many early replies for the same RPC and overestimating the
actual completion time.

When a server finds a queued request about to time out and needs to send
an early reply out, the server adds the at_extra value. If the time expires,
the Lustre server drops the request, and the client enters recovery status and
reconnects to restore the connection to normal status.

If you see multiple early replies for the same RPC asking for 30-second
increases, change at_extra to a larger number to cut down on early replies
sent and, therefore, network load.

ldlm_enqueue_min Minimum lock enqueue time (in seconds). The default is 100. The it takes to
enqueue a lock, shown as the ldlm_enqueue operation in the stats files,
is the maximum of the measured enqueue estimate (influenced by at_min
and at_max parameters), multiplied by a weighting factor and the value of
ldlm_enqueue_min.

Lustre Distributed Lock Manager (LDLM) lock enqueues have a dedicated
minimum ldlm_enqueue_min. Lock enqueue timeouts increase as the
measured enqueue times increase (similar to adaptive timeouts).

Introduced in Lustre 2.16

Since Lustre 2.16 it is preferred to set ldlm_enqueue_min as a per-target
tunable with *.fsname*.ldlm_enqueue_min instead of the global
ldlm_enqueue_min parameter. This avoids issues if a client mounts
multiple filesystems with different ldlm_enqueue_min tunable settings.



Lustre Parameters

493

39.5.1.1. Interpreting Adaptive Timeout Information

Adaptive timeout information can be obtained via lctl get_param {osc,mdc}.*.timeouts
files on each client and lctl get_param {ost,mds}.*.*.timeouts on each server. To read
information from a timeouts file, enter a command similar to:

# lctl get_param -n ost.*.ost_io.timeouts
service : cur 33  worst 34 (at 1193427052, 1600s ago) 1 1 33 2

In this example, the ost_io service on this node is currently reporting an estimated RPC service time of
33 seconds. The worst RPC service time was 34 seconds, which occurred 26 minutes ago.

The output also provides a history of service times. Four "bins" of adaptive timeout history are shown, with
the maximum RPC time in each bin reported. In both the 0-150s bin and the 150-300s bin, the maximum
RPC time was 1. The 300-450s bin shows the worst (maximum) RPC time at 33 seconds, and the 450-600s
bin shows a maximum of RPC time of 2 seconds. The estimated service time is the maximum value in
the four bins (33 seconds in this example).

Service times (as reported by the servers) are also tracked in the client OBDs, as shown in this example:

# lctl get_param osc.*.timeouts
last reply : 1193428639, 0d0h00m00s ago
network    : cur  1 worst  2 (at 1193427053, 0d0h26m26s ago)  1  1  1  1
portal 6   : cur 33 worst 34 (at 1193427052, 0d0h26m27s ago) 33 33 33  2
portal 28  : cur  1 worst  1 (at 1193426141, 0d0h41m38s ago)  1  1  1  1
portal 7   : cur  1 worst  1 (at 1193426141, 0d0h41m38s ago)  1  0  1  1
portal 17  : cur  1 worst  1 (at 1193426177, 0d0h41m02s ago)  1  0  0  1

In this example, portal 6, the ost_io service portal, shows the history of service estimates reported by
the portal.

Server statistic files also show the range of estimates including min, max, sum, and sum-squared. For
example:

# lctl get_param mdt.*.mdt.stats
...
req_timeout               6 samples [sec] 1 10 15 105
...

39.5.2. Setting Static Timeouts
The Lustre software provides two sets of static (fixed) timeouts, LND timeouts and Lustre timeouts, which
are used when adaptive timeouts are not enabled.

• LND timeouts - LND timeouts ensure that point-to-point communications across a network complete
in a finite time in the presence of failures, such as packages lost or broken connections. LND timeout
parameters are set for each individual LND.

LND timeouts are logged with the S_LND flag set. They are not printed as console messages, so check
the Lustre log for D_NETERROR messages or enable printing of D_NETERROR messages to the console
using:

lctl set_param printk=+neterror

Congested routers can be a source of spurious LND timeouts. To avoid this situation, increase the
number of LNet router buffers to reduce back-pressure and/or increase LND timeouts on all nodes on



Lustre Parameters

494

all connected networks. Also consider increasing the total number of LNet router nodes in the system
so that the aggregate router bandwidth matches the aggregate server bandwidth.

• Lustre timeouts - Lustre timeouts ensure that Lustre RPCs complete in a finite time in the presence of
failures when adaptive timeouts are not enabled. Adaptive timeouts are enabled by default. To disable
adaptive timeouts at run time, set at_max to 0 by running on the MGS:

# lctl conf_param fsname.sys.at_max=0

Note

Changing the state of adaptive timeouts at runtime may cause transient client timeouts,
recovery, and reconnection.

Lustre timeouts are always printed as console messages.

If Lustre timeouts are not accompanied by LND timeouts, increase the Lustre timeout on both servers
and clients. Lustre timeouts are set across the whole filesystem using a command such as the following:

mgs# lctl set_param -P timeout=30

Timeout parameters are described in the table below.

Parameter Description

timeout The time that a client waits for a server to complete an RPC (default 100s).
Servers wait half this time for a normal client RPC to complete and a
quarter of this time for a single bulk request (read or write of up to 4
MB) to complete. The client pings recoverable targets (MDS and OSTs)
at one quarter of the timeout, and the server waits one and a half times
the timeout before evicting a client for being "stale."

Lustre client sends periodic 'ping' messages to servers with which it has
had no communication for the specified period of time. Any network
activity between a client and a server in the file system also serves as a
ping.

ldlm_timeout The time that a server waits for a client to reply to an initial AST (lock
cancellation request). The default is 20s for an OST and 6s for an MDS.
If the client replies to the AST, the server will give it a normal timeout
(half the client timeout) to flush any dirty data and release the lock.

fail_loc An internal debugging failure hook. The default value of 0 means that no
failure will be triggered or injected.

dump_on_timeout Triggers a dump of the Lustre debug log when a timeout occurs. The
default value of 0 (zero) means a dump of the Lustre debug log will not
be triggered.

dump_on_eviction Triggers a dump of the Lustre debug log when an eviction occurs. The
default value of 0 (zero) means a dump of the Lustre debug log will not
be triggered.



Lustre Parameters

495

39.6. Monitoring LNet
LNet information is located via lctl get_param in these parameters:

• peers - Shows all NIDs known to this node and provides information on the queue state.

Example:

# lctl get_param peers
nid                refs   state  max  rtr  min   tx    min   queue
0@lo               1      ~rtr   0    0    0     0     0     0
192.168.10.35@tcp  1      ~rtr   8    8    8     8     6     0
192.168.10.36@tcp  1      ~rtr   8    8    8     8     6     0
192.168.10.37@tcp  1      ~rtr   8    8    8     8     6     0

The fields are explained in the table below:

Field Description

refs A reference count.

state If the node is a router, indicates the state of the router. Possible values are:

• NA - Indicates the node is not a router.

• up/down- Indicates if the node (router) is up or down.

max Maximum number of concurrent sends from this peer.

rtr Number of available routing buffer credits.

min Minimum number of routing buffer credits seen.

tx Number of available send credits.

min Minimum number of send credits seen.

queue Total bytes in active/queued sends.

Credits are initialized to allow a certain number of operations (in the example above the table, eight
as shown in the max column. LNet keeps track of the minimum number of credits ever seen over
time showing the peak congestion that has occurred during the time monitored. Fewer available credits
indicates a more congested resource.

The number of credits currently available is shown in the tx column. The maximum number of send
credits is shown in the max column and never changes. The number of currently active transmits can be
derived by (max - tx), as long as tx is greater than or equal to 0. Once tx is less than 0, it indicates
the number of transmits on that peer which have been queued for lack of credits.

The number of router buffer credits available for consumption by a peer is shown in rtr column. The
number of routing credits can be configured separately at the LND level or at the LNet level by using
the peer_buffer_credits module parameter for the appropriate module. If the routing credits is
not set explicitly, it'll default to the maximum transmit credits defined by peer_credits module
parameter. Whenever a gateway routes a message from a peer, it decrements the number of available
routing credits for that peer. If that value goes to zero, then messages will be queued. Negative values
show the number of queued message waiting to be routed. The number of messages which are currently
being routed from a peer can be derived by (max_rtr_credits - rtr).



Lustre Parameters

496

LNet also limits concurrent sends and number of router buffers allocated to a single peer so that no peer
can occupy all resources.

• nis - Shows current queue health on the node.

Example:

# lctl get_param nis
nid                    refs   peer    max   tx    min
0@lo                   3      0       0     0     0
192.168.10.34@tcp      4      8       256   256   252

The fields are explained in the table below.

Field Description

nid Network interface.

refs Internal reference counter.

peer Number of peer-to-peer send credits on this NID. Credits are used to size
buffer pools.

max Total number of send credits on this NID.

tx Current number of send credits available on this NID.

min Lowest number of send credits available on this NID.

queue Total bytes in active/queued sends.

Analysis:

Subtracting max from tx (max - tx) yields the number of sends currently active. A large or increasing
number of active sends may indicate a problem.

39.7. Allocating Free Space on OSTs
Free space is allocated using either a round-robin or a weighted algorithm. The allocation method is
determined by the maximum amount of free-space imbalance between the OSTs. When free space is
relatively balanced across OSTs, the faster round-robin allocator is used, which maximizes network
balancing. The weighted allocator is used when any two OSTs are out of balance by more than a specified
threshold.

Free space distribution can be tuned using these two tunable parameters:

• lod.*.qos_threshold_rr - The threshold at which the allocation method switches from round-
robin to weighted is set in this file. The default is to switch to the weighted algorithm when any two
OSTs are out of balance by more than 17 percent.

• lod.*.qos_prio_free - The weighting priority used by the weighted allocator can be adjusted in
this file. Increasing the value of qos_prio_free puts more weighting on the amount of free space
available on each OST and less on how stripes are distributed across OSTs. The default value is 91
percent weighting for free space rebalancing and 9 percent for OST balancing. When the free space
priority is set to 100, weighting is based entirely on free space and location is no longer used by the
striping algorithm.

•
Introduced in Lustre 2.9



Lustre Parameters

497

osp.*.reserved_mb_low - The low watermark used to stop object allocation if available space is
less than this. The default is 0.1% of total OST size.

•
Introduced in Lustre 2.9

osp.*.reserved_mb_high - The high watermark used to start object allocation if available space
is more than this. The default is 0.2% of total OST size.

For more information about monitoring and managing free space, see Section 19.8, “Managing Free
Space”.

39.8. Configuring Locking
The lru_size parameter is used to control the number of client-side locks in the LRU cached locks
queue. LRU size is normally dynamic, based on load to optimize the number of locks cached on nodes
that have different workloads (e.g., login/build nodes vs. compute nodes vs. backup nodes).

The total number of locks available is a function of the server RAM. The default limit is 50 locks/1 MB
of RAM. If memory pressure is too high, the LRU size is shrunk. The number of locks on the server is
limited to num_osts_per_oss * num_clients * lru_size as follows:

• To enable automatic LRU sizing, set the lru_size parameter to 0. In this case, the lru_size
parameter shows the current number of locks being used on the client. Dynamic LRU resizing is enabled
by default.

• To specify a maximum number of locks, set the lru_size parameter to a value other than zero. A
good default value for compute nodes is around 100 * num_cpus. It is recommended that you
only set lru_size to be signifivantly larger on a few login nodes where multiple users access the
file system interactively.

To clear the LRU on a single client, and, as a result, flush client cache without changing the lru_size
value, run:

# lctl set_param ldlm.namespaces.osc_name|mdc_name.lru_size=clear

If the LRU size is set lower than the number of existing locks, unused locks are canceled immediately.
Use clear to cancel all locks without changing the value.

Note

The lru_size parameter can only be set temporarily using lctl set_param, it cannot be
set permanently.

To disable dynamic LRU resizing on the clients, run for example:

# lctl set_param ldlm.namespaces.*osc*.lru_size=5000

To determine the number of locks being granted with dynamic LRU resizing, run:

$ lctl get_param ldlm.namespaces.*.pool.limit

The lru_max_age parameter is used to control the age of client-side locks in the LRU cached locks
queue. This limits how long unused locks are cached on the client, and avoids idle clients from holding
locks for an excessive time, which reduces memory usage on both the client and server, as well as reducing
work during server recovery.

The lru_max_age is printed in milliseconds.



Lustre Parameters

498

Introduced in Lustre 2.11

Since Lustre 2.11, in addition to setting the maximum lock age in milliseconds, it can also be set using a
suffix of s or ms to indicate seconds or milliseconds, respectively. For example to set the client's maximum
lock age to 15 minutes (900s) run:

# lctl set_param ldlm.namespaces.*MDT*.lru_max_age=900s
# lctl get_param ldlm.namespaces.*MDT*.lru_max_age
ldlm.namespaces.myth-MDT0000-mdc-ffff8804296c2800.lru_max_age=900000
    

39.9. Setting MDS and OSS Thread Counts
MDS and OSS thread counts tunable can be used to set the minimum and maximum thread counts or get
the current number of running threads for the services listed in the table below.

Service Description

mds.MDS.mdt Main metadata operations service

mds.MDS.mdt_readpage Metadata readdir service

mds.MDS.mdt_setattr Metadata setattr/close operations service

ost.OSS.ost Main data operations service

ost.OSS.ost_io Bulk data I/O services

ost.OSS.ost_create OST object pre-creation service

ldlm.services.ldlm_canceld DLM lock cancel service

ldlm.services.ldlm_cbd DLM lock grant service

For each service, tunable parameters as shown below are available.

• To temporarily set these tunables, run:

# lctl set_param service.threads_min|max|started=num 

• To permanently set this tunable, run the following command on the MGS:

mgs# lctl set_param -P service.threads_min|max|started

Introduced in Lustre 2.5

For Lustre 2.5 or earlier, run:

mgs# lctl conf_param obdname|fsname.obdtype.threads_min|max|started

The following examples show how to set thread counts and get the number of running threads for the
service ost_io using the tunable service.threads_min|max|started.

• To get the number of running threads, run:

# lctl get_param ost.OSS.ost_io.threads_started
ost.OSS.ost_io.threads_started=128



Lustre Parameters

499

• To set the number of threads to the maximum value (512), run:

# lctl get_param ost.OSS.ost_io.threads_max
ost.OSS.ost_io.threads_max=512

• To set the maximum thread count to 256 instead of 512 (to avoid overloading the storage or for an array
with requests), run:

# lctl set_param ost.OSS.ost_io.threads_max=256
ost.OSS.ost_io.threads_max=256

• To set the maximum thread count to 256 instead of 512 permanently, run:

# lctl conf_param testfs.ost.ost_io.threads_max=256

Introduced in Lustre 2.5

For version 2.5 or later, run:

# lctl set_param -P ost.OSS.ost_io.threads_max=256
ost.OSS.ost_io.threads_max=256 

• To check if the threads_max setting is active, run:

# lctl get_param ost.OSS.ost_io.threads_max
ost.OSS.ost_io.threads_max=256

Note

If the number of service threads is changed while the file system is running, the change may
not take effect until the file system is stopped and rest. If the number of service threads in use
exceeds the new threads_max value setting, service threads that are already running will not
be stopped.

See also Chapter 34, Tuning a Lustre File System

39.10. Enabling and Interpreting Debugging
Logs

By default, a detailed log of all operations is generated to aid in debugging. Flags that control debugging
are found via lctl get_param debug.

The overhead of debugging can affect the performance of Lustre file system. Therefore, to minimize
the impact on performance, the debug level can be lowered, which affects the amount of debugging
information kept in the internal log buffer but does not alter the amount of information to goes into syslog.
You can raise the debug level when you need to collect logs to debug problems.

The debugging mask can be set using "symbolic names". The symbolic format is shown in the examples
below.

• To verify the debug level used, examine the parameter that controls debugging by running:

# lctl get_param debug 



Lustre Parameters

500

debug=
ioctl neterror warning error emerg ha config console

• To turn off debugging except for network error debugging, run the following command on all nodes
concerned:

# sysctl -w lnet.debug="neterror" 
debug=neterror

• To turn off debugging completely (except for the minimum error reporting to the console), run the
following command on all nodes concerned:

# lctl set_param debug=0 
debug=0

• To set an appropriate debug level for a production environment, run:

# lctl set_param debug="warning dlmtrace error emerg ha rpctrace vfstrace" 
debug=warning dlmtrace error emerg ha rpctrace vfstrace

The flags shown in this example collect enough high-level information to aid debugging, but they do
not cause any serious performance impact.

• To add new flags to flags that have already been set, precede each one with a "+":

# lctl set_param debug="+neterror +ha" 
debug=+neterror +ha
# lctl get_param debug 
debug=neterror warning error emerg ha console

• To remove individual flags, precede them with a "-":

# lctl set_param debug="-ha" 
debug=-ha
# lctl get_param debug 
debug=neterror warning error emerg console

Debugging parameters include:

• subsystem_debug - Controls the debug logs for subsystems.

• debug_path - Indicates the location where the debug log is dumped when triggered automatically or
manually. The default path is /tmp/lustre-log.

These parameters can also be set using:

sysctl -w lnet.debug={value}

Additional useful parameters:

• panic_on_lbug - Causes ''panic'' to be called when the Lustre software detects an internal problem
(an LBUG log entry); panic crashes the node. This is particularly useful when a kernel crash dump utility
is configured. The crash dump is triggered when the internal inconsistency is detected by the Lustre
software.

• upcall - Allows you to specify the path to the binary which will be invoked when an LBUG log entry
is encountered. This binary is called with four parameters:



Lustre Parameters

501

- The string ''LBUG''.

- The file where the LBUG occurred.

- The function name.

- The line number in the file

39.10.1. Interpreting OST Statistics

Note

See also Section 12.4, “ CollectL ” (collectl).

OST stats files can be used to provide statistics showing activity for each OST. For example:

# lctl get_param osc.testfs-OST0000-osc.stats 
snapshot_time                      1189732762.835363
ost_create                 1
ost_get_info               1
ost_connect                1
ost_set_info               1
obd_ping                   212

Use the llstat utility to monitor statistics over time.

To clear the statistics, use the -c option to llstat. To specify how frequently the statistics should be
reported (in seconds), use the -i option. In the example below, the -c option clears the statistics and -
i10 option reports statistics every 10 seconds:

$ llstat -c -i10 ost_io
 
/usr/bin/llstat: STATS on 06/06/07 
        /proc/fs/lustre/ost/OSS/ost_io/ stats on 192.168.16.35@tcp
snapshot_time                              1181074093.276072
 
/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074103.284895
Name        Cur.  Cur. #
            Count Rate Events Unit  last   min    avg       max    stddev
req_waittime 8    0    8    [usec]  2078   34     259.75    868    317.49
req_qdepth   8    0    8    [reqs]  1      0      0.12      1      0.35
req_active   8    0    8    [reqs]  11     1      1.38      2      0.52
reqbuf_avail 8    0    8    [bufs]  511    63     63.88     64     0.35
ost_write    8    0    8    [bytes] 169767 72914  212209.62 387579 91874.29
 
/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074113.290180
Name        Cur.  Cur. #
            Count Rate Events Unit  last    min   avg       max    stddev
req_waittime 31   3    39   [usec]  30011   34    822.79    12245  2047.71
req_qdepth   31   3    39   [reqs]  0       0     0.03      1      0.16
req_active   31   3    39   [reqs]  58      1     1.77      3      0.74
reqbuf_avail 31   3    39   [bufs]  1977    63    63.79     64     0.41
ost_write    30   3    38   [bytes] 1028467 15019 315325.16 910694 197776.51
 



Lustre Parameters

502

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074123.325560
Name        Cur.  Cur. #
            Count Rate Events Unit  last    min    avg       max    stddev
req_waittime 21   2    60   [usec]  14970   34     784.32    12245  1878.66
req_qdepth   21   2    60   [reqs]  0       0      0.02      1      0.13
req_active   21   2    60   [reqs]  33      1      1.70      3      0.70
reqbuf_avail 21   2    60   [bufs]  1341    63     63.82     64     0.39
ost_write    21   2    59   [bytes] 7648424 15019  332725.08 910694 180397.87

The columns in this example are described in the table below.

Parameter Description

Name Name of the service event. See the tables below for
descriptions of service events that are tracked.

Cur. Count Number of events of each type sent in the last
interval.

Cur. Rate Number of events per second in the last interval.

# Events Total number of such events since the events have
been cleared.

Unit Unit of measurement for that statistic
(microseconds, requests, buffers).

last Average rate of these events (in units/event) for the
last interval during which they arrived. For instance,
in the above mentioned case of ost_destroy it
took an average of 736 microseconds per destroy for
the 400 object destroys in the previous 10 seconds.

min Minimum rate (in units/events) since the service
started.

avg Average rate.

max Maximum rate.

stddev Standard deviation (not measured in some cases)

Events common to all services are shown in the table below.

Parameter Description

req_waittime Amount of time a request waited in the queue before
being handled by an available server thread.

req_qdepth Number of requests waiting to be handled in the
queue for this service.

req_active Number of requests currently being handled.

reqbuf_avail Number of unsolicited lnet request buffers for this
service.

Some service-specific events of interest are described in the table below.

Parameter Description

ldlm_enqueue Time it takes to enqueue a lock (this includes file
open on the MDS)



Lustre Parameters

503

Parameter Description

mds_reint Time it takes to process an MDS modification
record (includes create, mkdir, unlink,
rename and setattr)

39.10.2. Interpreting MDT Statistics

Note

See also Section 12.4, “ CollectL ” (collectl).

MDT stats files can be used to track MDT statistics for the MDS. The example below shows sample
output from an MDT stats file.

# lctl get_param mds.*-MDT0000.stats
snapshot_time                   1244832003.676892 secs.usecs 
open                            2 samples [reqs]
close                           1 samples [reqs]
getxattr                        3 samples [reqs]
process_config                  1 samples [reqs]
connect                         2 samples [reqs]
disconnect                      2 samples [reqs]
statfs                          3 samples [reqs]
setattr                         1 samples [reqs]
getattr                         3 samples [reqs]
llog_init                       6 samples [reqs] 
notify                          16 samples [reqs]



504

Chapter 40. User Utilities
This chapter describes user utilities.

40.1.   lfs
The lfs utility can be used for user configuration routines and monitoring.

40.1.1. Synopsis

lfs
lfs changelog [--follow] mdt_name [startrec [endrec]]
lfs changelog_clear mdt_name id endrec
lfs check mds|osts|servers
lfs data_version [-nrw] filename
lfs df [-i] [-h] [--pool]-p fsname[.pool] [path] [--lazy]
lfs find [[!] --atime|-A [-+]N] [[!] --mtime|-M [-+]N]
         [[!] --ctime|-C [-+]N] [--maxdepth|-D N] [--name|-n pattern]
         [--print|-p] [--print0|-P] [[!] --obd|-O ost_name[,ost_name...]]
         [[!] --size|-S [+-]N[kMGTPE]] --type |-t {bcdflpsD}]
         [[!] --gid|-g|--group|-G gname|gid]
         [[!] --uid|-u|--user|-U uname|uid]
         dirname|filename
lfs getname [-h]|[path...]
lfs getstripe [--obd|-O ost_name] [--quiet|-q] [--verbose|-v]
              [--stripe-count|-c] [--stripe-index|-i]
              [--stripe-size|-s] [--pool|-p] [--directory|-d]
              [--mdt-index|-M] [--recursive|-r] [--raw|-R]
              [--layout|-L]
              dirname|filename ...
lfs setstripe [--size|-s stripe_size] [--stripe-count|-c stripe_count]
              [--overstripe-count|-C stripe_count]
              [--stripe-index|-i start_ost_index]
              [--ost-list|-o ost_indicies]
              [--pool|-p pool]
              dirname|filename
lfs setstripe -d dir
lfs osts [path]
lfs pool_list filesystem[.pool]| pathname
lfs quota [-q] [-v] [-h] [-o obd_uuid|-I ost_idx|-i mdt_idx]
          [-u username|uid|-g group|gid|-p projid] /mount_point
lfs quota -t -u|-g|-p /mount_point
lfs setquota {-u|--user|-g|--group|-p|--project} uname|uid|gname|gid|projid
             [--block-softlimit block_softlimit]
             [--block-hardlimit block_hardlimit]
             [--inode-softlimit inode_softlimit]
             [--inode-hardlimit inode_hardlimit]
             /mount_point
lfs setquota -u|--user|-g|--group|-p|--project uname|uid|gname|gid|projid
             [-b block_softlimit] [-B block_hardlimit]
             [-i inode-softlimit] [-I inode_hardlimit]



User Utilities

505

             /mount_point
lfs setquota -t -u|-g|-p [--block-grace block_grace]
             [--inode-grace inode_grace]
             /mount_point
lfs setquota -t -u|-g|-p [-b block_grace] [-i inode_grace]
             /mount_point
lfs help

Note

In the above example, the  /mount_point  parameter refers to the mount point of the Lustre
file system.

Note

The old lfs quota output was very detailed and contained cluster-wide quota statistics (including
cluster-wide limits for a user/group and cluster-wide usage for a user/group), as well as statistics
for each MDS/OST. Now, lfs quota has been updated to provide only cluster-wide statistics,
by default. To obtain the full report of cluster-wide limits, usage and statistics, use the -v option
with lfs quota.

Introduced in Lustre 2.8

The quotacheck, quotaon and quotaoff sub-commands were deprecated in the Lustre 2.4 release,
and removed completely in the Lustre 2.8 release. See Section 25.2, “ Enabling Disk Quotas” for details
on configuring and checking quotas.

40.1.2. Description
The lfs utility is used to create a new file with a specific striping pattern, determine the default striping
pattern, gather the extended attributes (object numbers and location) for a specific file, find files with
specific attributes, list OST information or set quota limits. It can be invoked interactively without any
arguments or in a non-interactive mode with one of the supported arguments.

40.1.3. Options
The various lfs options are listed and described below. For a complete list of available options, type
help at the lfs prompt.

Option Description

changelog Shows the metadata changes on an MDT. Start and
end points are optional. The --follow option
blocks on new changes; this option is only valid
when run directly on the MDT node.

changelog_clear Indicates that changelog records previous to
endrec  are no longer of interest to a particular
consumer  id , potentially allowing the MDT to
free up disk space. An  endrec  of 0 indicates
the current last record. Changelog consumers must
be registered on the MDT node using lctl.

check Displays the status of MDS or OSTs (as specified in
the command) or all servers (MDS and OSTs).



User Utilities

506

Option Description

data_version [-nrw] filename Displays the current version of file data. If -n is
specified, the data version is read without taking
a lock. As a consequence, the data version could
be outdated if there are dirty caches on filesystem
clients, but this option will not force data flushes
and has less of an impact on the filesystem. If -r is
specified, the data version is read after dirty pages
on clients are flushed. If -w is specified, the data
version is read after all caching pages on clients are
flushed.

Even with -r or -w, race conditions are possible
and the data version should be checked before and
after an operation to be confident the data did not
change during it.

The data version is the sum of the last committed
transaction numbers of all data objects of a file. It
is used by HSM policy engines for verifying that
file data has not been changed during an archive
operation or before a release operation, and by OST
migration, primarily for verifying that file data has
not been changed during a data copy, when done in
non-blocking mode.

df [-i] [-h] [--pool|-p fsname[.
pool] [ path] [--lazy]

Use -i to report file system disk space usage or
inode usage of each MDT or OST or, if a pool is
specified with the -p option, a subset of OSTs.

By default, the usage of all mounted Lustre file
systems is reported. If the path option is included,
only the usage for the specified file system is
reported. If the -h option is included, the output
is printed in human-readable format, using SI
base-2 suffixes for Mega-, Giga-, Tera-, Peta-, or
Exabytes.

If the --lazy option is specified, any OST
that is currently disconnected from the client will
be skipped. Using the --lazy option prevents
the df output from being blocked when an
OST is offline. Only the space on the OSTs
that can currently be accessed are returned.
The llite.*.lazystatfs tunable can be
enabled to make this the default behaviour for all
statfs() operations.

find Searches the directory tree rooted at the given
directory/filename for files that match the given
parameters.

Using ! before an option negates its meaning (files
NOT matching the parameter). Using + before a
numeric value means files with the parameter OR



User Utilities

507

Option Description

MORE. Using - before a numeric value means files
with the parameter OR LESS.

--atime File was last accessed N*24 hours ago. (There is no
guarantee that atime is kept coherent across the
cluster.)

OSTs by default only hold a transient atime
that is updated when clients do read requests.
Permanent atime is written to the MDT when
the file is closed. However, on-disk atime is only
updated if it is more than 60 seconds old (
mdd.*.atime_diff).

Introduced in Lustre 2.13

In Lustre 2.14, it is possible to set the OSTs to
persistently store atime with each object, in order to
get more accurate persistent atime updates for files
that are open for a long time via the similarly-named
obdfilter.*.atime_diff parameter.

The client considers the latest atime from all OSTs
and MDTs. If a setattr is set by user, then it is
updated on both the MDT and OST, allowing the
atime to go backward.

--ctime File status was last changed N*24 hours ago.

--mtime File data was last modified N*24 hours ago.

--obd File has an object on a specific OST(s).

--size File has a size in bytes, or kilo-, Mega-, Giga-, Tera-,
Peta- or Exabytes if a suffix is given.

--type File has the type - block, character, directory,
pipe, file, symlink, socket or door (used in Solaris
operating system).

--uid File has a specific numeric user ID.

--user File owned by a specific user (numeric user ID
allowed).

--gid File has a specific group ID.

--group File belongs to a specific group (numeric group ID
allowed).

- -maxdepth Limits find to descend at most N levels of the
directory tree.

--print/ --print0 Prints the full filename, followed by a new line or
NULL character correspondingly.

osts [path] Lists all OSTs for the file system. If a path located on
a mounted Lustre file system is specified, then only
OSTs belonging to this file system are displayed.



User Utilities

508

Option Description

getname [path...] List each Lustre file system instance associated with
each Lustre mount point. If no path is specified,
all Lustre mount points are interrogated. If a list
of paths is provided, the instance of each path is
provided. If the path is not a Lustre instance 'No such
device' is returned.

getstripe Lists striping information for a given filename or
directory. By default, the stripe count, stripe size and
offset are returned.

If you only want specific striping information, then
the options of --stripe-count, --stripe-
size, --stripe-index, --layout, or --
pool plus various combinations of these options
can be used to retrieve specific information.

If the --raw option is specified, the stripe
information is printed without substituting the file
system default values for unspecified fields. If the
striping EA is not set, 0, 0, and -1 will be printed for
the stripe count, size, and offset respectively.

The --mdt-index prints the index of the
MDT for a given directory. See Section 14.9.1,
“Removing an MDT from the File System”.

--obd ost_name Lists files that have an object on a specific OST.

--quiet Lists details about the file's object ID information.

--verbose Prints additional striping information.

--stripe-count Lists the stripe count (how many OSTs to use).

--index Lists the index for each OST in the file system.

--offset Lists the OST index on which file striping starts.

--pool Lists the pools to which a file belongs.

--size Lists the stripe size (how much data to write to one
OST before moving to the next OST).

--directory Lists entries about a specified directory instead of
its contents (in the same manner as ls -d).

--recursive Recurses into all sub-directories.

setstripe Create new files with a specific file layout (stripe
pattern) configuration. a

--stripe-count
stripe_cnt

Number of OSTs over which to stripe a file.
A stripe_cnt of 0 uses the file system-wide
default stripe count (default is 1). A stripe_cnt
of -1 stripes over all available OSTs.

--overstripe-count
stripe_cnt

The same as --stripe-count, but allows overstriping,
which will place more than one stripe per OST if
stripe_cnt is greater than the number of OSTs.
Overstriping is useful for matching the number of



User Utilities

509

Option Description

stripes to the number of processes, or with very fast
OSTs, where one stripe per OST is not enough to
get full performance.

--size stripe_size b Number of bytes to store on an OST before moving
to the next OST. A stripe_size of 0 uses the file
system's default stripe size, (default is 1 MB).
Can be specified with k(KB), m(MB), or g(GB),
respectively.

--stripe-index
start_ost_index

The OST index (base 10, starting at 0) on which to
start striping for this file. A start_ost_index value
of -1 allows the MDS to choose the starting index.
This is the default value, and it means that the MDS
selects the starting OST as it wants. We strongly
recommend selecting this default, as it allows space
and load balancing to be done by the MDS as
needed. The start_ost_index value has no
relevance on whether the MDS will use round-robin
or QoS weighted allocation for the remaining stripes
in the file.

--ost-index
ost_indices

This option is used to specify the exact stripe layout
on the the file system. ost_indices is a list of
OSTs referenced by their indices and index ranges
separated by commas, e.g. 1,2-4,7.

--pool pool Name of the pre-defined pool of OSTs (see
Section 44.2, “ lctl”) that will be used for
striping. The stripe_cnt, stripe_size and
start_ost values are used as well. The start-ost
value must be part of the pool or an error is returned.

setstripe -d Deletes default striping on the specified directory.

pool_list {filesystem}[.poolname]|
{pathname}

Lists pools in the file system or pathname, or OSTs
in the file system's pool.

quota [-q] [-v] [-o obd_uuid|-
i mdt_idx|-I ost_idx] [-u|-g|-
p uname|uid|gname|gid|projid] /
mount_point

Displays disk usage and limits, either for the full file
system or for objects on a specific OBD. A user or
group name or an usr, group and project ID can be
specified. If all user, group project ID are omitted,
quotas for the current UID/GID are shown. The -
q option disables printing of additional descriptions
(including column titles). It fills in blank spaces
in the grace column with zeros (when there is
no grace period set), to ensure that the number of
columns is consistent. The -v option provides more
verbose (per-OBD statistics) output.

quota -t -u|-g|-p /mount_point Displays block and inode grace times for user ( -u)
or group ( -g) or project ( -p) quotas.

setquota {-u|-g|-p uname|
uid|gname|gid|projid} [--block-
softlimit block_softlimit] [--
block-hardlimit block_hardlimit]
[--inode-softlimit

Sets file system quotas for users, groups or one
project. Limits can be specified with --{block|
inode}-{softlimit|hardlimit} or their
short equivalents -b, -B, -i, -I. Users can set
1, 2, 3 or 4 limits. cAlso, limits can be specified



User Utilities

510

Option Description

inode_softlimit] [--inode-
hardlimit inode_hardlimit] /
mount_point

with special suffixes, -b, -k, -m, -g, -t, and -p to
indicate units of 1, 2^10, 2^20, 2^30, 2^40 and
2^50, respectively. By default, the block limits unit
is 1 kilobyte (1,024), and block limits are always
kilobyte-grained (even if specified in bytes). See
Section 40.1.4, “Examples”.

setquota -t -u|-g|-p [--block-
grace block_grace] [--inode-grace
inode_grace] /mount_point

Sets the file system quota grace times for
users or groups. Grace time is specified in '
XXwXXdXXhXXmXXs' format or as an integer
seconds value. See Section 40.1.4, “Examples”.

help Provides brief help on various lfs arguments.

exit/quit Quits the interactive lfs session.
aThe file cannot exist prior to using setstripe. A directory must exist prior to using setstripe.
bThe default stripe-size is 0. The default start-ost is -1. Do NOT confuse them! If you set start-ost to 0, all new file creations occur
on OST 0 (seldom a good idea).
cThe old setquota interface is supported, but it may be removed in a future Lustre software release.

40.1.4. Examples
Creates a file striped on two OSTs with 128 KB on each stripe.

$ lfs setstripe -s 128k -c 2 /mnt/lustre/file1

Deletes a default stripe pattern on a given directory. New files use the default striping pattern.

$ lfs setstripe -d /mnt/lustre/dir

Lists the detailed object allocation of a given file.

$ lfs getstripe -v /mnt/lustre/file1

List all the mounted Lustre file systems and corresponding Lustre instances.

$ lfs getname

Efficiently lists all files in a given directory and its subdirectories.

$ lfs find /mnt/lustre

Recursively lists all regular files in a given directory more than 30 days old.

$ lfs find /mnt/lustre -mtime +30 -type f -print

Recursively lists all files in a given directory that have objects on OST2-UUID. The lfs check servers
command checks the status of all servers (MDT and OSTs).

$ lfs find --obd OST2-UUID /mnt/lustre/



User Utilities

511

Lists all OSTs in the file system.

$ lfs osts

Lists space usage per OST and MDT in human-readable format.

$ lfs df -h

Lists inode usage per OST and MDT.

$ lfs df -i

List space or inode usage for a specific OST pool.

$ lfs df --pool 
filesystem[.
pool] | 
pathname

List quotas of user 'bob'.

$ lfs quota -u bob /mnt/lustre

List quotas of project ID '1'.

$ lfs quota -p 1 /mnt/lustre

Show grace times for user quotas on /mnt/lustre.

$ lfs quota -t -u /mnt/lustre

Sets quotas of user 'bob', with a 1 GB block quota hardlimit and a 2 GB block quota softlimit.

$ lfs setquota -u bob --block-softlimit 2000000 --block-hardlimit 1000000
/mnt/lustre

Sets grace times for user quotas: 1000 seconds for block quotas, 1 week and 4 days for inode quotas.

$ lfs setquota -t -u --block-grace 1000 --inode-grace 1w4d /mnt/lustre

Checks the status of all servers (MDT, OST)

$ lfs check servers

Creates a file striped on two OSTs from the pool my_pool



User Utilities

512

$ lfs setstripe --pool my_pool -c 2 /mnt/lustre/file

Lists the pools defined for the mounted Lustre file system /mnt/lustre

$ lfs pool_list /mnt/lustre/

Lists the OSTs which are members of the pool my_pool in file system my_fs

$ lfs pool_list my_fs.my_pool

Finds all directories/files associated with poolA.

$ lfs find /mnt/lustre --pool poolA

Finds all directories/files not associated with a pool.

$ lfs find /mnt//lustre --pool ""

Finds all directories/files associated with pool.

$ lfs find /mnt/lustre ! --pool ""

Associates a directory with the pool my_pool, so all new files and directories are created in the pool.

$ lfs setstripe --pool my_pool /mnt/lustre/dir

40.1.5. See Also
Section 44.2, “ lctl”

40.2.   lfs_migrate
The lfs_migrate utility is a simple to migrate file data between OSTs.

40.2.1. Synopsis

lfs_migrate [lfs_setstripe_options]
 [-h] [-n] [-q] [-R] [-s] [-y] [-0] [file|directory ...]

40.2.2. Description
The lfs_migrate utility is a tool to assist migration of file data between Lustre OSTs. The utility copies
each specified file to a temporary file using supplied lfs setstripe options, if any, optionally verifies
the file contents have not changed, and then swaps the layout (OST objects) from the temporary file and the
original file (for Lustre 2.5 and later), or renames the temporary file to the original filename. This allows
the user/administrator to balance space usage between OSTs, or move files off OSTs that are starting to
show hardware problems (though are still functional) or will be removed.



User Utilities

513

Warning

For versions of Lustre before 2.5, lfs_migrate was not integrated with the MDS at all. That
made it UNSAFE for use on files that were being modified by other applications, since the file
was migrated through a copy and rename of the file. With Lustre 2.5 and later, the new file layout
is swapped with the existing file layout, which ensures that the user-visible inode number is kept,
and open file handles and locks on the file are kept.

Files to be migrated can be specified as command-line arguments. If a directory is specified on the
command-line then all files within the directory are migrated. If no files are specified on the command-
line, then a list of files is read from the standard input, making lfs_migrate suitable for use with lfs
find to locate files on specific OSTs and/or matching other file attributes, and other tools that generate
a list of files on standard output.

Unless otherwise specified through command-line options, the file allocation policies on the MDS dictate
where the new files are placed, taking into account whether specific OSTs have been disabled on the MDS
via lctl (preventing new files from being allocated there), whether some OSTs are overly full (reducing
the number of files placed on those OSTs), or if there is a specific default file striping for the parent
directory (potentially changing the stripe count, stripe size, OST pool, or OST index of a new file).

Note

The lfs_migrate utility can also be used in some cases to reduce file fragmentation. File
fragmentation will typically reduce Lustre file system performance. File fragmentation may be
observed on an aged file system and will commonly occur if the file was written by many threads.
Provided there is sufficient free space (or if it was written when the file system was nearly full)
that is less fragmented than the file being copied, re-writing a file with lfs_migrate will result
in a migrated file with reduced fragmentation. The tool filefrag can be used to report file
fragmentation. See Section 40.3, “ filefrag ”

Note

As long as a file has extent lengths of tens of megabytes ( read_bandwidth * seek_time)
or more, the read performance for the file will not be significantly impacted by fragmentation,
since the read pipeline can be filled by large reads from disk even with an occasional disk seek.

40.2.3. Options
Options supporting lfs_migrate are described below.

Option Description

-c stripecount Restripe file using the specified stripe count. This
option may not be specified at the same time as the
-R option.

-h Display help information.

-l Migrate files with hard links (skips, by default).
Files with multiple hard links are split into multiple
separate files by lfs_migrate, so they are
skipped, by default, to avoid breaking the hard links.

-n Only print the names of files to be migrated.

-q Run quietly (does not print filenames or status).



User Utilities

514

Option Description

-R Restripe file using default directory striping instead
of keeping striping. This option may not be specified
at the same time as the -c option.

-s Skip file data comparison after migrate. Default is
to compare migrated file against original to verify
correctness.

-y Answer ' y' to usage warning without prompting (for
scripts, use with caution).

-0 Expect NUL-terminated filenames on standard
input, as generated by lfs find -print0
or find -print0. This allows filenames with
embedded newlines to be handled correctly.

40.2.4. Examples
Rebalance all files in /mnt/lustre/dir:

$ lfs_migrate /mnt/lustre/dir

Migrate files in /test filesystem on OST0004 larger than 4 GB in size and older than a day old:

$ lfs find /test -obd test-OST0004 -size +4G -mtime +1 | lfs_migrate -y

40.2.5. See Also
Section 40.1, “ lfs ”

40.3.   filefrag
The e2fsprogs package contains the filefrag tool which reports the extent of file fragmentation.

40.3.1. Synopsis

filefrag [ -belsv ] [ files...  ]

40.3.2. Description
The filefrag utility reports the extent of fragmentation in a given file. The filefrag utility obtains
the extent information from Lustre files using the FIEMAP ioctl, which is efficient and fast, even for
very large files.

In default mode 1, filefrag prints the number of physically discontiguous extents in the file. In extent
or verbose mode, each extent is printed with details such as the blocks allocated on each OST. For a Lustre
file system, the extents are printed in device offset order (i.e. all of the extents for one OST first, then the

1The default mode is faster than the verbose/extent mode since it only counts the number of extents.



User Utilities

515

next OST, etc.), not file logical offset order. If the file logical offset order was used, the Lustre striping
would make the output very verbose and difficult to see if there was file fragmentation or not.

Note

Note that as long as a file has extent lengths of tens of megabytes or more (i.e.
read_bandwidth * seek_time > extent_length), the read performance for the
file will not be significantly impacted by fragmentation, since file readahead can fully utilize the
disk disk bandwidth even with occasional seeks.

In default mode 2, filefrag returns the number of physically discontiguous extents in the file. In extent
or verbose mode, each extent is printed with details. For a Lustre file system, the extents are printed in
device offset order, not logical offset order.

40.3.3. Options
The options and descriptions for the filefrag utility are listed below.

Option Description

-b Uses the 1024-byte blocksize for the output. By
default, this blocksize is used by the Lustre file
system, since OSTs may use different block sizes.

-e Uses the extent mode when printing the output. This
is the default for Lustre files in verbose mode.

-l Displays extents in LUN offset order. This is the
only available mode for Lustre.

-s Synchronizes any unwritten file data to disk before
requesting the mapping.

-v Prints the file's layout in verbose mode when
checking file fragmentation, including the logical to
physical mapping for each extent in the file and the
OST index.

40.3.4. Examples
Lists default output.

$ filefrag /mnt/lustre/foo
/mnt/lustre/foo: 13 extents found

Lists verbose output in extent format.

$ filefrag -v /mnt/lustre/foo
Filesystem type is: bd00bd0
File size of /mnt/lustre/foo is 1468297786 (1433888 blocks of 1024 bytes)
 ext:     device_logical:        physical_offset: length:  dev: flags:
   0:        0..  122879: 2804679680..2804802559: 122880: 0002: network

2The default mode is faster than the verbose/extent mode.



User Utilities

516

   1:   122880..  245759: 2804817920..2804940799: 122880: 0002: network
   2:   245760..  278527: 2804948992..2804981759:  32768: 0002: network
   3:   278528..  360447: 2804982784..2805064703:  81920: 0002: network
   4:   360448..  483327: 2805080064..2805202943: 122880: 0002: network
   5:   483328..  606207: 2805211136..2805334015: 122880: 0002: network
   6:   606208..  729087: 2805342208..2805465087: 122880: 0002: network
   7:   729088..  851967: 2805473280..2805596159: 122880: 0002: network
   8:   851968..  974847: 2805604352..2805727231: 122880: 0002: network
   9:   974848.. 1097727: 2805735424..2805858303: 122880: 0002: network
  10:  1097728.. 1220607: 2805866496..2805989375: 122880: 0002: network
  11:  1220608.. 1343487: 2805997568..2806120447: 122880: 0002: network
  12:  1343488.. 1433599: 2806128640..2806218751:  90112: 0002: network
/mnt/lustre/foo: 13 extents found

40.4.   mount
The standard mount(8) Linux command is used to mount a Lustre file system. When mounting a
Lustre file system, mount(8) executes the /sbin/mount.lustre command to complete the mount.
The mount command supports these options specific to a Lustre file system:

Server options Description

abort_recov Aborts recovery when starting a target

nosvc Starts only MGS/MGC servers

nomgs Start a MDT with a co-located MGS without starting
the MGS

exclude Starts with a dead OST

md_stripe_cache_size Sets the stripe cache size for server side disk with a
striped raid configuration

Client options Description

flock/noflock/localflock Enables/disables global flock or local flock support

user_xattr/nouser_xattr Enables/disables user-extended attributes

user_fid2path/nouser_fid2path Enables/disables FID to path translation by regular
users

retry= Number of times a client will retry to mount the file
system

40.5. Handling Timeouts
Timeouts are the most common cause of hung applications. After a timeout involving an MDS or
failover OST, applications attempting to access the disconnected resource wait until the connection gets
established.

When a client performs any remote operation, it gives the server a reasonable amount of time to respond.
If a server does not reply either due to a down network, hung server, or any other reason, a timeout occurs
which requires a recovery.

If a timeout occurs, a message (similar to this one), appears on the console of the client, and in /var/
log/messages:



User Utilities

517

LustreError: 26597:(client.c:810:ptlrpc_expire_one_request()) @@@ timeout

req@a2d45200 x5886/t0 o38->mds_svc_UUID@NID_mds_UUID:12 lens 168/64 ref 1 fl

RPC:/0/0 rc 0



518

Chapter 41. Programming Interfaces
This chapter describes public programming interfaces to that can be used to control various aspects of a
Lustre file system from userspace. This chapter includes the following sections:

• Section 41.1, “User/Group Upcall”

• Section 41.1.3, “Data Structures”

Note

Lustre programming interface man pages are found in the lustre/doc folder.

41.1. User/Group Upcall
This section describes the supplementary user/group upcall, which allows the MDS to retrieve and verify
the supplementary groups to which a particular user is assigned. This avoids the need to pass all the
supplementary groups from the client to the MDS with every RPC.

Note

For information about universal UID/GID requirements in a Lustre file system environment, see
Section 8.1.2, “Environmental Requirements”.

41.1.1. Synopsis
The MDS uses the utility as specified by lctl get_param mdt.${FSNAME}-
MDT{xxxx}.identity_upcall to look up the supplied UID in order to retrieve the user's
supplementary group membership. The result is temporarily cached in the kernel (for five minutes, by
default) to avoid the overhead of calling into userspace repeatedly.

41.1.2. Description
The identity_upcall parameter contains the path to an executable that is run to map a
numeric UID to a group membership list. This upcall executable opens the mdt.${FSNAME}-
MDT{xxxx}.identity_info parameter file and writes the related identity_downcall_data
data structure (see Section 41.1.3, “Data Structures”). The upcall is configured with lctl set_param
mdt.${FSNAME}-MDT{xxxx}.identity_upcall.

The default identity upcall program installed is lustre/utils/l_getidentity.c in the Lustre
source distribution.

41.1.2.1. Primary and Secondary Groups

The mechanism for the primary/secondary group is as follows:

• The MDS issues an upcall (set per MDS) to map the numeric UID to the supplementary group(s).

• If there is no upcall or if there is an upcall and it fails, one supplementary group at most will be added
as supplied by the client.

• The default upcall /usr/sbin/l_getidentity can interact with the user/group database on the
MDS to map the UID to the GID and supplementary GID. The user/group database depends on how



Programming Interfaces

519

authentication is configured on the MDS, such as local /etc/passwd, Network Information Service
(NIS), Lightweight Directory Access Protocol (LDAP), or SMB Domain services, as configured. If the
upcall interface is set to NONE, then upcall is disabled, and the MDS uses only the UID, GID, and one
supplementary GID supplied by the client.

• The MDS will wait a limited time for the group upcall program to complete, to avoid MDS threads and
clients hanging due to errors accessing a remote service node. The upcall must finish within 30s before
the MDS will continue without the supplementary data. The upcall timeout in seconds can be set on the
MDS using: lctl set_param mdt.*.identity_acquire_expire=seconds

• The default group upcall is set permanently by mkfs.lustre. To set a custom upcall for a particular
filesystem, use tunefs.lustre --param or lctl set_param -P mdt.FSNAME-
MDTxxxx.identity_upcall=path

• The group downcall data is cached by the kernel to avoid repeated upcalls for the same
user slowing down the MDS. This cache is expired from the kernel after 1200s (20 minutes)
by default. The cache age in seconds can be set on the MDS using: lctl set_param
mdt.*.identity_expire=seconds

• To force eviction of cached identity data (e.g. after adding or removing a user from a supplementary
group), the cache entry for a specific numeric UID can be flushed on the MDS using: lctl
set_param mdt.*.identity_flush=UID To flush the cached records for all users from cache,
use -1 for the UID: lctl set_param mdt.*.identity_flush=-1

41.1.3. Data Structures
struct perm_downcall_data {
     __u64 pdd_nid;
     __u32 pdd_perm;
     __u32 pdd_padding;
};

struct identity_downcall_data{
     __u32        idd_magic;
     :         
     :



520

Chapter 42. Setting Lustre Properties
in a C Program (llapi)

This chapter describes the llapi library of commands used for setting Lustre file properties within a C
program running in a cluster environment, such as a data processing or MPI application. The commands
described in this chapter are:

• Section 42.1, “ llapi_file_create ”

• Section 42.2, “llapi_file_get_stripe”

• Section 42.3, “ llapi_file_open ”

• Section 42.4, “ llapi_quotactl ”

• Section 42.5, “ llapi_path2fid ”

Note

Lustre programming interface man pages are found in the lustre/doc folder.

42.1.  llapi_file_create
Use llapi_file_create to set Lustre properties for a new file.

42.1.1. Synopsis
#include <lustre/lustreapi.h>

int llapi_file_create(char *name, long stripe_size, int stripe_offset, int stripe_count, int stripe_pattern);

42.1.2. Description
The llapi_file_create() function sets a file descriptor's Lustre file system striping information.
The file descriptor is then accessed with open().

Option Description

llapi_file_create() If the file already exists, this parameter returns to
'EEXIST'. If the stripe parameters are invalid, this
parameter returns to 'EINVAL'.

stripe_size This value must be an even multiple of system page
size, as shown by getpagesize(). The default
Lustre stripe size is 4MB.

stripe_offset Indicates the starting OST for this file.

stripe_count Indicates the number of OSTs that this file will be
striped across.

stripe_pattern Indicates the RAID pattern.



Setting Lustre Properties
in a C Program (llapi)

521

Note

Currently, only RAID 0 is supported. To use the system defaults, set these values:
stripe_size = 0, stripe_offset = -1, stripe_count = 0, stripe_pattern = 0

42.1.3. Examples
System default size is 4 MB.

char *tfile = TESTFILE;
int stripe_size = 65536

To start at default, run:

int stripe_offset = -1

To start at the default, run:

int stripe_count = 1

To set a single stripe for this example, run:

int stripe_pattern = 0

Currently, only RAID 0 is supported.

int stripe_pattern = 0; 
int rc, fd; 
rc = llapi_file_create(tfile, stripe_size,stripe_offset, stripe_count,stripe_pattern);

Result code is inverted, you may return with 'EINVAL' or an ioctl error.

if (rc) {
fprintf(stderr,"llapi_file_create failed: %d (%s) 0, rc, strerror(-rc));return -1; }

llapi_file_create closes the file descriptor. You must re-open the descriptor. To do this, run:

fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644); if (fd < 0) \ { 
fprintf(stderr, "Can't open %s file: %s0, tfile,
str-
error(errno));
return -1;
}

42.2. llapi_file_get_stripe
Use llapi_file_get_stripe to get striping information for a file or directory on a Lustre file
system.

42.2.1. Synopsis

#include <lustre/lustreapi.h>
 



Setting Lustre Properties
in a C Program (llapi)

522

int llapi_file_get_stripe(const char *path, void *lum);

42.2.2. Description
The llapi_file_get_stripe() function returns striping information for a file or directory path in
lum (which should point to a large enough memory region) in one of the following formats:

struct lov_user_md_v1 {
__u32 lmm_magic;
__u32 lmm_pattern;
__u64 lmm_object_id;
__u64 lmm_object_seq;
__u32 lmm_stripe_size;
__u16 lmm_stripe_count;
__u16 lmm_stripe_offset;
struct lov_user_ost_data_v1 lmm_objects[0];
} __attribute__((packed));
struct lov_user_md_v3 {
__u32 lmm_magic;
__u32 lmm_pattern;
__u64 lmm_object_id;
__u64 lmm_object_seq;
__u32 lmm_stripe_size;
__u16 lmm_stripe_count;
__u16 lmm_stripe_offset;
char lmm_pool_name[LOV_MAXPOOLNAME];
struct lov_user_ost_data_v1 lmm_objects[0];
} __attribute__((packed));

Option Description

lmm_magic Specifies the format of the returned striping
information. LOV_MAGIC_V1 is used for
lov_user_md_v1. LOV_MAGIC_V3 is used for
lov_user_md_v3.

lmm_pattern Holds the striping pattern. Only
LOV_PATTERN_RAID0 is possible in this Lustre
software release.

lmm_object_id Holds the MDS object ID.

lmm_object_gr Holds the MDS object group.

lmm_stripe_size Holds the stripe size in bytes.

lmm_stripe_count Holds the number of OSTs over which the file is
striped.

lmm_stripe_offset Holds the OST index from which the file starts.

lmm_pool_name Holds the OST pool name to which the file belongs.

lmm_objects An array of lmm_stripe_count members
containing per OST file information in

the following format:

struct lov_user_ost_data_v1 {
                __u64 l_object_id;



Setting Lustre Properties
in a C Program (llapi)

523

Option Description

                __u64 l_object_seq;
                __u32 l_ost_gen;
                __u32 l_ost_idx;
                } __attribute__((packed));

l_object_id Holds the OST's object ID.

l_object_seq Holds the OST's object group.

l_ost_gen Holds the OST's index generation.

l_ost_idx Holds the OST's index in LOV.

42.2.3. Return Values
llapi_file_get_stripe() returns:

0 On success

!= 0 On failure, errno is set appropriately

42.2.4. Errors

Errors Description

ENOMEM Failed to allocate memory

ENAMETOOLONG Path was too long

ENOENT Path does not point to a file or directory

ENOTTY Path does not point to a Lustre file system

EFAULT Memory region pointed by lum is not properly
mapped

42.2.5. Examples

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <lustre/lustreapi.h>

static inline int maxint(int a, int b)
{
 return a > b ? a : b;
}
static void *alloc_lum()
{
 int v1, v3, join;
 v1 = sizeof(struct lov_user_md_v1) +
  LOV_MAX_STRIPE_COUNT * sizeof(struct lov_user_ost_data_v1);
 v3 = sizeof(struct lov_user_md_v3) +
  LOV_MAX_STRIPE_COUNT * sizeof(struct lov_user_ost_data_v1);
 return malloc(maxint(v1, v3));
}



Setting Lustre Properties
in a C Program (llapi)

524

int main(int argc, char** argv)
{
 struct lov_user_md *lum_file = NULL;
 int rc;
 int lum_size;
 if (argc != 2) {
  fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
  return 1;
 }
 lum_file = alloc_lum();
 if (lum_file == NULL) {
  rc = ENOMEM;
  goto cleanup;
 }
 rc = llapi_file_get_stripe(argv[1], lum_file);
 if (rc) {
  rc = errno;
  goto cleanup;
 }
 /* stripe_size stripe_count */
 printf("%d %d\n",
   lum_file->lmm_stripe_size,
   lum_file->lmm_stripe_count);
cleanup:
 if (lum_file != NULL)
  free(lum_file);
 return rc;
}

42.3.  llapi_file_open
The llapi_file_open command opens (or creates) a file or device on a Lustre file system.

42.3.1. Synopsis
#include <lustre/lustreapi.h>
int llapi_file_open(const char *name, int flags, int mode, 
   unsigned long long stripe_size, int stripe_offset, 
   int stripe_count, int stripe_pattern);
int llapi_file_create(const char *name, unsigned long long stripe_size, 
   int stripe_offset, int stripe_count, 
   int stripe_pattern);

42.3.2. Description
The llapi_file_create() call is equivalent to the llapi_file_open call with flags equal to
O_CREAT|O_WRONLY and mode equal to 0644, followed by file close.

llapi_file_open() opens a file with a given name on a Lustre file system.

Option Description

flags Can be a combination of O_RDONLY, O_WRONLY,
O_RDWR, O_CREAT, O_EXCL, O_NOCTTY,



Setting Lustre Properties
in a C Program (llapi)

525

Option Description

O_TRUNC, O_APPEND, O_NONBLOCK,
O_SYNC, FASYNC, O_DIRECT, O_LARGEFILE,
O_DIRECTORY, O_NOFOLLOW, O_NOATIME.

mode Specifies the permission bits to be used for a new
file when O_CREAT is used.

stripe_size Specifies stripe size (in bytes). Should be multiple
of 64 KB, not exceeding 4 GB.

stripe_offset Specifies an OST index from which the file should
start. The default value is -1.

stripe_count Specifies the number of OSTs to stripe the file
across. The default value is -1.

stripe_pattern Specifies the striping pattern. In this release of the
Lustre software, only LOV_PATTERN_RAID0 is
available. The default value is 0.

42.3.3. Return Values
llapi_file_open() and llapi_file_create() return:

>=0 On success, for llapi_file_open the return value is a file descriptor

<0 On failure, the absolute value is an error code

42.3.4. Errors

Errors Description

EINVAL stripe_size or stripe_offset or
stripe_count or stripe_pattern is
invalid.

EEXIST Striping information has already been set and cannot
be altered; name already exists.

EALREADY Striping information has already been set and cannot
be altered

ENOTTY name may not point to a Lustre file system.

42.3.5. Example

#include <stdio.h>
#include <lustre/lustreapi.h>

int main(int argc, char *argv[])
{
 int rc;
 if (argc != 2)
  return -1;
 rc = llapi_file_create(argv[1], 1048576, 0, 2, LOV_PATTERN_RAID0);
 if (rc < 0) {



Setting Lustre Properties
in a C Program (llapi)

526

  fprintf(stderr, "file creation has failed, %s\n",         strerror(-rc));
  return -1;
 }
 printf("%s with stripe size 1048576, striped across 2 OSTs,"
   " has been created!\n", argv[1]);
 return 0;
}

42.4.  llapi_quotactl
Use llapi_quotactl to manipulate disk quotas on a Lustre file system.

42.4.1. Synopsis
#include <lustre/lustreapi.h>
int llapi_quotactl(char" " *mnt," " struct if_quotactl" " *qctl)
 
struct if_quotactl {
        __u32                   qc_cmd;
        __u32                   qc_type;
        __u32                   qc_id;
        __u32                   qc_stat;
        struct obd_dqinfo       qc_dqinfo;
        struct obd_dqblk        qc_dqblk;
        char                    obd_type[16];
        struct obd_uuid         obd_uuid;
};
struct obd_dqblk {
        __u64 dqb_bhardlimit;
        __u64 dqb_bsoftlimit;
        __u64 dqb_curspace;
        __u64 dqb_ihardlimit;
        __u64 dqb_isoftlimit;
        __u64 dqb_curinodes;
        __u64 dqb_btime;
        __u64 dqb_itime;
        __u32 dqb_valid;
        __u32 padding;
};
struct obd_dqinfo {
        __u64 dqi_bgrace;
        __u64 dqi_igrace;
        __u32 dqi_flags;
        __u32 dqi_valid;
};
struct obd_uuid {
        char uuid[40];
};

42.4.2. Description
The llapi_quotactl() command manipulates disk quotas on a Lustre file system mount. qc_cmd
indicates a command to be applied to UID qc_id or GID qc_id.



Setting Lustre Properties
in a C Program (llapi)

527

Option Description

LUSTRE_Q_GETQUOTA Gets disk quota limits and current usage for user or
group qc_id. qc_type is USRQUOTA or GRPQUOTA.
uuid may be filled with OBD UUID string to
query quota information from a specific node.
dqb_valid may be set nonzero to query information
only from MDS. If uuid is an empty string and
dqb_valid is zero then cluster-wide limits and
usage are returned. On return, obd_dqblk contains
the requested information (block limits unit is
kilobyte). Quotas must be turned on before using
this command.

LUSTRE_Q_SETQUOTA Sets disk quota limits for user or group qc_id.
qc_type is USRQUOTA or GRPQUOTA. dqb_valid
must be set to QIF_ILIMITS, QIF_BLIMITS or
QIF_LIMITS (both inode limits and block limits)
dependent on updating limits. obd_dqblk must be
filled with limits values (as set in dqb_valid, block
limits unit is kilobyte). Quotas must be turned on
before using this command.

LUSTRE_Q_GETINFO Gets information about quotas. qc_type is either
USRQUOTA or GRPQUOTA. On return, dqi_igrace
is inode grace time (in seconds), dqi_bgrace is block
grace time (in seconds), dqi_flags is not used by the
current release of the Lustre software.

LUSTRE_Q_SETINFO Sets quota information (like grace times). qc_type
is either USRQUOTA or GRPQUOTA. dqi_igrace is
inode grace time (in seconds), dqi_bgrace is block
grace time (in seconds), dqi_flags is not used by the
current release of the Lustre software and must be
zeroed.

42.4.3. Return Values
llapi_quotactl() returns:

0 On success

-1  On failure and sets error number (errno) to indicate the error

42.4.4. Errors
llapi_quotactl errors are described below.

Errors Description

EFAULT qctl is invalid.

ENOSYS Kernel or Lustre modules have not been compiled
with the QUOTA option.

ENOMEM Insufficient memory to complete operation.

ENOTTY qc_cmd is invalid.



Setting Lustre Properties
in a C Program (llapi)

528

Errors Description

ENOENT uuid does not correspond to OBD or mnt does not
exist.

EPERM The call is privileged and the caller is not the super
user.

ESRCH No disk quota is found for the indicated user. Quotas
have not been turned on for this file system.

42.5.  llapi_path2fid
Use llapi_path2fid to get the FID from the pathname.

42.5.1. Synopsis
#include <lustre/lustreapi.h>
 
int llapi_path2fid(const char *path, unsigned long long *seq, unsigned long *oid, unsigned long *ver)

42.5.2. Description
The llapi_path2fid function returns the FID (sequence : object ID : version) for the pathname.

42.5.3. Return Values
llapi_path2fid returns:

0 On success

non-zero value On failure

Introduced in Lustre 2.9

42.6.  llapi_ladvise
Use llapi_ladvise to give IO advice/hints on a Lustre file to the server.

42.6.1. Synopsis

#include <lustre/lustreapi.h>
int llapi_ladvise(int fd, unsigned long long flags,
                  int num_advise, struct llapi_lu_ladvise *ladvise);
                                
struct llapi_lu_ladvise {
  __u16 lla_advice;       /* advice type */
  __u16 lla_value1;       /* values for different advice types */
  __u32 lla_value2;
  __u64 lla_start;        /* first byte of extent for advice */
  __u64 lla_end;          /* last byte of extent for advice */
  __u32 lla_value3;
  __u32 lla_value4;



Setting Lustre Properties
in a C Program (llapi)

529

};
          

42.6.2. Description
The llapi_ladvise function passes an array of num_advise I/O hints (up to a maximum of
LAH_COUNT_MAX items) in ladvise for the file descriptor fd from an application to one or more Lustre
servers. Optionally, flags can modify how the advice will be processed via bitwise-or'd values:

• LF_ASYNC: Clients return to userspace immediately after submitting ladvise RPCs, leaving server
threads to handle the advices asynchronously.

• LF_UNSET: Unset/clear a previous advice (Currently only supports
LU_ADVISE_LOCKNOEXPAND).

Each of the ladvise elements is an llapi_lu_ladvise structure, which contains the following fields:

Field Description

lla_ladvice Specifies the advice for the given file range,
currently one of:

LU_LADVISE_WILLREAD: Prefetch data into
server cache using optimum I/O size for the server.

LU_LADVISE_DONTNEED: Clean cached data for
the specified file range(s) on the server.

lla_start The offset in bytes for the start of this advice.

lla_end The offset in bytes (non-inclusive) for the end of this
advice.

lla_value1

lla_value2

lla_value3

lla_value4

Additional arguments for future advice types and
should be set to zero if not explicitly required for a
given advice type. Advice-specific names for these
fields follow.

lla_lockahead_mode When using LU_ADVISE_LOCKAHEAD, the
'lla_value1' field is used to communicate the
requested lock mode, and can be referred to as
lla_lockahead_mode.

lla_peradvice_flags When using advices which support them, the
'lla_value2' field is used to communicate per-advice
flags and can be referred to as 'lla_peradvice_flags'.
Both LF_ASYNC and LF_UNSET are supported as
peradvice flags.

lla_lockahead_result When using LU_ADVISE_LOCKAHEAD, the
'lla_value3' field is used to communicate the
result of the request, and can be referred to as
lla_lockahead_result.

llapi_ladvise() forwards the advice to Lustre servers without guaranteeing how and when servers
will react to the advice. Actions may or may not be triggered when the advices are received, depending on
the type of the advice as well as the real-time decision of the affected server-side components.



Setting Lustre Properties
in a C Program (llapi)

530

A typical usage of llapi_ladvise() is to enable applications and users (via lfs ladvise) with
external knowledge about application I/O patterns to intervene in server-side I/O handling. For example, if
a group of different clients are doing small random reads of a file, prefetching pages into OSS cache with
big linear reads before the random IO is an overall net benefit. Fetching that data into each client cache
with fadvise() may not be beneficial, due to much more data being sent to the clients.

LU_LADVISE_LOCKAHEAD merits a special comment. While it is possible and encouraged to use it
directly in your application to avoid lock contention (primarily for writing to a single file from multiple
clients), it will also be available in the MPI-I/O / MPICH library from ANL for use with the i/o aggregation
mode of that library. This is intended (eventually) to be the primary way this feature is used.

At the time of writing, this support is proposed as a patch but is not yet merged in to the public ANL code
base. Users are encouraged to check their MPICH documentation and/or check with their library provider
about support.

While conceptually similar to the posix_fadvise and Linux fadvise system calls, the main difference of
llapi_ladvise() is that fadvise() / posix_fadvise() are client side mechanisms that do not pass advice
to the filesystem, while llapi_ladvise() sends advice or hints to one or more Lustre servers on
which the file is stored. In some cases it may be desirable to use both interfaces.

42.6.3. Return Values
llapi_ladvise returns:

0 On success

-1 if an error occurred (in which case, errno is set appropriately).

42.6.4. Errors

Error Description

ENOMEM Insufficient memory to complete operation.

EINVAL One or more invalid arguments are given.

EFAULT Memory region pointed by ladvise is not
properly mapped.

ENOTSUPP Advice type is not supported.

42.7. Example Using the llapi Library
Use llapi_file_create to set Lustre software properties for a new file. For a synopsis and
description of llapi_file_create and examples of how to use it, see Chapter 43, Configuration
Files and Module Parameters.

You can set striping from inside programs like ioctl. To compile the sample program, you need to install
the Lustre client source RPM.

A simple C program to demonstrate striping API - libtest.c

/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
 * vim:expandtab:shiftwidth=8:tabstop=8:



Setting Lustre Properties
in a C Program (llapi)

531

 *
 * lustredemo - a simple example of lustreapi functions
 */
#include <stdio.h>
#include <fcntl.h>
#include <dirent.h>
#include <errno.h>
#include <stdlib.h>
#include <lustre/lustreapi.h>
#define MAX_OSTS 1024
#define LOV_EA_SIZE(lum, num) (sizeof(*lum) + num * sizeof(*lum->lmm_objects))
#define LOV_EA_MAX(lum) LOV_EA_SIZE(lum, MAX_OSTS)

/*
 * This program provides crude examples of using the lustreapi API functions
 */
/* Change these definitions to suit */

#define TESTDIR "/tmp"           /* Results directory */
#define TESTFILE "lustre_dummy"  /* Name for the file we create/destroy */
#define FILESIZE 262144                    /* Size of the file in words */
#define DUMWORD "DEADBEEF"       /* Dummy word used to fill files */
#define MY_STRIPE_WIDTH 2                  /* Set this to the number of OST required */
#define MY_LUSTRE_DIR "/mnt/lustre/ftest"

int close_file(int fd)
{
        if (close(fd) < 0) {
                fprintf(stderr, "File close failed: %d (%s)\n", errno, strerror(errno));
                return -1;
        }
        return 0;
}

int write_file(int fd)
{
        char *stng =  DUMWORD;
        int cnt = 0;

        for( cnt = 0; cnt < FILESIZE; cnt++) {
                write(fd, stng, sizeof(stng));
        }
        return 0;
}
/* Open a file, set a specific stripe count, size and starting OST
 *    Adjust the parameters to suit */
int open_stripe_file()
{
        char *tfile = TESTFILE;
        int stripe_size = 65536;    /* System default is 4M */
        int stripe_offset = -1;     /* Start at default */
        int stripe_count = MY_STRIPE_WIDTH;  /*Single stripe for this demo*/
        int stripe_pattern = 0;     /* only RAID 0 at this time */
        int rc, fd;



Setting Lustre Properties
in a C Program (llapi)

532

        rc = llapi_file_create(tfile,
                        stripe_size,stripe_offset,stripe_count,stripe_pattern);
        /* result code is inverted, we may return -EINVAL or an ioctl error.
         * We borrow an error message from sanity.c
         */
        if (rc) {
                fprintf(stderr,"llapi_file_create failed: %d (%s) \n", rc, strerror(-rc));
                return -1;
        }
        /* llapi_file_create closes the file descriptor, we must re-open */
        fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);
        if (fd < 0) {
                fprintf(stderr, "Can't open %s file: %d (%s)\n", tfile, errno, strerror(errno));
                return -1;
        }
        return fd;
}

/* output a list of uuids for this file */
int get_my_uuids(int fd)
{
        struct obd_uuid uuids[1024], *uuidp;        /* Output var */
        int obdcount = 1024;
        int rc,i;

        rc = llapi_lov_get_uuids(fd, uuids, &obdcount);
        if (rc != 0) {
                fprintf(stderr, "get uuids failed: %d (%s)\n",errno, strerror(errno));
        }
        printf("This file system has %d obds\n", obdcount);
        for (i = 0, uuidp = uuids; i < obdcount; i++, uuidp++) {
                printf("UUID %d is %s\n",i, uuidp->uuid);
        }
        return 0;
}

/* Print out some LOV attributes. List our objects */
int get_file_info(char *path)
{

        struct lov_user_md *lump;
        int rc;
        int i;

        lump = malloc(LOV_EA_MAX(lump));
        if (lump == NULL) {
                return -1;
        }

        rc = llapi_file_get_stripe(path, lump);

        if (rc != 0) {
                fprintf(stderr, "get_stripe failed: %d (%s)\n",errno, strerror(errno));



Setting Lustre Properties
in a C Program (llapi)

533

                return -1;
        }

        printf("Lov magic %u\n", lump->lmm_magic);
        printf("Lov pattern %u\n", lump->lmm_pattern);
        printf("Lov object id %llu\n", lump->lmm_object_id);
        printf("Lov stripe size %u\n", lump->lmm_stripe_size);
        printf("Lov stripe count %hu\n", lump->lmm_stripe_count);
        printf("Lov stripe offset %u\n", lump->lmm_stripe_offset);
        for (i = 0; i < lump->lmm_stripe_count; i++) {
                printf("Object index %d Objid %llu\n", lump->lmm_objects[i].l_ost_idx, lump->lmm_objects[i].l_object_id);
        }

        free(lump);
        return rc;

}

/* Ping all OSTs that belong to this filesystem */
int ping_osts()
{
        DIR *dir;
        struct dirent *d;
        char osc_dir[100];
        int rc;

        sprintf(osc_dir, "/proc/fs/lustre/osc");
        dir = opendir(osc_dir);
        if (dir == NULL) {
                printf("Can't open dir\n");
                return -1;
        }
        while((d = readdir(dir)) != NULL) {
                if ( d->d_type == DT_DIR ) {
                        if (! strncmp(d->d_name, "OSC", 3)) {
                                printf("Pinging OSC %s ", d->d_name);
                                rc = llapi_ping("osc", d->d_name);
                                if (rc) {
                                        printf("  bad\n");
                                } else {
                                        printf("  good\n");
                                }
                        }
                }
        }
        return 0;

}

int main()
{
        int file;
        int rc;
        char filename[100];



Setting Lustre Properties
in a C Program (llapi)

534

        char sys_cmd[100];

        sprintf(filename, "%s/%s",MY_LUSTRE_DIR, TESTFILE);

        printf("Open a file with striping\n");
        file = open_stripe_file();
        if ( file < 0 ) {
                printf("Exiting\n");
                exit(1);
        }
        printf("Getting uuid list\n");
        rc = get_my_uuids(file);
        printf("Write to the file\n");
        rc = write_file(file);
        rc = close_file(file);
        printf("Listing LOV data\n");
        rc = get_file_info(filename);
        printf("Ping our OSTs\n");
        rc = ping_osts();

        /* the results should match lfs getstripe */
        printf("Confirming our results with lfs getstripe\n");
        sprintf(sys_cmd, "/usr/bin/lfs getstripe %s/%s", MY_LUSTRE_DIR, TESTFILE);
        system(sys_cmd);

        printf("All done\n");
        exit(rc);
}

Makefile for sample application:

 
gcc -g -O2 -Wall -o lustredemo libtest.c -llustreapi
clean:
rm -f core lustredemo *.o
run: 
make
rm -f /mnt/lustre/ftest/lustredemo
rm -f /mnt/lustre/ftest/lustre_dummy
cp lustredemo /mnt/lustre/ftest/

42.7.1. See Also
• Section 42.1, “ llapi_file_create ”

• Section 42.2, “llapi_file_get_stripe”

• Section 42.3, “ llapi_file_open ”

• Section 42.4, “ llapi_quotactl ”



535

Chapter 43. Configuration Files and
Module Parameters

This section describes configuration files and module parameters and includes the following sections:

• Section 43.1, “ Introduction”

• Section 43.2, “ Module Options”

43.1.    Introduction
LNet network hardware and routing are now configured via module parameters. Parameters should be
specified in the /etc/modprobe.d/lustre.conffile, for example:

options lnet networks=tcp0(eth2)

The above option specifies that this node should use the TCP protocol on the eth2 network interface.

Module parameters are read when the module is first loaded. Type-specific LND modules (for instance,
ksocklnd) are loaded automatically by the LNet module when LNet starts (typically upon modprobe
ptlrpc).

LNet configuration parameters can be viewed under /sys/module/lnet/parameters/, and
LND-specific parameters under the name of the corresponding LND, for example /sys/module/
ksocklnd/parameters/ for the socklnd (TCP) LND.

For the following parameters, default option settings are shown in parenthesis. Changes to parameters
marked with a W affect running systems. Unmarked parameters can only be set when LNet loads for
the first time. Changes to parameters marked with Wc only have effect when connections are established
(existing connections are not affected by these changes.)

43.2.   Module Options
• With routed or other multi-network configurations, use ip2nets rather than networks, so all nodes

can use the same configuration.

• For a routed network, use the same 'routes' configuration everywhere. Nodes specified as routers
automatically enable forwarding and any routes that are not relevant to a particular node are ignored.
Keep a common configuration to guarantee that all nodes have consistent routing tables.

• A separate lustre.conf file makes distributing the configuration much easier.

• If you set config_on_load=1, LNet starts at modprobe time rather than waiting for the Lustre
file system to start. This ensures routers start working at module load time.

# lctl 
# lctl> net down

• Remember the lctl ping {nid} command - it is a handy way to check your LNet configuration.



Configuration Files
and Module Parameters

536

43.2.1.  LNet Options
This section describes LNet options.

43.2.1.1.  Network Topology

Network topology module parameters determine which networks a node should join, whether it should
route between these networks, and how it communicates with non-local networks.

Here is a list of various networks and the supported software stacks:

Network Software Stack

o2ib OFED Version 2

Note

The Lustre software ignores the loopback interface (lo0), but the Lustre file system uses any IP
addresses aliased to the loopback (by default). When in doubt, explicitly specify networks.

43.2.1.2.  ip2nets ("tcp")

ip2nets is a string that lists globally available networks, each with a set of IP address ranges. LNet
determines the locally-available networks from this list by matching the IP address ranges with the local
IPs of a node. Its purpose is to allow the same modules.conf file to be used across a variety of nodes
on different networks. The string has the following syntax.

<ip2nets> :== <net-match> [ <comment> ] { <net-sep> <net-match> }
<net-match> :== [ <w> ] <net-spec> <w> <ip-range> { <w> <ip-range> }
[ <w> ]
<net-spec> :== <network> [ "(" <interface-list> ")" ]
<network> :== <nettype> [ <number> ]
<nettype> :== "tcp" | "elan" | "o2ib" | ...
<iface-list> :== <interface> [ "," <iface-list> ]
<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>
<r-expr> :== <number> | "*" | "[" <r-list> "]"
<r-list> :== <range> [ "," <r-list> ]
<range> :== <number> [ "-" <number> [ "/" <number> ] ]
<comment :== "#" { <non-net-sep-chars> }
<net-sep> :== ";" | "\n"
<w> :== <whitespace-chars> { <whitespace-chars> }

<net-spec> contains enough information to uniquely identify the network and load an appropriate
LND. The LND determines the missing "address-within-network" part of the NID based on the interfaces
it can use.

<iface-list> specifies which hardware interface the network can use. If omitted, all interfaces are
used. LNDs that do not support the <iface-list> syntax cannot be configured to use particular
interfaces and just use what is there. Only a single instance of these LNDs can exist on a node at any time,
and <iface-list> must be omitted.

<net-match> entries are scanned in the order declared to see if one of the node's IP addresses matches
one of the <ip-range> expressions. If there is a match, <net-spec> specifies the network to



Configuration Files
and Module Parameters

537

instantiate. Note that it is the first match for a particular network that counts. This can be used to simplify
the match expression for the general case by placing it after the special cases. For example:

ip2nets="tcp(eth1,eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"

4 nodes on the 134.32.1.* network have 2 interfaces (134.32.1.{4,6,8,10}) but all the rest have 1.

ip2nets="o2ib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]" 

This describes an IB cluster on 192.168.0.*. Four of these nodes also have IP interfaces; these four could
be used as routers.

Note that match-all expressions (For instance, *.*.*.*) effectively mask all other

<net-match> entries specified after them. They should be used with caution.

Here is a more complicated situation, the route parameter is explained below. We have:

• Two TCP subnets

• One Elan subnet

• One machine set up as a router, with both TCP and Elan interfaces

• IP over Elan configured, but only IP will be used to label the nodes.

options lnet ip2nets=â€tcp 198.129.135.* 192.128.88.98; \
        elan 198.128.88.98 198.129.135.3; \ 
        routes='cp 1022@elan # Elan NID of router; \
        elan  198.128.88.98@tcp # TCP NID of router  '

43.2.1.3.  networks ("tcp")

This is an alternative to "ip2nets" which can be used to specify the networks to be instantiated explicitly.
The syntax is a simple comma separated list of <net-spec>s (see above). The default is only used if
neither 'ip2nets' nor 'networks' is specified.

43.2.1.4.  routes ("")

This is a string that lists networks and the NIDs of routers that forward to them.

It has the following syntax (<w> is one or more whitespace characters):

<routes> :== <route>{ ; <route> }
<route> :== [<net>[<w><hopcount>]<w><nid>[:<priority>]{<w><nid>[:<priority>]}

Note: the priority parameter was added in release 2.5.

So a node on the network tcp1 that needs to go through a router to get to the Elan network:

options lnet networks=tcp1 routes="elan 1 192.168.2.2@tcpA"

The hopcount and priority numbers are used to help choose the best path between multiply-routed
configurations.

A simple but powerful expansion syntax is provided, both for target networks and router NIDs as follows.



Configuration Files
and Module Parameters

538

<expansion> :== "[" <entry> { "," <entry> } "]"
<entry> :== <numeric range> | <non-numeric item>
<numeric range> :== <number> [ "-" <number> [ "/" <number> ] ]

The expansion is a list enclosed in square brackets. Numeric items in the list may be a single
number, a contiguous range of numbers, or a strided range of numbers. For example, routes="elan
192.168.1.[22-24]@tcp" says that network elan0 may be adjacent or behind another network
(hopcount is undefined); and is accessible via 3 routers on the tcp0 network (192.168.1.22@tcp,
192.168.1.23@tcp and 192.168.1.24@tcp).

routes="[tcp,o2ib] 2 [8-14/2]@elan" says that 2 networks (tcp0 and o2ib0) are
accessible through 4 routers (8@elan, 10@elan, 12@elan and 14@elan). The hopcount of 2 means
that traffic to both these networks will be traversed 2 routers - first one of the routers specified in this
entry, then one more.

Duplicate entries, entries that route to a local network, and entries that specify routers on a non-local
network are ignored.

Prior to release 2.5, a conflict between equivalent entries was resolved in favor of the route with the shorter
hopcount. The hopcount, if omitted, is undefined, but is treated as 1 when being compared to other routes
during selection (as if the remote network is adjacent).

Introduced in Lustre 2.5

Since 2.5, equivalent entries are resolved in favor of the route with the lowest priority number or shorter
hopcount if the priorities are equal. The priority, if omitted, defaults to 0. The hopcount, if omitted, is
undefined, but is treated as 1 when being compared to other routes during selection (as if the remote
network is adjacent).

It is an error to specify routes to the same destination with routers on different local networks.

If a route string contains no hop count, then the hop count is undefined. Explicitly setting the hop count to
1 is recommended if the remote network is adjacent and avoid_asym_router_failure is enabled
to ensure proper operation of the feature.

43.2.1.5.  forwarding ("")

This is a string that can be set either to "enabled" or "disabled" for explicit control of whether this
node should act as a router, forwarding communications between all local networks.

A standalone router can be started by simply starting LNet ('modprobe ptlrpc') with appropriate
network topology options.

43.2.1.6. accept (secure)

The acceptor is a TCP/IP service that some LNDs use to establish communications. If a local network
requires it and it has not been disabled, the acceptor listens on a single port for connection requests that
it redirects to the appropriate local network. The acceptor is part of the LNet module and configured by
the following options:

Variable Description

accept

(secure)

The type of connections that the acceptor will allow
from remote nodes.



Configuration Files
and Module Parameters

539

Variable Description

• secure - Accept connections only from
reserved TCP ports (below 1023). This is the
default, and prevents userspace processes from
trying to connect to the server.

• all - Accept connections from any TCP port.
This may be needed to allow connections on non-
privileged ports, for example from a client in a
virtual machine running in userspace.

• none - Do not run the acceptor. This may prevent
the client from receiving server RPCs if the TCP
connection is lost and the server needs to contact
the client for some reason (e.g. LDLM lock
callback or size glimpse).

accept_port

(988)

Port number on which the acceptor should listen
for connection requests. All nodes in a site
configuration that require an acceptor must use the
same port.

accept_backlog

(127)

Maximum length that the queue of pending
connections may grow to (see listen(2)).

accept_timeout

(5, W)

Maximum time in seconds the acceptor is allowed
to block while communicating with a peer.

accept_proto_version Version of the acceptor protocol that should be used
by outgoing connection requests. It defaults to the
most recent acceptor protocol version, but it may
be set to the previous version to allow the node to
initiate connections with nodes that only understand
that version of the acceptor protocol. The acceptor
can, with some restrictions, handle either version
(that is, it can accept connections from both 'old' and
'new' peers). For the current version of the acceptor
protocol (version 1), the acceptor is compatible with
old peers if it is only required by a single local
network.

43.2.1.7.  rnet_htable_size

rnet_htable_size is an integer that indicates how many remote networks the internal LNet hash
table is configured to handle. rnet_htable_size is used for optimizing the hash table size and does
not put a limit on how many remote networks you can have. The default hash table size when this parameter
is not specified is: 128.

43.2.2.  SOCKLND Kernel TCP/IP LND
The SOCKLND kernel TCP/IP LND (socklnd) is connection-based and uses the acceptor to establish
communications via sockets with its peers.

It supports multiple instances and load balances dynamically over multiple interfaces. If no interfaces are
specified by the ip2nets or networks module parameter, all non-loopback IP interfaces are used. The



Configuration Files
and Module Parameters

540

address-within-network is determined by the address of the first IP interface an instance of the socklnd
encounters.

Consider a node on the 'edge' of an InfiniBand network, with a low-bandwidth management Ethernet
(eth0), IP over IB configured (ipoib0), and a pair of GigE NICs (eth1,eth2) providing off-cluster
connectivity. This node should be configured with ' networks=o2ib,tcp(eth1,eth2)' to ensure
that the socklnd ignores the management Ethernet and IPoIB.

Variable Description

timeout

(50,W)

Time (in seconds) that communications may be
stalled before the LND completes them with failure.

nconnds

(4)

Sets the number of connection daemons.

min_reconnectms

(1000,W)

Minimum connection retry interval (in
milliseconds). After a failed connection attempt,
this is the time that must elapse before the first
retry. As connections attempts fail, this time is
doubled on each successive retry up to a maximum
of 'max_reconnectms'.

max_reconnectms

(6000,W)

Maximum connection retry interval (in
milliseconds).

eager_ack

(0 on linux,

1 on darwin,W)

Boolean that determines whether the socklnd
should attempt to flush sends on message
boundaries.

typed_conns

(1,Wc)

Boolean that determines whether the socklnd
should use different sockets for different types of
messages. When clear, all communication with a
particular peer takes place on the same socket.
Otherwise, separate sockets are used for bulk sends,
bulk receives and everything else.

min_bulk

(1024,W)

Determines when a message is considered "bulk".

tx_buffer_size, rx_buffer_size

(8388608,Wc)

Socket buffer sizes. Setting this option to zero (0),
allows the system to auto-tune buffer sizes.

Warning

Be very careful changing this value as
improper sizing can harm performance.

nagle

(0,Wc)

Boolean that determines if nagle should be
enabled. It should never be set in production
systems.

keepalive_idle

(30,Wc)

Time (in seconds) that a socket can remain idle
before a keepalive probe is sent. Setting this value
to zero (0) disables keepalives.



Configuration Files
and Module Parameters

541

Variable Description

keepalive_intvl

(2,Wc)

Time (in seconds) to repeat unanswered keepalive
probes. Setting this value to zero (0) disables
keepalives.

keepalive_count

(10,Wc)

Number of unanswered keepalive probes before
pronouncing socket (hence peer) death.

enable_irq_affinity

(0,Wc)

Boolean that determines whether to enable IRQ
affinity. The default is zero (0).

When set, socklnd attempts to maximize
performance by handling device interrupts and data
movement for particular (hardware) interfaces on
particular CPUs. This option is not available on all
platforms. This option requires an SMP system to
exist and produces best performance with multiple
NICs. Systems with multiple CPUs and a single
NIC may see increase in the performance with this
parameter disabled.

zc_min_frag

(2048,W)

Determines the minimum message fragment
that should be considered for zero-copy sends.
Increasing it above the platform's PAGE_SIZE
disables all zero copy sends. This option is not
available on all platforms.



542

Chapter 44. System Configuration
Utilities

This chapter includes system configuration utilities and includes the following sections:

• Section 44.1, “ l_getidentity”

• Section 44.2, “ lctl”

• Section 44.3, “ ll_decode_filter_fid”

• Section 44.5, “ llog_reader”

• Section 44.6, “ llstat”

• Section 44.7, “ llverdev”

• Section 44.8, “ lshowmount”

• Section 44.9, “ lst”

• Section 44.10, “ lustre_rmmod.sh”

• Section 44.11, “ lustre_rsync”

• Section 44.12, “ mkfs.lustre”

• Section 44.13, “ mount.lustre”

• Section 44.14, “ routerstat”

• Section 44.15, “ tunefs.lustre”

• Section 44.16, “ Additional System Configuration Utilities”

44.1.  l_getidentity
The l_getidentity tool normally handles Lustre user/group mapping upcall.

44.1.1. Synopsis
l_getidentity { $FSNAME-MDT{xxxx}| -d} {uid}

44.1.2. Description
The l_getidentity utility is called from the MDS to map a numeric UID value into the list of
supplementary group values for that UID, and writes this into the mdt.*.identity_info parameter
file. The list of supplementary groups is cached in the kernel to avoid repeated upcalls. See Section 41.1,
“User/Group Upcall” for more details.

The l_getidentity utility can also be run directly for debugging purposes to ensure that the UID
mapping for a particular user is configured correctly, by using the -d argument instead of the MDT name.



System Configuration Utilities

543

44.1.3. Options
Option Description

${FSNAME}-MDT{xxxx} Metadata server target name

uid User identifier

44.1.4. Files
The parameter to set the l_getidentity path is:

mds# lctl set_param -P mdt.*-MDT*.identity_upcall=path

44.2.  lctl
The lctl utility is used for root control and configuration. With lctl you can directly control Lustre via an
ioctl interface, allowing various configuration, maintenance and debugging features to be accessed.

44.2.1. Synopsis
lctl [--device devno] command [args]

44.2.2. Description
The lctl utility can be invoked in interactive mode by issuing the lctl command. After that, commands are
issued as shown below. The most common lctl commands are:

dl
dk
device
network up|down
list_nids
ping nidhelp
quit

For a complete list of available commands, type help at the lctl prompt. To get basic help on command
meaning and syntax, type help command. Command completion is activated with the TAB key
(depending on compile options), and command history is available via the up- and down-arrow keys.

For non-interactive use, use the second invocation, which runs the command after connecting to the device.

44.2.3. Setting Parameters with lctl
Lustre parameters are not always accessible using the procfs interface, as it is platform-specific. As a
solution, lctl {get,set}_param provides a platform-independent interface to the Lustre tunables.
Avoid any direct references to /proc and /sys files in scripts. For future portability, instead use lctl
{get,set}_param, which handles these details internally.

When the file system is running, use the lctl set_param command on the affected node(s) to
temporarily set parameters (mapping to items in). The lctl set_param command uses this syntax:

lctl set_param [-n] [-P] [-d] obdtype.obdname.property=value

For example:



System Configuration Utilities

544

mds# lctl set_param mdt.testfs-MDT0000.identity_upcall=NONE

Introduced in Lustre 2.5

Use -P option to set parameters permanently. Option -d deletes permanent parameters. For example:

mgs# lctl set_param -P mdt.testfs-MDT0000.identity_upcall=NONE
mgs# lctl set_param -P -d mdt.testfs-MDT0000.identity_upcall

Many permanent parameters can be set with the lctl conf_param utility. In general, lctl
conf_param can be used to specify any OBD device parameter settable in a /proc/fs/lustre file. The
lctl conf_param command must be run on the MGS node, and uses this syntax:

obd|fsname.obdtype.property=value) 

For example:

mgs# lctl conf_param testfs-MDT0000.mdt.identity_upcall=NONE
$ lctl conf_param testfs.llite.max_read_ahead_mb=16 

Caution

The lctl conf_param command permanently sets parameters in the file system configuration
for all nodes of the specified type.

To get current Lustre parameter settings, use the lctl get_param command on the desired node with
the same parameter name as lctl set_param:

# lctl get_param [-n] obdtype.obdname.parameter

For example:

mds# lctl get_param mdt.testfs-MDT0000.identity_upcall

To list Lustre parameters that are available to set, use the lctl list_param command, with this syntax:

# lctl list_param [-R] [-F] obdtype.obdname.*

For example, to list all of the parameters on the MDT:

oss# lctl list_param -RF mdt

For more information on using lctl to set temporary and permanent parameters, see Section 13.12.3,
“Setting Parameters with lctl”.

Network Configuration

Option Description

network up|down|tcp|elan Starts or stops LNet, or selects a network type for
other lctl LNet commands.

list_nids Prints all NIDs on the local node. LNet must be
running.



System Configuration Utilities

545

Option Description

which_nid nidlist From a list of NIDs for a remote node, identifies the
NID on which interface communication will occur.

ping nid Checks LNet connectivity via an LNet ping. This
uses the fabric appropriate to the specified NID.

interface_list Prints the network interface information for a given
network type.

peer_list Prints the known peers for a given network type.

conn_list Prints all the connected remote NIDs for a given
network type.

active_tx This command prints active transmits. It is only used
for the Elan network type.

route_list Prints the complete routing table.

Device Selection

Option Description

device devname This selects the specified OBD
device. All other commands
depend on the device being set.

device_list Shows the local Lustre OBDs, a/
k/a dl.

Device Operations

Option Description

list_param [-F|-R] parameter [parameter ...] Lists the Lustre or LNet parameter
name.

-F Adds '/', '@' or '=' for directories,
symlinks and writeable files,
respectively.

-R Recursively lists all parameters
under the specified path. If
param_path is unspecified, all
parameters are shown.

get_param [-n|-N|-F] parameter [parameter ...] Gets the value of a Lustre or LNet
parameter from the specified path.

-n Prints only the parameter value
and not the parameter name.

-N Prints only matched parameter
names and not the values;
especially useful when using
patterns.

-F When -N is specified, adds '/', '@'
or '=' for directories, symlinks and
writeable files, respectively.



System Configuration Utilities

546

Option Description

set_param [-n] parameter=value Sets the value of a Lustre or LNet
parameter from the specified path.

-n Disables printing of the key name
when printing values.

conf_param [-d] device|fsname parameter=value Sets a permanent configuration
parameter for any device via the
MGS. This command must be run
on the MGS node.

All writeable parameters under
lctl list_param (e.g. lctl
list_param -F osc.*.* |
grep =) can be permanently set
using lctl conf_param, but
the conversion of list_param
names to conf_param names
is not obvious, so it is preferred
to use the set_param -P
command.

For more information on
setting permanent parameters,
see Section 13.12.3.2, “Setting
Permanent Parameters” (Setting
Permanent Parameters).

-d device|
fsname.parameter

Deletes a parameter setting (use
the default value at the next
restart). A null value for value
also deletes the parameter setting.

activate Re-activates an import after the
deactivate operation. This setting
is only effective until the next
restart (see conf_param).

deactivate Deactivates an import, in
particular meaning do not assign
new file stripes to an OSC.
Running lctl deactivate on the
MDS stops new objects from
being allocated on the OST.
Running lctl deactivate on Lustre
clients causes them to return -
EIO when accessing objects on
the OST instead of waiting for
recovery.

abort_recovery Aborts the recovery process on a
re-starting MDT or OST.



System Configuration Utilities

547

Note

Lustre tunables are not always accessible using the procfs interface, as it is platform-specific.
As a solution, lctl {get,set,list}_param has been introduced as a platform-
independent interface to the Lustre tunables. Avoid direct references to /proc/{fs,sys}/
{lustre,lnet}. For future portability, use lctl {get,set,list}_param instead.

Virtual Block Device Operations

Lustre can emulate a virtual block device upon a regular file. This emulation is needed when you are trying
to set up a swap space via the file.

Option Description

blockdev_attach filename /dev/
lloop_device

Attaches a regular Lustre file to a block device. If
the device node does not exist, lctl creates it. It is
recommend that a device node is created by lctl
since the emulator uses a dynamical major number.

blockdev_detach /dev/lloop_device Detaches the virtual block device.

blockdev_info /dev/lloop_device Provides information about the Lustre file attached
to the device node.

Changelogs

Option Description

changelog_register Registers a new changelog user for a particular
device. Changelog entries are saved persistently on
the MDT with each filesystem operation, and are
only purged beyond all registered user's minimum
set point (see lfs changelog_clear). This
may cause the Changelog to consume a large
amount of space, eventually filling the MDT, if a
changelog user is registered but never consumes
those records.

changelog_deregister id Unregisters an existing changelog user. If the user's
"clear" record number is the minimum for the
device, changelog records are purged until the next
minimum.

Debug

Option Description

debug_daemon Starts and stops the debug daemon, and controls the
output filename and size.

debug_kernel [file] [raw] Dumps the kernel debug buffer to stdout or a file.

debug_file input_file
[output_file]

Converts the kernel-dumped debug log from binary
to plain text format.

clear Clears the kernel debug buffer.

mark text Inserts marker text in the kernel debug buffer.

filter subsystem_id|debug_mask Filters kernel debug messages by subsystem or
mask.

show subsystem_id|debug_mask Shows specific types of messages.



System Configuration Utilities

548

Option Description

debug_list subsystems|types Lists all subsystem and debug types.

modules path Provides GDB-friendly module information.

44.2.4. Options
Use the following options to invoke lctl.

Option Description

--device Device to be used for the operation (specified by
name or number). See device_list.

--ignore_errors | ignore_errors Ignores errors during script processing.

44.2.5. Examples
lctl

$ lctl
lctl > dl 
   0 UP mgc MGC192.168.0.20@tcp btbb24e3-7deb-2ffa-eab0-44dffe00f692 5 
   1 UP ost OSS OSS_uuid 3 
   2 UP obdfilter testfs-OST0000 testfs-OST0000_UUID 3 
lctl > dk /tmp/log Debug log: 87 lines, 87 kept, 0 dropped. 
lctl > quit

44.2.6. See Also
• Section 44.12, “ mkfs.lustre”

• Section 44.13, “ mount.lustre”

• Section 44.2, “ lctl”

• Section 40.1, “ lfs ”

44.3.  ll_decode_filter_fid
The ll_decode_filter_fid utility displays the Lustre object ID and MDT parent FID.

44.3.1. Synopsis
ll_decode_filter_fid object_file [object_file ...]

44.3.2. Description
The ll_decode_filter_fid utility decodes and prints the Lustre OST object ID, MDT FID, stripe index for
the specified OST object(s), which is stored in the "trusted.fid" attribute on each OST object. This is
accessible to ll_decode_filter_fid when the OST file system is mounted locally as type ldiskfs
for maintenance.

The "trusted.fid" extended attribute is stored on each OST object when it is first modified (data written or
attributes set), and is not accessed or modified by Lustre after that time.



System Configuration Utilities

549

The OST object ID (objid) may be useful in case of OST directory corruption, though LFSCK can normally
reconstruct the entire OST object directory tree, see Section 36.4, “ Checking the file system with LFSCK”
for details. The MDS FID can be useful to determine which MDS inode an OST object is (or was) used
by. The stripe index can be used in conjunction with other OST objects to reconstruct the layout of a file
even if the MDT inode was lost.

44.3.3. Examples
root@oss1# cd /mnt/ost/lost+found
root@oss1# ll_decode_filter_fid #123454 #123455 #123458
#123454: objid=690670 seq=0 parent=[0x751c5:0xfce6e605:0x0]
#123455: objid=614725 seq=0 parent=[0x18d11:0xebba84eb:0x1]
#123458: objid=533088 seq=0 parent=[0x21417:0x19734d61:0x0]

This shows that the three files in lost+found have decimal object IDs - 690670, 614725, and 533088,
respectively. The object sequence number (formerly object group) is 0 for all current OST objects.

The MDT parent inode FIDs are hexadecimal numbers of the form sequence:oid:idx. Since the sequence
number is below 0x100000000 in all these cases, the FIDs are in the legacy Inode and Generation In FID
(IGIF) namespace and are mapped directly to the MDT inode = seq and generation = oid values; the MDT
inodes are 0x751c5, 0x18d11, and 0x21417 respectively. For objects with MDT parent sequence numbers
above 0x200000000, this indicates that the FID needs to be mapped via the MDT Object Index (OI) file
on the MDT to determine the internal inode number.

The idx field shows the stripe number of this OST object in the Lustre RAID-0 striped file.

44.4.  llobdstat
The llobdstat utility displays the Lustre object ID and MDT parent FID.

44.4.1. Synopsis
llobdstat ost_name [interval]

44.4.2. Description
The llobdstat utility displays a line of OST statistics for the given ost_name every interval seconds. It
should be run directly on an OSS node. Type CTRL-C to stop statistics printing.

44.4.3. Example
# llobdstat liane-OST0002 1
/usr/bin/llobdstat on /proc/fs/lustre/obdfilter/liane-OST0002/stats
Processor counters run at 2800.189 MHz
Read: 1.21431e+07, Write: 9.93363e+08, create/destroy: 24/1499, stat: 34, p\
unch: 18
[NOTE: cx: create, dx: destroy, st: statfs, pu: punch ]
Timestamp Read-delta ReadRate Write-delta WriteRate
--------------------------------------------------------
1217026053 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026054 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026055 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026056 0.00MB 0.00MB/s 0.00MB 0.00MB/s



System Configuration Utilities

550

1217026057 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026058 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026059 0.00MB 0.00MB/s 0.00MB 0.00MB/s st:1

44.4.4. Files
/proc/fs/lustre/obdfilter/ostname/stats

44.5.  llog_reader
The llog_reader utility translates a Lustre configuration log into human-readable form.

44.5.1. Synopsis
llog_reader filename

44.5.2. Description
The llog_reader utility parses the binary format of Lustre's on-disk configuration logs. Llog_reader can
only read logs; use tunefs.lustre to write to them.

To examine a log file on a stopped Lustre server, mount its backing file system as ldiskfs or zfs, then use
llog_reader to dump the log file's contents, for example:

mount -t ldiskfs /dev/sda /mnt/mgs 
llog_reader /mnt/mgs/CONFIGS/tfs-client

To examine the same log file on a running Lustre server, use the ldiskfs-enabled debugfs utility (called
debug.ldiskfs on some distributions) to extract the file, for example:

debugfs -c -R 'dump CONFIGS/tfs-client /tmp/tfs-client' /dev/sda 
llog_reader /tmp/tfs-client

Caution

Although they are stored in the CONFIGS directory, mountdata files do not use the configuration
log format and will confuse the llog_reader utility.

44.5.3. See Also
Section 44.15, “ tunefs.lustre”

44.6.  llstat

44.6.1. Synopsis
llstat [-c] [-g] [-i interval] stats_file

44.6.2. Description
The llstat utility displays statistics from any of the Lustre statistics parameter files on the local node that
share a common format and are updated at interval seconds. To stop stats printing, use CTRL-C.



System Configuration Utilities

551

44.6.3. Options
Option Description

-c Clears the statistics file.

-i Specifies the polling period (in seconds).

-g Specifies graphable output format.

-h Displays help information.

stats_file Specifies either the full path to a statistics file or the
shorthand reference, mds or ost

44.6.4. Example
To monitor /proc/fs/lustre/ost/OSS/ost/stats at 1 second intervals, run;

llstat -i 1 ost

44.6.5. Files
The llstat files are located at:

/proc/fs/lustre/mdt/MDS/*/stats
/proc/fs/lustre/mdt/*/exports/*/stats
/proc/fs/lustre/mdc/*/stats
/proc/fs/lustre/ldlm/services/*/stats
/proc/fs/lustre/ldlm/namespaces/*/pool/stats
/proc/fs/lustre/mgs/MGS/exports/*/stats
/proc/fs/lustre/ost/OSS/*/stats
/proc/fs/lustre/osc/*/stats
/proc/fs/lustre/obdfilter/*/exports/*/stats
/proc/fs/lustre/obdfilter/*/stats
/proc/fs/lustre/llite/*/stats

44.7.  llverdev
The llverdev verifies a block device is functioning properly over its full size.

44.7.1. Synopsis
llverdev [-c chunksize] [-f] [-h] [-o offset] [-l] [-p] [-r] [-t timestamp] [-v] [-w] device

44.7.2. Description
Sometimes kernel drivers or hardware devices have bugs that prevent them from accessing the full device
size correctly, or possibly have bad sectors on disk or other problems which prevent proper data storage.
There are often defects associated with major system boundaries such as 2^32 bytes, 2^31 sectors, 2^31
blocks, 2^32 blocks, etc.

The llverdev utility writes and verifies a unique test pattern across the entire device to ensure that data
is accessible after it was written, and that data written to one part of the disk is not overwriting data on
another part of the disk.



System Configuration Utilities

552

It is expected that llverdev will be run on large size devices (TB). It is always better to run llverdev in
verbose mode, so that device testing can be easily restarted from the point where it was stopped.

Running a full verification can be time-consuming for very large devices. We recommend starting with a
partial verification to ensure that the device is minimally sane before investing in a full verification.

44.7.3. Options

Option Description

-c|--chunksize I/O chunk size in bytes (default
value is 1048576).

-f|--force Forces the test to run without a
confirmation that the device will
be overwritten and all data will be
permanently destroyed.

-h|--help Displays a brief help message.

-o offset Offset (in kilobytes) of the start of
the test (default value is 0).

-l|--long Runs a full check, writing and then
reading and verifying every block
on the disk.

-p|--partial Runs a partial check, only doing
periodic checks across the device
(1 GB steps).

-r|--read Runs the test in read (verify) mode
only, after having previously run
the test in -w mode.

-t timestamp Sets the test start time as printed
at the start of a previously-
interrupted test to ensure that
validation data is the same across
the entire file system (default
value is the current time()).

-v|--verbose Runs the test in verbose mode,
listing each read and write
operation.

-w|--write Runs the test in write (test-pattern)
mode (default runs both read and
write).

44.7.4. Examples
Runs a partial device verification on /dev/sda:

llverdev -v -p /dev/sda 
llverdev: permanently overwrite all data on /dev/sda (yes/no)? y 
llverdev: /dev/sda is 4398046511104 bytes (4096.0 GB) in size 
Timestamp: 1009839028 
Current write offset: 4096 kB



System Configuration Utilities

553

Continues an interrupted verification at offset 4096kB from the start of the device, using the same
timestamp as the previous run:

llverdev -f -v -p --offset=4096 --timestamp=1009839028 /dev/sda 
llverdev: /dev/sda is 4398046511104 bytes (4096.0 GB) in size 
Timestamp: 1009839028 
write complete 
read complete 

44.8.  lshowmount
The lshowmount utility shows Lustre exports.

44.8.1. Synopsis
lshowmount [-ehlv]

44.8.2. Description
The lshowmount utility shows the hosts that have Lustre mounted to a server. This utility looks for exports
from the MGS, MDS, and obdfilter.

44.8.3. Options

Option Description

-e|--enumerate Causes lshowmount to list each client mounted on a
separate line instead of trying to compress the list of
clients into a hostrange string.

-h|--help Causes lshowmount to print out a usage message.

-l|--lookup Causes lshowmount to try to look up the hostname
for NIDs that look like IP addresses.

-v|--verbose Causes lshowmount to output export information
for each service instead of only displaying the
aggregate information for all Lustre services on the
server.

44.8.4. Files
/proc/fs/lustre/mgs/server/exports/uuid/nid
/proc/fs/lustre/mds/server/exports/uuid/nid
/proc/fs/lustre/obdfilter/server/exports/uuid/nid

44.9.  lst
The lst utility starts LNet self-test.

44.9.1. Synopsis
lst



System Configuration Utilities

554

44.9.2. Description
LNet self-test helps site administrators confirm that Lustre Networking (LNet) has been properly installed
and configured. The self-test also confirms that LNet and the network software and hardware underlying
it are performing as expected.

Each LNet self-test runs in the context of a session. A node can be associated with only one session at a
time, to ensure that the session has exclusive use of the nodes on which it is running. A session is create,
controlled and monitored from a single node; this is referred to as the self-test console.

Any node may act as the self-test console. Nodes are named and allocated to a self-test session in groups.
This allows all nodes in a group to be referenced by a single name.

Test configurations are built by describing and running test batches. A test batch is a named collection
of tests, with each test composed of a number of individual point-to-point tests running in parallel. These
individual point-to-point tests are instantiated according to the test type, source group, target group and
distribution specified when the test is added to the test batch.

44.9.3. Modules
To run LNet self-test, load these modules: libcfs, lnet, lnet_selftest and any one of the klnds (ksocklnd,
ko2iblnd...). To load all necessary modules, run modprobe lnet_selftest, which recursively loads the
modules on which lnet_selftest depends.

There are two types of nodes for LNet self-test: the console node and test nodes. Both node types require
all previously-specified modules to be loaded. (The userspace test node does not require these modules).

Test nodes can be in either kernel or in userspace. A console user can invite a kernel test node to join the
test session by running lst add_group NID, but the user cannot actively add a userspace test node to the
test session. However, the console user can passively accept a test node to the test session while the test
node runs lst client to connect to the console.

44.9.4. Utilities
LNet self-test includes two user utilities, lst and lstclient.

lst is the user interface for the self-test console (run on the console node). It provides a list of commands
to control the entire test system, such as create session, create test groups, etc.

lstclient is the userspace self-test program which is linked with userspace LNDs and LNet. A user can
invoke lstclient to join a self-test session:

lstclient -sesid CONSOLE_NID group NAME

44.9.5. Example Script
This is a sample LNet self-test script which simulates the traffic pattern of a set of Lustre servers on a TCP
network, accessed by Lustre clients on an IB network (connected via LNet routers), with half the clients
reading and half the clients writing.

#!/bin/bash
export LST_SESSION=$$
lst new_session read/write
lst add_group servers 192.168.10.[8,10,12-16]@tcp



System Configuration Utilities

555

lst add_group readers 192.168.1.[1-253/2]@o2ib
lst add_group writers 192.168.1.[2-254/2]@o2ib
lst add_batch bulk_rw
lst add_test --batch bulk_rw --from readers --to servers     brw read check\
=simple size=1M
lst add_test --batch bulk_rw --from writers --to servers     brw write chec\
k=full size=4K
# start running
lst run bulk_rw
# display server stats for 30 seconds
lst stat servers & sleep 30; kill $!
# tear down
lst end_session 

44.10.  lustre_rmmod.sh
The lustre_rmmod.sh utility removes all Lustre and LNet modules (assuming no Lustre services are
running). It is located in /usr/bin.

Note

The lustre_rmmod.sh utility does not work if Lustre modules are being used or if you have
manually run the lctl network up command.

44.11.  lustre_rsync
The lustre_rsync utility synchronizes (replicates) a Lustre file system to a target file system.

44.11.1. Synopsis
lustre_rsync --source|-s src --target|-t tgt 
   --mdt|-m mdt [--user|-u userid]
   [--xattr|-x yes|no] [--verbose|-v]
   [--statuslog|-l log] [--dry-run] [--abort-on-err] 
 
lustre_rsync --statuslog|-l log
 
lustre_rsync --statuslog|-l log --source|-s source
   --target|-t tgt --mdt|-m mdt

44.11.2. Description
The lustre_rsync utility is designed to synchronize (replicate) a Lustre file system (source) to another file
system (target). The target can be a Lustre file system or any other type, and is a normal, usable file system.
The synchronization operation is efficient and does not require directory walking, as lustre_rsync uses
Lustre MDT changelogs to identify changes in the Lustre file system.

Before using lustre_rsync:

• A changelog user must be registered (see lctl (8) changelog_register)

- AND -



System Configuration Utilities

556

• Verify that the Lustre file system (source) and the replica file system (target) are identical before the
changelog user is registered. If the file systems are discrepant, use a utility, e.g. regular rsync (not
lustre_rsync) to make them identical.

44.11.3. Options

Option Description

--source=src The path to the root of the Lustre file system
(source) which will be synchronized. This is a
mandatory option if a valid status log created during
a previous synchronization operation (--statuslog) is
not specified.

--target=tgt The path to the root where the source file
system will be synchronized (target). This is a
mandatory option if the status log created during a
previous synchronization operation (--statuslog) is
not specified. This option can be repeated if multiple
synchronization targets are desired.

--mdt=mdt The metadata device to be synchronized. A
changelog user must be registered for this device.
This is a mandatory option if a valid status log
created during a previous synchronization operation
(--statuslog) is not specified.

--user=userid The changelog user ID for the specified MDT.
To use lustre_rsync, the changelog user must be
registered. For details, see the changelog_register
parameter in the lctl man page. This is a mandatory
option if a valid status log created during a
previous synchronization operation (--statuslog) is
not specified.

--statuslog=log A log file to which synchronization status is saved.
When lustre_rsync starts, the state of a previous
replication is read from here. If the status log from
a previous synchronization operation is specified,
otherwise mandatory options like --source, --target
and --mdt options may be skipped. By specifying
options like --source, --target and/or --mdt in
addition to the --statuslog option, parameters in the
status log can be overridden. Command line options
take precedence over options in the status log.

--xattryes|no Specifies whether extended attributes (xattrs) are
synchronized or not. The default is to synchronize
extended attributes.

NOTE: Disabling xattrs causes Lustre striping
information not to be synchronized.

--verbose Produces a verbose output.

--dry-run Shows the output of lustre_rsync commands (copy,
mkdir, etc.) on the target file system without
actually executing them.



System Configuration Utilities

557

Option Description

--abort-on-err Shows the output of lustre_rsync commands (copy,
mkdir, etc.) on the target file system without
actually executing them.

44.11.4. Examples
Register a changelog user for an MDT (e.g., MDT lustre-MDT0000).

$ ssh 
$ MDS lctl changelog_register \
           --device lustre-MDT0000 -n 
cl1

Synchronize/replicate a Lustre file system (/mnt/lustre) to a target file system (/mnt/target).

$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \ 
           --mdt=lustre-MDT0000 --user=cl1 \ 
           --statuslog replicate.log  --verbose 
Lustre filesystem: lustre 
MDT device: lustre-MDT0000 
Source: /mnt/lustre 
Target: /mnt/target 
Statuslog: sync.log 
Changelog registration: cl1 
Starting changelog record: 0 
Errors: 0 
lustre_rsync took 1 seconds 
Changelog records consumed: 22

After the file system undergoes changes, synchronize the changes with the target file system. Only the
statuslog name needs to be specified, as it has all the parameters passed earlier.

$ lustre_rsync --statuslog replicate.log --verbose 
Replicating Lustre filesystem: lustre 
MDT device: lustre-MDT0000 
Source: /mnt/lustre 
Target: /mnt/target 
Statuslog: replicate.log 
Changelog registration: cl1 
Starting changelog record: 22 
Errors: 0 
lustre_rsync took 2 seconds 
Changelog records consumed: 42

Synchronize a Lustre file system (/mnt/lustre) to two target file systems (/mnt/target1 and /mnt/target2).

$ lustre_rsync --source=/mnt/lustre \ 
   --target=/mnt/target1 --target=/mnt/target2 \ 
   --mdt=lustre-MDT0000 --user=cl1 
   --statuslog replicate.log

44.11.5. See Also
Section 40.1, “ lfs ”



System Configuration Utilities

558

44.12.  mkfs.lustre
The mkfs.lustre utility formats a disk for a Lustre service.

44.12.1. Synopsis
mkfs.lustre target_type [options] device

where target_type is one of the following:

Option Description

--ost Object storage target (OST)

--mdt Metadata storage target (MDT)

--network=net,... Network(s) to which to restrict this OST/MDT. This
option can be repeated as necessary.

--mgs Configuration management service (MGS), one per
site. This service can be combined with one --mdt
service by specifying both types.

44.12.2. Description
mkfs.lustre is used to format a disk device for use as part of a Lustre file system. After formatting, a
disk can be mounted to start the Lustre service defined by this command.

When the file system is created, parameters can simply be added as a --param option to the
mkfs.lustre command. See Section 13.12.1, “Setting Tunable Parameters with mkfs.lustre”.

Option Description

--backfstype=fstype Forces a particular format for the backing file system such as
ldiskfs (the default) or zfs.

--comment=comment Sets a user comment about this disk, ignored by the Lustre
software.

--device-size=#>KB Sets the device size for loop devices.

--dryrun Only prints what would be done; it does not affect the disk.

--servicenode=nid,... Sets the NID(s) of all service nodes, including primary and
failover partner service nodes. The --servicenode option
cannot be used with --failnode option. See Section 11.2,
“Preparing a Lustre File System for Failover” for more details.

--failnode=nid,... Sets the NID(s) of a failover service node for a primary server
for a target. The --failnode option cannot be used with --
servicenode option. See Section 11.2, “Preparing a Lustre
File System for Failover” for more details.

Note

When the --failnode option is used, certain
restrictions apply (see Section 11.2, “Preparing a
Lustre File System for Failover”).

--fsname=filesystem_name The Lustre file system of which this service/node will be a part.
The default file system name is lustre.



System Configuration Utilities

559

Option Description

Note

The file system name is limited to 8 characters.

--index=index_number Specifies the OST or MDT number (0...N). This allows
mapping between the OSS and MDS node and the device on
which the OST or MDT is located.

--mkfsoptions=opts Formats options for the backing file system. For example, ext3
options could be set here.

--mountfsoptions=opts Sets the mount options used when the backing file system is
mounted.

Warning

Unlike earlier versions of mkfs.lustre, this
version completely replaces the default mount
options with those specified on the command line,
and issues a warning on stderr if any default mount
options are omitted.

The defaults for ldiskfs are:

MGS/MDT: errors=remount-
ro,iopen_nopriv,user_xattr

OST: errors=remount-ro,extents,mballoc

Introduced in Lustre 2.5

OST: errors=remount-ro

Use care when altering the default mount options.

--network=net,... Network(s) to which to restrict this OST/MDT. This option can
be repeated as necessary.

--mgsnode=nid,... Sets the NIDs of the MGS node, required for all targets other
than the MGS.

--param key=value Sets the permanent parameter key to value value. This
option can be repeated as necessary. Typical options might
include:

--param
sys.timeout=40>

System obd timeout.

--param
lov.stripesize=2M

Default stripe size.

param
lov.stripecount=2

Default stripe count.

--param
failover.mode=failout

Returns errors instead of waiting for recovery.



System Configuration Utilities

560

Option Description

--quiet Prints less information.

--reformat Reformats an existing Lustre disk.

--stripe-count-hint=stripes Used to optimize the MDT's inode size.

--verbose Prints more information.

44.12.3. Examples
Creates a combined MGS and MDT for file system testfs on, e.g., node cfs21:

mkfs.lustre --fsname=testfs --mdt --mgs /dev/sda1

Creates an OST for file system testfs on any node (using the above MGS):

mkfs.lustre --fsname=testfs --mgsnode=cfs21@tcp0 --ost --index=0 /dev/sdb

Creates a standalone MGS on, e.g., node cfs22:

mkfs.lustre --mgs /dev/sda1

Creates an MDT for file system myfs1 on any node (using the above MGS):

mkfs.lustre --fsname=myfs1 --mdt --mgsnode=cfs22@tcp0 /dev/sda2

44.12.4. See Also
• Section 44.12, “ mkfs.lustre” mkfs.lustre,

• Section 44.13, “ mount.lustre” mount.lustre,

• Section 40.1, “ lfs ”lfs

44.13.  mount.lustre
The mount.lustre utility starts a Lustre client or target service.

44.13.1. Synopsis
mount -t lustre [-o options] device mountpoint

44.13.2. Description
The mount.lustre utility starts a Lustre client or target service. This program should not be called directly;
rather, it is a helper program invoked through mount(8), as shown above. Use the umount command to
stop Lustre clients and targets.

There are two forms for the device option, depending on whether a client or a target service is started:

Option Description

mgsname:/fsname[/subdir] Mounts the Lustre file system named fsname
(optionally starting at subdirectory subdir within



System Configuration Utilities

561

Option Description

the filesystem, if specified) on the client at the
directory mountpoint, by contacting the Lustre
Management Service at mgsname. The format for
mgsname is defined below. A client file system
can be listed in fstab(5) for automatic mount at
boot time, is usable like any local file system, and
provides a full POSIX standard-compliant interface.

block_device Starts the target service defined by the
mkfs.lustre(8) command on the physical disk
block_device. The block_device may be
specified using -L label to find the first block
device with that label (e.g. testfs-MDT0000),
or by UUID using the -U uuid option. Care
should be taken if there is a device-level backup
of the target filesystem on the same node, which
would have a duplicate label and UUID if it has
not been changed with tune2fs(8) or similar.
The mounted target service filesystem mounted at
mountpoint is only useful for df(1) operations
and appears in /proc/mounts to show the device
is in use.

44.13.3. Options

Option Description

mgsname=mgsnode[:mgsnode] mgsname is a colon-separated list of mgsnode
names where the MGS service may run. Multiple
mgsnode values can be specified if the MGS
service is configured for HA failover and may be
running on any one of the nodes.

mgsnode=mgsnid[,mgsnid] Each mgsnode may specify a comma-separated list
of NIDs, if there are different LNet interfaces for
that mgsnode.

mgssec=flavor Specifies the encryption flavor for the initial
network RPC connection to the MGS. Non-security
flavors are: null, plain, and gssnull, which
respectively disable, or have no encryption or
integrity features for testing purposes. Kerberos
flavors are: krb5n, krb5a, krb5i, and krb5p.
Shared-secret key flavors are: skn, ska, ski, and
skpi, see the Chapter 29, Configuring Shared-
Secret Key (SSK) Security for more details. The
security flavor for client-to-server connections is
specified in the filesystem configuration that the
client fetches from the MGS.

skpath=file|directory
Introduced in Lustre 2.9

Path to a file or directory with the keyfile(s) to load
for this mount command. Keys are inserted into the



System Configuration Utilities

562

Option Description

KEY_SPEC_SESSION_KEYRING keyring in the
kernel with a description containing lustre: and
a suffix which depends on whether the context of
the mount command is for an MGS, MDT/OST, or
client.

exclude=ostlist Starts a client or MDT with a colon-separated list of
known inactive OSTs that it will not try to connect
to.

In addition to the standard mount(8) options, Lustre understands the following client-specific options:

Option Description

always_ping
Introduced in Lustre 2.9

The client will periodically ping the server when
it is idle, even if the server ptlrpc module is
configured with the suppress_pings option.
This allows clients to reliably use the filesystem
even if they are not part of an external client health
monitoring mechanism.

flock Enables advisory file locking support between
participating applications using the flock(2)
system call. This causes file locking to be coherent
across all client nodes also using this mount
option. This is useful if applications need coherent
userspace file locking across multiple client nodes,
but also imposes communications overhead in order
to maintain locking consistency between client
nodes.

localflock Enables client-local flock(2) support, using only
client-local advisory file locking. This is faster than
using the global flock option, and can be used for
applications that depend on functioning flock(2)
but run only on a single node. It has minimal
overhead using only the Linux kernel's locks.

noflock Disables flock(2) support entirely, and is the
default option. Applications calling flock(2) get
an ENOSYS error. It is up to the administrator to
choose either the localflock or flock mount
option based on their requirements. It is possible to
mount clients with different options, and only those
mounted with flock will be coherent amongst
each other.

lazystatfs Allows statfs(2) (as used by df(1) and
lfs-df(1)) to return even if some OST or
MDT is unresponsive or has been temporarily or
permanently disabled in the configuration. This
avoids blocking until all of the targets are available.
This is the default behavior since Lustre 2.9.0.



System Configuration Utilities

563

Option Description

nolazystatfs Requires that statfs(2) block until all OSTs and
MDTs are available and have returned space usage.

user_xattr Enables get/set of extended attributes by regular
users in the user.* namespace. See the attr(5)
manual page for more details.

nouser_xattr Disables use of extended attributes in the user.*
namespace by regular users. Root and system
processes can still use extended attributes.

verbose Enable extra mount/umount console messages.

noverbose Disable mount/umount console messages.

user_fid2path Enable FID-to-path translation by regular users.

Note

This option allows a potential security
hole because it allows regular users direct
access to a file by its Lustre File ID. This
bypasses POSIX path-based permission
checks, and could allow the user to access
a file in a directory that they do not have
access to. Regular POSIX file mode and
ACL permission checks are still performed
on the file itself, so users cannot access a
file to which they have no permission.

nouser_fid2path Disable FID to path translation by
regular users. Root and processes with
CAP_DAC_READ_SEARCH can still perform FID
to path translation.

In addition to the standard mount options and backing disk type (e.g. ldiskfs) options, Lustre understands
the following server-specific mount options:

Option Description

nosvc Starts the MGC (and MGS, if co-located) for a target
service, not the actual service.

nomgs Starts only the MDT (with a co-located MGS),
without starting the MGS.

abort_recov Aborts client recovery on that server and starts the
target service immediately.

max_sectors_kb=KB
Introduced in Lustre 2.10

Sets the block device parameter
max_sectors_kb limit for the MDT or OST
target being mounted to specified maximum number
of kilobytes. When max_sectors_kb isn't
specified as a mount option, it will automatically
be set to the max_hw_sectors_kb (up to a
maximum of 16MiB) for that block device. This



System Configuration Utilities

564

Option Description

default behavior is suited for most users. When
max_sectors_kb=0 is used, the current value
for this tunable will be kept.

md_stripe_cache_size Sets the stripe cache size for server-side disk with a
striped RAID configuration.

recovery_time_soft=timeout Allows timeout seconds for clients to reconnect
for recovery after a server crash. This timeout is
incrementally extended if it is about to expire and
the server is still handling new connections from
recoverable clients.

The default soft recovery timeout is 3 times
the value of the Lustre timeout parameter (see
Section 39.5.2, “Setting Static Timeouts”). The
default Lustre timeout is 100 seconds, which would
make the soft recovery timeout default to 300
seconds (5 minutes). The soft recovery timeout is
set at mount time and will not change if the Lustre
timeout is changed after mount time.

recovery_time_hard=timeout The server is allowed to incrementally extend its
timeout up to a hard maximum of timeout
seconds.

The default hard recovery timeout is 9 times
the value of the Lustre timeout parameter (see
Section 39.5.2, “Setting Static Timeouts”). The
default Lustre timeout is 100 seconds, which would
make the hard recovery timeout default to 900
seconds (15 minutes). The hard recovery timeout is
set at mount time and will not change if the Lustre
timeout is changed after mount time.

noscrub Typically the MDT will detect restoration from
a file-level backup during mount. This mount
option prevents the OI Scrub from starting
automatically when the MDT is mounted. Manually
starting LFSCK after mounting provides finer
control over the starting conditions. This mount
option also prevents OI scrub from occurring
automatically when OI inconsistency is detected
(see Section 36.4.4.2, “Auto scrub”).

44.13.4. Examples
Starts a client for the Lustre file system chipfs at mount point /mnt/chip. The Management Service
is running on a node reachable from this client via the cfs21@tcp0 NID.

mount -t lustre cfs21@tcp0:/chipfs /mnt/chip

Introduced in Lustre 2.9

Similar to the above example, but mounting a subdirectory under chipfs as a fileset.



System Configuration Utilities

565

mount -t lustre cfs21@tcp0:/chipfs/v1_0 /mnt/chipv1_0

Starts the Lustre metadata target service from /dev/sda1 on mount point /mnt/test/mdt.

mount -t lustre /dev/sda1 /mnt/test/mdt

Starts the testfs-MDT0000 service (using the disk label), but aborts the recovery process.

mount -t lustre -L testfs-MDT0000 -o abort_recov /mnt/test/mdt

44.13.5. See Also
• Section 44.12, “ mkfs.lustre”

• Section 44.15, “ tunefs.lustre”

• Section 44.2, “ lctl”

• Section 40.1, “ lfs ”

44.14.  routerstat
The routerstat utility prints Lustre router statistics.

44.14.1. Synopsis
routerstat [interval]

44.14.2. Description
The routerstat utility displays LNet router statistics. If no interval is specified, then statistics are
sampled and printed only one time. Otherwise, statistics are sampled and printed at the specified
interval (in seconds).

44.14.3. Output
The routerstat output includes the following fields:

Output Description

M Number of messages currently being processed by
LNet (The maximum number of messages ever
processed by LNet concurrently)

E Number of LNet errors

S Total size (length) of messages sent in bytes/
Number of messages sent

R Total size (length) of messages received in bytes/
Number of messages received

F Total size (length) of messages routed in bytes/
Number of messages routed

D Total size (length) of messages dropped in bytes/
Number of messages dropped



System Configuration Utilities

566

When an interval is specified, additional lines of statistics are printed including the following fields:

Output Description

M Number of messages currently being processed by
LNet (The maximum number of messages ever
processed by LNet concurrently)

E Number of LNet errors per second

S Rate of data sent in Mbytes per second/ Count of
messages sent per second

R Rate of data received in Mbytes per second/ Count
of messages received per second

F Rate of data routed in Mbytes per second/ Count of
messages routed per second

D Rate of data dropped in Mbytes per second/ Count
of messages dropped per second

44.14.4. Example
# routerstat 1
M 0(13) E 0 S 117379184/4250 R 878480/4356 F 0/0 D 0/0
M   0( 13) E 0 S    7.00/     7 R    0.00/    14 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    7.00/     7 R    0.00/    14 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    8.00/     8 R    0.00/    16 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    7.00/     7 R    0.00/    14 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    7.00/     7 R    0.00/    14 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    7.00/     7 R    0.00/    14 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    7.00/     7 R    0.00/    14 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    8.00/     8 R    0.00/    16 F    0.00/     0 D 0.00/0
M   0( 13) E 0 S    7.00/     7 R    0.00/    14 F    0.00/     0 D 0.00/0
...

44.14.5. Files
The routerstat utility extracts statistics data from the LNet stats parameter.

44.15.  tunefs.lustre
The tunefs.lustre utility modifies configuration information on a Lustre target disk.

44.15.1. Synopsis
tunefs.lustre [options] /dev/device

44.15.2. Description
tunefs.lustre is used to modify configuration information on a Lustre target disk. This does not
reformat the disk or erase the target information, but incorrectly modifying the configuration information
may result in an unusable file system.



System Configuration Utilities

567

Caution

Changes made here affect a file system only when the target is mounted the next time.

With tunefs.lustre, parameters are "additive" -- new parameters are specified in addition to old
parameters, they do not replace them. To erase all previously-specified tunefs.lustre parameters
and use only newly-specified parameters, run:

$ tunefs.lustre --erase-params --param=new_parameters

The tunefs.lustre command can be used to set any parameter settable in a /proc/fs/lustre
file and that has its own OBD device. The parameter names generally take the form {obd|
fsname}.obdtype.parameter=value. For example:

$ tunefs.lustre --param mdt.identity_upcall=NONE /dev/sda1

44.15.3. Options
The tunefs.lustre options are listed and explained below.

Option Description

--comment=comment Sets a user comment about this disk, ignored by
Lustre.

--dryrun Only prints what would be done; does not affect the
disk.

--erase-params Removes all previous parameter information.

--servicenode=nid,... Sets the NID(s) of all service nodes, including
primary and failover partner service nodes. The --
servicenode option cannot be used with --
failnode option. See Section 11.2, “Preparing a
Lustre File System for Failover” for more details.

--failnode=nid,... Sets the NID(s) of a failover service node for a
primary server for a target. The --failnode
option cannot be used with --servicenode
option. See Section 11.2, “Preparing a Lustre File
System for Failover” for more details.

Note

When the --failnode option is used,
certain restrictions apply (see Section 11.2,
“Preparing a Lustre File System for
Failover”).

--fsname=filesystem_name The Lustre file system of which this service will be
a part. The default file system name is lustre.

--index=index Forces a particular OST or MDT index.

--mountfsoptions=opts Sets the mount options used when the backing file
system is mounted.



System Configuration Utilities

568

Option Description

Warning

Unlike earlier versions of tunefs.lustre, this
version completely replaces the existing
mount options with those specified on the
command line, and issues a warning on
stderr if any default mount options are
omitted.

The defaults for ldiskfs are:

MGS/MDT: errors=remount-
ro,iopen_nopriv,user_xattr

OST: errors=remount-
ro,extents,mballoc

Introduced in Lustre 2.5

OST: errors=remount-ro

Do not alter the default mount options unless you
know what you are doing.

--network=net,... Network(s) to which to restrict this OST/MDT. This
option can be repeated as necessary.

--mgs Adds a configuration management service to this
target.

--msgnode=nid,... Sets the NID(s) of the MGS node; required for all
targets other than the MGS.

--nomgs Removes a configuration management service to
this target.

--quiet Prints less information.

--verbose Prints more information.

--writeconf Erases all configuration logs for the file system to
which this MDT belongs, and regenerates them.
This is dangerous operation. All clients must be
unmounted and servers for this file system should
be stopped. All targets (OSTs/MDTs) must then be
restarted to regenerate the logs. No clients should be
started until all targets have restarted.

The correct order of operations is:

1. Unmount all clients on the file system

2. Unmount the MDT and all OSTs on the file
system

3. Run tunefs.lustre --writeconf
device on every server



System Configuration Utilities

569

Option Description

4. Mount the MDT and OSTs

5. Mount the clients

44.15.4. Examples
Change the MGS's NID address. (This should be done on each target disk, since they should all contact
the same MGS.)

tunefs.lustre --erase-param --mgsnode=new_nid --writeconf /dev/sda

Add a failover NID location for this target.

tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda 

44.15.5. See Also
• Section 44.12, “ mkfs.lustre”

• Section 44.13, “ mount.lustre”

• Section 44.2, “ lctl”

• Section 40.1, “ lfs ”

44.16.  Additional System Configuration
Utilities

This section describes additional system configuration utilities for Lustre.

44.16.1. More Statistics for Application Profiling
Lustre includes per-client and improved MDT statistics:

• Per-client statistics tracked on the servers

Each MDS and OSS now tracks LDLM and operations statistics for every connected client, for
comparisons and simpler collection of distributed job statistics.

{mds,obdfilter}.*.exports

• Improved MDT statistics

More detailed MDT operations statistics are collected for better profiling.

mdt.*.md_stats

44.16.2.  Testing / Debugging Utilities
Lustre offers the following test and debugging utilities.



System Configuration Utilities

570

44.16.2.1.  lr_reader

The lr_reader utility translates the content of the last_rcvd and reply_data files into human-
readable form.

The following utilities are part of the Lustre I/O kit. For more information, see Chapter 33, Benchmarking
Lustre File System Performance (Lustre I/O Kit).

44.16.2.2.  sgpdd-survey

The sgpdd-survey utility tests 'bare metal' performance, bypassing as much of the kernel as possible.
The sgpdd-survey tool does not require Lustre, but it does require the sgp_dd package.

Caution

The sgpdd-survey utility erases all data on the device.

44.16.2.3. obdfilter-survey

The obdfilter-survey utility is a shell script that tests performance of isolated OSTS, the network
via echo clients, and an end-to-end test.

44.16.2.4. ior-survey

The ior-survey utility is a script used to run the IOR benchmark. Lustre includes IOR version 2.8.6.

44.16.2.5. ost-survey

The ost-survey utility is an OST performance survey that tests client-to-disk performance of the
individual OSTs in a Lustre file system.

44.16.2.6. stats-collect

The stats-collect utility contains scripts used to collect application profiling information from Lustre clients
and servers.

Introduced in Lustre 2.9

44.16.3. Fileset Feature

With the fileset feature, Lustre now provides subdirectory mount support. Subdirectory mounts, also
referred to as filesets, allow a client to mount a child directory of a parent filesystem, thereby limiting the
filesystem namespace visibility on a specific client. A common use case is for a client to use a subdirectory
mount when there is a desire to limit the visibility of the entire filesystem namesapce to aid in the prevention
of accidental file deletions outside of the subdirectory mount.

It is important to note that invocation of the subdirectory mount is voluntary by the client and not does
prevent access to files that are visible in multiple subdirectory mounts via hard links. Furthermore, it does
not prevent the client from subsequently mounting the whole file system without a subdirectory being
specified.



System Configuration Utilities

571

Figure 44.1.  Lustre fileset

44.16.3.1. Examples

The following example will mount the chipfs filesystem on client1 and create a subdirectory v1_1
within that filesystem. Client2 will then mount only the v1_1 subdirectory as a fileset, thereby limiting
access to anything else in the chipfs filesystem from client2.

client1# mount -t lustre mgs@tcp:/chipfs /mnt/chip
client1# mkdir /mnt/chip/v1_1

client2# mount -t lustre mgs@tcp:/chipfs/v1_1 /mnt/chipv1_1

You can check the created mounts in /etc/mtab. It should look like the following:

client1
mds@tcp0:/chipfs/ /mnt/chip lustre rw         0       0

client2
mds@tcp0:/chipfs/v1_1 /mnt/chipv1_1 lustre rw         0       0

Create a directory under the /mnt/chip mount, and get its FID

client1# mkdir /mnt/chip/v1_2
client1# lfs path2fid /mnt/chip/v1_2
[0x200000400:0x2:0x0]

If you try resolve the FID of the /mnt/chip/v1_2 path (as created in the example above) on client2,
an error will be returned as the FID can not be resolved on client2 since it is not part of the mounted
fileset on that client. Recall that the fileset on client2 mounted the v1_1 subdirectory beneath the top
level chipfs filesystem.

client2# lfs fid2path /mnt/chip/v1_2 [0x200000400:0x2:0x0]



System Configuration Utilities

572

fid2path: error on FID [0x200000400:0x2:0x0]: No such file or directory

Subdirectory mounts do not have the .lustre pseudo directory, which prevents clients from opening
or accessing files only by FID.

client1# ls /mnt/chipfs/.lustre
        fid  lost+found

client2# ls /mnt/chipv1_1/.lustre
        ls: cannot access /mnt/chipv1_1/.lustre: No such file or directory
    



573

Chapter 45. LNet Configuration C-API
This section describes the LNet Configuration C-API library. This API allows the developer to
programatically configure LNet. It provides APIs to add, delete and show LNet configuration items listed
below. The API utilizes IOCTL to communicate with the kernel. Changes take effect immediately and do
not require restarting LNet. API calls are synchronous

• Configuring LNet

• Enabling/Disabling routing

• Adding/removing/showing Routes

• Adding/removing/showing Networks

• Configuring Router Buffer Pools

45.1. General API Information

45.1.1. API Return Code
LUSTRE_CFG_RC_NO_ERR                 0
LUSTRE_CFG_RC_BAD_PARAM             -1
LUSTRE_CFG_RC_MISSING_PARAM         -2
LUSTRE_CFG_RC_OUT_OF_RANGE_PARAM    -3
LUSTRE_CFG_RC_OUT_OF_MEM            -4
LUSTRE_CFG_RC_GENERIC_ERR           -5

45.1.2. API Common Input Parameters
All APIs take as input a sequence number. This is a number that's assigned by the caller of the API, and
is returned in the YAML error return block. It is used to associate the request with the response. It is
especially useful when configuring via the YAML interface, since typically the YAML interface is used
to configure multiple items. In the return Error block, it is desired to know which items were configured
properly and which were not configured properly. The sequence number achieves this purpose.

45.1.3. API Common Output Parameters

45.1.3.1. Internal YAML Representation (cYAML)

Once a YAML block is parsed it needs to be stored structurally in order to facilitate passing it to different
functions, querying it and printing it. Also it is required to be able to build this internal representation
from data returned from the kernel and return it to the caller, which can query and print it. This structure
representation is used for the Error and Show API Out parameters. For this YAML is internally represented
via this structure:

typedef enum {
    EN_YAML_TYPE_FALSE = 0,
    EN_YAML_TYPE_TRUE,
    EN_YAML_TYPE_NULL,



LNet Configuration C-API

574

    EN_YAML_TYPE_NUMBER,
    EN_YAML_TYPE_STRING,
    EN_YAML_TYPE_ARRAY,
    EN_YAML_TYPE_OBJECT
} cYAML_object_type_t;

typedef struct cYAML {
    /* next/prev allow you to walk array/object chains. */
    struct cYAML *cy_next, *cy_prev;
    /* An array or object item will have a child pointer pointing
       to a chain of the items in the array/object. */
    struct cYAML *cy_child;
    /* The type of the item, as above. */
    cYAML_object_type_t cy_type;
    /* The item's string, if type==EN_YAML_TYPE_STRING */
    char *cy_valuestring;
    /* The item's number, if type==EN_YAML_TYPE_NUMBER */
    int cy_valueint;
    /* The item's number, if type==EN_YAML_TYPE_NUMBER */
    double cy_valuedouble;
    /* The item's name string, if this item is the child of,
       or is in the list of subitems of an object. */
    char *cy_string;
    /* user data which might need to be tracked per object */
    void *cy_user_data;
} cYAML;

45.1.3.2. Error Block

All APIs return a cYAML error block. This error block has the following format, when it's printed out.
All configuration errors shall be represented in a YAML sequence

<cmd>:
  - <entity>:
    errno: <error number>
    seqno: <sequence number>
    descr: <error description>

Example:
add:
  - route
      errno: -2
      seqno: 1
      descr: Missing mandatory parameter(s) - network

45.1.3.3. Show Block

All Show APIs return a cYAML show block. This show block represents the information requested in
YAML format. Each configuration item has its own YAML syntax. The YAML syntax of all supported
configuration items is described later in this document. Below is an example of a show block:

net:
    - nid: 192.168.206.130@tcp4
      status: up



LNet Configuration C-API

575

      interfaces:
          0: eth0
      tunables:
          peer_timeout: 10
          peer_credits: 8
          peer_buffer_credits: 30
          credits: 40

45.2. The LNet Configuration C-API

45.2.1. Configuring LNet

/*
 * lustre_lnet_config_ni_system
 *   Initialize/Uninitialize the LNet NI system.
 *
 *   up - whether to init or uninit the system
 *   load_ni_from_mod - load NI from mod params.
 *   seq_no - sequence number of the request
 *   err_rc - [OUT] struct cYAML tree describing the error. Freed by
 *            caller
 */
int lustre_lnet_config_ni_system(bool up, bool load_ni_from_mod,
                                 int seq_no, struct cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_CONFIGURE or IOC_LIBCFS_UNCONFIGURE

Description:

Configuring LNet

Initialize LNet internals and load any networks specified in the module parameter if
load_ni_from_mod is set. Otherwise do not load any network interfaces.

Unconfiguring LNet

Bring down LNet and clean up network itnerfaces, routes and all LNet internals.

Return Value

0: if success

-errno: if failure

45.2.2. Enabling and Disabling Routing

/*
 * lustre_lnet_enable_routing



LNet Configuration C-API

576

 *   Send down an IOCTL to enable or disable routing
 *
 *   enable - 1 to enable routing, 0 to disable routing
 *   seq_no - sequence number of the request
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_enable_routing(int enable,
                                      int seq_no,
                                      cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_ENABLE_RTR

Description:

Enabling Routing

The router buffer pools are allocated using the default values. Internally the node is then flagged as a
Router node. The node can be used as a router from this point on.

Disabling Routing

The unused router buffer pools are freed. Buffers currently in use are not freed until they are returned to
the unused list. Internally the node routing flag is turned off. Any subsequent messages not destined to
this node are dropped.

Enabling Routing on an already enabled node, or vice versa

In both these cases the LNet Kernel module ignores this request.

Return Value

-ENOMEM: if there is no memory to allocate buffer pools

0: if success

45.2.3. Adding Routes

/*
 * lustre_lnet_config_route
 *   Send down an IOCTL to the kernel to configure the route
 *
 *   nw - network
 *   gw - gateway
 *   hops - number of hops passed down by the user
 *   prio - priority of the route
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_config_route(char *nw, char *gw,
                    int hops, int prio,
                    int seq_no,
                    cYAML **err_rc);

IOCTL to Kernel:



LNet Configuration C-API

577

IOC_LIBCFS_ADD_ROUTE

Description:

The LNet Kernel module adds this route to the list of existing routes, if one doesn't already exist. If the
hops parameter is not specified then the hop count is set to "undefined"(-1). If the priority parameter is
not specified then the priority is set to 0. All routes with the same hop and priority are used in round
robin. Routes with lower number of hops and/or higher priority are preferred. 0 is the highest priority.
"Undefined" hops (-1) is treated as 1 during route selection.

If a route already exists the request to add the same route is ignored.

Return Value

-EINVAL: if the network of the route is local

-ENOMEM: if there is no memory

-EHOSTUNREACH: if the host is not on a local network

0: if success

45.2.4. Deleting Routes

/*
 * lustre_lnet_del_route
 *   Send down an IOCTL to the kernel to delete a route
 *
 *   nw - network
 *   gw - gateway
 */
extern int lustre_lnet_del_route(char *nw, char *gw,
                 int seq_no,
                 cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_DEL_ROUTE

Description:

LNet will remove the route which matches the network and gateway passed in. If no route matches, then
the operation fails with an appropriate error number.

Return Value

-ENOENT: if the entry being deleted doesn't exist

0: if success

45.2.5. Showing Routes

/*
 * lustre_lnet_show_route



LNet Configuration C-API

578

 *   Send down an IOCTL to the kernel to show routes
 *   This function will get one route at a time and filter according to
 *   provided parameters. If no filter is provided then it will dump all
 *   routes that are in the system.
 *
 *   nw - network.  Optional.  Used to filter output
 *   gw - gateway. Optional. Used to filter ouptut
 *   hops - number of hops passed down by the user
 *          Optional.  Used to filter output.
 *   prio - priority of the route.  Optional.  Used to filter output.
 *   detail - flag to indicate whether detail output is required
 *   show_rc - [OUT] The show output in YAML.  Must be freed by caller.
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_show_route(char *nw, char *gw,
                  int hops, int prio, int detail,
                  int seq_no,
                  cYAML **show_rc,
                  cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_GET_ROUTE

Description:

The routes are fetched from the kernel one by one and packed in a cYAML block, after filtering according
to the parameters passed in. The cYAML block is then returned to the caller of the API.

An example with the detail parameter set to 1

route:
    net: tcp5
    gateway: 192.168.205.130@tcp
    hop: 1.000000
    priority: 0.000000
    state: up

An Example with the detail parameter set to 0

route:
    net: tcp5
    gateway: 192.168.205.130@tcp

Return Value

-ENOMEM: If no memory

0: if success

45.2.6. Adding a Network Interface

/*
 * lustre_lnet_config_net
 *   Send down an IOCTL to configure a network.



LNet Configuration C-API

579

 *
 *   net - the network name
 *   intf - the interface of the network of the form net_name(intf)
 *   peer_to - peer timeout
 *   peer_cr - peer credit
 *   peer_buf_cr - peer buffer credits
 *       - the above are LND tunable parameters and are optional
 *   credits - network interface credits
 *   smp - cpu affinity
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_config_net(char *net,
                  char *intf,
                  int peer_to,
                  int peer_cr,
                  int peer_buf_cr,
                  int credits,
                  char *smp,
                  int seq_no,
                  cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_ADD_NET

Description:

A new network is added and initialized. This has the same effect as configuring a network from the module
parameters. The API allows the specification of network parameters such as the peer timeout, peer credits,
peer buffer credits and credits. The CPU affinity of the network interface being added can also be specified.
These parameters become network specific under Dynamic LNet Configuration (DLC), as opposed to
being per LND as it was previously.

If an already existing network is added the request is ignored.

Return Value

-EINVAL: if the network passed in is not recognized.

-ENOMEM: if no memory

0: success

45.2.7. Deleting a Network Interface

/*
 * lustre_lnet_del_net
 *   Send down an IOCTL to delete a network.
 *
 *   nw - network to delete.
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_del_net(char *nw,
                   int seq_no,



LNet Configuration C-API

580

                   cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_DEL_NET

Description:

The network interface specified is deleted. All resources associated with this network interface are freed.
All routes going over that Network Interface are cleaned up.

If a non existent network is deleted then the call return -EINVAL.

Return Value

-EINVAL: if the request references a non-existent network.

0: success

45.2.8. Showing Network Interfaces

/*
 * lustre_lnet_show_net
 *   Send down an IOCTL to show networks.
 *   This function will use the nw paramter to filter the output.  If it's
 *   not provided then all networks are listed.
 *
 *   nw - network to show.  Optional.  Used to filter output.
 *   detail - flag to indicate if we require detail output.
 *   show_rc - [OUT] The show output in YAML.  Must be freed by caller.
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_show_net(char *nw, int detail,
                int seq_no,
                cYAML **show_rc,
                cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_GET_NET

Description:

The network interfaces are queried one at a time from the kernel and packed in a cYAML block, after
filtering on the network (EX: tcp). If the detail field is set to 1, then the tunable section of the show block
is included in the return.

An example of the detailed output

net:
    nid: 192.168.206.130@tcp4
    status: up
    interfaces:
        intf-0: eth0
    tunables:
        peer_timeout: 10



LNet Configuration C-API

581

        peer_credits: 8
        peer_buffer_credits: 30
        credits: 40

An example of none detailed output

net:
    nid: 192.168.206.130@tcp4
    status: up
    interfaces:
        intf-0: eth0

Return Value

-ENOMEM: if no memory to allocate the error or show blocks.

0: success

45.2.9. Adjusting Router Buffer Pools

/*
 * lustre_lnet_config_buf
 *   Send down an IOCTL to configure buffer sizes.  A value of 0 means
 *   default that particular buffer to default size. A value of -1 means
 *   leave the value of the buffer unchanged.
 *
 *   tiny - tiny buffers
 *   small - small buffers
 *   large - large buffers.
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_config_buf(int tiny,
                  int small,
                  int large,
                  int seq_no,
                  cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_ADD_BUF

Description:

This API is used to configure the tiny, small and large router buffers dynamically. These buffers are used to
buffer messages which are being routed to other nodes. The minimum value of these buffers per CPT are:

#define LNET_NRB_TINY_MIN     512
#define LNET_NRB_SMALL_MIN    4096
#define LNET_NRB_LARGE_MIN    256

The default values of these buffers are:

#define LNET_NRB_TINY         (LNET_NRB_TINY_MIN * 4)
#define LNET_NRB_SMALL        (LNET_NRB_SMALL_MIN * 4)
#define LNET_NRB_LARGE        (LNET_NRB_LARGE_MIN * 4)



LNet Configuration C-API

582

These default value is divided evenly across all CPTs. However, each CPT can only go as low as the
minimum.

Multiple calls to this API with the same values has no effect

Return Value

-ENOMEM: if no memory to allocate buffer pools.

0: success

45.2.10. Showing Routing information

/*
 * lustre_lnet_show_routing
 *   Send down an IOCTL to dump buffers and routing status
 *   This function is used to dump buffers for all CPU partitions.
 *
 *   show_rc - [OUT] The show output in YAML.  Must be freed by caller.
 *   err_rc - [OUT] struct cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_show_routing(int seq_no, struct cYAML **show_rc,
                                    struct cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_GET_BUF

Description:

This API returns a cYAML block describing the values of each of the following per CPT:

1. The number of pages per buffer. This is a constant.

2. The number of allocated buffers. This is a constant.

3. The number of buffer credits . This is a real-time value of the number of buffer credits currently
available. If this value is negative, that indicates the number of queued messages.

4. The lowest number of credits ever reached in the system. This is historical data.

The show block also returns the status of routing, whether enabled, or disabled.

An exmaple YAML block

routing:
    - cpt[0]:
          tiny:
              npages: 0
              nbuffers: 2048
              credits: 2048
              mincredits: 2048
          small:
              npages: 1
              nbuffers: 16384



LNet Configuration C-API

583

              credits: 16384
              mincredits: 16384
          large:
              npages: 256
              nbuffers: 1024
              credits: 1024
              mincredits: 1024
    - enable: 1

Return Value

-ENOMEM: if no memory to allocate the show or error block.

0: success

45.2.11. Showing LNet Traffic Statistics

/*
 * lustre_lnet_show_stats
 *   Shows internal LNet statistics.  This is useful to display the
 *   current LNet activity, such as number of messages route, etc
 *
 *     seq_no - sequence number of the command
 *     show_rc - YAML structure of the resultant show
 *     err_rc - YAML strucutre of the resultant return code.
 */
extern int lustre_lnet_show_stats(int seq_no, cYAML **show_rc,
                  cYAML **err_rc);

IOCTL to Kernel:

IOC_LIBCFS_GET_LNET_STATS

Description:

This API returns a cYAML block describing the LNet traffic statistics. Statistics are continuously
incremented by LNet while it's alive. This API retuns the statistics at the time of the API call. The statistics
include the following

1. Number of messages allocated

2. Maximum number of messages in the system

3. Errors allocating or sending messages

4. Cumulative number of messages sent

5. Cumulative number of messages received

6. Cumulative number of messages routed

7. Cumulative number of messages dropped

8. Cumulative number of bytes sent

9. Cumulative number of bytes received



LNet Configuration C-API

584

10.Cumulative number of bytes routed

11.Cumulative number of bytes dropped

An exmaple YAML block

statistics:
    msgs_alloc: 0
    msgs_max: 0
    errors: 0
    send_count: 0
    recv_count: 0
    route_count: 0
    drop_count: 0
    send_length: 0
    recv_length: 0
    route_length: 0
    drop_length: 0

Return Value

-ENOMEM: if no memory to allocate the show or error block.

0: success

45.2.12. Adding/Deleting/Showing Parameters through a
YAML Block

/*
 * lustre_yaml_config
 *   Parses the provided YAML file and then calls the specific APIs
 *   to configure the entities identified in the file
 *
 *   f - YAML file
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_yaml_config(char *f, cYAML **err_rc);

/*
 * lustre_yaml_del
 *   Parses the provided YAML file and then calls the specific APIs
 *   to delete the entities identified in the file
 *
 *   f - YAML file
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_yaml_del(char *f, cYAML **err_rc);

/*
 * lustre_yaml_show
 *   Parses the provided YAML file and then calls the specific APIs
 *   to show the entities identified in the file
 *



LNet Configuration C-API

585

 *   f - YAML file
 *   show_rc - [OUT] The show output in YAML.  Must be freed by caller.
 *   err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_yaml_show(char *f,
                cYAML **show_rc,
                cYAML **err_rc);

IOCTL to Kernel:

Depends on the entity being configured

Description:

These APIs add/remove/show the parameters specified in the YAML file respectively. The entities don't
have to be uniform. Multiple different entities can be added/removed/showed in one YAML block.

An example YAML block

---
net:
    - nid: 192.168.206.132@tcp
      status: up
      interfaces:
          0: eth3
      tunables:
          peer_timeout: 180
          peer_credits: 8
          peer_buffer_credits: 0
          credits: 256
          SMP: "[0]"
route:
   - net: tcp6
     gateway: 192.168.29.1@tcp
     hop: 4
     detail: 1
     seq_no: 3
   - net: tcp7
     gateway: 192.168.28.1@tcp
     hop: 9
     detail: 1
     seq_no: 4
buffer:
   - tiny: 1024
     small: 2000
     large: 512
...

Return Value

Return value will correspond to the return value of the API that will be called to operate on the configuration
item, as described in previous sections

45.2.13. Adding a route code example



LNet Configuration C-API

586

int main(int argc, char **argv)
{
 char *network = NULL, *gateway = NULL;
 long int hop = -1, prio = -1;
 struct cYAML *err_rc = NULL;
 int rc, opt;
 optind = 0;

 const char *const short_options = "n:g:c:p:h";
 const struct option long_options[] = {
  { "net", 1, NULL, 'n' },
  { "gateway", 1, NULL, 'g' },
  { "hop-count", 1, NULL, 'c' },
  { "priority", 1, NULL, 'p' },
  { "help", 0, NULL, 'h' },
  { NULL, 0, NULL, 0 },
 };

 while ((opt = getopt_long(argc, argv, short_options,
       long_options, NULL)) != -1) {
  switch (opt) {
  case 'n':
   network = optarg;
   break;
  case 'g':
   gateway = optarg;
   break;
  case 'c':
   rc = parse_long(optarg, &hop);
   if (rc != 0) {
    /* ignore option */
    hop = -1;
    continue;
   }
   break;
  case 'p':
   rc = parse_long(optarg, &prio);
   if (rc != 0) {
    /* ingore option */
    prio = -1;
    continue;
   }
   break;
  case 'h':
   print_help(route_cmds, "route", "add");
   return 0;
  default:
   return 0;
  }
 }

 rc = lustre_lnet_config_route(network, gateway, hop, prio, -1, &err_rc);



LNet Configuration C-API

587

 if (rc != LUSTRE_CFG_RC_NO_ERR)
  cYAML_print_tree2file(stderr, err_rc);

 cYAML_free_tree(err_rc);

 return rc;
}       

For other code examples refer to

lnet/utils/lnetctl.c



588

Glossary
A
ACL Access control list. An extended attribute associated with a file that contains

enhanced authorization directives.

Administrative OST failure A manual configuration change to mark an OST as unavailable, so that operations
intended for that OST fail immediately with an I/O error instead of waiting
indefinitely for OST recovery to complete

C
Completion callback An RPC made by the lock server on an OST or MDT to another system, usually

a client, to indicate that the lock is now granted.

configlog An llog file used in a node, or retrieved from a management server over the
network with configuration instructions for the Lustre file system at startup time.

Configuration lock A lock held by every node in the cluster to control configuration changes. When
the configuration is changed on the MGS, it revokes this lock from all nodes.
When the nodes receive the blocking callback, they quiesce their traffic, cancel
and re-enqueue the lock and wait until it is granted again. They can then fetch the
configuration updates and resume normal operation.

D
Default file layout An extended attribute on the filesystem root directory that describes the default

stripe count, stripe size, and layout pattern used for new files created in a file
system. This can be amended by using a default file layout on a directory or a per-
file layout.

Direct I/O A mechanism that can be used during read and write system calls to avoid
memory cache overhead for large I/O requests. It bypasses the data copy between
application and kernel memory, and avoids buffering the data in the client
memory.

Directory default file layout An extended attribute that describes the default file layout used for new files
created within that directory. This is also inherited by new subdirectories created
in that directory at creation time.

Distributed Namespace
Environment (DNE)

A collection of metadata targets serving a single file system namespace. Without
DNE, Lustre file systems are limited to a single metadata target for the entire name
space. Without the ability to distribute metadata load over multiple targets, Lustre
file system performance may be limited. The DNE functionality has two types of
scalability. Remote Directories (DNE1) allows sub-directories to be serviced by
an independent MDT(s), increasing aggregate metadata capacity and performance
for independent sub-trees of the filesystem. This also allows performance isolation
of workloads running in a specific sub-directory on one MDT from workloads on
other MDTs. In Lustre 2.8 and later Striped Directories (DNE2) allows a single
directory to be serviced by multiple MDTs.



Glossary

589

E
EA Extended attribute (also xattr). A small amount of metadata stored on a file that can

be retrieved by a name associated with a particular inode. A Lustre file system uses
EAs to store striping information (indicating the location of file data on OSTs).
Examples of extended attributes are ACLs, striping information, and the FID of
the file.

Eviction The process of removing a client's state from the server if the client is unresponsive
to server requests after a timeout or if server recovery fails. If a client is still
running, it is required to flush the cache associated with the server when it becomes
aware that it has been evicted.

Export The state held by a server for a client that is sufficient to transparently recover all
in-flight operations when a single failure occurs.

Extent A range of contiguous bytes or blocks in a file that are addressed by a {start,
length} tuple instead of individual block numbers.

Extent lock An LDLM lock used by the OSC to protect an extent in an OST object for
concurrent control of read/write, file size acquisition, and truncation operations.

F
Failback The failover process in which the default active server regains control from the

backup server that had taken control of the service.

Failout OST An OST that is not expected to recover if it fails to answer client requests. A failout
OST can be administratively failed, thereby enabling clients to return errors when
accessing data on the failed OST without making additional network requests or
waiting for OST recovery to complete.

Failover The process by which a standby computer server system takes over for an active
computer server after a failure of the active node. Typically, the standby computer
server gains exclusive access to a shared storage device between the two servers.

FID Lustre File Identifier. A 128-bit file system-unique identifier for a file or object
in the file system. The FID structure contains a unique 64-bit sequence number
(see FLDB), a 32-bit object ID (OID), and a 32-bit version number. The sequence
number is unique across all Lustre targets (OSTs and MDTs).

Fileset A group of files that are defined through a directory that represents the start point
of a file system.

FLDB FID Location Database. This database maps a sequence of FIDs to a specific target
(MDT or OST), which manages the objects within the sequence. The FLDB is
cached by all clients and servers in the file system, but is typically only modified
when new servers are added to the file system.

Flight group Group of I/O RPCs initiated by the OSC that are concurrently queued or processed
at the OST. Increasing the number of RPCs in flight for high latency networks can
increase throughput and reduce visible latency at the client.



Glossary

590

G
Glimpse callback An RPC made by an OST or MDT to another system (usually a client) to indicate

that a held extent lock should be surrendered. If the system is using the lock, then
the system should return the object size and timestamps in the reply to the glimpse
callback instead of cancelling the lock. Glimpses are introduced to optimize the
acquisition of file attributes without introducing contention on an active lock.

I
Import The state held by the client for each target that it is connected to. It holds

server NIDs, connection state, and uncommitted RPCs needed to fully recover a
transaction sequence after a server failure and restart.

Intent lock A special Lustre file system locking operation in the Linux kernel. An intent lock
combines a request for a lock with the full information to perform the operation(s)
for which the lock was requested. This offers the server the option of granting the
lock or performing the operation and informing the client of the operation result
without granting a lock. The use of intent locks enables metadata operations (even
complicated ones) to be implemented with a single RPC from the client to the
server.

L
LBUG A fatal error condition detected by the software that halts execution of the kernel

thread to avoid potential further corruption of the system state. It is printed to the
console log and triggers a dump of the internal debug log. The system must be
rebooted to clear this state.

LDLM Lustre Distributed Lock Manager.

lfs The Lustre file system command-line utility that allows end users to interact with
Lustre software features, such as setting or checking file striping or per-target free
space. For more details, see Section 40.1, “ lfs ”.

LFSCK Lustre file system check. A distributed version of a disk file system checker.
Normally, lfsck does not need to be run, except when file systems are damaged
by events such as multiple disk failures and cannot be recovered using file system
journal recovery.

llite Lustre lite. This term is in use inside code and in module names for code that is
related to the Linux client VFS interface.

llog Lustre log. An efficient log data structure used internally by the file system for
storing configuration and distributed transaction records. An llog is suitable for
rapid transactional appends of records and cheap cancellation of records through
a bitmap.

llog catalog Lustre log catalog. An llog with records that each point at an llog. Catalogs
were introduced to give llogs increased scalability. llogs have an originator
which writes records and a replicator which cancels records when the records are
no longer needed.



Glossary

591

LMV Logical Metadata Volume. A module that implements a DNE client-side
abstraction device. It allows a client to work with many MDTs without changes
to the llite module. The LMV code forwards requests to the correct MDT based
on name or directory striping information and merges replies into a single result
to pass back to the higher llite layer that connects the Lustre file system
with Linux VFS, supports VFS semantics, and complies with POSIX interface
specifications.

LND Lustre network driver. A code module that enables LNet support over particular
transports, such as TCP and various kinds of InfiniBand networks.

LNet Lustre networking. A message passing network protocol capable of running
and routing through various physical layers. LNet forms the underpinning of
LNETrpc.

Lock client A module that makes lock RPCs to a lock server and handles revocations from
the server.

Lock server A service that is co-located with a storage target that manages locks on certain
objects. It also issues lock callback requests, calls while servicing or, for objects
that are already locked, completes lock requests.

LOV Logical Object Volume. The object storage analog of a logical volume in a
block device volume management system, such as LVM or EVMS. The LOV is
primarily used to present a collection of OSTs as a single device to the MDT and
client file system drivers.

Lustre client An operating instance with a mounted Lustre file system.

Lustre file A file in the Lustre file system. The implementation of a Lustre file is through
an inode on a metadata server that contains references to one or more objects on
an OSSs.

M
mballoc Multi-block allocator. Functionality in ldiskfs that enables the ldiskfs file

system to allocate multiple blocks with a single request to the block allocator.

MDC MetaData Client. A Lustre client component that sends metadata requests via RPC
over LNet to the metadata target (MDT).

MDD Metadata Disk Device. Lustre server component that interfaces with the
underlying object storage device to manage the Lustre file system namespace
(directories, file ownership, attributes).

MDS MetaData Server. The server node that is hosting the metadata target (MDT).

MDT MetaData Target. A storage device containing the file system namespace that is
made available over the network to a client. It stores filenames, attributes, and the
layout of OST objects that store the file data.

MDT0000 The metadata target storing the file system root directory, as well as some core
services such as quota tables. Multiple metadata targets are possible in the same
file system. MDT0000 must be available for the file system to be accessible.



Glossary

592

MGS Management Service. A software module that manages the startup configuration
and changes to the configuration. Also, the server node on which this system runs.

N
NID Network IDentifier. Encodes the type, network number, and network address of a

network interface on a node for use by the Lustre file system.

Node affinity Node affinity describes the property of process threads to be affine to specific cores
on a NUMA system. Without node affinity, an operating system scheduler may
move threads across processors in a sub-optimal way that significantly reduces
performance of the system overall.

NRS Network Request Scheduler. A subcomponent of the PtlRPC layer, which
specifies the order in which RPCs are handled by servers. This allows optimizing
large numbers of incoming requests for disk access patterns, fairness between
clients, and other administrator-selected policies.

NUMA Non-Uniform Memory Access. Describes a multi-processing architecture where
the time taken to access specific memory differs depending on memory location
relative to a given processor. Typically machines with multiple sockets are NUMA
architectures.

O
OBD Object-Based Device. The generic term for components in the Lustre software

stack that can be configured on the client or server. Examples include MDC, OSC,
LOV, LMV, MDT, and OST.

OBD type Module that can implement the Lustre object or metadata APIs. Examples of OBD
types include the LOV, OSC and OSD.

Object storage Refers to a storage-device API or protocol involving storage objects and offsets
therein, rather than addressing storage by individual blocks.

opencache A cache of open file handles. This is a performance enhancement for NFS and
files that are opened repeatedly on a client.

Orphan objects OST objects to which no Lustre file points. Orphan objects can arise from crashes
and are automatically removed by an llog recovery between the MDT and OST.
When a client deletes a file, the MDT unlinks it from the namespace. If this is the
last link, it will atomically add the OST objects into a per-OST llog(in case a
crash occurrs) and then wait until the MDT unlink commits to disk. At this point,
it is safe to destroy the OST objects. Once the OST object destroy is committed,
the MDT llog records can be cancelled.

OSC Object Storage Client. The client module communicating to an OST mounted on
an OSS.

OSD Object Storage Device. A generic, industry term for storage devices with a more
extended interface than block-oriented devices such as disks. For the Lustre file
system, this name is used to describe a software module that implements an object
storage API in the kernel. It is also used to refer to an instance of an object storage
device created by that driver. The OSD device is layered on a file system, either



Glossary

593

ldiskfs (ext4) or ZFS, with methods that implement create, destroy and other I/O
operations on file inodes.

OSS Object Storage Server. A server OBD that provides network access between the
client and local OSTs.

OST Object Storage Target. An OSD made accessible through a network protocol.
Typically, an OST is associated with a unique OSD which, in turn is associated
with a formatted disk file system on the server containing the data objects.

Overstriping Using wide striping for a file that allocates multiple objects in a file to each OST.
This allows the number of stripes to exceed the number of OSTs, and can improve
scalability for IO and locking.

P
pdirops A locking protocol in the Linux VFS layer that allows for directory operations

performed in parallel.

Pool OST pools allows the administrator to associate a name with an arbitrary subset
of OSTs in a Lustre cluster. A group of OSTs can be combined into a named pool
with unique access permissions and stripe characteristics.

Portal A service address on an LNet NID that binds requests to a specific request service,
such as an MDS, MGS, OSS, or LDLM. Services may listen on multiple portals
to ensure that high priority messages are not queued behind many slow requests
on another portal.

PtlRPC An RPC protocol layered on LNet. This protocol deals with stateful servers and
has exactly-once semantics and built in support for recovery.

R
Recovery The process that re-establishes the connection state when a client that was

previously connected to a server reconnects after the server restarts.

Remote directory A remote directory describes a feature of Lustre DNE where a subdirectory may
be stored on a different MDT than the parent directory. This is sometimes referred
to as DNE1.

Replay request The concept of re-executing a server request after the server has lost information
in its memory caches and shut down. The replay requests are retained by clients
until the server(s) have confirmed that the data is persistent on disk. Only requests
for which a client received a reply and were assigned a transaction number by the
server are replayed. Requests that did not get a reply are resent.

Resent request An RPC request sent from a client to a server that has not had a reply from the
server. This might happen if the request was lost on the way to the server, if the
reply was lost on the way back from the server, or if the server crashes before
or after processing the request. During server RPC recovery processing, resent
requests are processed after replayed requests, and use the client RPC XID to
determine if the resent RPC request was already executed on the server.

Revocation callback Also called a "blocking callback". An RPC request made by the lock server
(typically for an OST or MDT) to a lock client to revoke a granted DLM lock.



Glossary

594

Root squash A mechanism whereby the identity of a root user on a client system is mapped to
a different identity on the server to avoid root users on clients from accessing or
modifying root-owned files on the servers. This does not prevent root users on the
client from assuming the identity of a non-root user, so should not be considered
a robust security mechanism. Typically, for management purposes, at least one
client system should not be subject to root squash.

Routing LNet routing between different networks and LNDs.

RPC Remote Procedure Call. A network encoding of a request, often sent from a client
to a server to perform a particular action.

S
Stripe A contiguous, logical extent of a Lustre file written to a single OST. Used

synonymously with a single OST data object that makes up part of a file visible
to user applications.

Striped Directory A striped directory is when metadata for files in a given directory are distributed
evenly over multiple MDTs. Striped directories are only available in Lustre
software version 2.8 or later. A user can create a striped directory to increase
metadata performance of very large directories (e.g. 1M+ entries) by distributing
the metadata requests in a single directory over two or more MDTs. This is
sometimes called DNE2.

Stripe size The maximum number of bytes that will be written to an OST object in a RAID0-
striped Lustre file before the next object in the file's layout is used, when writing
data sequentially to a file. Once a full stripe has been written to each of the objects
in the layout, the first object will be written to again in round-robin fashion.

Stripe count The number of OSTs holding objects for a RAID0-striped Lustre file.

T
T10-PI Checksum format defined by the T10 SCSI committee to store data checksums

together with the data on supporting storage devices.

TBF Token Bucket Filter. NRS policy that assigns tokens to each rule proportional to
the priority of RPCs submitted that match the rule. When the tokens for a rule have
all been consumed within a time period, any remaining RPCs matching that rule
must wait until the next time period to be processed.

W
Wide striping Strategy of using many OSTs to store stripes of a single file. This obtains

maximum bandwidth access to a single file through parallel utilization of many
OSTs. For more information about wide striping, see Section 19.9, “Lustre
Striping Internals”.



595

Index
A
Access Control List (ACL), 321

examples, 322
how they work, 321
using, 321

audit
change logs, 98

B
backup, 167

aborting recovery, 135
index objects, 171
MDT file system, 171
MDT/OST device level, 170
new/changed files, 178
OST and MDT, 172
OST config, 133
OST file system, 171
restoring file system backup, 174
restoring OST config, 134
rsync, 168

examples, 169
using, 168

using LVM, 176
creating, 176
creating snapshots, 178
deleting, 180
resizing, 180
restoring, 178

ZFS to ldiskfs, 180, 180
ZFS ZPL, 180

barrier, 343
impose, 344
query, 344
remove, 344
rescan, 345

benchmarking
application profiling, 375
local disk, 367
MDS performance, 373
network, 369
OST I/O, 372
OST performance, 366
raw hardware with sgpdd-survey, 364
remote disk, 370
tuning storage, 365
with Lustre I/O Kit, 363

C
change logs (see monitoring)

Client-side encryption, 326
commit on share, 463

tuning, 464
working with, 463

configlogs, 346
configuring, 535

adaptive timeouts, 491
LNet options, 536
module options, 535
multihome, 68
network

accept, 538
forwarding, 538
ip2nets, 536
rnet_htable_size, 539
routes, 537
SOCKLND, 539
tcp, 537

network topology, 536

D
debug

utilities, 569
debugging, 435

admin tools, 436
developer tools, 436
developers tools, 444
disk contents, 442
external tools, 436
kernel debug log, 441
lctl example, 440
memory leaks, 448
message format, 437
procedure, 437
tools, 435
using lctl, 439
using strace, 442

design (see setup)
DLC

Code Example, 585
dom, 224, 224, 228, 228, 229, 230, 231

disabledom, 231
domstripesize, 228
dom_stripesize, 230
intro, 224
lfsfind, 229
lfsgetstripe, 228
lfssetstripe, 224
usercommands, 224

E
ea_inode

large_xattr, 161



Index

596

encryption access semantics, 326
encryption fscrypt policy, 330
encryption key hierarchy, 328
encryption modes usage, 328
encryption threat model, 329
errors (see troubleshooting)

F
failover, 16, 83

and Lustre, 17
capabilities, 16
configuration, 17
high-availability (HA) software, 84
MDT, 18, 18
OST, 19
power control device, 83
power management software, 83
setup, 84

feature overview
configuration, 339

file layout
See striping, 182

filefrag, 514
fileset, 570
fragmentation, 513

H
Hierarchical Storage Management (HSM)

introduction, 283
High availability (see failover)
HSM

agents, 284
agents and copytools, 284
archiveID backends, 284
automatic restore, 286
changelogs, 288
commands, 286
coordinator, 284
file states, 286
grace_delay, 288
hsm_control, 287
max_requests, 287
policy, 287
policy engine, 288
registered agents, 285
request monitoring, 286
requests, 285
requirements, 283
robinhood, 289
setup, 283
timeout, 285
tuning, 287

I
I/O, 258

adding an OST, 264
bringing OST online, 259
direct, 265
disabling OST creates, 259
full OSTs, 258
migrating data, 259
OST space usage, 258
pools, 261

imperative recovery, 464
Configuration Suggestions, 467
MGS role, 464
Tuning, 465

inodes
MDS, 30
OST, 31

installing, 24
preparation, 50

Introduction, 339
Requirements, 339

ior-survey, 570
Isolation, 323

client identification, 323
configuring, 323
making permanent, 324

J
jobstats (see monitoring)

K
Kerberos, 332

L
large_xattr

ea_inode, 31
lctl, 543
ldiskfs

formatting options, 29
lfs, 504
lfs_migrate, 512
llobdstat, 549
llog_reader, 550
llstat, 550
llverdev, 551
ll_decode_filter_fid, 548
LNet, 14, 66, 143, 143, 144, 144 (see configuring)

best practice, 72
buffer yaml syntax, 65
capi general information, 573
capi input params, 573
capi output params, 573
capi return code, 573



Index

597

cli, 56, 56, 56, 58, 61, 62, 62, 62, 64, 64, 64
asymmetrical route, 63
dynamic discovery, 60

comments, 72
Configuring LNet, 55
cyaml, 573
error block, 574
escaping commas with quotes, 72
features, 14
hardware multi-rail configuration, 141
InfiniBand load balancing, 141
ip2nets, 68
lustre.conf, 141
lustre_lnet_config_buf, 581
lustre_lnet_config_net, 578
lustre_lnet_config_ni_system, 575
lustre_lnet_config_route, 576
lustre_lnet_del_net, 579
lustre_lnet_del_route, 577
lustre_lnet_enable_routing, 575
lustre_lnet_show stats, 583
lustre_lnet_show_buf, 582
lustre_lnet_show_net, 580
lustre_lnet_show_route, 577
lustre_yaml, 584
management, 139
module parameters, 67
network yaml syntax, 65
proc, 495
route checker, 71
router yaml syntax, 65
routes, 70
routing example, 70
self-test, 350
show block, 574, 575
starting/stopping, 139
statistics yaml syntax, 65
supported networks, 15
testing, 70
tuning, 379
understanding, 14
using NID, 66
yaml syntax, 64

logs, 345
lr_reader, 570
lshowmount, 553
lsom

enablelsom, 232
intro, 232
lfsgetsom, 233
usercommands, 233

lst, 553
Lustre, 3

at scale, 9

cluster, 8
components, 6
configuring, 73

additional options, 81
for scale, 81
simple example, 76
striping, 81
utilities, 82

features, 3
fileset, 571
I/O, 9
LNet, 8
MGS, 7
Networks, 14
requirements, 8
storage, 9
striping, 11
upgrading (see upgrading)

lustre
errors (see troubleshooting)
recovery (see recovery)
troubleshooting (see troubleshooting)

lustre_rmmod, 555
lustre_rsync, 555
LVM (see backup)
l_getidentity, 542

M
maintenance, 124, 131

aborting recovery, 135
adding a OST, 129
adding an MDT, 129
backing up OST config, 133
bringing OST online, 259
changing a NID, 127
changing failover node address, 136
Clearing a config, 128
finding nodes, 125
full OSTs, 259
identifying OST host, 135
inactive MDTs, 131
inactive OSTs, 124
mounting a server, 125
pools, 261
regenerating config logs, 126
reintroducing an OSTs, 135
removing an MDT, 131
removing an OST, 130, 131
restoring an OST, 130
restoring OST config, 134
separate a combined MGS/MDT, 136
set an MDT to readonly, 137
Tune fallocate, 137



Index

598

MDT
multiple MDSs, 161

migrating metadata, 259, 259, 260, 260, 261
mkfs.lustre, 558
monitoring, 94, 100

additional tools, 105
change logs, 94, 95
jobstats, 100, 101, 102, 103, 104, 104
lljobstat, 105
Lustre Monitoring Tool, 105

mount, 516
mount.lustre, 560
MR

addremotepeers, 147
configuring, 145
deleteinterfaces, 147
deleteremotepeers, 148
health, 154
mrhealth

display, 157
failuretypes, 154
initialsetup, 159
interface, 155
value, 154

mrrouting, 149
routingex, 149
routinghealth_aliveness, 153
routinghealth_config, 152
routinghealth_discovery, 153
routinghealth_routerhealth, 153
routingmixed, 151
routingresiliency, 151

mrroutinghealth, 152
multipleinterfaces, 145
overview, 145

multiple-mount protection, 268

O
obdfilter-survey, 570
operations, 107, 341

create, 341
default dir stripe policy, 116
degraded OST RAID, 111
delete, 341
erasing a file system, 121
failover, 110, 120
identifying OSTs, 122
list, 343
mkdir, 114
modify, 343
mount, 341
mounting, 108
mounting by label, 107

multiple file systems, 111
parameters, 116
reclaiming space, 122
remote directory, 113
replacing an OST or MDS, 122
setdirstripe, 114
shutdownLustre, 108
starting, 107
striped directory, 114
unmount, 342
unmounting, 110

ost-survey, 570

P
performance (see benchmarking)
pings

evict_client, 468
suppress_pings, 468

pools, 261
usage tips, 264

proc
adaptive timeouts, 491
block I/O, 480
client metadata performance, 489
client stats, 475
configuring adaptive timeouts, 491
debug, 499
free space, 496
LNet, 495
locking, 497
OSS journal, 488
read cache, 485
read/write survey, 477, 478
readahead, 484
RPC tunables, 482
static timeouts, 493
thread counts, 498
watching RPC, 474

profiling (see benchmarking)
programming

upcall, 518

Q
Quotas

allocating, 277
configuring, 270
creating, 273
default, 275
enabling disk, 270
Interoperability, 278
known issues, 278
pools, 280
statistics, 279



Index

599

usage, 275
verifying, 272

R
recovery, 455

client eviction, 456
client failure, 455
commit on share (see commit on share)
corruption of backing ldiskfs file system, 421
corruption of Lustre file system, 422
failed recovery, 458
LFSCK, 423
locks, 460
MDS failure, 456
metadata replay, 458
network, 457
oiscrub, 423
orphaned objects, 422
OST failure, 457
unavailable OST, 422
VBR (see version-based recovery)

reporting bugs (see troubleshooting)
restoring (see backup)
root squash, 322
round-robin algorithm, 219
routerstat, 565
rsync (see backup)

S
selinux policy check, 324

determining, 324
enforcing, 325
making permanent, 325
sending client, 325

setup, 25
hardware, 25
inodes, 30
ldiskfs, 29
limits, 31
MDT, 26, 28
memory, 35

client, 35
MDS, 35, 36
OSS, 36, 37

MGT, 28
network, 37
OST, 27, 29
space, 27

sgpdd-survey, 570
space, 182

considerations, 182
determining MDT requirements, 28
determining MGT requirements, 28

determining OST requirements, 29
determining requirements, 27
free space, 219
location weighting, 222
striping, 182

stats-collect, 570
storage

configuring, 39
external journal, 41
for best practice, 40
for mkfs, 41
MDT, 39
OST, 39
RAID options, 40
SAN, 42

performance tradeoffs, 40
striping (see space)

allocations, 221
configuration, 184
considerations, 182
count, 185
Foreign, 217
getting information, 187
how it works, 182
metadata, 114
on specific OST, 187
overview, 11
per directory, 186
per file system, 186
PFL, 188
remote directories, 188
round-robin algorithm, 219
SEL, 206
size, 183
stripe count limit, 186
weighted algorithm, 219
wide striping, 222

suppressing pings, 468

T
troubleshooting, 410

'Address already in use', 415
'Error -28', 416
common problems, 412
error messages, 411
error numbers, 410
OST out of memory, 420
reporting bugs, 411
slowdown during startup, 420
timeouts on setup, 418

tunefs.lustre, 566
tuning, 377 (see benchmarking)

for small files, 407



Index

600

Large Bulk IO, 406
libcfs, 384
LND tuning, 385
LNet, 379
lockless I/O, 403
MDS binding, 379
MDS threads, 378
Network interface binding, 380
Network interface credits, 380
Network Request Scheduler (NRS) Tuning, 387

client round-robin over NIDs (CRR-N) policy, 390
Delay policy, 401
first in, first out (FIFO) policy, 390
object-based round-robin (ORR) policy, 391
Target-based round-robin (TRR) policy, 394
Token Bucket Filter (TBF) policy, 394

OSS threads, 378
portal round-robin, 381
router buffers, 380
service threads, 377
with lfs ladvise, 404
write performance, 407

U
upgrading, 161

2.X.y to 2.X.y (minor release), 165
major release (2.x to 2.x), 161

utilities
debugging, 569
system config, 569

V
version

which version of Lustre am I running?, xxiv
Version-based recovery (VBR), 462

messages, 463
tips, 463

W
weighted algorithm, 219
wide striping, 31, 161, 222

large_xattr
ea_inode, 31

X
xattr

See wide striping, 31


	Lustre* Software Release 2.x
	Table of Contents
	Preface
	1. About this Document
	1.1. UNIX* Commands
	1.2. Shell Prompts
	1.3. Related Documentation
	1.4. Documentation and Support

	2. Revisions

	Part I. Introducing the Lustre* File System
	Chapter 1. Understanding Lustre Architecture
	1.1.  What a Lustre File System Is (and What It Isn't)
	1.1.1.  Lustre Features

	1.2.  Lustre Components
	1.2.1.  Management Server (MGS)
	1.2.2. Lustre File System Components
	1.2.3.  Lustre Networking (LNet)
	1.2.4.  Lustre Cluster

	1.3.  Lustre File System Storage and I/O
	1.3.1.  Lustre File System and Striping


	Chapter 2. Understanding Lustre Networking (LNet)
	2.1.  Introducing LNet
	2.2. Key Features of LNet
	2.3. Lustre Networks
	2.4. Supported Network Types

	Chapter 3. Understanding Failover in a Lustre File System
	3.1.  What is Failover?
	3.1.1.  Failover Capabilities
	3.1.2.  Types of Failover Configurations

	3.2.  Failover Functionality in a Lustre File System
	3.2.1.  MDT Failover Configuration (Active/Passive)
	3.2.2.  MDT Failover Configuration (Active/Active)
	3.2.3.  OST Failover Configuration (Active/Active)



	Part II. Installing and Configuring Lustre
	Chapter 4. Installation Overview
	4.1.  Steps to Installing the Lustre Software

	Chapter 5. Determining Hardware Configuration Requirements and Formatting Options
	5.1.  Hardware Considerations
	5.1.1.  MGT and MDT Storage Hardware Considerations
	5.1.2. OST Storage Hardware Considerations

	5.2.  Determining Space Requirements
	5.2.1.  Determining MGT Space Requirements
	5.2.2.  Determining MDT Space Requirements
	5.2.3.  Determining OST Space Requirements

	5.3.  Setting ldiskfs File System Formatting Options
	5.3.1. Setting Formatting Options for an ldiskfs MDT
	5.3.2. Setting Formatting Options for an ldiskfs OST

	5.4. File and File System Limits
	5.5. Determining Memory Requirements
	5.5.1.  Client Memory Requirements
	5.5.2. MDS Memory Requirements
	5.5.2.1. Calculating MDS Memory Requirements

	5.5.3. OSS Memory Requirements
	5.5.3.1. Calculating OSS Memory Requirements


	5.6. Implementing Networks To Be Used by the Lustre File System

	Chapter 6. Configuring Storage on a Lustre File System
	6.1.  Selecting Storage for the MDT and OSTs
	6.1.1. Metadata Target (MDT)
	6.1.2. Object Storage Server (OST)

	6.2. Reliability Best Practices
	6.3. Performance Tradeoffs
	6.4.  Formatting Options for ldiskfs RAID Devices
	6.4.1. Computing file system parameters for mkfs
	6.4.2. Choosing Parameters for an External Journal

	6.5. Connecting a SAN to a Lustre File System

	Chapter 7. Setting Up Network Interface Bonding
	7.1. Network Interface Bonding Overview
	7.2. Requirements
	7.3. Bonding Module Parameters
	7.4. Setting Up Bonding
	7.4.1. Examples

	7.5. Configuring a Lustre File System with Bonding
	7.6. Bonding References

	Chapter 8. Installing the Lustre Software
	8.1.  Preparing to Install the Lustre Software
	8.1.1. Software Requirements
	8.1.2. Environmental Requirements

	8.2. Lustre Software Installation Procedure

	Chapter 9. Configuring Lustre Networking (LNet)
	9.1. Configuring LNet via lnetctl
	9.1.1. Configuring LNet
	9.1.2. Displaying Global Settings
	9.1.3. Adding, Deleting and Showing Networks
	9.1.4. Manual Adding, Deleting and Showing Peers
	9.1.5. Dynamic Peer Discovery
	9.1.5.1. Overview
	9.1.5.2. Protocol
	9.1.5.3. Dynamic Discovery and User-space Configuration
	9.1.5.4. Configuration
	9.1.5.5. Initiating Dynamic Discovery on Demand

	9.1.6. Adding, Deleting and Showing routes
	9.1.7. Enabling and Disabling Routing
	9.1.8. Showing routing information
	9.1.9. Configuring Routing Buffers
	9.1.10. Asymmetrical Routes
	9.1.10.1. Overview
	9.1.10.2. Configuration

	9.1.11. Importing YAML Configuration File
	9.1.12. Exporting Configuration in YAML format
	9.1.13. Showing LNet Traffic Statistics
	9.1.14. YAML Syntax
	9.1.14.1. Network Configuration
	9.1.14.2. Enable Routing and Adjust Router Buffer Configuration
	9.1.14.3. Show Statistics
	9.1.14.4. Route Configuration


	9.2.  Overview of LNet Module Parameters
	9.2.1. Using a Lustre Network Identifier (NID) to Identify a Node

	9.3. Setting the LNet Module networks Parameter
	9.3.1. Multihome Server Example

	9.4. Setting the LNet Module ip2nets Parameter
	9.5. Setting the LNet Module routes Parameter
	9.5.1. Routing Example

	9.6. Testing the LNet Configuration
	9.7. Configuring the Router Checker
	9.8. Best Practices for LNet Options
	9.8.1. Escaping commas with quotes
	9.8.2. Including comments


	Chapter 10. Configuring a Lustre File System
	10.1.  Configuring a Simple Lustre File System
	10.1.1.  Simple Lustre Configuration Example

	10.2.  Additional Configuration Options
	10.2.1.  Scaling the Lustre File System
	10.2.2.  Changing Striping Defaults
	10.2.3.  Using the Lustre Configuration Utilities


	Chapter 11. Configuring Failover in a Lustre File System
	11.1. Setting Up a Failover Environment
	11.1.1. Selecting Power Equipment
	11.1.2. Selecting Power Management Software
	11.1.3. Selecting High-Availability (HA) Software

	11.2. Preparing a Lustre File System for Failover
	11.3. Administering Failover in a Lustre File System


	Part III. Administering Lustre
	Chapter 12. Monitoring a Lustre File System
	12.1.  Lustre Changelogs
	12.1.1.  Working with Changelogs
	12.1.1.1.  lctl changelog_register
	12.1.1.2.  lfs changelog
	12.1.1.3.  lfs changelog_clear
	12.1.1.4.  lctl changelog_deregister

	12.1.2. Changelog Examples
	12.1.2.1. Registering a Changelog User
	12.1.2.2. Displaying Changelog Records
	12.1.2.3. Clearing Changelog Records
	12.1.2.4. Deregistering a Changelog User
	12.1.2.5. Displaying the Changelog Index and Registered Users
	12.1.2.6. Displaying the Changelog Mask
	12.1.2.7. Setting the Changelog Mask

	12.1.3.  Audit with Changelogs
	12.1.3.1. Enabling Audit
	12.1.3.2. Audit examples
	12.1.3.2.1.  OPEN
	12.1.3.2.2.  GETXATTR
	12.1.3.2.3.  SETXATTR
	12.1.3.2.4.  DENIED OPEN



	12.2.  Lustre Jobstats
	12.2.1.  How Jobstats Works
	12.2.2.  Enable/Disable Jobstats
	12.2.3.  Check Job Stats
	12.2.4.  Clear Job Stats
	12.2.5.  Configure Auto-cleanup Interval
	12.2.6.  Identifying Top Jobs

	12.3.  Lustre Monitoring Tool (LMT)
	12.4.  CollectL
	12.5.  Other Monitoring Options

	Chapter 13. Lustre Operations
	13.1.  Mounting by Label
	13.2.  Starting Lustre
	13.3.  Mounting a Server
	13.4.  Stopping the Filesystem
	13.5.  Unmounting a Specific Target on a Server
	13.6.  Specifying Failout/Failover Mode for OSTs
	13.7.  Handling Degraded OST RAID Arrays
	13.8.  Running Multiple Lustre File Systems
	13.9.  Creating a sub-directory on a specific MDT
	13.10.  Creating a directory striped across multiple MDTs
	13.10.1. Directory creation by space/inode usage
	13.10.2. Filesystem-wide default directory striping

	13.11.  Default Dir Stripe Policy
	13.12.  Setting and Retrieving Lustre Parameters
	13.12.1. Setting Tunable Parameters with mkfs.lustre
	13.12.2. Setting Parameters with tunefs.lustre
	13.12.3. Setting Parameters with lctl
	13.12.3.1. Setting Temporary Parameters
	13.12.3.2. Setting Permanent Parameters
	13.12.3.3. Setting Permanent Parameters with lctl set_param -P
	13.12.3.4. Listing Persistent Parameters
	13.12.3.5. Listing All Tunable Parameters
	13.12.3.6. Reporting Current Parameter Values


	13.13.  Specifying NIDs and Failover
	13.14.  Erasing a File System
	13.15.  Reclaiming Reserved Disk Space
	13.16.  Replacing an Existing OST or MDT
	13.17.  Identifying To Which Lustre File an OST Object Belongs

	Chapter 14. Lustre Maintenance
	14.1.  Working with Inactive OSTs
	14.2.  Finding Nodes in the Lustre File System
	14.3.  Mounting a Server Without Lustre Service
	14.4.  Regenerating Lustre Configuration Logs
	14.5.  Changing a Server NID
	14.6.  Clearing configuration
	14.7. Adding a New MDT to a Lustre File System
	14.8.  Adding a New OST to a Lustre File System
	14.9.  Removing and Restoring MDTs and OSTs
	14.9.1. Removing an MDT from the File System
	14.9.2.  Working with Inactive MDTs
	14.9.3. Removing an OST from the File System
	14.9.4.  Backing Up OST Configuration Files
	14.9.5.  Restoring OST Configuration Files
	14.9.6. Returning a Deactivated OST to Service

	14.10.  Aborting Recovery
	14.11.  Determining Which Machine is Serving an OST
	14.12.  Changing the Address of a Failover Node
	14.13.  Separate a combined MGS/MDT
	14.14.  Set an MDT to read-only
	14.15.  Tune Fallocate for ldiskfs

	Chapter 15. Managing Lustre Networking (LNet)
	15.1.  Updating the Health Status of a Peer or Router
	15.2. Starting and Stopping LNet
	15.2.1. Starting LNet
	15.2.1.1. Starting Clients

	15.2.2. Stopping LNet

	15.3. Hardware Based Multi-Rail Configurations with LNet
	15.4. Load Balancing with an InfiniBand* Network
	15.4.1. Setting Up lustre.conf for Load Balancing

	15.5. Dynamically Configuring LNet Routes
	15.5.1.  lustre_routes_config
	15.5.2. lustre_routes_conversion
	15.5.3. Route Configuration Examples


	Chapter 16. LNet Software Multi-Rail
	16.1. Multi-Rail Overview
	16.2. Configuring Multi-Rail
	16.2.1. Configure Multiple Interfaces on the Local Node
	16.2.2. Deleting Network Interfaces
	16.2.3. Adding Remote Peers that are Multi-Rail Capable
	16.2.4. Deleting Remote Peers

	16.3. Notes on routing with Multi-Rail
	16.3.1. Multi-Rail Cluster Example
	16.3.2. Utilizing Router Resiliency
	16.3.3. Mixed Multi-Rail/Non-Multi-Rail Cluster

	16.4. Multi-Rail Routing with LNet Health
	16.4.1. Configuration
	16.4.1.1. Configuring Routes
	16.4.1.2. Configuring Module Parameters

	16.4.2. Router Health
	16.4.3. Discovery
	16.4.4. Route Aliveness Criteria

	16.5. LNet Health
	16.5.1. Health Value
	16.5.2. Failure Types and Behavior
	16.5.3. User Interface
	16.5.4. Displaying Information
	16.5.4.1. Showing LNet Health Configuration Settings
	16.5.4.2. Showing LNet Health Statistics

	16.5.5. Initial Settings Recommendations


	Chapter 17. Upgrading a Lustre File System
	17.1.  Release Interoperability and Upgrade Requirements
	17.2.  Upgrading to Lustre Software Release 2.x (Major Release)
	17.3.  Upgrading to Lustre Software Release 2.x.y (Minor Release)

	Chapter 18. Backing Up and Restoring a File System
	18.1.  Backing up a File System
	18.1.1.  Lustre_rsync
	18.1.1.1.  Using Lustre_rsync
	18.1.1.2.  lustre_rsync Examples


	18.2.  Backing Up and Restoring an MDT or OST (ldiskfs Device Level)
	18.3.  Backing Up an OST or MDT (Backend File System Level)
	18.3.1.  Backing Up an OST or MDT (Backend File System Level)
	18.3.2.  Backing Up an OST or MDT

	18.4.  Restoring a File-Level Backup
	18.5.  Using LVM Snapshots with the Lustre File System
	18.5.1.  Creating an LVM-based Backup File System
	18.5.2.  Backing up New/Changed Files to the Backup File System
	18.5.3.  Creating Snapshot Volumes
	18.5.4.  Restoring the File System From a Snapshot
	18.5.5.  Deleting Old Snapshots
	18.5.6.  Changing Snapshot Volume Size

	18.6.  Migration Between ZFS and ldiskfs Target Filesystems
	18.6.1.  Migrate from a ZFS to an ldiskfs based filesystem
	18.6.2.  Migrate from an ldiskfs to a ZFS based filesystem


	Chapter 19. Managing File Layout (Striping) and Free Space
	19.1.  How Lustre File System Striping Works
	19.2.  Lustre File Layout (Striping) Considerations
	19.2.1.  Choosing a Stripe Size

	19.3. Setting the File Layout/Striping Configuration (lfs setstripe)
	19.3.1. Specifying a File Layout (Striping Pattern) for a Single File
	19.3.1.1. Setting the Stripe Size
	19.3.1.2.  Setting the Stripe Count

	19.3.2. Setting the Striping Layout for a Directory
	19.3.3. Setting the Striping Layout for a File System
	19.3.4. Per File System Stripe Count Limit
	19.3.5. Creating a File on a Specific OST

	19.4. Retrieving File Layout/Striping Information (getstripe)
	19.4.1. Displaying the Current Stripe Size
	19.4.2. Inspecting the File Tree
	19.4.3. Locating the MDT for a remote directory

	19.5. Progressive File Layout(PFL)
	19.5.1. lfs setstripe
	19.5.1.1. Create a PFL file
	19.5.1.2. Add component(s) to an existing composite file
	19.5.1.3. Delete component(s) from an existing file
	19.5.1.4. Set default PFL layout to an existing directory

	19.5.2. lfs migrate
	19.5.3. lfs getstripe
	19.5.4. lfs find

	19.6.  Self-Extending Layout (SEL)
	19.6.1. lfs setstripe
	19.6.1.1. Create a SEL file
	19.6.1.2. Create a SEL layout template

	19.6.2. lfs getstripe
	19.6.3. lfs find

	19.7.  Foreign Layout
	19.7.1. lfs set[dir]stripe
	19.7.1.1. Create a Foreign file/dir

	19.7.2. lfs get[dir]stripe
	19.7.3. lfs find

	19.8. Managing Free Space
	19.8.1. Checking File System Free Space
	19.8.2.  Stripe Allocation Methods
	19.8.3. Adjusting the Weighting Between Free Space and Location

	19.9. Lustre Striping Internals

	Chapter 20. Data on MDT (DoM)
	20.1.  Introduction to Data on MDT (DoM)
	20.2.  User Commands
	20.2.1.  lfs setstripe for DoM files
	20.2.1.1. Command
	20.2.1.2. Example

	20.2.2. Setting a default DoM layout to an existing directory
	20.2.2.1. Command
	20.2.2.2. Example

	20.2.3.  DoM Stripe Size Restrictions
	20.2.3.1. LFS limits for DoM component size
	20.2.3.2. MDT Server Limits

	20.2.4.  lfs getstripe for DoM files
	20.2.4.1. Command
	20.2.4.2. Examples

	20.2.5.  lfs find for DoM files
	20.2.5.1. Command
	20.2.5.2. Examples

	20.2.6.  The dom_stripesize parameter
	20.2.6.1. Get Command
	20.2.6.2. Get Examples
	20.2.6.3. Temporary Set Command
	20.2.6.4. Temporary Set Examples
	20.2.6.5. Persistent Set Command
	20.2.6.6. Persistent Set Examples

	20.2.7.  Disable DoM


	Chapter 21. Lazy Size on MDT (LSoM)
	21.1.  Introduction to Lazy Size on MDT (LSoM)
	21.2. Enable LSoM
	21.3. User Commands
	21.3.1. lfs getsom for LSoM data
	21.3.1.1. lfs getsom Command

	21.3.2. Syncing LSoM data
	21.3.2.1. llsom_sync Command



	Chapter 22. File Level Redundancy (FLR)
	22.1. Introduction
	22.2. Operations
	22.2.1. Creating a Mirrored File or Directory
	22.2.2. Extending a Mirrored File
	22.2.3. Splitting a Mirrored File
	22.2.4. Resynchronizing out-of-sync Mirrored File(s)
	22.2.5. Verifying Mirrored File(s)
	22.2.6. Finding Mirrored File(s)

	22.3. Interoperability

	Chapter 23. Managing the File System and I/O
	23.1.  Handling Full OSTs
	23.1.1.  Checking OST Space Usage
	23.1.2.  Disabling creates on a Full OST
	23.1.3.  Migrating Data within a File System
	23.1.4.  Returning an Inactive OST Back Online
	23.1.5. Migrating Metadata within a Filesystem
	23.1.5.1. Whole Directory Migration
	23.1.5.2. Striped Directory Migration
	23.1.5.3. Directory Restriping
	23.1.5.4. Directory Auto-Split


	23.2.  Creating and Managing OST Pools
	23.2.1. Working with OST Pools
	23.2.1.1. Using the lfs Command with OST Pools

	23.2.2.  Tips for Using OST Pools

	23.3.  Adding an OST to a Lustre File System
	23.4.  Performing Direct I/O
	23.4.1. Making File System Objects Immutable

	23.5. Other I/O Options
	23.5.1. Lustre Checksums
	23.5.1.1. Changing Checksum Algorithms

	23.5.2. PtlRPC Client Thread Pool
	23.5.2.1. ptlrpcd parameters



	Chapter 24. Lustre File System Failover and Multiple-Mount Protection
	24.1.  Overview of Multiple-Mount Protection
	24.2. Working with Multiple-Mount Protection

	Chapter 25. Configuring and Managing Quotas
	25.1.  Working with Quotas
	25.2.  Enabling Disk Quotas
	25.2.1.  Quota Verification

	25.3.  Quota Administration
	25.4.  Default Quota
	25.4.1.  Usage

	25.5.  Quota Allocation
	25.6.  Quotas and Version Interoperability
	25.7.  Granted Cache and Quota Limits
	25.8.  Lustre Quota Statistics
	25.8.1. Interpreting Quota Statistics

	25.9.  Pool Quotas
	25.9.1. DOM and MDT pools
	25.9.2. Lfs quota/setquota options to setup quota pools
	25.9.3. Quota pools interoperability
	25.9.4. Pool Quotas Hard Limit setup example
	25.9.5. Pool Quotas Soft Limit setup example


	Chapter 26. Hierarchical Storage Management (HSM)
	26.1.  Introduction
	26.2.  Setup
	26.2.1.  Requirements
	26.2.2.  Coordinator
	26.2.3.  Agents

	26.3.  Agents and copytool
	26.3.1.  Archive ID, multiple backends
	26.3.2.  Registered agents
	26.3.3.  Timeout

	26.4.  Requests
	26.4.1.  Commands
	26.4.2.  Automatic restore
	26.4.3.  Request monitoring

	26.5.  File states
	26.6.  Tuning
	26.6.1.  hsm_controlpolicy
	26.6.2.  max_requests
	26.6.3.  policy
	26.6.4.  grace_delay

	26.7.  change logs
	26.8.  Policy engine
	26.8.1.  Robinhood


	Chapter 27. Persistent Client Cache (PCC)
	27.1. Introduction
	27.2. Design
	27.2.1. Lustre Read-Write PCC Caching
	27.2.2. Rule-based Persistent Client Cache

	27.3. PCC Command Line Tools
	27.3.1. Add a PCC backend on a client
	27.3.2. Delete a PCC backend from a client
	27.3.3. Remove all PCC backends on a client
	27.3.4. List all PCC backends on a client
	27.3.5. Attach given files into PCC
	27.3.6. Attach given files into PCC by FID(s)
	27.3.7. Detach given files from PCC
	27.3.8. Detach given files from PCC by FID(s)
	27.3.9. Display the PCC state for given files

	27.4. PCC Configuration Example

	Chapter 28. Mapping UIDs and GIDs with Nodemap
	28.1. Setting a Mapping
	28.1.1. Defining Terms
	28.1.2. Deciding on NID Ranges
	28.1.3. Defining a Servers Specific Group
	28.1.4. Describing and Deploying a Sample Mapping
	28.1.5. Mapping Project IDs

	28.2. Removing Nodemaps
	28.3. Altering Properties
	28.3.1. Managing the Properties
	28.3.2. Mixing Properties

	28.4. Enabling the Feature
	28.5. default Nodemap
	28.6. Verifying Settings
	28.7. Ensuring Consistency

	Chapter 29. Configuring Shared-Secret Key (SSK) Security
	29.1. SSK Security Overview
	29.1.1. Key features

	29.2. SSK Security Flavors
	29.2.1. Secure RPC Rules
	29.2.1.1. Defining Rules
	29.2.1.2. Listing Rules
	29.2.1.3. Deleting Rules


	29.3. SSK Key Files
	29.3.1. Key File Management
	29.3.1.1. Writing Key Files
	29.3.1.2. Modifying Key Files
	29.3.1.3. Reading Key Files
	29.3.1.4. Loading Key Files


	29.4. Lustre GSS Keyring
	29.4.1. Setup
	29.4.2. Server Setup
	29.4.3. Debugging GSS Keyring
	29.4.4. Revoking Keys

	29.5. Role of Nodemap in SSK
	29.6. SSK Examples
	29.6.1. Securing Client to Server Communications
	29.6.2. Securing MGS Communications
	29.6.3. Securing Server to Server Communications

	29.7. Viewing Secure PtlRPC Contexts

	Chapter 30. Managing Security in a Lustre File System
	30.1.  Using ACLs
	30.1.1. How ACLs Work
	30.1.2. Using ACLs with the Lustre Software
	30.1.3. Examples

	30.2. Using Root Squash
	30.3.  Isolating Clients to a Sub-directory Tree
	30.3.1. Identifying Clients
	30.3.2. Configuring Isolation
	30.3.3. Making Isolation Permanent

	30.4.  Checking SELinux Policy Enforced by Lustre Clients
	30.4.1. Determining SELinux Policy Info
	30.4.2. Enforcing SELinux Policy Check
	30.4.3. Making SELinux Policy Check Permanent
	30.4.4. Sending SELinux Status Info from Clients

	30.5.  Encrypting files and directories
	30.5.1. Client-side encryption access semantics
	30.5.2. Client-side encryption key hierarchy
	30.5.3. Client-side encryption modes and usage
	30.5.4. Client-side encryption threat model
	30.5.5. Manage encryption on directories

	30.6.  Configuring Kerberos (KRB) Security
	30.6.1. What Is Kerberos?
	30.6.2. Security Flavor
	30.6.3. Kerberos Setup
	30.6.3.1. Distribution
	30.6.3.2. Principals Configuration

	30.6.4. Networking
	30.6.5. Required packages
	30.6.6. Build Lustre
	30.6.7. Running
	30.6.7.1. GSS Daemons
	30.6.7.2. Setting Security Flavors
	30.6.7.3. Rules Syntax & Examples
	30.6.7.4. Regular Users Authentication

	30.6.8. Secure MGS connection


	Chapter 31. Lustre ZFS Snapshots
	31.1. Introduction
	31.1.1. Requirements

	31.2. Configuration
	31.3. Snapshot Operations
	31.3.1. Creating a Snapshot
	31.3.2. Delete a Snapshot
	31.3.3. Mounting a Snapshot
	31.3.4. Unmounting a Snapshot
	31.3.5. List Snapshots
	31.3.6. Modify Snapshot Attributes

	31.4. Global Write Barriers
	31.4.1. Impose Barrier
	31.4.2. Remove Barrier
	31.4.3. Query Barrier
	31.4.4. Rescan Barrier

	31.5. Snapshot Logs
	31.6. Lustre Configuration Logs


	Part IV. Tuning a Lustre File System for Performance
	Chapter 32. Testing Lustre Network Performance (LNet Self-Test)
	32.1.  LNet Self-Test Overview
	32.1.1. Prerequisites

	32.2. Using LNet Self-Test
	32.2.1. Creating a Session
	32.2.2. Setting Up Groups
	32.2.3. Defining and Running the Tests
	32.2.4. Sample Script

	32.3. LNet Self-Test Command Reference
	32.3.1. Session Commands
	32.3.2. Group Commands
	32.3.3. Batch and Test Commands
	32.3.4. Other Commands


	Chapter 33. Benchmarking Lustre File System Performance (Lustre I/O Kit)
	33.1.  Using Lustre I/O Kit Tools
	33.1.1. Contents of the Lustre I/O Kit
	33.1.2. Preparing to Use the Lustre I/O Kit

	33.2.  Testing I/O Performance of Raw Hardware (sgpdd-survey)
	33.2.1.  Tuning Linux Storage Devices
	33.2.2. Running sgpdd-survey

	33.3. Testing OST Performance (obdfilter-survey)
	33.3.1.  Testing Local Disk Performance
	33.3.2.  Testing Network Performance
	33.3.3.  Testing Remote Disk Performance
	33.3.4. Output Files
	33.3.4.1. Script Output
	33.3.4.2. Visualizing Results


	33.4.  Testing OST I/O Performance (ost-survey)
	33.5.  Testing MDS Performance (mds-survey)
	33.5.1. Output Files
	33.5.2. Script Output

	33.6.  Collecting Application Profiling Information ( stats-collect)
	33.6.1. Using stats-collect


	Chapter 34. Tuning a Lustre File System
	34.1.  Optimizing the Number of Service Threads
	34.1.1.  Specifying the OSS Service Thread Count
	34.1.2.  Specifying the MDS Service Thread Count

	34.2.  Binding MDS Service Thread to CPU Partitions
	34.3.  Tuning LNet Parameters
	34.3.1. Transmit and Receive Buffer Size
	34.3.2. Hardware Interrupts ( enable_irq_affinity)
	34.3.3.  Binding Network Interface Against CPU Partitions
	34.3.4.  Network Interface Credits
	34.3.5.  Router Buffers
	34.3.6.  Portal Round-Robin
	34.3.7. LNet Peer Health

	34.4.  libcfs Tuning
	34.4.1. CPU Partition String Patterns

	34.5.  LND Tuning
	34.5.1. ko2iblnd Tuning

	34.6.  Network Request Scheduler (NRS) Tuning
	34.6.1.  First In, First Out (FIFO) policy
	34.6.2.  Client Round-Robin over NIDs (CRR-N) policy
	34.6.3.  Object-based Round-Robin (ORR) policy
	34.6.4.  Target-based Round-Robin (TRR) policy
	34.6.5.  Token Bucket Filter (TBF) policy
	34.6.5.1. Enable TBF policy
	34.6.5.2. Start a TBF rule
	34.6.5.3. Change a TBF rule
	34.6.5.4. Stop a TBF rule
	34.6.5.5. Rule options

	34.6.6.  Delay policy

	34.7.  Lockless I/O Tunables
	34.8.  Server-Side Advice and Hinting
	34.8.1. Overview
	34.8.2. Examples

	34.9.  Large Bulk IO (16MB RPC)
	34.9.1. Overview
	34.9.2. Usage

	34.10.  Improving Lustre I/O Performance for Small Files
	34.11.  Understanding Why Write Performance is Better Than Read Performance


	Part V. Troubleshooting a Lustre File System
	Chapter 35. Lustre File System Troubleshooting
	35.1.  Lustre Error Messages
	35.1.1. Error Numbers
	35.1.2. Viewing Error Messages

	35.2. Reporting a Lustre File System Bug
	35.2.1. Searching Jira*for Duplicate Tickets

	35.3. Common Lustre File System Problems
	35.3.1. OST Object is Missing or Damaged
	35.3.2. OSTs Become Read-Only
	35.3.3. Identifying a Missing OST
	35.3.4. Fixing a Bad LAST_ID on an OST
	35.3.5. Handling/Debugging "Bind: Address already in use" Error
	35.3.6. Handling/Debugging Error "- 28"
	35.3.7. Triggering Watchdog for PID NNN
	35.3.8. Handling Timeouts on Initial Lustre File System Setup
	35.3.9. Handling/Debugging "LustreError: xxx went back in time"
	35.3.10. Lustre Error: "Slow Start_Page_Write"
	35.3.11. Drawbacks in Doing Multi-client O_APPEND Writes
	35.3.12. Slowdown Occurs During Lustre File System Startup
	35.3.13. Log Message 'Out of Memory' on OST
	35.3.14. Setting SCSI I/O Sizes


	Chapter 36. Troubleshooting Recovery
	36.1.  Recovering from Errors or Corruption on a Backing ldiskfs File System
	36.2.  Recovering from Corruption in the Lustre File System
	36.2.1.  Working with Orphaned Objects

	36.3.  Recovering from an Unavailable OST
	36.4.  Checking the file system with LFSCK
	36.4.1. LFSCK switch interface
	36.4.1.1. Manually Starting LFSCK
	36.4.1.1.1. Description
	36.4.1.1.2. Usage
	36.4.1.1.3. Options

	36.4.1.2. Manually Stopping LFSCK
	36.4.1.2.1. Description
	36.4.1.2.2. Usage
	36.4.1.2.3. Options


	36.4.2. Check the LFSCK global status
	36.4.2.1. Description
	36.4.2.2. Usage
	36.4.2.3. Options

	36.4.3. LFSCK status interface
	36.4.3.1. LFSCK status of OI Scrub via procfs
	36.4.3.1.1. Description
	36.4.3.1.2. Usage
	36.4.3.1.3. Output

	36.4.3.2. LFSCK status of namespace via procfs
	36.4.3.2.1. Description
	36.4.3.2.2. Usage
	36.4.3.2.3. Output

	36.4.3.3. LFSCK status of layout via procfs
	36.4.3.3.1. Description
	36.4.3.3.2. Usage
	36.4.3.3.3. Output


	36.4.4. LFSCK adjustment interface
	36.4.4.1. Rate control
	36.4.4.1.1. Description
	36.4.4.1.2. Usage
	36.4.4.1.3. Values

	36.4.4.2. Auto scrub
	36.4.4.2.1. Description
	36.4.4.2.2. Usage
	36.4.4.2.3. Values




	Chapter 37. Debugging a Lustre File System
	37.1.  Diagnostic and Debugging Tools
	37.1.1.  Lustre Debugging Tools
	37.1.2. External Debugging Tools
	37.1.2.1. Tools for Administrators and Developers
	37.1.2.2. Tools for Developers


	37.2. Lustre Debugging Procedures
	37.2.1. Understanding the Lustre Debug Messaging Format
	37.2.1.1. Lustre Debug Messages
	37.2.1.2. Format of Lustre Debug Messages
	37.2.1.3. Lustre Debug Messages Buffer

	37.2.2. Using the lctl Tool to View Debug Messages
	37.2.2.1. Sample lctl Run

	37.2.3. Dumping the Buffer to a File (debug_daemon)
	37.2.3.1. lctl debug_daemon Commands

	37.2.4. Controlling Information Written to the Kernel Debug Log
	37.2.5. Troubleshooting with strace
	37.2.6. Looking at Disk Content
	37.2.7. Finding the Lustre UUID of an OST
	37.2.8. Printing Debug Messages to the Console
	37.2.9. Tracing Lock Traffic
	37.2.10. Controlling Console Message Rate Limiting

	37.3. Lustre Debugging for Developers
	37.3.1. Adding Debugging to the Lustre Source Code
	37.3.2. Accessing the ptlrpc Request History
	37.3.3. Finding Memory Leaks Using leak_finder.pl



	Part VI. Reference
	Chapter 38. Lustre File System Recovery
	38.1.  Recovery Overview
	38.1.1. Client Failure
	38.1.2. Client Eviction
	38.1.3. MDS Failure (Failover)
	38.1.4. OST Failure (Failover)
	38.1.5. Network Partition
	38.1.6. Failed Recovery

	38.2. Metadata Replay
	38.2.1. XID Numbers
	38.2.2. Transaction Numbers
	38.2.3. Replay and Resend
	38.2.4. Client Replay List
	38.2.5. Server Recovery
	38.2.6. Request Replay
	38.2.7. Gaps in the Replay Sequence
	38.2.8. Lock Recovery
	38.2.9. Request Resend

	38.3. Reply Reconstruction
	38.3.1. Required State
	38.3.2. Reconstruction of Open Replies
	38.3.2.1. Finding the File Handle
	38.3.2.2. Finding the Resource/fid
	38.3.2.3. Finding the Lock Handle

	38.3.3. Multiple Reply Data per Client

	38.4. Version-based Recovery
	38.4.1. VBR Messages
	38.4.2. Tips for Using VBR

	38.5. Commit on Share
	38.5.1. Working with Commit on Share
	38.5.2. Tuning Commit On Share

	38.6. Imperative Recovery
	38.6.1. MGS role
	38.6.2. Tuning Imperative Recovery
	38.6.2.1. ir_factor
	38.6.2.2. Disabling Imperative Recovery
	38.6.2.3. Checking Imperative Recovery State - MGS
	38.6.2.4. Checking Imperative Recovery State - client
	38.6.2.5. Target Instance Number

	38.6.3. Configuration Suggestions for Imperative Recovery

	38.7. Suppressing Pings
	38.7.1. "suppress_pings" Kernel Module Parameter
	38.7.2. Client Death Notification


	Chapter 39. Lustre Parameters
	39.1. Introduction to Lustre Parameters
	39.1.1. Identifying Lustre File Systems and Servers

	39.2. Tuning Multi-Block Allocation (mballoc)
	39.3. Monitoring Lustre File System I/O
	39.3.1. Monitoring the Client RPC Stream
	39.3.2. Monitoring Client Activity
	39.3.3. Monitoring Client Read-Write Offset Statistics
	39.3.4. Monitoring Client Read-Write Extent Statistics
	39.3.4.1. Client-Based I/O Extent Size Survey
	39.3.4.2. Per-Process Client I/O Statistics

	39.3.5. Monitoring the OST Block I/O Stream

	39.4. Tuning Lustre File System I/O
	39.4.1. Tuning the Client I/O RPC Stream
	39.4.2. Tuning File Readahead and Directory Statahead
	39.4.2.1. Tuning File Readahead
	39.4.2.2. Tuning Directory Statahead and AGL

	39.4.3. Tuning Server Read Cache
	39.4.3.1. Using Server Read Cache

	39.4.4. Enabling OSS Asynchronous Journal Commit
	39.4.5.  Tuning the Client Metadata RPC Stream
	39.4.5.1. Configuring the Client Metadata RPC Stream
	39.4.5.2. Monitoring the Client Metadata RPC Stream


	39.5. Configuring Timeouts in a Lustre File System
	39.5.1. Configuring Adaptive Timeouts
	39.5.1.1. Interpreting Adaptive Timeout Information

	39.5.2. Setting Static Timeouts

	39.6. Monitoring LNet
	39.7. Allocating Free Space on OSTs
	39.8. Configuring Locking
	39.9. Setting MDS and OSS Thread Counts
	39.10. Enabling and Interpreting Debugging Logs
	39.10.1. Interpreting OST Statistics
	39.10.2. Interpreting MDT Statistics


	Chapter 40. User Utilities
	40.1.  lfs
	40.1.1. Synopsis
	40.1.2. Description
	40.1.3. Options
	40.1.4. Examples
	40.1.5. See Also

	40.2.  lfs_migrate
	40.2.1. Synopsis
	40.2.2. Description
	40.2.3. Options
	40.2.4. Examples
	40.2.5. See Also

	40.3.  filefrag
	40.3.1. Synopsis
	40.3.2. Description
	40.3.3. Options
	40.3.4. Examples

	40.4.  mount
	40.5. Handling Timeouts

	Chapter 41. Programming Interfaces
	41.1. User/Group Upcall
	41.1.1. Synopsis
	41.1.2. Description
	41.1.2.1. Primary and Secondary Groups

	41.1.3. Data Structures


	Chapter 42. Setting Lustre Properties in a C Program (llapi)
	42.1.  llapi_file_create
	42.1.1. Synopsis
	42.1.2. Description
	42.1.3. Examples

	42.2. llapi_file_get_stripe
	42.2.1. Synopsis
	42.2.2. Description
	42.2.3. Return Values
	42.2.4. Errors
	42.2.5. Examples

	42.3.  llapi_file_open
	42.3.1. Synopsis
	42.3.2. Description
	42.3.3. Return Values
	42.3.4. Errors
	42.3.5. Example

	42.4.  llapi_quotactl
	42.4.1. Synopsis
	42.4.2. Description
	42.4.3. Return Values
	42.4.4. Errors

	42.5.  llapi_path2fid
	42.5.1. Synopsis
	42.5.2. Description
	42.5.3. Return Values

	42.6.  llapi_ladvise
	42.6.1. Synopsis
	42.6.2. Description
	42.6.3. Return Values
	42.6.4. Errors

	42.7. Example Using the llapi Library
	42.7.1. See Also


	Chapter 43. Configuration Files and Module Parameters
	43.1.  Introduction
	43.2.  Module Options
	43.2.1.  LNet Options
	43.2.1.1.  Network Topology
	43.2.1.2.  ip2nets ("tcp")
	43.2.1.3.  networks ("tcp")
	43.2.1.4.  routes ("")
	43.2.1.5.  forwarding ("")
	43.2.1.6. accept (secure)
	43.2.1.7.  rnet_htable_size

	43.2.2.  SOCKLND Kernel TCP/IP LND


	Chapter 44. System Configuration Utilities
	44.1.  l_getidentity
	44.1.1. Synopsis
	44.1.2. Description
	44.1.3. Options
	44.1.4. Files

	44.2.  lctl
	44.2.1. Synopsis
	44.2.2. Description
	44.2.3. Setting Parameters with lctl
	44.2.4. Options
	44.2.5. Examples
	44.2.6. See Also

	44.3.  ll_decode_filter_fid
	44.3.1. Synopsis
	44.3.2. Description
	44.3.3. Examples

	44.4.  llobdstat
	44.4.1. Synopsis
	44.4.2. Description
	44.4.3. Example
	44.4.4. Files

	44.5.  llog_reader
	44.5.1. Synopsis
	44.5.2. Description
	44.5.3. See Also

	44.6.  llstat
	44.6.1. Synopsis
	44.6.2. Description
	44.6.3. Options
	44.6.4. Example
	44.6.5. Files

	44.7.  llverdev
	44.7.1. Synopsis
	44.7.2. Description
	44.7.3. Options
	44.7.4. Examples

	44.8.  lshowmount
	44.8.1. Synopsis
	44.8.2. Description
	44.8.3. Options
	44.8.4. Files

	44.9.  lst
	44.9.1. Synopsis
	44.9.2. Description
	44.9.3. Modules
	44.9.4. Utilities
	44.9.5. Example Script

	44.10.  lustre_rmmod.sh
	44.11.  lustre_rsync
	44.11.1. Synopsis
	44.11.2. Description
	44.11.3. Options
	44.11.4. Examples
	44.11.5. See Also

	44.12.  mkfs.lustre
	44.12.1. Synopsis
	44.12.2. Description
	44.12.3. Examples
	44.12.4. See Also

	44.13.  mount.lustre
	44.13.1. Synopsis
	44.13.2. Description
	44.13.3. Options
	44.13.4. Examples
	44.13.5. See Also

	44.14.  routerstat
	44.14.1. Synopsis
	44.14.2. Description
	44.14.3. Output
	44.14.4. Example
	44.14.5. Files

	44.15.  tunefs.lustre
	44.15.1. Synopsis
	44.15.2. Description
	44.15.3. Options
	44.15.4. Examples
	44.15.5. See Also

	44.16.  Additional System Configuration Utilities
	44.16.1. More Statistics for Application Profiling
	44.16.2.  Testing / Debugging Utilities
	44.16.2.1.  lr_reader
	44.16.2.2.  sgpdd-survey
	44.16.2.3. obdfilter-survey
	44.16.2.4. ior-survey
	44.16.2.5. ost-survey
	44.16.2.6. stats-collect

	44.16.3. Fileset Feature
	44.16.3.1. Examples



	Chapter 45. LNet Configuration C-API
	45.1. General API Information
	45.1.1. API Return Code
	45.1.2. API Common Input Parameters
	45.1.3. API Common Output Parameters
	45.1.3.1. Internal YAML Representation (cYAML)
	45.1.3.2. Error Block
	45.1.3.3. Show Block


	45.2. The LNet Configuration C-API
	45.2.1. Configuring LNet
	45.2.2. Enabling and Disabling Routing
	45.2.3. Adding Routes
	45.2.4. Deleting Routes
	45.2.5. Showing Routes
	45.2.6. Adding a Network Interface
	45.2.7. Deleting a Network Interface
	45.2.8. Showing Network Interfaces
	45.2.9. Adjusting Router Buffer Pools
	45.2.10. Showing Routing information
	45.2.11. Showing LNet Traffic Statistics
	45.2.12. Adding/Deleting/Showing Parameters through a YAML Block
	45.2.13. Adding a route code example



	Glossary
	Index

