
LilyPond
The music typesetter

Learning Manual

The LilyPond development team

☛ ✟

This file provides an introduction to LilyPond version 2.25.20.
✡ ✠

☛ ✟

For more information about how this manual fits with the other documentation, or to read
this manual in other formats, see Section “Manuals” in General Information.

If you are missing any manuals, the complete documentation can be found at
https://lilypond.org/.
✡ ✠

Copyright c⃝ 1998–2023 by the authors.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.25.20

https://lilypond.org/

i

Table of Contents

1 Installing . 1
1.1 Graphical setup under GNU/Linux . 1
1.2 Graphical setup under Windows . 4
1.3 Graphical setup under macOS . 8
1.4 Command line setup . 12

2 Tutorial . 13
2.1 Compiling a file . 13
2.2 How to write input files . 13

2.2.1 Input characters . 13
2.2.2 Simple notation . 13

Pitches . 14
Durations (rhythms) . 15
Rests . 16
Time signature . 16
Tempo marks . 17
Clef . 17
All together . 17

2.2.3 Working on input files . 18
2.3 Dealing with errors . 19
2.4 How to read the manuals . 19

2.4.1 Omitted material . 19
2.4.2 Clickable examples . 20
2.4.3 Overview of manuals . 20

3 Common notation . 21
3.1 Single-staff notation . 21

3.1.1 Bar lines and bar checks . 21
Bar lines . 21
Bar checks . 21

3.1.2 Pitches and key signatures . 21
Pitch alterations . 22
Key signatures . 22
Warning: key signatures and pitches . 22

3.1.3 Ties and slurs . 23
Ties . 23
Slurs . 24
Phrasing slurs . 24
Warnings: slurs vs. ties . 24

3.1.4 Articulations and dynamics . 24
Articulations . 24
Fingerings . 25
Dynamics . 25

3.1.5 Adding text . 26
3.1.6 Automatic and manual beams . 26
3.1.7 Advanced rhythmic commands . 27

Partial measure . 27

ii

Tuplets . 27
Grace notes . 27

3.2 Multiple notes at once . 28
3.2.1 Music expressions explained . 28

Analogy: mathematical expressions . 29
Simultaneous music expressions: multiple staves . 29
Simultaneous music expressions: single-staff . 29

3.2.2 Multiple staves . 30
3.2.3 Staff groups . 31
3.2.4 Combining notes into chords . 31
3.2.5 Single-staff polyphony . 32

3.3 Songs . 32
3.3.1 Setting simple songs . 32
3.3.2 Aligning lyrics to a melody . 33
3.3.3 Lyrics to multiple staves . 36

3.4 Final touches . 37
3.4.1 Organizing pieces with variables . 37
3.4.2 Adding titles . 38
3.4.3 Absolute note names . 39
3.4.4 After the tutorial . 40

4 Fundamental concepts . 41
4.1 How LilyPond input files work . 41

4.1.1 Introduction to the LilyPond file structure . 41
4.1.2 A score is a (single) compound musical expression . 43
4.1.3 Nesting music expressions . 45
4.1.4 Structure of a note entry . 46
4.1.5 On the un-nestedness of brackets and ties . 47

4.2 Voices contain music . 48
4.2.1 I’m hearing voices . 48
4.2.2 Explicitly instantiating voices . 53
4.2.3 Voices and vocals . 57

4.3 Contexts and engravers . 60
4.3.1 Contexts explained . 60
4.3.2 Creating contexts . 61
4.3.3 Engravers explained . 62
4.3.4 Modifying context properties . 63
4.3.5 Adding and removing engravers . 68

4.4 Extending the templates . 70
4.4.1 Soprano and cello . 70
4.4.2 Four-part SATB vocal score . 73
4.4.3 Building a score from scratch . 79
4.4.4 Saving typing with variables and functions . 84
4.4.5 Scores and parts . 87

5 Tweaking output . 89
5.1 Tweaking basics . 89

5.1.1 Objects and interfaces . 89
5.1.2 Naming conventions of objects and properties . 90
5.1.3 Tweaking methods . 90

The \override command . 90

iii

The \revert command . 91
The \once prefix . 92
The \tweak and \offset commands . 92
The \single prefix . 95

5.2 The Internals Reference manual . 96
5.2.1 Properties of layout objects . 96
5.2.2 Properties found in interfaces . 100
5.2.3 Types of properties . 101

5.3 Appearance of objects . 102
5.3.1 Visibility and color of objects . 102

The stencil property . 103
The break-visibility property . 104
The transparent property . 104
The color property . 105

5.3.2 Size of objects . 107
5.3.3 Length and thickness of objects . 111

5.4 Offsets and alignments . 112
5.5 Placement of objects . 116

5.5.1 Automatic behavior . 116
5.5.2 Within-staff objects . 117

The direction property . 117
Fingering . 118

5.5.3 Outside-staff objects . 120
The outside-staff-priority property . 121
The \textLengthOn command . 123
Dynamics placement . 124
Grob sizing . 125

5.6 Vertical spacing . 125
5.7 Collisions of objects . 130

5.7.1 Moving objects . 130
5.7.2 Fixing overlapping notation . 132

The padding property . 132
The right-padding property . 133
The staff-padding property . 134
The self-alignment-X property . 134
The staff-position property . 134
The extra-offset property . 135
The positions property . 135
The force-hshift property . 137

5.7.3 Real music example . 138
5.8 Further tweaking . 145

5.8.1 Other uses for tweaks . 145
Tying notes across voices . 145
Simulating a fermata in MIDI . 146

5.8.2 Using variables for layout adjustments . 147
5.8.3 Style sheets . 149
5.8.4 Other sources of information . 152
5.8.5 Advanced tweaks with Scheme . 153

iv

Appendix A Templates . 155
A.1 Built-in templates . 155

A.1.1 SATB template . 155
A.1.2 SSAATTBB template . 160

A.2 Single staff templates . 163
A.2.1 Notes only . 163
A.2.2 Notes and lyrics . 164
A.2.3 Notes and chords . 164
A.2.4 Notes, lyrics, and chords . 165

A.3 Piano templates . 166
A.3.1 Solo piano . 166
A.3.2 Piano and melody with lyrics . 166
A.3.3 Piano-centered lyrics . 167

A.4 String quartet templates . 168
A.4.1 String quartet . 168
A.4.2 String quartet parts . 169

A.5 Vocal ensembles templates . 172
A.5.1 SATB vocal score . 172
A.5.2 SATB vocal score and automatic piano reduction . 174
A.5.3 SATB with aligned contexts . 176
A.5.4 SATB on four staves . 177
A.5.5 Solo verse and two-part refrain . 179
A.5.6 Hymn tunes . 181
A.5.7 Psalms . 183

A.6 Orchestral templates . 186
A.6.1 Orchestra, choir and piano . 186

A.7 Ancient notation templates . 189
A.7.1 Transcription of mensural music . 189
A.7.2 Gregorian transcription template . 194

A.8 Other templates . 195
A.8.1 Jazz combo . 195

Appendix B GNU Free Documentation License 202

Appendix C LilyPond index . 209

1

1 Installing

This gentle, step-by-step installation tutorial guides you through installing LilyPond and creating
a first music score.

LilyPond input files are simple text files. You can use any editor for plain text to edit a
LilyPond file (do not use editors for rich text such as Microsoft Word), but there are several ed-
itors tailored specifically for LilyPond, making the editing process very comfortable. Because a
choice has to be made, this tutorial uses Frescobaldi (https://frescobaldi.org), which is the
most popular among such editors right now. However, there are several other options available.
For more information, see Section “Easier editing” in General Information.

Please choose the tutorial according to your needs. (If you don’t know what the “command
line” is, you want the graphical setup!)

1.1 Graphical setup under GNU/Linux

These instructions work for the GNOME environment, for example on the default flavors of
Ubuntu and Fedora. In other desktop environments, they can likely be adapted. For more
minimal GNU/Linux distributions, see Section 1.4 [Command line setup], page 12.

First, find the GNOME Software app.

In GNOME Software, search “Frescobaldi”.

Install Frescobaldi. Behind the scenes, this should also automatically install some version of
LilyPond.

https://frescobaldi.org

Chapter 1: Installing 2

Open Frescobaldi. It starts on a new file with some pre-filled text that will be explained
later.

After the \version line, enter a new line containing exactly this:

{ c' }

Now click on the LilyPond icon or use the Control-M keyboard shortcut. On the right, a
simple score appears.

Congratulations, you have just created your first music sheet with LilyPond! If you’re satisfied
now, you can skip the rest of this section. However, it may be that the version of LilyPond that
was installed is not the same one as this documentation is for. If you want a different LilyPond
version, you can register it in Frescobaldi, without losing the initial one. To do this, download
the archive from Section “Download” in General Information and double-click to unpack it.
(The image shows the archive for version 2.23.10; for this documentation, however, you should
download the archive for version 2.25.20.)

Chapter 1: Installing 3

Move the unpacked folder out of your “Downloads” folder to the folder where you want to
permanently store it. For example, put it in your home folder.

Now, in Frescobaldi, go to the “Preferences” menu.

Select “LilyPond Preferences”, and click “Add” to register a new LilyPond version.

Click on the file explorer icon.

Navigate to the folder you have just extracted, then inside this folder, double-click ‘bin’ and
finally select ‘lilypond’.

Chapter 1: Installing 4

You’re done! You can click ‘OK’. You now have two versions of LilyPond installed.

Now turn to Chapter 2 [Tutorial], page 13, to learn more about LilyPond’s syntax.

1.2 Graphical setup under Windows

Download LilyPond for Windows from Section “Download” in General Information. This is
a ZIP archive called lilypond-x.y.z-mingw-x86_64.zip (where “mingw” means it’s for Win-
dows), for example lilypond-2.25.20-mingw-x86_64.zip. Extract this in the file explorer.
Place the resulting directory lilypond-x.y.z-mingw-x86_64 in a permanent location; the ac-
tual folder doesn’t matter, you just need to put it somewhere you won’t move it afterwards. For
example, you could choose your home folder.

After this, download the latest release of Frescobaldi from the project’s download page
(https://github.com/frescobaldi/frescobaldi/releases) (this image and the next one re-
fer to version 3.2, which is not necessarily the newest one). Choose the .exe file.

https://github.com/frescobaldi/frescobaldi/releases
https://github.com/frescobaldi/frescobaldi/releases

Chapter 1: Installing 5

Double-click on the downloaded file in the file explorer. This launches the setup wizard.

Accept the license and install Frescobaldi using the wizard. You will find a startup screen
like this:

Navigate to the Frescobaldi preferences.

Chapter 1: Installing 6

Navigate to “LilyPond Preferences” on the left.

Click “Edit” on the right. This leads to a dialog for choosing the LilyPond executable.

Click on the folder icon and navigate to the lilypond-x.y.z-mingw-x86_64 folder you pre-
viously created. Inside this folder, open lilypond-x.y.z, then bin, and finally select lilypond.

Chapter 1: Installing 7

Now click “OK”.

Click “OK” again.

Type this simple file in the window:

\version "2.25.20"

{ c' }

Compile it with the Control-M keyboard shortcut or by clicking the “LilyPond” icon. A
minimal score appears.

Chapter 1: Installing 8

Congratulations, you have just created your first music sheet with LilyPond! Now continue
with the Chapter 2 [Tutorial], page 13, to learn more about LilyPond’s syntax.

1.3 Graphical setup under macOS

Download LilyPond for macOS from Section “Download” in General Information. This is an
archive called lilypond-x.y.z-darwin-x86_64.tar.gz (where “darwin” means it’s for macOS),
for example lilypond-2.25.20-darwin-x86_64.tar.gz. In the Finder, extract this archive.
Place the resulting directory lilypond-x.y.z-darwin-x86_64 into a permanent location; the
actual folder doesn’t matter, you just need to put it somewhere you won’t move it afterwards.
For example, you could choose your home folder.

After this, download the latest release of Frescobaldi from the project’s download page
(https://github.com/frescobaldi/frescobaldi/releases) (the image refers to version
3.1.3, which is not necessarily the newest one). Choose the .dmg file.

In the Finder, double-click on the file to run the installer. At this point, you might encounter
a problem:

https://github.com/frescobaldi/frescobaldi/releases
https://github.com/frescobaldi/frescobaldi/releases

Chapter 1: Installing 9

This is because Frescobaldi is developed independently from Apple. Nevertheless, it is totally
secure software, but you have to tell Apple so. To do this, you first need to click “Cancel”. After
having clicked “Cancel”, open the “System Preferences” app and select “Security & Privacy”.

Then click “Open Anyway”.

This leads to a new security warning. This time, you have the option to accept. Select
“Open”. Again, do not fear: Frescobaldi is completely secure for your system.

Chapter 1: Installing 10

Frescobaldi is now open. Find the Preferences.

Click on “LilyPond Preferences” on the left.

Click “Edit” on the right. This opens a new window:

Chapter 1: Installing 11

Click on the “folder” icon. A Finder window opens. Navigate to the lilypond-x.y.z-

darwin-x86_64 folder you saved earlier. Inside it, find lilypond-x.y.z, then bin, and finally
lilypond.

When you press “OK”, a new security warning about LilyPond will likely appear. Again,
first click “Cancel”, then enable LilyPond in the preferences, and redo the procedure to select
lilypond in the Finder.

Now click “OK” to everything until you are back to the main Frescobaldi window. Enter this
simple file in source view on the left:

\version "2.25.20"

{ c' }

Click on the button with the LilyPond icon to compile the file, or use the Control-M key-
board shortcut. For a third time, the system will warn you about security, this time with “gs”
(GhostScript). Once more, go to the System Preferences and enable the program to be executed.

Finally, the next compilation run will work and you will find a minimal score.

Congratulations, you have just created your first music sheet with LilyPond! Now continue
with the Chapter 2 [Tutorial], page 13, to learn more about LilyPond’s syntax.

Chapter 1: Installing 12

1.4 Command line setup

On many GNU/Linux distributions, LilyPond can be installed from the package manager. This
is also the case on macOS using either MacPorts (https://www.macports.org) or Homebrew
(https://brew.sh).

In any case, you can install LilyPond by downloading the archive from Section “Download”
in General Information and unpacking it. The binaries are usable immediately after unpacking.
You can run

/.../lilypond-x.y.z/bin/lilypond file.ly

(on Windows, replace the slashes ‘/’ with backslashes ‘\’).

This compiles file.ly, and produces file.pdf. To test your setup, you can use this minimal
file:

\version "2.25.20"

{ c' }

This will produce this output in file.pdf:

º� h
Now continue with the Chapter 2 [Tutorial], page 13, to learn more about LilyPond’s syntax,

or see Section “Command-line usage” in Application Usage for more information on calling
LilyPond on the command line.

https://www.macports.org
https://brew.sh
https://brew.sh

13

2 Tutorial

This chapter gives a basic introduction to working with LilyPond.

2.1 Compiling a file

Compiling is the term used for processing an input file in LilyPond format to produce output
file(s). Output files are generally PDF documents (for printing or viewing), MIDI files (for
playing), and PNG images (for online use). LilyPond input files are documents containing plain
text only.

This example shows a simple input file:

\version "2.25.20"

{

c' e' g' e'

}

The graphical output is:

h hh� º h
☛ ✟

Note: Notes and lyrics in LilyPond input must always be surrounded
by { curly braces }. The braces should also be surrounded by a space
unless they are at the beginning or end of a line to avoid ambiguities.
They may be omitted in some examples in this manual, but don’t forget
them in your own music! For more information about the display of
examples in the manual, see Section 2.4 [How to read the manuals],
page 19.
✡ ✠

In addition, LilyPond input is case sensitive. ‘{ c d e }’ is valid input; ‘{ C D E }’ produces
an error message.

2.2 How to write input files

This section introduces some basic LilyPond syntax to help get you started writing input files.

2.2.1 Input characters

If you open a new file for LilyPond input, ensure that your editor uses UTF-8 input encoding.
Frescobaldi (see Chapter 1 [Installing], page 1) does this automatically for you, but especially
under Windows this might not be the default under a different editor.

Note also that some characters used for LilyPond notation have look-alike siblings. In par-
ticular, you have to use straight quotes ('), not curly quotes (’) or acute accents (´). Some
editors, especially e-mail clients, automatically replace straight quotes with curly ones; such a
feature must be switched off.

2.2.2 Simple notation

LilyPond adds some notation elements automatically. In the next example, we have only speci-
fied four pitches, but LilyPond has added a clef, a time signature, and rhythms.

{

c' e' g' e'

}

Chapter 2: Tutorial 14

h hh� º h
This behavior may be altered, but in most cases these automatic values are useful.

Pitches

Music Glossary: Section “pitch” in Music Glossary , Section “interval” in Music Glossary ,
Section “scale” in Music Glossary , Section “middle C” in Music Glossary , Section “octave”
in Music Glossary , Section “accidental” in Music Glossary .

LilyPond uses lowercase letters for pitches. Note names in all examples in this section use
the Dutch naming system (white piano keys are c, d, e, f, g, a, b). However, LilyPond supports
many different naming schemes like ‘English’ or ‘Fixed-Do’ (do, re, mi, . . .). See Section “Note
names in other languages” in Notation Reference. The letters ‘c’ through ‘b’ denote pitches in
the ‘small octave’ below middle C . Added ‘'’ or ‘,’ suffixes indicate higher or lower octaves.
Here is a scale starting on middle C , and an arpeggio:

{ c' d' e' f' g' a' b' c''

g c' e' g' c'' e'' g'' c''' }

h h h
h h

hh h� º hhhh h hh h
The easiest way to enter notes is by using \relative mode. In this mode, the octave is

chosen automatically by assuming that the following note is always to be placed closest to the
previous note, i.e., it is to be placed in the octave that is within three staff spaces of the previous
note. We begin by entering the most elementary piece of music, a scale, in which every note is
within just one staff space of the previous note.

\relative {

c' d e f

g a b c

}

h hhh hh� º hh
The initial note is middle C , denoted by c'. Each successive note is placed closest to the previous
note – in other words, the first ‘c’ is the closest C to middle C. This is followed by the closest D
to the previous note. We can create melodies that have larger intervals, still using only relative
mode:

\relative {

d' f a g

c b f d

}

h hhh hh� º hh
In the previous example, the first note – the d' with one ‘'’ mark – is the D in the octave
starting from middle C and going up to B.

Chapter 2: Tutorial 15

By adding (or removing) quotes (‘'’) or commas (‘,’) from the first note, we can change the
starting octave:

\relative {

e'' c a c

}

h hh� º h
Relative mode can be confusing initially, but is the easiest way to enter most melodies. Let

us see how this relative calculation works in practice. Starting from a B, which is on the middle
line in a treble clef, you can reach a C, D and E within 3 staff spaces going up, and an A, G
and F within 3 staff spaces going down. So if the note following a B is a C, D or E it is assumed
to be above the B, and an A, G or F is assumed to be below.

\relative {

b' c % c is 1 staff space up, so is the c above

b d % d is 2 up or 5 down, so is the d above

b e % e is 3 up or 4 down, so is the e above

b a % a is 6 up or 1 down, so is the a below

b g % g is 5 up or 2 down, so is the g below

b f % f is 4 up or 3 down, so is the f below

}

hhh hhhhhhº� h h h
Exactly the same happens even when any of these notes are sharpened or flattened. Acci-

dentals are totally ignored in the calculation of the relative position. Precisely the same staff
space counting is done from a note at any other position on the staff.

To add intervals that are larger than three staff spaces, we can raise the octave by adding a
single quote ‘'’ (or apostrophe) to the note name. We can lower the octave by adding a comma
‘,’ to the note name.

\relative {

a' a, c' f,

g g'' a,, f'

} h
hhh hh� º hh

To change a note by two (or more!) octaves, we use multiple '' or ,, – but be careful that you
use two single quotes '' and not one double quote ‘"’!

Durations (rhythms)

Music Glossary: Section “beam” in Music Glossary , Section “duration” in Music Glossary ,
Section “whole note” in Music Glossary , Section “half note” in Music Glossary , Section “quarter
note” in Music Glossary , Section “dotted note” in Music Glossary .

The duration of a note is specified by a number after the note name: ‘1’ for a whole note, ‘2’
for a half note, ‘4’ for a quarter note and so on. Beams are added automatically.

Chapter 2: Tutorial 16

If you do not specify a duration, the previous duration is used for the next note. The duration
of the first note defaults to a quarter note.

\relative {

a'1

a2 a4 a8 a

a16 a a a a32 a a a a64 a a a a a a a a2

}

hh h hh h h h Nhh h hh h h.� º N h h hh
To create dotted notes, add a dot (‘.’) to the duration number. The duration of a dotted

note must be stated explicitly (i.e., with a number).

\relative {

a'4 a a4. a8

a8. a16 a a8. a8 a4.

}

h h Ph Ph�hPh hº� h Phh�

Rests

Music Glossary: Section “rest” in Music Glossary .

A rest is entered just like a note with the name ‘r’.

\relative {

a'4 r r2

r8 a r4 r4. r8

}

���h P ¢�º� h ¢�
Time signature

Music Glossary: Section “time signature” in Music Glossary .

The time signature can be set with the \time command:

\relative {

\time 3/4

a'4 a a

\time 6/8

a4. a

\time 4/4

a4 a a a

}

h º hP hhh� hh h34 P68 h

Chapter 2: Tutorial 17

Tempo marks

Music Glossary: Section “tempo indication” in Music Glossary , Section “metronome” in Music

Glossary .

The tempo indication and metronome mark can be set with the \tempo command:

\relative {

\time 3/4

\tempo "Andante"

a'4 a a

\time 6/8

\tempo 4. = 96

a4. a

\time 4/4

\tempo "Presto" 4 = 120

a4 a a a

}

Presto (h = 120)º hPh hhhhhh� 34
Andante

P
Ph = 9668 h

Clef

Music Glossary: Section “clef” in Music Glossary .

The clef can be set using the \clef command:

\relative {

\clef treble

c'1

\clef alto

c1

\clef tenor

c1

\clef bass

c1

}

� .. .º� .
��

All together

Here is a small example showing all these elements together:

\relative {

\clef bass

\time 3/4

\tempo "Andante" 4 = 120

c,2 e8 c'

g'2.

f4 e d

c4 c, r

}

Chapter 2: Tutorial 18

hhh �
hhh

Andante (h = 120)34�
N

hN P

See also

Notation Reference: Section “Writing pitches” in Notation Reference, Section “Writing
rhythms” in Notation Reference, Section “Writing rests” in Notation Reference, Section
“Time signature” in Notation Reference, Section “Clef” in Notation Reference.

2.2.3 Working on input files

LilyPond input files are similar to source files in many common programming languages. They
contain a version statement, are case sensitive, and whitespace is generally ignored. Expressions
are formed with curly braces { }, and comments are denoted with ‘%’ or ‘%{ ... %}’.

If the previous sentences sound like nonsense, don’t worry! We are now going to explain what
all these terms mean.

• Version statement: Every LilyPond file should contain a version statement. A version
statement is a line that describes the version of LilyPond for which the file was written, as
in the following example:

\version "2.25.20"

By convention, the version statement is placed at the top of the LilyPond file.

The version statement is important for at least two reasons. First, it allows automatic
updating of the input file as LilyPond syntax changes. Second, it describes the version of
LilyPond needed to compile the file.

If the version statement is omitted from an input file, LilyPond prints a warning during the
compilation of the file.

• Case sensitive: It matters whether you enter a letter in lowercase (e.g., ‘a’, ‘b’, ‘s’, ‘t’) or
uppercase (e.g., ‘A’, ‘B’, ‘S’, ‘T’). Notes are lowercase: ‘{ c d e }’ is valid input; ‘{ C D E }’
produces an error message.

• Whitespace insensitive: It does not matter how many spaces (or tabs, or new lines) you
add.

{ c4 d e}

means the same thing as

{ c4 d e }

or

{ c4 d

e }

Of course, the previous example is hard to read. A good rule of thumb is to indent code
blocks with two spaces:

{

c4 d e

}

However, whitespace is required to separate many syntactical elements from others. In
other words, whitespace can always be added, but not always eliminated. Since missing
whitespace can give rise to strange errors, it is advisable to always insert whitespace before
and after every syntactic element, for example, before and after every curly brace.

• Expressions: Every piece of LilyPond input needs to have { curly braces } placed around
the input. These braces tell LilyPond that the input is a single music expression, just like

Chapter 2: Tutorial 19

parentheses ‘()’ in mathematics. The braces should be surrounded by a space unless they
are at the beginning or end of a line to avoid ambiguities.

A LilyPond command followed by a simple expression in braces (such as ‘\relative {

... }’) also counts as a single music expression.

• Comments: A comment is a remark for the human reader of the music input; it is ignored
while parsing, so it has no effect on the printed output. There are two types of comments.
The percent symbol ‘%’ introduces a line comment; anything after ‘%’ on that line is ignored.
By convention, a line comment is placed above the code it refers to.

a4 a a a

% this comment refers to the next line with the two bs

b2 b

A block comment marks a whole section of music input as a comment. Anything that is
enclosed in %{ and %} is ignored. However, block comments do not ‘nest’. This means that
you cannot place a block comment inside another block comment. If you try, the first %} will
terminate both block comments. The following fragment shows possible uses for comments.

% notes for twinkle twinkle follow

c4 c g' g a a g2

%{

This line, and the notes below are ignored,

since they are in a block comment.

f4 f e e d d c2

%}

2.3 Dealing with errors

Sometimes LilyPond doesn’t produce the output you expect. This section provides some links
to help you solve the problems you might encounter.

Troubleshooting LilyPond problems can be challenging for people who are used to a graphical
interface, because invalid input files can be created. When this happens, a logical approach is
the best way to identify and solve the problem. Some guidelines to help you learn to do this are
provided in Section “Troubleshooting” in Application Usage.

There are a few common errors that are difficult to troubleshoot based simply on the error
messages that are displayed. These are described in Section “Common errors” in Application

Usage.

2.4 How to read the manuals

This section shows how to read the documentation efficiently, and also introduces some useful
interactive features available in the online version.

2.4.1 Omitted material

LilyPond input must be surrounded by { } marks or ‘\relative { ... }’ (see Section 2.2.3
[Working on input files], page 18). For the rest of this manual, some short examples omit this.
To replicate these examples, you can copy displayed input, but paste it between ‘{’ and ‘}’ in
your input file.

{

...example goes here...

}

Chapter 2: Tutorial 20

Also, remember that every LilyPond file should have a \version statement. Because the
examples in the manuals are snippets, not files, the \version statement is omitted. But you
should make a practice of including them in your files.

2.4.2 Clickable examples

☛ ✟

Note: This feature is only available in the HTML manuals.
✡ ✠

Many people learn programs by trying and fiddling around with the program. This is also
possible with LilyPond. If you click on a picture in the HTML version of this manual, you will
see the exact LilyPond input that was used to generate that image.

2.4.3 Overview of manuals

There is a lot of documentation for LilyPond. New users are sometimes confused about what
part(s) they should read, and occasionally skip over reading vital portions.

☛ ✟

Note: Please do not skip over important parts of the documentation.
You will find it much harder to understand later sections.
✡ ✠

• Before trying to do anything : see Chapter 2 [Tutorial], page 13, and Chapter 3 [Common
notation], page 21, of this manual. If you encounter musical terms which you do not
recognize, please look them up in the Music Glossary .

• Before trying to write a complete piece of music: see Chapter 4 [Fundamental concepts],
page 41, of this manual. After that, you may want to look into relevant sections of the
Notation Reference.

• Before trying to change the default output: see Chapter 5 [Tweaking output], page 89, in
this manual.

• Before undertaking a large project: read the Usage document’s Section “Suggestions for
writing files” in Application Usage.

21

3 Common notation

This chapter explains how to create beautifully printed music containing common musical nota-
tion. For the most basic steps, see Chapter 2 [Tutorial], page 13.

3.1 Single-staff notation

This section introduces common notation that is used for the most basic music: one voice written
on one staff.

3.1.1 Bar lines and bar checks

Bar lines

Single bar lines are automatically placed in the music so there is no need to add them manually.
Other types of bar lines are added using \bar, for example \bar "||" for a double bar line, or
\bar "|." for an ending bar line. For a full list of bar lines see Section “Bar lines” in Notation

Reference.

\relative { g'1 e1 \bar "||" c2. c'4 \bar "|." }

PN hº� . .
Bar checks

Though not strictly necessary, bar checks should be used in the input code to show where bar lines
are expected to fall. They are entered using the bar symbol, ‘|’. With bar checks, the program
can verify that you have input durations where each measure adds up to the correct length. Bar
checks also make your input code easier to read, since they help keep things organized.

\relative {

g'1 | e1 | c2. c' | g4 c g e | c4 r r2 |

}

hhh � �hh.� .º PNPN
If you compile the code in the example above, you should see a warning in the console output:

warning: bar check failed at: 1/2

g'1 | e1 | c2. c'

| g4 c g e | c4 r r2 |

Although the missing duration is clear in the musical output in this simple example, the warning
in the console output is far more effective in drawing attention to the missing ‘4’ in bar 3.

See also

Notation Reference: Section “Bar and bar number checks” in Notation Reference.

3.1.2 Pitches and key signatures

☛ ✟

Note: New users often misunderstand how LilyPond uses the key sig-
nature – please read the warning at the end of this section.
✡ ✠

Chapter 3: Common notation 22

Pitch alterations

Music Glossary: Section “sharp” in Music Glossary , Section “flat” in Music Glossary , Section
“double sharp” in Music Glossary , Section “double flat” in Music Glossary , Section “accidental”
in Music Glossary .

Note names in LilyPond identify pitches. For example, ‘c’ always means C-natural, regardless
of the key signature.

In many languages, a note name consists of a base name referring to the diatonic steps of
the C major/a minor scale (for example, ‘d’) and a suffix, which indicates alteration of this
base pitch. The default input language for note names is ‘nederlands’ (Dutch). A sharp pitch
is made by adding ‘is’ to the name, and a flat pitch by adding ‘es’. As you might expect, a
double sharp or double flat is made by adding ‘isis’ or ‘eses’. This syntax is derived from
note naming conventions in Nordic and Germanic languages, like German and Dutch. To use
other naming schemes for note names, see Section “Note names in other languages” in Notation

Reference.

\relative { cis''4 ees fisis, aeses }

� h� h	h� º � h
Key signatures

Music Glossary: Section “key signature” in Music Glossary , Section “major” in Music Glossary ,
Section “minor” in Music Glossary .

The key signature is set with the command \key followed by a pitch and \major or \minor.

\relative {

\key d \major

d'4 fis a c |

\bar "||" \key c \minor

c,4 ees g b |

}

h� � ��� � hhh hh� º�� � hh
Warning: key signatures and pitches

Music Glossary: Section “accidental” in Music Glossary , Section “key signature” in Music Glos-

sary , Section “pitch” in Music Glossary , Section “flat” in Music Glossary , Section “natural” in
Music Glossary , Section “sharp” in Music Glossary , Section “transposition” in Music Glossary ,
Section “Pitch names” in Music Glossary .

LilyPond makes a distinction between musical content and its printed representation. Input
such as ‘d4 e fis2’ defines the pitches and durations of notes, which is musical content. The key
signature is part of the printed representation. The key signature also sets rules for the printed
representations of notes. LilyPond compares each input pitch to the key signature to determine
whether to print an accidental.

The command \key sets the key signature, which affects the printed representation, but does
not change the pitch assigned to a note such as ‘c’ in the input.

Consider this example.

\relative {

\key d \major

Chapter 3: Common notation 23

cis''4 d e fis

}

h hh� �� º h
No note has a printed accidental, but you must still add ‘is’ and type ‘cis’ and ‘fis’ in the
input file.

The code ‘b’ does not mean “print a thick black dot just on the middle line of the staff”.
Rather, it means “there is a note with pitch B-natural”. In the key of A-flat major, it does get
an accidental:

\relative {

\key aes \major

aes'4 c b c

}

h� hh� ���� º h
To say it differently: Whenever you enter a pitch that is a black key on the piano, you must

add ‘is’ or ‘es’ to the note name.

Adding all alterations explicitly might require a little more effort when typing, but the
advantage is that transposing is easier, and accidentals can be printed according to different
conventions. For some examples of how accidentals can be printed according to different rules,
see Section “Automatic accidentals” in Notation Reference.

See also

Notation Reference: Section “Note names in other languages” in Notation Reference, Section
“Accidentals” in Notation Reference, Section “Automatic accidentals” in Notation Reference,
Section “Key signature” in Notation Reference.

3.1.3 Ties and slurs

Because of the similar optical appearance, we introduce ties and slurs in the same section.

Ties

Music Glossary: Section “tie” in Music Glossary .

A tie is created by appending a tilde ‘~’ to the first of the two notes being tied.

\relative { g'4~ g c2~ | c4~ c8 a~ a2 | }

Nhhhº� h hN
When the pitch does not change, as is always the case with tied notes, subsequent pitches

may be omitted, specifying just the bare duration:

\relative { g'4~ 4 c2~ | 4~ 8 a~ 2 | }

Nhhhº� h hN

Chapter 3: Common notation 24

This shorthand may be useful in other places where the rhythm changes with an unchanging
pitch, but remember that a bare pitch followed by a space and a bare duration will be interpreted
as a single note. In other words, ‘c4 a 8 8’ would be interpreted as ‘c4 a8 a8’, not as ‘c4 a4 a8

a8’. Write ‘c4 a4 8 8’ instead.

Slurs

Music Glossary: Section “slur” in Music Glossary .

A slur is a curve drawn across many notes. The starting note and ending note are marked
with ‘(’ and ‘)’, respectively. Note that ‘(’ comes after the first note of the slur.

\relative { d''4(c16) cis(d e c cis d) e(d4) }

hh h�h� hhhº� h h h�
Phrasing slurs

Music Glossary: Section “slur” in Music Glossary , Section “phrasing” in Music Glossary .

Slurs to indicate longer phrasing can be entered with \(and \). You can have both slurs
and phrasing slurs at the same time.

\relative { g'4\(g8(a) b(c) b4\) }

hhhº� h h h
Warnings: slurs vs. ties

Music Glossary: Section “articulation” in Music Glossary , Section “slur” in Music Glossary ,
Section “tie” in Music Glossary .

A slur looks like a tie, but it has a different meaning. A tie simply makes the first note longer,
and can only be used on pairs of notes with the same pitch. Slurs indicate the articulation of
notes, and can be used on larger groups of notes. Slurs and ties can be nested.

\relative { c''4(~ c8 d~ 4 e) }

h hh� º hh
See also

Notation Reference: Section “Ties” in Notation Reference, Section “Slurs” in Notation Refer-

ence, Section “Phrasing slurs” in Notation Reference.

3.1.4 Articulations and dynamics

Articulations and dynamics are indicated by adding special codes after the notes to which they
apply.

Articulations

Music Glossary: Section “articulation” in Music Glossary .

Common articulations can be added to a note using a dash (‘-’) followed by a single character.
Here is a small table of the most important articulations.

-^ a marcato (an upward-pointing wedge)

Chapter 3: Common notation 25

-- a tenuto (a short horizontal line)
-> an accent (a right-pointing wedge)
-. a staccato dot
-_ a portato (i.e., a tenuto line combined with a staccato dot)

See Section “List of articulations” in Notation Reference for an exhaustive list.

\relative {

c''4-^ c-- c4-> c-. c2-_

}

l ho NNhh}� º hq
Fingerings

Music Glossary: Section “fingering” in Music Glossary .

Similarly to articulations, fingering indications can be added to a note using a dash (‘-’)
followed by the digit to be printed:

\relative { c''4-3 e-5 b-2 a-1 }

h h�h�� º h�
Articulations and fingerings are usually placed automatically, but you can specify a direction

by replacing the dash (‘-’) with ‘^’ (up) or ‘_’ (down). You can also use multiple articulations
on the same note. However, in most cases it is best to let LilyPond determine the articulation
directions.

\relative { c''4_-^1 d^. f^4_2-> e^-_+ }

p

qhl�h�q� º hoh
Dynamics

Music Glossary: Section “dynamics” in Music Glossary , Section “crescendo” in Music Glossary ,
Section “decrescendo” in Music Glossary .

Dynamic signs are made by adding the markings (with a backslash) to the note:

\relative { c''2\ff c\mf c\p c\pp }

pp
NN

ff
� º

p
N

mf
N

Crescendi and decrescendi are started with the commands \< and \>. The next dynamics
sign, for example \f, ends the (de)crescendo, or the command \! can be used:

\relative { c''2\< c | c4\ff\> c c c\! }

hh hº� N h
ff

N

Chapter 3: Common notation 26

See also

Notation Reference: Section “Articulations and ornamentations” in Notation Reference,
Section “Fingering instructions” in Notation Reference, Section “Dynamics” in Notation Ref-

erence.

3.1.5 Adding text

Text may be added to your scores:

\relative { c''2^"espr" a_"legato" }

N
legato

Nespr� º
Extra formatting may be added with the \markup command:

\relative {

c''2^\markup { \bold espr }

a2_\markup {

\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }

}

N
f 2nd p

Nespr

� º
See also

Notation Reference: Section “Writing text” in Notation Reference.

3.1.6 Automatic and manual beams

Music Glossary: Section “beam” in Music Glossary .

All beams are drawn automatically:

\relative { a'8 ais d ees r d c16 b a8 }

¢ hhTh � hhº� h hh ��
If you do not like the automatic beams, they may be overridden manually. To correct just

an occasional beam mark the first note to be beamed with ‘[’ and the last one with ‘]’. Note
that ‘[’ comes after the first beamed note.

\relative { a'8[ais] d[ees r d] c16 b a8 }

¢ hhh � hhº� h �h� h
If you want to turn off automatic beaming entirely or for an extended section of music, use

the command \autoBeamOff to turn off automatic beaming and \autoBeamOn to turn it on
again.

\relative {

\autoBeamOff

a'8 c b4 d8. c16 b4 |

Chapter 3: Common notation 27

\autoBeamOn

a8 c b4 d8. c16 b4 |

}

hhh P hhhTh h�º� h U hhT Ph
See also

Notation Reference: Section “Automatic beams” in Notation Reference, Section “Manual
beams” in Notation Reference.

3.1.7 Advanced rhythmic commands

We have to extend simple durations (i.e., numbers appended to pitches, with or without trailing
dots) with more concepts to cover a broader range of rhythmic input.

Partial measure

Music Glossary: Section “anacrusis” in Music Glossary .

A pickup (or anacrusis) is entered with the keyword \partial. It is followed by a duration:
‘\partial 4’ is a quarter note pickup and ‘\partial 8’ an eighth note.

\relative {

\partial 8 f''8 |

c2 d |

}

Nh� º T N
Tuplets

Music Glossary: Section “note value” in Music Glossary , Section “triplet” in Music Glossary .

Tuplets are made with the \tuplet keyword. It takes two arguments: a fraction and a piece
of music. The fraction is the number of tuplet notes over the number of notes normally filling
the same duration. For triplets, there are three notes instead of two, so triplets have 3/2 as
their fraction.

\relative {

\tuplet 3/2 { f''8 g a }

\tuplet 3/2 { c8 r c }

\tuplet 3/2 { f,8 g16[a g a] }

\tuplet 3/2 { d4 a8 }

}

h hhhh
333

3
ThT

hhº� h hTh¢hT
Grace notes

Music Glossary: Section “grace notes” in Music Glossary , Section “acciaccatura” in Music

Glossary , Section “appoggiatura” in Music Glossary .

Chapter 3: Common notation 28

Grace notes are created with the \grace command, although they can also be created by
prefixing a music expression with the keyword \appoggiatura (a grace note with a slur to its
main note) or \acciaccatura (a slashed grace note with a slur to its main note):

\relative {

c''2 \grace { a32 b } c2 |

c2 \appoggiatura b16 c2 |

c2 \acciaccatura b16 c2 |

}

h NN� N��hhhº� N NN
See also

Notation Reference: Section “Grace notes” in Notation Reference, Section “Tuplets” in Nota-

tion Reference, Section “Upbeats” in Notation Reference.

3.2 Multiple notes at once

This section introduces notation having more than one note at the same time: multiple instru-
ments, multiple staves for a single instrument (such as the piano), and chords.

Polyphony in music refers to having more than one voice occurring in a piece of music.
Polyphony in LilyPond refers to having more than one voice on the same staff.

3.2.1 Music expressions explained

In LilyPond input files, music is represented by music expressions. A single note is a music
expression:

a'4

º� h
Enclosing music in braces creates a compound music expression. Here we have created a

compound music expression with two notes:

\relative { a'4 g4 }

hº� h
Putting a group of music expressions (e.g., notes) in braces means that they are in sequence

(i.e., each one follows the previous one). The result is another music expression:

\relative { { a'4 g } f4 g }

h hh� º h

Chapter 3: Common notation 29

Analogy: mathematical expressions

This mechanism is similar to mathematical formulas: a big formula is created by composing
small formulas. Such formulas are called expressions, and they can contain other expressions,
so you can make arbitrarily complex and large expressions. For example,

1
1 + 2
(1 + 2) ∗ 3
((1 + 2) ∗ 3) / (4 ∗ 5)

This is a sequence of expressions, where each expression is contained in the next (larger) one.
The simplest expressions are numbers, and larger ones are made by combining expressions with
operators (like +, ∗, and /) and parentheses. Like mathematical expressions, music expressions
can be nested arbitrarily deep, which is necessary for complex music like polyphonic scores.

Simultaneous music expressions: multiple staves

Music Glossary: Section “polyphony” in Music Glossary .

This technique is useful for polyphonic music. To enter music with more voices or more
staves, we combine expressions in parallel. To indicate that two voices should play at the same
time, simply enter a simultaneous combination of music expressions. A ‘simultaneous’ music
expression is formed by enclosing expressions inside << and >>. In the following example, three
sequences (all containing two separate notes) are combined simultaneously:

<<

\relative { a'2 g }

\relative { f'2 e }

\relative { d'2 b }

>>

N

N
Nº

º� N

º� N
� N

Note that we have indented each level of the input with a different amount of space. LilyPond
does not care how much (or little) space there is at the beginning of a line, but indenting
LilyPond code like this makes it much easier for humans to read.

☛ ✟

Note: Each note is relative to the previous note in the input; the
first one in a \relative block is relative to ‘c’ (one octave below the
middle C).
✡ ✠

Simultaneous music expressions: single-staff

To determine the number of staves in a piece, LilyPond looks at the beginning of the first
expression. If there is a single note, there is one staff; if there is a simultaneous expression, there
is more than one staff. The following example shows a complex expression, but as it begins with
a single note it will be set out on a single staff.

Chapter 3: Common notation 30

\relative {

c''2 <<c e>> |

<< { e2 f } { c2 <<b d>> } >> |

}

NNNN� º NNNN
3.2.2 Multiple staves

LilyPond input files are constructed out of music expressions (see Section 3.2.1 [Music expressions
explained], page 28). If the score begins with simultaneous music expressions, LilyPond creates
multiples staves. However, it is easier to see what happens if we create each staff explicitly.

To print more than one staff, each piece of music that makes up a staff is marked by adding
\new Staff before it. These Staff elements are then combined in parallel with << and >>:

<<

\new Staff { \clef treble c''4 }

\new Staff { \clef bass c4 }

>>

º� h
º� h

The command \new introduces a notation context. A notation context is an environment
in which musical events (like notes or \clef commands) are interpreted. For simple pieces,
such notation contexts are created automatically. For more complex pieces, it is best to mark
contexts explicitly.

There are several types of contexts. The most important ones are Score, Staff, and Voice,
which handle melodic notation, while Lyrics sets lyric texts and ChordNames prints chord
names.

In terms of syntax, prepending \new to a music expression creates a bigger music expression.
In this way it resembles the minus sign in mathematics. The formula (4 + 5) is an expression,
so −(4 + 5) is a bigger expression.

Time signatures entered in one staff affect all other staves by default. On the other hand, the
key signature of one staff does not affect other staves. This different default behavior is because
scores with transposing instruments are more common than polyrhythmic scores.

<<

\new Staff { \clef treble \key d \major \time 3/4 c''4 }

\new Staff { \clef bass c4 }

>>

� h� �� 34
h� 34

Chapter 3: Common notation 31

3.2.3 Staff groups

Music Glossary: Section “brace” in Music Glossary , Section “staff” in Music Glossary , Section
“system” in Music Glossary .

Piano music is typeset in two staves connected by a brace. Printing such a staff is similar
to polyphonic music in multiple staves (see Section 3.2.2 [Multiple staves], page 30). However,
now this entire expression is inserted into a PianoStaff context:

\new PianoStaff <<

\new Staff ...

\new Staff ...

>>

Here is a small example.

\new PianoStaff <<

\new Staff \relative { \time 2/4 c''4 e | g g, | }

\new Staff \relative { \clef bass c4 c' | e c | }

>>

h
hh

h24�
24� hX h

h
h

Other staff groupings are introduced with \new GrandStaff, suitable for orchestral scores,
and \new ChoirStaff, suitable for vocal scores. These staff groups each form another type
of context, one that generates the brace at the left side of every system and also controls the
vertical extent of bar lines.

See also

Notation Reference: Section “Keyboard and other multi-staff instruments” in Notation Refer-

ence, Section “Displaying staves” in Notation Reference.

3.2.4 Combining notes into chords

Music Glossary: Section “chord” in Music Glossary .

We saw earlier how notes can be combined into chords: by enclosing them in double angle
brackets we indicated that they are simultaneous. However, the normal way of producing a
chord is to surround the pitches with single angle brackets. Note that all notes in a chord must
have the same duration, and that the duration is placed after the closing bracket.

\relative { r4 <c'' e g> <c f a>2 }

NNN�� º hhh
Think of chords as almost equivalent to single notes: virtually everything you can attach to

a single note can be attached to a chord, and usually these attachments must be put outside

the angle brackets. For example, you can combine markings like beams and ties with chords.

\relative {

r4 <c'' e g>~ <c f a>2 |

<c e g>8[<c f a> <c e g> <c f a>]

<c e g>8\>[<c f a> q q]\! |

Chapter 3: Common notation 32

r4 <c e g>8.\p q16(q4-. <c f a>) |

}

h hhh
p
Phhh �hhh hPP hhh hhho hhNNN hhh h�� º hhh hhh hhh hhhhh hh

The above example also demonstrates a very useful feature: a chord can be repeated by using
the symbol ‘q’. This even works with interspersed single notes.

\relative { c'8 <e g>8 q q g, q q q }

hhhhh hhhhº� h hhhh
See also

Notation Reference: Section “Chorded notes” in Notation Reference.

3.2.5 Single-staff polyphony

Polyphonic music in LilyPond, while not difficult, uses concepts that we have not discussed yet,
so we are not going to introduce them here. Instead, the following sections establish the basics
of these concepts and explain them thoroughly.

See also

Learning Manual: Section 4.2 [Voices contain music], page 48.

Notation Reference: Section “Simultaneous notes” in Notation Reference.

3.3 Songs

This section introduces vocal music and simple song sheets.

3.3.1 Setting simple songs

Music Glossary: Section “lyrics” in Music Glossary .

Here is the start of the melody to a nursery rhyme, Girls and boys come out to play.

\relative {

\key g \major

\time 6/8

d''4 b8 c4 a8 | d4 b8 g4

}

h� h hT h
h� � 68 h hT

The lyrics can be set to these notes, combining both with the \addlyrics keyword. Lyrics
are entered by separating each syllable with a space.

<<

\relative {

\key g \major

\time 6/8

Chapter 3: Common notation 33

d''4 b8 c4 a8 | d4 b8 g4

}

\addlyrics {

Girls and boys come out to play,

}

>>

out

h�
play,

hT
to

h
Girls come

68�� h h h
boys

T
and

h
Note the double angle brackets << ... >> around the whole piece to show that the music and
lyrics are to occur at the same time.

3.3.2 Aligning lyrics to a melody

Music Glossary: Section “melisma” in Music Glossary , Section “extender line” in Music Glos-

sary .

The next line in the nursery rhyme is The moon doth shine as bright as day. Let’s extend it:

<<

\relative {

\key g \major

\time 6/8

d''4 b8 c4 a8 | d4 b8 g4 g8 |

a4 b8 c b a | d4 b8 g4. |

}

\addlyrics {

Girls and boys come out to play,

The moon doth shine as bright as day;

}

>>

out play,

hT
to

h �
The

h
and

h
Girls

68�� h h�
come

hT
boys

h

day;

h
as

h
T Ph

dothmoon

h h3 ��
bright

h
as

hT
shine

h
Looking at the music, we see that the extra lyrics do not align properly with the notes. The

word shine should be sung on two notes, not one. This is called a melisma, a single syllable
sung to more than one note. There are several ways to spread a syllable over multiple notes, the
simplest being to add a slur across them. See Section 3.1.3 [Ties and slurs], page 23, for more
information.

<<

\relative {

\key g \major

\time 6/8

d''4 b8 c4 a8 | d4 b8 g4 g8 |

a4 b8 c(b) a | d4 b8 g4. |

Chapter 3: Common notation 34

}

\addlyrics {

Girls and boys come out to play,

The moon doth shine as bright as day;

}

>>

out play,

hT
to

h �
The

h
and

h
Girls

68�� h h�
come

hT
boys

h

T
as

h
bright

h P
day;

hh
moon

h
doth

3 ��
as

hhT
shine

h
The words now line up correctly with the notes, but the automatic beaming for the notes

above shine as does not look right. We can correct this by inserting manual beaming commands
to override the automatic beaming here. See Section 3.1.6 [Automatic and manual beams],
page 26, for more information.

<<

\relative {

\key g \major

\time 6/8

d''4 b8 c4 a8 | d4 b8 g4 g8 |

a4 b8 c([b]) a | d4 b8 g4. |

}

\addlyrics {

Girls and boys come out to play,

The moon doth shine as bright as day;

}

>>

out play,

hT
to

h �
The

h
and

h
Girls

68�� h h�
come

hT
boys

h

T
as

h
bright

h P
day;

h�h
moon

h
doth

3 ��
as

hhT
shine

h
As an alternative to using slurs, melismata may be indicated in just the lyrics by using an

underscore ‘_’ for each note that should be included in the melisma.

<<

\relative {

\key g \major

\time 6/8

d''4 b8 c4 a8 | d4 b8 g4 g8 |

a4 b8 c[b] a | d4 b8 g4. |

}

\addlyrics {

Chapter 3: Common notation 35

Girls and boys come out to play,

The moon doth shine _ as bright as day;

}

>>

out play,

hT
to

h �
The

h
and

h
Girls

68�� h h�
come

hT
boys

h

T
�

as

h
bright

h P
day;

h
dothmoon

h h3 ��
as

hhT h
shine

If a syllable extends over several notes or a single very long note an extender line is usually
drawn from the syllable extending under all the notes for that syllable. It is entered as two
underscores (__). It is important that the underscores are separated with one or more spaces
from the preceding (and following) syllable.

Here is an example from the first three bars of Dido’s Lament, from Purcell’s opera Dido and

Æneas :

<<

\relative {

\key g \minor

\time 3/2

g'2 a bes | bes2(a) b2 |

c4.(bes8 a4. g8 fis4.) g8 | fis1

}

\addlyrics {

When I am laid,

am laid __ in earth,

}

>>

P hh � h PP hT �� h
in

� .
earth,am

N
I

N N
laid,When

N� �� 32
laid

N N
am

� h
None of the examples so far have involved words containing more than one syllable. Such

words are usually split one syllable to a note, with hyphens between syllables. Such hyphens
are entered as two consecutive dashes (--), resulting in a centered hyphen between the syllables.
It is important that the dashes are separated with one or more spaces from the preceding and
following syllable.

Here is an example showing this and everything we have learned so far about aligning lyrics
to notes.

<<

\relative {

\key g \major

\time 3/4

\partial 4

d'4 | g4 g a8(b) | g4 g b8(c) |

d4 d e | c2

Chapter 3: Common notation 36

}

\addlyrics {

A -- way in a __ man -- ger,

no __ crib for a bed,

}

>>

crib

h h
forger,

h
no

hh h
a

N
bed,

h
way

h
inA

h� � 34
man

hh
a

h
Some lyrics, especially those in Italian, require the opposite: setting more than one syllable

to a single note. This is achieved by linking the syllables together with a single underscore (‘_’,
with no spaces), or enclosing them in quotes. Here is an example from Rossini’s opera Il barbiere

di Siviglia, where al has to be sung on the same note as the go of Largo in Figaro’s aria Largo

al factotum:

<<

\relative {

\clef bass

\key c \major

\time 6/8

c'4.~ 8 d b | c8([d]) b c d b | c8

}

\addlyrics {

Lar -- go_al fac -- to -- tum del -- la cit -- tà

}

>>

h
la

hh
citdel

hT
tum

h T
tà

hh h68
h�

go alLar

P h
tofac

h

See also

Notation Reference: Section “Vocal music” in Notation Reference.

3.3.3 Lyrics to multiple staves

The simple approach using \addlyrics can be used for placing lyrics under more than one staff.
Here is an example from Handel’s oratorio Judas Maccabæus.

<<

\relative {

\key f \major

\time 6/8

\partial 8

c''8 | c8([bes]) a a([g]) f | f'4. b, | c4.~ 4

}

\addlyrics {

Let flee -- cy flocks the hills a -- dorn, __

}

\relative {

\key f \major

Chapter 3: Common notation 37

\time 6/8

\partial 8

r8 | r4. r4 c'8 | a'8([g]) f f([e]) d | e8([d]) c bes'4

}

\addlyrics {

Let flee -- cy flocks the hills a -- dorn,

}

>>

the

hh �
h
dorn,

h
hills

P

hh
cy

h

� P

flocks

a

h
�

h h
a

�
h
h

dorn,

P�flee cy

hhhh
68�� ¢Let

68�� T
h

�

�

h
the

h

Let

hills

h
flee

P� h
flocks�

h

Scores any more complex than this simple example are better produced by separating out
the score structure from the notes and lyrics with variables. See Section 3.4.1 [Organizing pieces
with variables], page 37, for an introduction.

See also

Notation Reference: Section “Vocal music” in Notation Reference.

3.4 Final touches

This is the final section of the tutorial; it demonstrates how to add the final touches to simple
pieces, and provides an introduction to the rest of the manual.

3.4.1 Organizing pieces with variables

When all of the elements discussed earlier are combined to produce larger files, the music ex-
pressions get a lot bigger. In polyphonic music with many staves, the input files can become
very confusing. We can reduce this confusion by using variables.

With variables (also known as identifiers or macros), we can break up complex music expres-
sions. A variable is assigned as follows:

namedMusic = { ... }

The contents of the music expression namedMusic can be used later by placing a backslash
in front of the name (\namedMusic), just like a normal LilyPond command.

Violin = \new Staff {

\relative {

a'4 b c b

}

}

Cello = \new Staff {

\relative {

\clef bass

e2 d

}

}

Chapter 3: Common notation 38

{

<<

\Violin

\Cello

>>

}

h
N
hh� º

N� º
h

By convention, variable names consist of alphabetic characters only. For detailed information,
see Section “File structure” in Notation Reference.

Variables must be defined before the main music expression, but may be used as many times
as required anywhere after they have been defined. They may even be used in a later definition
of another variable, giving a way of shortening the input if a section of music is repeated many
times.

tripletA = \relative { \tuplet 3/2 { c'8 e g } }

barA = { \tripletA \tripletA \tripletA \tripletA }

{ \barA \barA }

h h h hhh h h
3 3 3 3 3 3 3 3

h h hh h h hh� º h h h h hhhh
Variables may be used for many other types of objects in the input. For example,

myWidth = 60 % a number to pass to a \paper variable

% (the unit is millimeter)

myName = "Wendy" % a string to pass to a markup

aFivePaper = \paper { #(set-paper-size "a5") }

Depending on its contents, the variable can be used in different places. The following example
uses the above variables:

\paper {

\aFivePaper

line-width = \myWidth

}

{

c4^\myName

}

3.4.2 Adding titles

The title, composer, opus number, and similar information are entered in the \header block.
This exists outside of the main music expression; the \header block is usually placed underneath
the version number.

\version "2.25.20"

Chapter 3: Common notation 39

\header {

title = "Symphony"

composer = "Me"

opus = "Op. 9"

}

{

... music ...

}

When the file is processed, the title and composer are printed above the music. More information
on titling can be found in Section “Creating titles headers and footers” in Notation Reference.

3.4.3 Absolute note names

So far we have used \relative to define pitches. This is usually the fastest way to enter most
music. Without \relative, pitches are interpreted in absolute mode.

In this mode, LilyPond treats all pitches as absolute values: a ‘c'’ always means middle C,
a ‘b’ always means the note one step below middle C, and a ‘g,’ always means the note on the
bottom line of a staff with a bass clef.

{

\clef bass

c'4 b g, g, |

g,4 f, f c' |

}

h
hhh

h
h� º hh

Writing a melody in the treble clef involves a lot of quote ‘'’ marks. Consider this fragment
from Mozart:

{

\key a \major

\time 6/8

cis''8. d''16 cis''8 e''4 e''8 |

b'8. cis''16 b'8 d''4 d''8 |

}

hhP ThhhhP68���� h hh Th
Common octave marks can be indicated just once, using the command \fixed followed by a

reference pitch:

\fixed c'' {

\key a \major

\time 6/8

cis8. d16 cis8 e4 e8 |

b,8. cis16 b,8 d4 d8 |

}

hhP ThhhhP68���� h hh Th

Chapter 3: Common notation 40

With \relative, the previous example needs no octave marks because this melody moves
in steps no larger than three staff positions:

\relative {

\key a \major

\time 6/8

cis''8. d16 cis8 e4 e8 |

b8. cis16 b8 d4 d8 |

}

hhP ThhhhP68���� h hh Th
If you make a mistake with an octave mark (‘'’ or ‘,’) while working in \relative mode, it

is very obvious – many notes will be in the wrong octave. When working in absolute mode, a
single mistake will not be as visible, and will not be as easy to find.

However, absolute mode is useful for music with large intervals, and is extremely useful for
computer-generated LilyPond files. When cutting and pasting melody fragments, absolute mode
preserves the original octave.

See Section “Relative octave entry” in Notation Reference for more complex situations.

3.4.4 After the tutorial

After finishing the tutorial, you should probably try writing a piece or two. Start by adding notes
to one of the templates (see Appendix A [Templates], page 155). If you need any notation that
was not covered in the tutorial, look at the Notation Reference, starting with Section “Musical
notation” in Notation Reference. If you want to write for an instrument ensemble that is not
covered in the templates, see Section 4.4 [Extending the templates], page 70.

Once you have written a few short pieces, read the rest of the Learning Manual (chapters 3–5).
There’s nothing wrong with reading it now, of course! However, the rest of the Learning Manual
assumes that you are familiar with LilyPond input. You may wish to skim these chapters right
now, and come back to them after you have more experience.

In this tutorial and in the rest of the Learning Manual, there is a paragraph See also at the
end of each section, which contains cross references to other sections: you should not follow
these cross references at first reading; when you have read all of the Learning Manual, you may
want to read some sections again and follow cross references for further reading.

If you have not done so already, please read Section 2.4.3 [Overview of manuals], page 20.
There is a lot of information about LilyPond, so newcomers often do not know where they should
look for help. If you spend five minutes reading that section carefully, you might save yourself
hours of frustration looking in the wrong places!

41

4 Fundamental concepts

You’ve seen in the Tutorial how to produce beautifully printed music from a simple text file.
This section introduces the concepts and techniques required to produce equally beautiful but
more complex scores.

4.1 How LilyPond input files work

The LilyPond input format is quite free-form, giving experienced users a lot of flexibility to
structure their files however they wish. But this flexibility can make things confusing for new
users. This section will explain some of this structure, but may gloss over some details in favor
of simplicity. For a complete description of the input format, see Section “File structure” in
Notation Reference.

4.1.1 Introduction to the LilyPond file structure

A basic example of a LilyPond input file is

\version "2.25.20"

\header { }

\score {

... compound music expression ... % all the music goes here!

\layout { }

\midi { }

}

There are many variations of this basic pattern, but this example serves as a useful starting
place.

Up to this point none of the examples you have seen have used a \score command. This
is because LilyPond automatically adds the extra commands that are needed when you give it
simple input. LilyPond treats input like this:

\relative {

c''4 a b c

}

as shorthand for this:

\book {

\score {

\new Staff {

\new Voice {

\relative {

c''4 a b c

}

}

}

\layout { }

}

}

In other words, if the input contains a single music expression, LilyPond will interpret the
file as though the music expression was wrapped up inside the commands shown above.

A word of warning! Many of the examples in the LilyPond documentation will omit the \new

Staff and \new Voice commands, leaving them to be created implicitly. For simple examples

Chapter 4: Fundamental concepts 42

this works well, but for more complex examples, especially when additional commands are used,
the implicit creation of contexts can give surprising results, maybe creating extra unwanted
staves. For a detailed explanation how to create contexts explicitly, see Section 4.3 [Contexts
and engravers], page 60.

☛ ✟

Note: When entering more than a few lines of music it is advisable to
always create staves and voices explicitly.
✡ ✠

For now, though, let us return to the first example and examine the \score command, leaving
the others to default.

A \score block must always contain exactly one music expression. Remember that a music
expression could be anything from a single note to a huge compound expression like

{

\new StaffGroup <<

... insert the whole score of a Wagner opera in here ...

>>

}

Since everything is inside { ... }, it counts as one music expression.

As we saw previously, the \score block can contain other things, such as

\score {

{ c'4 a b c' }

\header { }

\layout { }

\midi { }

}

Note that these three commands – \header, \layout, and \midi – are special: unlike many
other commands that begin with a backward slash (\) they are not music expressions and are
not part of any music expression. So they may be placed inside a \score block or outside it. In
fact, these commands are commonly placed outside the \score block – for example, \header is
often placed above the \score command, as the example at the beginning of this section shows.

Two more commands you have not previously seen are \layout and \midi. If these appear
as shown they will cause LilyPond to produce a printed output and a MIDI output, respec-
tively. They are described fully in the Notation Reference – Section “Score layout” in Notation

Reference, and Section “Creating MIDI output” in Notation Reference.

You may code multiple \score blocks. Each will be treated as a separate score, but they
will be all combined into a single output file. A \book command is not necessary – one will
be implicitly created. However, if you would like separate output files from one .ly file then
the \book command should be used to separate the different sections: each \book block will
produce a separate output file.

To summarize:

• Every \book block creates a separate output file (e.g., a PDF file). If you haven’t explicitly
added one, LilyPond wraps your entire input code in a \book block implicitly.

• Every \score block is a separate chunk of music within a \book block.

• Every \layout block affects the \score or \book block in which it appears – i.e., a \layout

block inside a \score block affects only that \score block, but a \layout block outside of
a \score block (and thus in a \book block, either explicitly or implicitly) will affect every
\score in that \book.

See Section “Multiple scores in a book” in Notation Reference for details.

Chapter 4: Fundamental concepts 43

Another great shorthand is the ability to define variables, as shown previously (see
Section 3.4.1 [Organizing pieces with variables], page 37). All the templates use this:

melody = \relative {

c'4 a b c

}

\score {

\melody

}

When LilyPond looks at this file, it takes the value of melody (everything after the equals
sign) and inserts it whenever it sees \melody. There’s nothing special about the name – it could
be melody, global, keyTime, pianorighthand, or something else. Remember that you can use
almost any name you like as long as it contains just alphabetic characters and is distinct from
LilyPond command names. For more details, see Section 4.4.4 [Saving typing with variables
and functions], page 84. The exact limitations on variable names are detailed in Section “File
structure” in Notation Reference.

See also

For a complete definition of the input format, see Section “File structure” in Notation Refer-

ence.

4.1.2 A score is a (single) compound musical expression

We saw the general organization of LilyPond input files in the previous section, Section 4.1.1
[Introduction to the LilyPond file structure], page 41. But we seemed to skip over the most
important part: how do we figure out what to write after \score?

We didn’t skip over it at all. The big mystery is simply that there is no mystery. This line
explains it all:

A \score block must contain exactly one music expression.

To understand what is meant by a music expression, you may find it useful to review the tutorial
(see Section 3.2.1 [Music expressions explained], page 28). In that section, we saw how to build
big music expressions from small pieces – we started from notes, then chords, etc. Now we’re
going to start from a big music expression and work our way down. For simplicity, we’ll use
just a singer and piano in our example. We don’t need a StaffGroup for this ensemble, which
simply groups a number of staves together with a bracket at the left, but we do need staves for
a singer and a piano, though.

\score {

<<

\new Staff = "singer" <<

>>

\new PianoStaff = "piano" <<

>>

>>

\layout { }

}

Here we have given names to the staves – “singer” and “piano”. This is not essential here,
but it is a useful habit to cultivate so that you can see at a glance what each stave is for.

Remember that we use << ... >> instead of { ... } to show simultaneous music. This
causes the vocal part and piano part to appear one above the other in the score. The <<

... >> construct would not be necessary for the “singer” staff in the example above if it were
going to contain only one sequential music expression, but << ... >> rather than braces is

Chapter 4: Fundamental concepts 44

necessary if the music in the staff is to contain two or more simultaneous expressions, e.g., two
simultaneous voices, or a voice with lyrics. We’re going to have a voice with lyrics, so angle
brackets are required. We’ll add some real music later; for now let’s just put in some dummy
notes and lyrics. If you’ve forgotten how to add lyrics you may wish to review \addlyrics, see
Section 3.3.1 [Setting simple songs], page 32.

\score {

<<

\new Staff = "singer" <<

\new Voice = "vocal" { c'1 }

\addlyrics { And }

>>

\new PianoStaff = "piano" <<

\new Staff = "upper" { c'1 }

\new Staff = "lower" { c'1 }

>>

>>

\layout { }

}

.X

.� º
And

�
º� .

º

Now we have a lot more details. We have the singer’s staff: it contains a Voice (in LilyPond,
this term refers to a set of notes, not necessarily vocal notes – for example, a violin generally
plays one voice) and some lyrics. We also have a piano staff: it contains an upper staff (right
hand) and a lower staff (left hand), although the lower staff has yet to be given a bass clef.

At this stage, we could start filling in notes. Inside the curly braces next to \new Voice =

"vocal", we could start writing

\relative {

r4 d''8\noBeam g, c4 r

}

But if we did that, the \score section would get pretty long, and it would be harder to
understand what was happening. So let’s use variables instead. These were introduced at the
end of the previous section, remember? To ensure the contents of the words variable below
are interpreted as lyrics we preface them with \lyricmode. Like \addlyrics, this switches the
input mode to lyrics. Without that, LilyPond would try to interpret the contents as notes, which
would generate errors. (Several other input modes are available, see Section “Input modes” in
Notation Reference.)

So, adding a few notes and a bass clef for the left hand, we now have a piece of real music:

melody = \relative { r4 d''8\noBeam g, c4 r }

words = \lyricmode { And God said, }

upper = \relative { <g' d g,>2~ <g c, g> }

lower = \relative { b,2 e }

Chapter 4: Fundamental concepts 45

\score {

<<

\new Staff = "singer" <<

\new Voice = "vocal" { \melody }

\addlyrics { \words }

>>

\new PianoStaff = "piano" <<

\new Staff = "upper" { \upper }

\new Staff = "lower" {

\clef "bass"

\lower

}

>>

>>

\layout { }

}

�

NN
NN

said,

h�

N
God

º� N
º� NN

º� �

X
hT

And

h

When writing (or reading) a \score section, just take it slowly and carefully. Start with the
outer level, then work on each smaller level. It also really helps to be strict with indentation –
make sure that each item on the same level starts on the same horizontal position in your text
editor.

See also

Notation Reference: Section “Structure of a score” in Notation Reference.

4.1.3 Nesting music expressions

It is not essential to declare all staves at the beginning; they may be introduced temporarily at
any point. This is particularly useful for creating ossia sections – see Section “ossia” in Music

Glossary . Here is a simple example showing how to introduce a new staff temporarily for the
duration of three notes:

\new Staff {

\relative {

r4 g'8 g c4 c8 e |

<<

{ c4 c }

\new Staff { d4 c }

>>

r2 |

}

}

Chapter 4: Fundamental concepts 46

h
º� h h

�h h h�� º hhh

Note that the size of the clef is the same as a clef printed following a clef change – slightly
smaller than the clef at the beginning of the line. This is usual for clefs printed in the middle of
a line.

The ossia section may be placed above the staff as follows:

\new Staff = "main" {

\relative {

r4 g'8 g c4 c8 e |

<<

{ c4 c }

\new Staff \with {

alignAboveContext = "main"

} { d4 c }

>>

r2 |

}

}

h
º� h h

�h h h�� º hhh
This example uses \with, which will be explained later in more detail. It is a means of

modifying the default behavior of a single staff. Here it says that the new staff should be placed
above the staff called “main” instead of the default position, which is below.

See also

Ossia staves are often written without clef and without time signature and are usually printed
at a smaller size. Achieving this requires further commands, which have not yet been intro-
duced. See Section 5.3.2 [Size of objects], page 107, and Section “Ossia staves” in Notation

Reference.

4.1.4 Structure of a note entry

A note entry in LilyPond consists of a pitch, followed by a duration, optionally followed by one
or more post-events. LilyPond post-events add things such as articulations, fingerings, string
numbers, slurs, ties, and explanatory text.

The pitch may be explicitly defined using the current LilyPond input language as described
in Section “Note names in other languages” in Notation Reference. The pitch may be omitted.
If the pitch is omitted, the pitch of the current note will be the same as the pitch of the previous
note in the input file, see Section “Durations” in Notation Reference. Note that neither ‘r’ nor
‘s’ (a spacer rest, see Section “Invisible rests” in Notation Reference) is a pitch.

Chapter 4: Fundamental concepts 47

The duration includes a number and optionally one or more dots. If a duration is not explicitly
defined, the duration of the current note will be the same as the duration of the previous note,
chord, rest, or spacer rest, see Section “Durations” in Notation Reference.

Post-events follow the note to which they are attached. Suppose we want to have an eighth
note c’ with a fingering of 1, a tenuto articulation, a slur beginning with the note, a tie beginning
with the note, and a text annotation. This can be accomplished as shown.

{ c'8-1--(~^\markup{"text annotation"} c' d') }

h� h�qh
text annotation
�� º �

See also

Learning Manual: Section 3.1.3 [Ties and slurs], page 23, Section 3.1.4 [Articulations and
dynamics], page 24, Section 3.1.5 [Adding text], page 26.

Notation Reference: Section “Pitches” in Notation Reference, Section “Rhythms” in Nota-

tion Reference, Section “Expressive marks” in Notation Reference.

4.1.5 On the un-nestedness of brackets and ties

You have already met a number of different types of bracket and bracket-like constructs in
writing the input file to LilyPond. These obey different rules which can be confusing at first.
Let’s first review the different types of brackets and bracket-like constructs.

Bracket Type Function
{ ... } Encloses a sequential segment of music
< ... > Encloses the notes of a chord
<< ... >> Encloses simultaneous music expressions
(...) Marks the start and end of a slur
\(... \) Marks the start and end of a phrasing slur
[...] Marks the start and end of a manual beam

To these we should add other constructs that generate lines between or across notes: ties (marked
by a tilde, ‘~’), tuplets written as \tuplet x/y { ... }, and grace notes written as \grace

{ ... }.

Outside LilyPond, the conventional use of brackets requires the different types to be properly
nested, like this, << [{ (...) }] >>, with the closing brackets being encountered in exactly
the opposite order to the opening brackets. This is a requirement for the three types of bracket
described by the word ‘Encloses’ in the table above – they must nest properly. However, the
remaining bracket-like constructs, described with the word ‘Marks’ in the table above together
with ties and tuplets, do not have to nest properly with any of the brackets or bracket-like
constructs. In fact, these are not brackets in the sense that they enclose something – they are
simply markers to indicate where something starts and ends.

So, for example, a phrasing slur can start before a manually inserted beam and end before
the end of the beam – not very musical, perhaps, but possible:

\relative { g'8\(a b[c b\) a] g4 }

hh hhº� h h h
In general, different kinds of brackets, bracket-like constructs, and those implied by tuplets,

ties and grace notes, may be mixed freely. This example shows a beam extending into a tuplet

Chapter 4: Fundamental concepts 48

(line 1), a slur extending into a tuplet (line 2), a beam and a slur extending into a tuplet, a tie
crossing two tuplets, and a phrasing slur extending out of a tuplet (lines 3 and 4).

\relative {

r16[g' \tuplet 3/2 { r16 e'8] }

g,16(a \tuplet 3/2 { b16 d) e }

g,8[(a \tuplet 3/2 { b8 d) e~] } |

\tuplet 5/4 { e32\(a, b d e } a4.\)

}

hh hhh
333

hh h¥hº� ¥ h hh
hhh h P

5

�2 hh

4.2 Voices contain music

Singers need voices to sing, and so does LilyPond. The actual music for all instruments in a
score is contained in voices – the most fundamental of all LilyPond’s concepts.

4.2.1 I’m hearing voices

The lowest, most fundamental or innermost layers in a LilyPond score are called voice contexts

or just ‘voices’ for short. Voices are sometimes called ‘layers’ in other notation packages.

In fact, a voice layer or context is the only one that can contain music. If a Voice context is
not explicitly declared one is created automatically, as we saw at the beginning of this chapter.
Some instruments such as an Oboe can play only one note at a time. Music written for such
instruments requires just a single voice. Instruments that can play more than one note at a
time like the piano will often require multiple voices to encode the different concurrent notes
and rhythms they are capable of playing.

A single voice can contain many notes in a chord, of course, so when exactly are multiple
voices needed? Look first at this example of four chords:

\relative {

\key g \major

<d' g>4 <d fis> <d a'> <d g>

}

hh hhhh� � º hh
This can be expressed using just the single angle bracket chord symbols, < ... >, and for this
just a single voice is needed. But suppose the F-sharp was actually an eighth-note followed by
an eighth-note G, a passing note on the way to the A? Now we have two notes which start at
the same time but have different durations: the quarter-note D and the eighth-note F-sharp.
How are these to be coded? They cannot be written as a chord because all the notes in a chord
must have the same duration. And they cannot be written as two sequential notes as they need
to start at the same time. This is when two voices are required.

Let us see how this is done in LilyPond input syntax.

Chapter 4: Fundamental concepts 49

The easiest way to enter fragments with more than one voice on a staff is to enter each voice
as a sequence (with { ... }), and combine them simultaneously with angle brackets, << ...

>>. The fragments must also be separated with double backward slashes, \\, to place them in
separate voices. Without these, the notes would be entered into a single voice, which would
usually cause errors. This technique is particularly suited to pieces of music which are largely
homophonic with occasional short sections of polyphony.

Here’s how we split the chords above into two voices and add both the passing note and a
slur:

\relative {

\key g \major

% Voice = "1" Voice = "2"

<< { g'4 fis8(g) a4 g } \\ { d4 d d d } >>

}

hh hhhº�� hh hh
Notice how the stems of the second voice now point down.

Here’s another simple example:

\relative {

\key d \minor

% Voice = "1" Voice = "2"

<< { r4 g' g4. a8 } \\ { d,2 d4 g } >> |

<< { bes4 bes c bes } \\ { g4 g g8(a) g4 } >> |

<< { a2. r4 } \\ { fis2. r4 } >> |

}

hh NNhh h ��PP�Ph hh
�
N� � º h h hhh h�

It is not necessary to use a separate << \\ >> construct for each bar. For music with few notes
in each bar this layout can help improve the legibility of the code, but if there are many notes
in each bar it may be better to split out each voice separately, like this:

<<

\key d \minor

\relative { % Voice = "1"

r4 g' g4. a8 |

bes4 bes c bes |

a2. r4 |

} \\

\relative { % Voice = "2"

d'2 d4 g |

g4 g g8(a) g4 |

fis2. r4 |

}

>>

hh NNhh h ��PP�Ph hh
�
N� � º h h hhh h�

Chapter 4: Fundamental concepts 50

This example has just two voices, but the same construct may be used to encode three or
more voices by adding more back-slash separators.

The Voice contexts implicitly created by << \\ >> bear the names "1", "2", etc. The first
contexts set the outer voices, the highest voice in context "1" and the lowest voice in context "2".
The inner voices go in contexts "3" and "4". In each of these contexts, the vertical direction of
slurs, stems, ties, dynamics, etc., is set appropriately.

\new Staff \relative {

% Main voice

c'16 d e f

% Voice = "1" Voice = "2" Voice = "3"

<< { g4 f e } \\ { r8 e4 d c8~ } >> |

<< { d2 e } \\ { c8 b16 a b8 g~ 2 } \\ { s4 b c2 } >> |

}

h h hh Nh NNh h h¢ hh� º h hh hT Nh h
Note the use of s4 to insert an invisible spacer rest, thus delaying the (visible) start of voice
"3".

If you prefer entering the voices in a different order, like top to bottom, you can specify the
respective voice numbers in front of one << ... >> construct using the \voices command, like

\new Staff \relative {

% Main voice

c'16 d e f

% Voice = "1" Voice = "2"

<< { g4 f e } \\ { r8 e4 d c8~ } >> |

\voices 1,3,2

% Voice = "1" Voice = "3" Voice = "2"

<< { d2 e } \\ { s4 b c2 } \\ { c8 b16 a b8 g~ 2 } >> |

}

h h hh Nh NNh h h¢ hh� º h hh hT Nh h
These voices are all separate from the main voice that contains the notes just outside the <<

... >> construct. Let’s call this the simultaneous construct. Slurs and ties may only connect
notes within the same voice, so slurs and ties cannot go into or out of a simultaneous construct.
Conversely, parallel voices from separate simultaneous constructs on the same staff are the same
voice. Other voice-related properties also carry across simultaneous constructs. Here is the same
example, with different colors and note heads for each voice. Note that changes in one voice do
not affect other voices, but they do persist in the same voice later. Note also that tied notes
may be split across the same voices in two constructs, shown here in the blue triangle voice.

\new Staff \relative {

% Main voice

c'16 d e f

<< % Bar 1

{ \voiceOneStyle g4 f e }

Chapter 4: Fundamental concepts 51

\\

{ \voiceTwoStyle r8 e4 d c8~ }

>> |

<< % Bar 2

% Voice 1 continues

{ d2 e }

\\

% Voice 2 continues

{ c8 b16 a b8 g~ 2 }

\\

{ \voiceThreeStyle s4 b c2 }

>> |

}

� � �� �� Qgh h k¢ �h� º h k� �T Q� k
The commands \voiceXXXStyle are mainly intended for use in educational documents such

as this one. They modify the color of the note head, the stem and the beams, and the style of
the note head, so that the voices may be easily distinguished. Voice one is set to red diamonds,
voice two to blue triangles, voice three to green crossed circles, and voice four (not used here) to
magenta crosses; \voiceNeutralStyle (also not used here) reverts the style back to the default.
We shall see later how commands like these may be created by the user. See Section 5.3.1 [Visi-
bility and color of objects], page 102, and Section 5.8.2 [Using variables for layout adjustments],
page 147.

Polyphony does not change the relationship of notes within a \relative block. Each note is
still calculated relative to the note immediately preceding it, or to the first note of the preceding
chord. So in

\relative { noteA << <noteB noteC> \\ noteD >> noteE }

• noteB is relative to noteA;

• noteC is relative to noteB, not noteA;

• noteD is relative to noteB, not noteA or noteC;

• noteE is relative to noteD, not noteA.

An alternative way, which may be clearer if the notes in the voices are widely separated, is
to place a \relative command at the start of each voice:

\relative { noteA ... }

<<

\relative { <noteB noteC> ... }

\\

\relative { noteD ... }

>>

\relative { noteE ... }

Let us finally analyze the voices in a more complex piece of music. Here are the notes from
the first two bars of the second of Chopin’s Deux Nocturnes, Op. 32. This example will be
used at later stages in this and the next chapter to illustrate several techniques for producing
notation, so please ignore for now anything in the underlying code that looks mysterious and
concentrate just on the music and the voices – the complications will all be explained in later
sections.

Chapter 4: Fundamental concepts 52

....
�h�hº����� NNNN PhNh

The direction of the stems is often used to indicate the continuity of two simultaneous melodic
lines. Here the stems of the highest notes are all pointing up and the stems of the lower notes
are all pointing down. This is the first indication that more than one voice is required.

But the real need for multiple voices arises when notes starting at the same time have different
durations. Look at the notes that start at beat three in the first bar. The A-flat is a dotted
quarter note, the F is a quarter note and the D-flat is a half note. These cannot be written as
a chord as all the notes in a chord must have the same duration. Neither can they be written
as sequential notes, as they must start at the same time. This section of the bar requires three
voices, and the normal practice would be to write the whole bar as three voices, as shown below,
where we have used different note heads and colors for the three voices. Again, the code behind
this example will be explained later, so ignore anything you do not understand.

....
�k��º����� �ggQ P�gk

Let us try to encode this music from scratch. As we shall see, this encounters some difficulties.
We begin as we have learnt, using the << \\ >> construct to enter the music of the first bar in
three voices:

\new Staff \relative {

\key aes \major

<<

{ c''2 aes4. bes8 } \\ { <ees, c>2 des } \\ { aes'2 f4 fes }

>> |

<c ees aes c>1 |

}

....
�h�hº����� NNNN PhNh

The stem directions are automatically assigned with the odd-numbered voices taking upward
stems and the even-numbered voices downward ones. The stems for voices 1 and 2 are right, but
the stems in voice 3 should go down in this particular piece of music. We can correct this by
skipping voice three and placing the music in voice four. This could be done by simply adding
another pair of \\, but we use the \voices command instead (which would also allow us to
enter the voices in different order if we preferred doing that):

\new Staff \relative {

\key aes \major

\voices 1,2,4 % Omit voice three

<< % Voice one

{ c''2 aes4. bes8 }

\\ % Voice two

{ <ees, c>2 des }

\\ % Voice four

{ aes'2 f4 fes }

Chapter 4: Fundamental concepts 53

>> |

<c ees aes c>1 |

}

....
�h�hº����� NNNN PhNh

We see that this fixes the stem direction, but the horizontal placement of notes is not what we
want. LilyPond shifts the inner notes when they or their stems would collide with outer voices,
but this is not always appropriate for piano music. In other situations, the shifts LilyPond
applies might fail to clear the collisions. LilyPond provides several ways to adjust the horizontal
placing of notes. We are not quite ready yet to see how to correct this, so we shall leave
this problem until a later section – see the force-hshift property in Section 5.7.2 [Fixing
overlapping notation], page 132.

☛ ✟

Note: Lyrics, spanners (such as slurs, ties, hairpins, etc.) cannot be
created ‘across’ voices.
✡ ✠

See also

Notation Reference: Section “Multiple voices” in Notation Reference.

4.2.2 Explicitly instantiating voices

Voice contexts can also be created manually inside a << >> block to create polyphonic music,
using \voiceOne to \voiceFour to indicate the required directions of stems, slurs, etc. In
longer scores this method is clearer, as it permits the voices to be separated and to be given
more descriptive names.

Specifically, the construct << \\ >> which we used in the previous section:

\new Staff {

\relative {

<< { e'4 f g a } \\ { c,4 d e f } >>

}

}

is equivalent to

\new Staff <<

\new Voice = "1" { \voiceOne \relative { e'4 f g a } }

\new Voice = "2" { \voiceTwo \relative { c'4 d e f } }

>>

Both of the above would produce

hhhhº� hh hh
The \voiceXXX commands set the direction of stems, slurs, ties, articulations, text annota-

tions, augmentation dots of dotted notes, and fingerings. \voiceOne and \voiceThree make
these objects point upwards, while \voiceTwo and \voiceFour make them point downwards.
These commands also generate a horizontal shift for each voice when this is required to avoid

Chapter 4: Fundamental concepts 54

clashes of note heads. The command \oneVoice reverts the settings back to the normal values
for a single voice.

Let us see in some simple examples exactly what effect \oneVoice, \voiceOne, and voiceTwo

have on markup, ties, slurs, and dynamics:

\relative {

% Default behavior or behavior after \oneVoice

c'4 d8~ 8 e4(f | g4 a) b-> c |

}

lhh hhhº� h hhh
\relative {

\voiceOne

c'4 d8~ 8 e4(f | g4 a) b-> c |

\oneVoice

c,4 d8~ 8 e4(f | g4 a) b-> c |

}

h h hh h hh hlh h h hh� º h h hl h h
\relative {

\voiceTwo

c'4 d8~ 8 e4(f | g4 a) b-> c |

\oneVoice

c,4 d8~ 8 e4(f | g4 a) b-> c |

}

h h hh h hh hlh h h hh� º h h hl
h h

Now let’s look at four different ways to notate the same passage of polyphonic music, each of
which is advantageous in different circumstances, using the example from the previous section.

An expression that appears directly inside a << >> belongs to the main voice (but, note, not
in a << \\ >> construct). This is useful when extra voices appear while the main voice is playing.
Here is an improved rendition of our example. The red diamond-shaped notes demonstrate that
the main melody is now in a single voice context, permitting a phrasing slur to be drawn over
them.

\new Staff \relative {

\voiceOneStyle

% This section is homophonic

c'16^(d e f

% Start simultaneous section of three voices

<<

% Continue the main voice in parallel

{ g4 f e | d2 e) | }

% Initiate second voice

\new Voice {

Chapter 4: Fundamental concepts 55

% Set stems, etc., down

\voiceTwo r8 e4 d c8~ | 8 b16 a b8 g~ 2 |

}

% Initiate third voice

\new Voice {

% Set stems, etc, up

\voiceThree s2. | s4 b c2 |

}

>>

}

h h hhh Nh QNk k k Qk� º ¢k k hh kh T
The \voices command can also be used for continuing a main voice into the simultaneous

construct:

\new Staff \relative {

\new Voice = "main" {

\voiceOneStyle

% This section is homophonic

c'16^(d e f

% Start simultaneous section of three voices

\voices "main",2,3

<<

% Continue the main voice in parallel

{ g4 f e | d2 e) | }

% Initiate second voice

\\

% Set stems, etc., down

{ r8 e4 d c8~ | 8 b16 a b8 g~ 2 | }

\\

% Initiate third voice

% Set stems, etc, up

{ s2. | s4 b c2 | }

>>

}

}

h h hhh Nh QNk k k Qk� º ¢k k hh kh T
More deeply nested polyphony constructs are possible, and if a voice appears only briefly

this might be a more natural way to typeset the music:

\new Staff \relative {

c'16^(d e f

<<

{ g4 f e | d2 e) | }

\new Voice {

Chapter 4: Fundamental concepts 56

\voiceTwo r8 e4 d c8~ |

<<

{ c8 b16 a b8 g~ 2 | }

\new Voice {

\voiceThree s4 b c2 |

}

>>

}

>>

}

h h hhh Nh NNh h h Nh� º ¢h h hh hh T
This method of nesting new voices briefly is useful when only small sections of the music

are polyphonic, but when the whole staff is largely polyphonic it can be clearer to use multiple
voices throughout, using spacer rests to step over sections where the voice is silent, as here:

\new Staff \relative <<

% Initiate first voice

\new Voice {

\voiceOne c'16^(d e f g4 f e | d2 e) |

}

% Initiate second voice

\new Voice {

% Set stems, etc, down

\voiceTwo s4 r8 e4 d c8~ | 8 b16 a b8 g~ 2 |

}

% Initiate third voice

\new Voice {

% Set stems, etc, up

\voiceThree s1 | s4 b c2 |

}

>>

h h hhh Nh NNh h h Nh� º ¢h h hh hh T
Note columns

Closely spaced notes in a chord, or notes occurring at the same time in different voices, are
arranged in two, occasionally more, columns to prevent the note heads overlapping. These are
called note columns. There are separate columns for each voice, and the currently specified,
voice-dependent shift is applied to the note column if there would otherwise be a collision. This
can be seen in the example above. In bar 2 the C in voice two is shifted to the right relative to
the D in voice one, and in the final chord the C in voice three is also shifted to the right relative
to the other notes.

The \shiftOn, \shiftOnn, \shiftOnnn, and \shiftOff commands specify the degree to
which notes and chords of the voice should be shifted if a collision would otherwise occur. By
default, the outer voices (normally voices one and two) have \shiftOff specified, while the

Chapter 4: Fundamental concepts 57

inner voices (three and four) have \shiftOn specified. When a shift is applied, voices one and
three are shifted to the right and voices two and four to the left.

\shiftOnn and \shiftOnnn define further shift levels which may be specified temporarily to
resolve collisions in complex situations – see Section 5.7.3 [Real music example], page 138.

A note column can contain just one note (or chord) from a voice with stems up and one
note (or chord) from a voice with stems down. If notes from two voices that have their stems
in the same direction are placed at the same position and both voices have no shift or the same
shift specified, the error message “This voice needs a \voiceXx or \shiftXx setting” will be
produced.

See also

Learning Manual: Section 5.7.1 [Moving objects], page 130.

Notation Reference: Section “Multiple voices” in Notation Reference.

4.2.3 Voices and vocals

Vocal music presents a special difficulty: we need to combine two expressions – notes and lyrics.

You have already seen the \addlyrics command, which handles simple scores well. However,
this technique is quite limited. For more complex music, you must introduce the lyrics in a
Lyrics context using \new Lyrics and explicitly link the lyrics to the notes with \lyricsto,
using the name assigned to the Voice context.

<<

\new Voice = "one" {

\relative {

\autoBeamOff

\time 2/4

c''4 b8. a16 | g4. f8 | e4 d | c2 |

}

}

\new Lyrics \lyricsto "one" {

No more let | sins and | sor -- rows | grow. |

}

>>

N
rows
h

sor

� h
grow.

hT P
more

h
letNo

24� h
and

P
sins

h h
�

Note that the lyrics must be linked to a Voice context, not a Staff context. This is a case
where it is necessary to create Staff and Voice contexts explicitly.

The automatic beaming that LilyPond uses by default works well for instrumental music,
but not so well for music with lyrics, where beaming is either not required at all or is used to
indicate melismata in the lyrics. In the example above we use the command \autoBeamOff to
turn off the automatic beaming.

Let us reuse the earlier example from Judas Maccabæus to illustrate this more flexible tech-
nique. We first recast it to use variables so the music and lyrics can be separated from the staff
structure. We also introduce a ChoirStaff bracket. The lyrics themselves must be introduced
with \lyricmode to ensure they are interpreted as lyrics rather than music.

global = { \key f \major \time 6/8 \partial 8 }

Chapter 4: Fundamental concepts 58

SopOneMusic = \relative {

c''8 | c8([bes)] a a([g)] f | f'4. b, | c4.~ 4

}

SopOneLyrics = \lyricmode {

Let | flee -- cy flocks the | hills a -- dorn, __

}

SopTwoMusic = \relative {

r8 | r4. r4 c'8 | a'8([g)] f f([e)] d | e8([d)] c bes'

}

SopTwoLyrics = \lyricmode {

Let | flee -- cy flocks the | hills a -- dorn,

}

\score {

\new ChoirStaff <<

\new Staff <<

\new Voice = "SopOne" {

\global

\SopOneMusic

}

\new Lyrics \lyricsto "SopOne" {

\SopOneLyrics

}

>>

\new Staff <<

\new Voice = "SopTwo" {

\global

\SopTwoMusic

}

\new Lyrics \lyricsto "SopTwo" {

\SopTwoLyrics

}

>>

>>

}

h
the

h �
h
dorn,

h
hills

P

h h
a

P

flocks

h

� h
�

cy
Th

dorn,

h
h

�
a

hP�flee

h h

� ¢Let

68�� h
�

7

6
T

68

h

flee

h
the

h
Let

�

h� hills

h
cy

� h
flocks

�

Ph

This is the basic structure of all vocal scores. More staves may be added as required, more
voices may be added to the staves, more verses may be added to the lyrics, and the variables
containing the music can easily be placed in separate files should they become too long.

Here is an example of the first line of a hymn with four verses, set for SATB. In this case
the words for all four parts are the same. Note how we use variables to separate the music
notation and words from the staff structure. See too how a variable, which we have chosen to
call keyTime, is used to hold several commands for use within the two staves. In other examples
this is often called ‘global’.

Chapter 4: Fundamental concepts 59

keyTime = { \key c \major \time 4/4 \partial 4 }

SopMusic = \relative { c'4 | e4. e8 g4 g | a4 a g }

AltoMusic = \relative { c'4 | c4. c8 e4 e | f4 f e }

TenorMusic = \relative { e4 | g4. g8 c4. b8 | a8 b c d e4 }

BassMusic = \relative { c4 | c4. c8 c4 c | f8 g a b c4 }

VerseOne =

\lyricmode { E -- | ter -- nal fa -- ther, | strong to save, }

VerseTwo =

\lyricmode { O | Christ, whose voice the | wa -- ters heard, }

VerseThree =

\lyricmode { O | Ho -- ly Spi -- rit, | who didst brood }

VerseFour =

\lyricmode { O | Tri -- ni -- ty of | love and pow'r }

\score {

\new ChoirStaff <<

\new Staff <<

\clef "treble"

\new Voice = "Sop" { \voiceOne \keyTime \SopMusic }

\new Voice = "Alto" { \voiceTwo \AltoMusic }

\new Lyrics \lyricsto "Sop" { \VerseOne }

\new Lyrics \lyricsto "Sop" { \VerseTwo }

\new Lyrics \lyricsto "Sop" { \VerseThree }

\new Lyrics \lyricsto "Sop" { \VerseFour }

>>

\new Staff <<

\clef "bass"

\new Voice = "Tenor" { \voiceOne \keyTime \TenorMusic }

\new Voice = "Bass" { \voiceTwo \BassMusic }

>>

>>

}

hh

h

hh
and

didst
ters
to

hhh

�h

strong

hh
love
who
wa

hh

save,

hh
pow'r
brood
heard,

hhP

hh
Tri
Ho

Christ,
ter

hh

P

P

h
O
O
O
E

º� hh

h

7

6 Pº�
ty

hh
Spi

voice
fa

hh

T h
of

rit,
the

ther,

hh

P

h

h
ni
ly

whose
nal

h

h

�

�

T

See also

Notation Reference: Section “Vocal music” in Notation Reference.

Chapter 4: Fundamental concepts 60

4.3 Contexts and engravers

Contexts and engravers have been mentioned informally in earlier sections; we now must look
at these concepts in more detail, as they are important in the fine-tuning of LilyPond output.

4.3.1 Contexts explained

When music is printed, many notational elements which do not appear explicitly in the input
file must be added to the output. For example, compare the input and output of the following
example:

\relative { cis''4 cis2. | a4 a2. | }

PNh� º � hPN
The input is rather sparse, but in the output, bar lines, an accidental, a clef, and a time

signature have been added. When LilyPond interprets the input the musical information is
parsed from left to right, similar to the way a performer reads the score. While reading the
input, the program remembers where measure boundaries are, and which pitches require explicit
accidentals. This information must be held on several levels. For example, an accidental affects
only a single staff, while a bar line must be synchronized across the entire score.

Within LilyPond, these rules and bits of information are grouped in contexts. We have
already introduced the Voice context. Others are the Staff and Score contexts. Contexts are
hierarchical to reflect the hierarchical nature of a musical score. For example, a Staff context
can contain many Voice contexts, and a Score context can contain many Staff contexts.

Each context has the responsibility for enforcing some notation rules, creating some nota-
tion objects and maintaining the associated properties. For example, the Voice context may
introduce an accidental and then the Staff context maintains the rule to show or suppress the
accidental for the remainder of the measure.

As another example, the synchronization of bar lines is, by default, handled in the Score

context. However, in some music we may not want the bar lines to be synchronized – consider
a polymetric score in 4/4 and 3/4 time. In such cases, we must modify the default settings of
the Score and Staff contexts.

For very simple scores, contexts are created implicitly, and you need not be aware of them.
For larger pieces, such as anything with more than one staff, they must be created explicitly
to make sure that you get as many staves as you need, and that they are in the correct order.
For typesetting pieces with specialized notation, it is usual to modify existing, or even to define
totally new, contexts.

In addition to the Score, Staff, and Voice contexts there are contexts which fit between the
score and staff levels to control staff groups, such as the PianoStaff and ChoirStaff contexts.
There are also alternative staff and voice contexts, and contexts for lyrics, percussion, fret boards,
figured bass, etc.

Chapter 4: Fundamental concepts 61

The names of all context types are formed from one or more words, each word being cap-
italized and joined immediately to the preceding word with no hyphen or underscore, e.g.,
GregorianTranscriptionStaff.

See also

Notation Reference: Section “Contexts explained” in Notation Reference.

4.3.2 Creating contexts

In an input file, a score block (introduced with a \score command) contains a single music
expression; but it can also contain associated output definitions too – either a \layout block,
a \midi block or both. The Score context is usually left to be created automatically when the
interpretation of that music expression starts.

For scores with only one voice and one staff, the Voice and Staff contexts may also be
left to be created automatically, but for more complex scores it is necessary to create them by
hand. The simplest command that does this is \new. It is prepended to a music expression, for
example

\new type music-expression

where type is a context name (like Staff or Voice). This command creates a new context, and
starts interpreting the music-expression within that context.

You have seen many practical examples that created new Staff and Voice contexts in earlier
sections, but to remind you how these commands are used in practice, here’s an annotated real-
music example:

\score { % start of single compound music expression

<< % start of simultaneous staves section

\time 2/4

\new Staff { % create RH staff

\clef "treble"

\key g \minor

\new Voice { % create voice for RH notes

\relative { % start of RH notes

d''4 ees16 c8. |

d4 ees16 c8. |

} % end of RH notes

} % end of RH voice

} % end of RH staff

\new Staff << % create LH staff; needs two simultaneous voices

\clef "bass"

\key g \minor

\new Voice { % create LH voice one

\voiceOne

\relative { % start of LH voice one notes

g8 <bes d> ees, <g c> |

g8 <bes d> ees, <g c> |

} % end of LH voice one notes

} % end of LH voice one

\new Voice { % create LH voice two

\voiceTwo

\relative { % start of LH voice two notes

g4 ees |

g4 ees |

Chapter 4: Fundamental concepts 62

} % end of LH voice two notes

} % end of LH voice two

>> % end of LH staff

>> % end of simultaneous staves section

} % end of single compound music expression

hh
h
hhh

Ph
hhhh hh

h� �� 24
h� �� 24 h

h Ph
h

h
hh

(Note how all the statements that open a block with either a curly bracket, {, or double
angle brackets, <<, are indented by two further spaces, and the corresponding closing bracket
is indented by exactly the same amount. While this is not required, following this practice
will greatly reduce the number of ‘unmatched bracket’ errors, and is strongly recommended. It
enables the structure of the music to be seen at a glance, and any unmatched brackets will be
obvious. Note too how the LH staff is created using double angle brackets because it requires two
voices for its music, whereas the RH staff is created with a single music expression surrounded
by curly brackets because it requires only one voice.)

The \new command may also give an identifying name to the context to distinguish it from
other contexts of the same type,

\new type = id music-expression

Note the distinction between the name of the context type, Staff, Voice, etc, and the
identifying name of a particular instance of that type, which can be any sequence of letters
invented by the user. Digits and spaces can also be used in the identifying name, but then it
has to be placed in quotes, i.e., \new Staff = "MyStaff 1" music-expression. The identifying
name is used to refer back to that particular instance of a context, as demonstrated earlier with
lyrics, see Section 4.2.3 [Voices and vocals], page 57.

See also

Notation Reference: Section “Creating and referencing contexts” in Notation Reference.

4.3.3 Engravers explained

Every mark on the printed output of a score produced by LilyPond is produced by an Engraver.
Thus there is an engraver to print staves, one to print note heads, one for stems, one for beams,
etc., etc. In total there are over 140 such engravers! Fortunately, for most scores it is not
necessary to know about more than a few, and for simple scores you do not need to know about
any.

Engravers live and operate in contexts. Engravers such as the Metronome_mark_engraver,
whose action and output apply to the score as a whole, operate in the highest level context –
the Score context.

The Clef_engraver and Key_engraver are to be found in every Staff context, as different
staves may require different clefs and keys.

The Note_heads_engraver and Stem_engraver live in every Voice context, the lowest level
context of all.

Each engraver processes the particular objects associated with its function, and maintains
the properties that relate to that function. These properties, like the properties associated with
contexts, may be modified to change the operation of the engraver or the appearance of those
elements in the printed score.

Chapter 4: Fundamental concepts 63

Engravers all have compound names formed from words that describe their function. Just
the first word is capitalized, and the remaining words are joined to it with underscores. Thus the
Staff_symbol_engraver is responsible for creating the lines of the staff, the Clef_engraver

determines and sets the pitch reference point on the staff by drawing a clef symbol.

Here are some of the most common engravers together with their function. You will see it is
usually easy to guess the function from the name, or vice versa.

Engraver Function
Accidental_engraver makes normal, cautionary, and suggested

accidentals

Beam_engraver engraves beams
Clef_engraver engraves clefs
Completion_heads_engraver splits notes that cross bar lines
Dynamic_engraver creates hairpins and dynamic texts
Forbid_line_break_engraver prevents line breaks if a musical element is

still active

Key_engraver creates the key signature
Metronome_mark_engraver engraves metronome marking
Note_heads_engraver engraves note heads
Rest_engraver engraves rests
Staff_symbol_engraver engraves the five (by default) lines of the staff
Stem_engraver creates stems and single-stem tremolos
Time_signature_engraver creates time signatures

We shall see later how the output of LilyPond can be changed by modifying the action of
engravers.

See also

Internals reference: Section “Engravers and Performers” in Internals Reference.

4.3.4 Modifying context properties

Contexts are responsible for holding the values of a number of context properties. Many of them
can be changed to influence the interpretation of the input and so change the appearance of the
output. They are changed by the \set command. This takes the form

\set ContextName.propertyName = value

where ContextName is usually Score, Staff, or Voice. It may be omitted, in which case the
current context (typically Voice) is assumed.

The names of context properties consist of words joined together with no hyphens or under-
scores, all except the first having a capital letter. Here are a few examples of some commonly
used ones. There are many more.

Property Name Type Function Example Value
extraNatural Boolean If true, set extra natural signs

before accidentals
##t, ##f

currentBarNumber integer Set the current bar number 50

doubleSlurs Boolean If true, print slurs both above
and below notes

##t, ##f

instrumentName text Set the name to be placed at the
start of the staff

\markup { ... }

fontSize real Increase or decrease the font size 2.4

stanza text Set the text to print before the
start of a verse

"2"

Chapter 4: Fundamental concepts 64

In the above table, a Boolean is either #t (true) or #f (false), an integer is a whole number
(usually positive), a real is a positive or negative decimal number, and text is string enclosed
in doublequote characters. Note the use of an additional hash sign (‘#’), which must always be
used if a Scheme expression follows.

Before we can set any of these properties we need to know in which context they operate.
Sometimes this is obvious, but occasionally it can be tricky. If the wrong context is specified,
no error message is produced, but the expected action will not take place. For example, the
clefGlyph clearly lives in the Staff context, since it is the staff’s clef glyph that is to be
changed. In this example the first staff’s clef is printed correctly, but not the second – which
prints the default treble clef instead of the expected bass (or F) clef – because we omitted the
context name.

<<

\new Staff \relative {

\set Staff.clefGlyph = "clefs.C"

c''2 c

}

\new Staff \relative {

\set clefGlyph = "clefs.F" % Wrong!

d'2 d

}

>>

N

N

N� º

N� º
Remember the default context name is Voice, so the second \set command set the property

clefGlyph in the Voice context to clefs.F, but as LilyPond does not look for any such property
in the Voice context, no further action took place. This is not an error, and no error message
is emitted.

The clefGlyph property will take effect only if it is set in the Staff context, but some
properties can be set in more than one context. For example, the property extraNatural is by
default set to #t (true) for all staves. If it is set to #f (false) in one particular Staff context it
applies just to the accidentals on that staff. If it is set to false in the Score context it applies
to all staves.

So this turns off extra naturals in one staff:

<<

\new Staff \relative {

aeses'2 aes

}

\new Staff \relative {

\set Staff.extraNatural = ##f

aeses'2 aes

}

>>

Chapter 4: Fundamental concepts 65

� �
N
N
�

N� º
N� º 	
	

and this turns them off in all staves:

<<

\new Staff \relative {

aeses'2 aes

}

\new Staff \relative {

\set Score.extraNatural = ##f

aeses'2 aes

}

>>

�
N
N
�

N� º
N� º 	
	

As another example, if clefTransposition is set in the Score context this immediately
changes the value of the transposition in all current staves and sets a new default value, which
will be applied to all staves.

The opposite command, \unset, effectively removes the property from the context, which
causes most properties to revert to their default value. Usually \unset is not required as a new
\set command will achieve what is wanted.

The \set and \unset commands can appear anywhere in the input file and will take effect
from the time they are encountered until the end of the score or until the property is \set or
\unset again. Let’s try changing the font size, which affects the size of the note heads (among
other things) several times. The change is from the default value, not the most recently set
value.

\relative {

c'4 d

% make note heads smaller

\set fontSize = -4

e4 f |

% make note heads larger

\set fontSize = 2.5

g4 a

% return to default size

\unset fontSize

b4 c |

}

h hhh hh� º
hh

Chapter 4: Fundamental concepts 66

We have now seen how to set the values of several different types of properties. Note that
Scheme expressions are introduced with a hash sign, ‘#’, so the ‘true’ and ‘false’ values are
specified by ##t and ##f, respectively, with two hash signs. A text property should be enclosed
in double quotation signs, as above, although we shall see later that text can actually be specified
in a much more general way by using the very powerful \markup command.

Setting context properties with \with

The default value of context properties may be set at the time the context is created. Sometimes
this is a clearer way of setting a property value if it is to remain fixed for the duration of the
context. When a context is created with a \new command it may be followed immediately by
a \with { ... } block in which the default property values are set. For example, if we wish to
suppress the printing of extra naturals for the duration of a staff we would write

\new Staff \with { extraNatural = ##f }

like this:

<<

\new Staff {

\relative {

gisis'4 gis aeses aes

}

}

\new Staff \with { extraNatural = ##f } {

\relative {

gisis'4 gis aeses aes

}

}

>>

	
h
h�

	
h
h
�
��

º
�

� h
º� h

h
��h

�
Properties set in this way may still be changed dynamically using \set and returned to the

default value set in the \with block with \unset.

So if the fontSize property is set in a \with clause it sets the default value of the font
size. If it is later changed with \set, this new default value may be restored with the \unset

fontSize command.

Setting context properties with \context

The values of context properties may be set in all contexts of a particular type, such as all
Staff contexts, with a single command. The context type is identified by using its type name,
like Staff, prefixed by a back-slash: \Staff. The statement which sets the property value is
the same as that in a \with block, introduced above. It is placed in a \context block within
a \layout block. Each \context block will affect all contexts of the type specified throughout
the \score or \book block in which the \layout block appears. Here is an example to show
the format:

\score {

\new Staff {

\relative {

Chapter 4: Fundamental concepts 67

cisis''4 e d cis

}

}

\layout {

\context {

\Staff

extraNatural = ##t

}

}

}

h h��h� º � h
If the property override is to be applied to all staves within the score:

\score {

<<

\new Staff {

\relative {

gisis'4 gis aeses aes

}

}

\new Staff {

\relative {

gisis'4 gis aeses aes

}

}

>>

\layout {

\context {

\Score

extraNatural = ##f

}

}

}

	
h
h�

	
h
h
�
�

º
�

� h
º� h

h
�h

�
Context properties set in this way may be overridden for particular instances of contexts by

statements in a \with block, and by \set commands embedded in music statements.

See also

Notation Reference: Section “Changing context default settings” in Notation Reference,
Section “Set and unset” in Notation Reference.

Internals Reference: Section “Contexts” in Internals Reference, Section “Tunable context
properties” in Internals Reference.

Chapter 4: Fundamental concepts 68

4.3.5 Adding and removing engravers

We have seen that contexts contain several engravers, each of which is responsible for producing
a particular part of the output, like bar lines, staves, note heads, stems, etc. If an engraver is
removed from a context, it can no longer produce its output. This is a crude way of modifying
the output, but it can sometimes be useful.

Changing a single context

To remove an engraver from a single context we use the \with command placed immediately
after the context creation command, as in the previous section.

As an illustration, let’s repeat an example from the previous section with the staff lines
removed. Remember that the staff lines are produced by the Staff_symbol_engraver.

\new Staff \with {

\remove Staff_symbol_engraver

}

\relative {

c'4 d

\set fontSize = -4 % make note heads smaller

e4 f |

\set fontSize = 2.5 % make note heads larger

g4 a

\unset fontSize % return to default size

b4 c |

}

h h hhº� h hhh

Engravers can also be added to individual contexts. The command to do this is

\consists Engraver_name

placed inside a \with block. Some vocal scores have an ambitus placed at the beginning of a
staff to indicate the range of notes in that staff – see Section “ambitus” in Music Glossary . The
ambitus is produced by the Ambitus_engraver, which is not normally included in any context.
If we add it to the Voice context, it calculates the range from that voice only:

\new Staff <<

\new Voice \with {

\consists Ambitus_engraver

} {

\relative {

\voiceOne

c''4 a b g

}

}

\new Voice {

\relative {

\voiceTwo

c'4 e d f

}

}

>>

Chapter 4: Fundamental concepts 69

hhhhh º� hh h hh
However if we add the ambitus engraver to the Staff context, it calculates the range from

all the notes in all the voices on that staff:

\new Staff \with {

\consists Ambitus_engraver

}

<<

\new Voice {

\relative {

\voiceOne

c''4 a b g

}

}

\new Voice {

\relative {

\voiceTwo

c'4 e d f

}

}

>>

hhhhhh º� hh hh
Changing all contexts of the same type

The examples above show how to remove or add engravers to individual contexts. It is also
possible to remove or add engravers to every context of a specific type by placing the commands
in the appropriate context in a \layout block. For example, if we wanted to show an ambitus
for every staff in a four-staff score, we could write

\score {

<<

\new Staff {

\relative {

c''4 a b g

}

}

\new Staff {

\relative {

c'4 a b g

}

}

\new Staff {

\clef "G_8"

\relative {

c'4 a b g

}

Chapter 4: Fundamental concepts 70

}

\new Staff {

\clef "bass"

\relative {

c4 a b g

}

}

>>

\layout {

\context {

\Staff

\consists Ambitus_engraver

}

}

}

h

h
h
h

h

h
h
h

hh h�
8

ºhh
h� º

º h�hh

h� º

h

h

h
h
hh

The values of context properties may also be set for all contexts of a particular type by
including the \set command in a \context block in the same way.

See also

Notation Reference: Section “Modifying context plug-ins” in Notation Reference, Section
“Changing context default settings” in Notation Reference.

Known issues and warnings

The Stem_engraver and Beam_engraver attach their objects to note heads. If the
Note_heads_engraver is removed no note heads are produced and therefore no stems or beams
are created either.

4.4 Extending the templates

You’ve read the tutorial, you know how to write music, you understand the fundamental concepts.
But how can you get the staves that you want? Well, you can find lots of templates (see
Appendix A [Templates], page 155) which may give you a start. But what if you want something
that isn’t covered there? Read on.

4.4.1 Soprano and cello

Start off with the template that seems closest to what you want to end up with. Let’s say that
you want to write something for soprano and cello. In this case, we would start with the ‘Notes
and lyrics’ template (for the soprano part).

Chapter 4: Fundamental concepts 71

\version "2.25.20"

melody = \relative {

\clef "treble"

\key c \major

\time 4/4

a4 b c d

}

text = \lyricmode {

Aaa Bee Cee Dee

}

\score {

<<

\new Voice = "one" {

\autoBeamOff

\melody

}

\new Lyrics \lyricsto "one" \text

>>

\layout { }

\midi { }

}

Now we want to add a cello part. Let’s look at the ‘Notes only’ example:

\version "2.25.20"

melody = \relative {

\clef "treble"

\key c \major

\time 4/4

a4 b c d

}

\score {

\new Staff \melody

\layout { }

\midi { }

}

We don’t need two \version commands. We’ll need the melody section. We don’t want two
\score sections – if we had two \scores, we’d get the two parts separately. We want them
together, as a duet. Within the \score section, we don’t need two \layout or \midi.

If we simply cut and paste the melody section, we would end up with two melody definitions.
This would not generate an error, but the second one would be used for both melodies. So
let’s rename them to make them distinct. We’ll call the section for the soprano sopranoMusic

and the section for the cello celloMusic. While we’re doing this, let’s rename text to be
sopranoLyrics. Remember to rename both instances of all these names – both the initial
definition (the melody = \relative { ... } part) and the name’s use (in the \score section).

While we’re doing this, let’s change the cello part’s staff – celli normally use bass clef. We’ll
also give the cello some different notes.

\version "2.25.20"

Chapter 4: Fundamental concepts 72

sopranoMusic = \relative {

\clef "treble"

\key c \major

\time 4/4

a4 b c d

}

sopranoLyrics = \lyricmode {

Aaa Bee Cee Dee

}

celloMusic = \relative {

\clef "bass"

\key c \major

\time 4/4

d4 g fis8 e d4

}

\score {

<<

\new Voice = "one" {

\autoBeamOff

\sopranoMusic

}

\new Lyrics \lyricsto "one" \sopranoLyrics

>>

\layout { }

\midi { }

}

This looks promising, but the cello part won’t appear in the score – we haven’t used it in the
\score section. If we want the cello part to appear under the soprano part, we need to add

\new Staff \celloMusic

underneath the soprano stuff. We also need to add << and >> around the music – that tells
LilyPond that there’s more than one thing (in this case, two Staves) happening at once. The
\score looks like this now:

\score {

<<

<<

\new Voice = "one" {

\autoBeamOff

\sopranoMusic

}

\new Lyrics \lyricsto "one" \sopranoLyrics

>>

\new Staff \celloMusic

>>

\layout { }

\midi { }

}

Chapter 4: Fundamental concepts 73

This looks a bit messy; the indentation is messed up now. That is easily fixed. Here’s the
complete soprano and cello template.

sopranoMusic = \relative {

\clef "treble"

\key c \major

\time 4/4

a4 b c d

}

sopranoLyrics = \lyricmode {

Aaa Bee Cee Dee

}

celloMusic = \relative {

\clef "bass"

\key c \major

\time 4/4

d4 g fis8 e d4

}

\score {

<<

<<

\new Voice = "one" {

\autoBeamOff

\sopranoMusic

}

\new Lyrics \lyricsto "one" \sopranoLyrics

>>

\new Staff \celloMusic

>>

\layout { }

\midi { }

}

h
h

Deehh�h Ceeº� Aaa

º� h h
hBee
h

See also

The starting templates can be found in the ‘Templates’ appendix, see Section A.2 [Single staff
templates], page 163.

4.4.2 Four-part SATB vocal score

Most vocal scores of music written for four-part mixed choir with orchestral accompaniment such
as Mendelssohn’s Elijah or Handel’s Messiah have the choral music and words on four staves,
one for each of SATB, with a piano reduction of the orchestral accompaniment underneath.
Here’s an example from Handel’s Messiah:

Chapter 4: Fundamental concepts 74

that

hhh

h

h
that

hthat

h
N

lamb

N
lamb

Nlamb

N
lamb

N

T

NT

T
T

that

h

h

NN

N

hh

hhh
was

h
was

h
was

h
was

h

NNN

NN

slain

Nslain

Nslain
N

slain

N

N

N
Wor

N
WorN
Wor

Wor

NNN

NN

h
h

thy

thyh
thyh

�

hh

��

Piano X

�� º
�� �� º
��

8

7

6Bass

Tenor

Alto

Soprano

thy

º��� hh

º��� �

º��� �

º��

PPP

P

P
P
P
h

T

hh

hhh
the

hthe

the

h
the

h

P

h
is

h

hh

h

P

hh

hh

ish

h

ish
is

☛ ✟

Note: This layout can be achieved very easily using the built-in tem-
plate: satb.ly, see Section A.1 [Built-in templates], page 155. But
for ease of use this template deliberately hides the necessary context
structure, instead providing it automatically. So for purposes of learn-
ing let us see how to build this up from scratch. You may need to do
this if the built-in template does not meet your needs adequately.
✡ ✠

The nearest copy-and-edit template to this layout is Section A.5.2 [SATB vocal score and
automatic piano reduction], page 174 – but we need to change the layout and add a piano
accompaniment which is not derived automatically from the vocal parts. The variables holding
the music and words for the vocal parts are fine, but we shall need to add variables for the piano
reduction.

The order in which the contexts appear in the ChoirStaff of the template do not correspond
with the order in the vocal score shown above. We need to rearrange them so there are four
staves with the words written directly underneath the notes for each part. All the voices should
be \voiceOne, which is the default, so the \voiceXXX commands should be removed. We also
need to adjust the clef for the tenors. The way in which lyrics are specified in the template has
not yet been encountered so we need to use the method with which we are familiar. We should
also add the names of each staff.

Doing this gives for our ChoirStaff:

\new ChoirStaff <<

\new Staff = "sopranos"

\with { instrumentName = "Soprano" }

<<

\new Voice = "sopranos" {

\global

\sopranoMusic

Chapter 4: Fundamental concepts 75

}

>>

\new Lyrics \lyricsto "sopranos" {

\sopranoWords

}

\new Staff = "altos"

\with { instrumentName = "Alto" }

<<

\new Voice = "altos" {

\global

\altoMusic

}

>>

\new Lyrics \lyricsto "altos" {

\altoWords

}

\new Staff = "tenors"

\with { instrumentName = "Tenor" }

<<

\new Voice = "tenors" {

\global

\tenorMusic

}

>>

\new Lyrics \lyricsto "tenors" {

\tenorWords

}

\new Staff = "basses"

\with { instrumentName = "Bass" }

<<

\new Voice = "basses" {

\global

\bassMusic

}

>>

\new Lyrics \lyricsto "basses" {

\bassWords

}

>> % end ChoirStaff

Next we must work out the piano part. This is easy – we just pull out the piano part from
the ‘Solo piano’ template:

\new PianoStaff \with { instrumentName = "Piano " }

<<

\new Staff = "upper" \upper

\new Staff = "lower" \lower

>>

and add the variable definitions for upper and lower.

The ChoirStaff and PianoStaff must be combined using angle brackets as we want them
to be stacked one above the other:

<< % combine ChoirStaff and PianoStaff one above the other

\new ChoirStaff <<

Chapter 4: Fundamental concepts 76

\new Staff = "sopranos" <<

\new Voice = "sopranos" {

\global

\sopranoMusic

}

>>

\new Lyrics \lyricsto "sopranos" {

\sopranoWords

}

\new Staff = "altos" <<

\new Voice = "altos" {

\global

\altoMusic

}

>>

\new Lyrics \lyricsto "altos" {

\altoWords

}

\new Staff = "tenors" <<

\clef "G_8" % tenor clef

\new Voice = "tenors" {

\global

\tenorMusic

}

>>

\new Lyrics \lyricsto "tenors" {

\tenorWords

}

\new Staff = "basses" <<

\clef "bass"

\new Voice = "basses" {

\global

\bassMusic

}

>>

\new Lyrics \lyricsto "basses" {

\bassWords

}

>> % end ChoirStaff

\new PianoStaff \with { instrumentName = "Piano" }

<<

\new Staff = "upper" \upper

\new Staff = "lower" \lower

>>

>>

Combining all these together and adding the music for the three bars of the example above
gives:

global = { \key d \major \time 4/4 }

sopranoMusic = \relative {

\clef "treble"

Chapter 4: Fundamental concepts 77

r4 d''2 a4 | d4. d8 a2 | cis4 d cis2 |

}

sopranoWords = \lyricmode {

Wor -- thy | is the lamb | that was slain |

}

altoMusic = \relative {

\clef "treble"

r4 a'2 a4 | fis4. fis8 a2 | g4 fis fis2 |

}

altoWords = \sopranoWords

tenorMusic = \relative {

\clef "G_8"

r4 fis'2 e4 | d4. d8 d2 | e4 a, cis2 |

}

tenorWords = \sopranoWords

bassMusic = \relative {

\clef "bass"

r4 d'2 cis4 | b4. b8 fis2 | e4 d a'2 |

}

bassWords = \sopranoWords

upper = \relative {

\clef "treble"

\global

r4 <a' d fis>2 <a e' a>4 |

<d fis d'>4. <d fis d'>8 <a d a'>2 |

<g cis g'>4 <a d fis> <a cis e>2 |

}

lower = \relative {

\clef "bass"

\global

<d, d'>4 <d d'>2 <cis cis'>4 |

<b b'>4. <b' b'>8 <fis fis'>2 |

<e e'>4 <d d'> <a' a'>2 |

}

\score {

<< % combine ChoirStaff and PianoStaff in parallel

\new ChoirStaff <<

\new Staff = "sopranos"

\with { instrumentName = "Soprano" }

<<

\new Voice = "sopranos" {

\global

\sopranoMusic

}

>>

\new Lyrics \lyricsto "sopranos" {

\sopranoWords

}

\new Staff = "altos"

\with { instrumentName = "Alto" }

<<

Chapter 4: Fundamental concepts 78

\new Voice = "altos" {

\global

\altoMusic

}

>>

\new Lyrics \lyricsto "altos" {

\altoWords

}

\new Staff = "tenors"

\with { instrumentName = "Tenor" }

<<

\new Voice = "tenors" {

\global

\tenorMusic

}

>>

\new Lyrics \lyricsto "tenors" {

\tenorWords

}

\new Staff = "basses"

\with { instrumentName = "Bass" }

<<

\new Voice = "basses" {

\global

\bassMusic

}

>>

\new Lyrics \lyricsto "basses" {

\bassWords

}

>> % end ChoirStaff

\new PianoStaff

\with { instrumentName = "Piano " }

<<

\new Staff = "upper" \upper

\new Staff = "lower" \lower

>>

>>

}

Chapter 4: Fundamental concepts 79

that

hhh

h

h
that

hthat

h
N

lamb

N
lamb

Nlamb

N
lamb

N

T

NT

T
T

that

h

h

NN

N

hh

hhh
was

h
was

h
was
h

was

h

NNN

NN

slain

Nslain

Nslain
N

slain

N

N

N
Wor

N
WorN
Wor

Wor

NNN

NN

h
h

thy

thyh
thyh

�

hh

��

Piano X

�� º
�� �� º
��

8

7

6Bass

Tenor

Alto

Soprano

thy

º��� hh

º��� �

º��� �

º��

PPP

P

P
P
P
h

T

hh

hhh
the

hthe

the
h

the

h

P

h
is

h

hh

h

P

hh

hh

ish

h

ish
is

4.4.3 Building a score from scratch

After gaining some facility with writing LilyPond code, you may find that it is easier to build a
score from scratch rather than modifying one of the templates. You can also develop your own
style this way to suit the sort of music you like. Let’s see how to put together the score for an
organ prelude as an example.

We begin with a header section. Here go the title, name of composer, etc, then come any
variable definitions, and finally the score block. Let’s start with these in outline and fill in the
details later.

We’ll use the first two bars of Bach’s prelude based on Jesu, meine Freude which is written
for two manuals and pedal organ. You can see these two bars of music at the bottom of this
section. The top manual part has two voices, the lower and pedal organ one each. So we need
four music definitions and one to define the time signature and key:

\version "2.25.20"

\header {

title = "Jesu, meine Freude"

composer = "J S Bach"

}

keyTime = { \key c \minor \time 4/4 }

ManualOneVoiceOneMusic = { s1 }

ManualOneVoiceTwoMusic = { s1 }

ManualTwoMusic = { s1 }

PedalOrganMusic = { s1 }

\score {

}

For now we’ve just used a spacer note, s1, instead of the real music. We’ll add that later.

Chapter 4: Fundamental concepts 80

Next let’s see what should go in the score block. We simply mirror the staff structure we
want. Organ music is usually written on three staves, one for each manual and one for the
pedals. The manual staves should be bracketed together, so we need to use a PianoStaff for
them. The first manual part needs two voices and the second manual part just one.

\new PianoStaff <<

\new Staff = "ManualOne" <<

\new Voice {

\ManualOneVoiceOneMusic

}

\new Voice {

\ManualOneVoiceTwoMusic

}

>> % end ManualOne Staff context

\new Staff = "ManualTwo" <<

\new Voice {

\ManualTwoMusic

}

>> % end ManualTwo Staff context

>> % end PianoStaff context

Next we need to add a staff for the pedal organ. This goes underneath the PianoStaff, but
it must be simultaneous with it, so we need angle brackets around the two. Missing these out
would generate an error in the log file. It’s a common mistake which you’ll make sooner or
later! Try copying the final example at the end of this section, remove these angle brackets, and
compile it to see what errors it generates.

<< % PianoStaff and Pedal Staff must be simultaneous

\new PianoStaff <<

\new Staff = "ManualOne" <<

\new Voice {

\ManualOneVoiceOneMusic

}

\new Voice {

\ManualOneVoiceTwoMusic

}

>> % end ManualOne Staff context

\new Staff = "ManualTwo" <<

\new Voice {

\ManualTwoMusic

}

>> % end ManualTwo Staff context

>> % end PianoStaff context

\new Staff = "PedalOrgan" <<

\new Voice {

\PedalOrganMusic

}

>>

>>

It is not necessary to use the simultaneous construct << ... >> for the manual two staff
and the pedal organ staff, since they contain only one music expression, but it does no harm,
and always using angle brackets after \new Staff is a good habit to cultivate in case there are
multiple voices. The opposite is true for Voice contexts: these should habitually be followed by
braces { ... } in case your music is coded in several variables which need to run consecutively.

Chapter 4: Fundamental concepts 81

Let’s add this structure to the score block, and adjust the indenting. We also add the
appropriate clefs, ensure stems, ties and slurs in each voice on the upper staff point to the right
direction with \voiceOne and \voiceTwo, and enter the key and time signature to each staff
using our predefined variable, \keyTime.

\score {

<< % PianoStaff and Pedal Staff must be simultaneous

\new PianoStaff <<

\new Staff = "ManualOne" <<

\keyTime % set key and time signature

\clef "treble"

\new Voice {

\voiceOne

\ManualOneVoiceOneMusic

}

\new Voice {

\voiceTwo

\ManualOneVoiceTwoMusic

}

>> % end ManualOne Staff context

\new Staff = "ManualTwo" <<

\keyTime

\clef "bass"

\new Voice {

\ManualTwoMusic

}

>> % end ManualTwo Staff context

>> % end PianoStaff context

\new Staff = "PedalOrgan" <<

\keyTime

\clef "bass"

\new Voice {

\PedalOrganMusic

}

>> % end PedalOrgan Staff

>>

} % end Score context

The above layout of the organ staves is almost perfect; however, there is a slight defect which
is not visible by looking at just a single system: The distance of the pedal staff to the left hand
staff should behave approximately the same as the right hand staff to the left hand staff. In
particular, the stretchability of staves in a PianoStaff context is limited (so that the distance
between the staves for the left and right hand can’t become too large), and the pedal staff should
behave similarly.

Stretchability of staves can be controlled with the staff-staff-spacing property of the
VerticalAxisGroup ‘graphical object’ (commonly called grob within the LilyPond documen-
tation) – don’t worry about the details right now; this is fully explained later. For the cu-
rious, have a look at Section “Overview of modifying properties” in Notation Reference. In
this case, we want to modify the stretchability sub-property only. Any values not changed
will use the default value. Again, for the curious, you can find the default values for the
staff-staff-spacing property in file scm/define-grobs.scm by looking up the definition
of the default-staff-staff-spacing property of the VerticalAxisGroup grob. The value

Chapter 4: Fundamental concepts 82

for stretchability below is taken from the definition of the StaffGrouper grob (in file
scm/define-grobs.scm) so that the values are identical.

\score {

<< % PianoStaff and Pedal Staff must be simultaneous

\new PianoStaff <<

\new Staff = "ManualOne" <<

\keyTime % set key and time signature

\clef "treble"

\new Voice {

\voiceOne

\ManualOneVoiceOneMusic

}

\new Voice {

\voiceTwo

\ManualOneVoiceTwoMusic

}

>> % end ManualOne Staff context

\new Staff = "ManualTwo" \with {

\override VerticalAxisGroup

.staff-staff-spacing.stretchability = 5

} <<

\keyTime

\clef "bass"

\new Voice {

\ManualTwoMusic

}

>> % end ManualTwo Staff context

>> % end PianoStaff context

\new Staff = "PedalOrgan" <<

\keyTime

\clef "bass"

\new Voice {

\PedalOrganMusic

}

>> % end PedalOrgan Staff

>>

} % end Score context

That completes the structure. Any three-staff organ music will have a similar structure,
although the number of voices may vary. All that remains now is to add the music, and combine
all the parts together.

\header {

title = "Jesu, meine Freude"

composer = "J S Bach"

}

keyTime = { \key c \minor \time 4/4 }

ManualOneVoiceOneMusic = \relative {

g'4 g f ees |

d2 c |

}

ManualOneVoiceTwoMusic = \relative {

ees'16 d ees8~ 16 f ees d c8 d~ d c~ |

Chapter 4: Fundamental concepts 83

8 c4 b8 c8. g16 c b c d |

}

ManualTwoMusic = \relative {

c'16 b c8~ 16 b c g a8 g~ 16 g aes ees |

f16 ees f d g aes g f ees d ees8~ 16 f ees d |

}

PedalOrganMusic = \relative {

r8 c16 d ees d ees8~ 16 a, b g c b c8 |

r16 g ees f g f g8 c,2 |

}

\score {

<< % PianoStaff and Pedal Staff must be simultaneous

\new PianoStaff <<

\new Staff = "ManualOne" <<

\keyTime % set key and time signature

\clef "treble"

\new Voice {

\voiceOne

\ManualOneVoiceOneMusic

}

\new Voice {

\voiceTwo

\ManualOneVoiceTwoMusic

}

>> % end ManualOne Staff context

\new Staff = "ManualTwo" \with {

\override VerticalAxisGroup

.staff-staff-spacing.stretchability = 5

} <<

\keyTime

\clef "bass"

\new Voice {

\ManualTwoMusic

}

>> % end ManualTwo Staff context

>> % end PianoStaff context

\new Staff = "PedalOrgan" <<

\keyTime

\clef "bass"

\new Voice {

\PedalOrganMusic

}

>> % end PedalOrgan Staff context

>>

} % end Score context

Jesu, meine Freude
J S Bach

Chapter 4: Fundamental concepts 84

h� h

h
hh

h

h
hh

h

h
h

� h

�
h
h

h

h h�

h

h
h

h

h
h

�

¢
º���� h
º���� hh

�

m
º��� h

h
h
h
h

h

hh
hh

h h

h

hh h
hhN

h
h
h

N

P h
h
h
h
h
h

T

h

h

h

h����
����

�

k
¥
h
hN h

2

��� h

h

h

h h
� T

h

h
h

h
See also

Music Glossary: Section “system” in Music Glossary .

4.4.4 Saving typing with variables and functions

By this point, you’ve seen this kind of thing:

hornNotes = \relative { c''4 b dis c }

\score {

{

\hornNotes

}

}

h� hh� º h
You may even realize that this could be useful in minimalist music:

fragmentA = \relative { a'4 a8. b16 }

fragmentB = \relative { a'8. gis16 ees4 }

violin = \new Staff {

\fragmentA \fragmentA |

\fragmentB \fragmentA |

}

\score {

{

\violin

Chapter 4: Fundamental concepts 85

}

}

h� h�P h hPhhPhº� h hhh Ph
However, you can also use these variables (also known as macros, or user-defined commands)

for tweaks:

dolce = \markup { \italic \bold dolce }

centerText = {

\once \override TextScript.self-alignment-X = #CENTER

}

fthenp = _\markup {

\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p

}

violin = \relative {

\repeat volta 2 {

c''4._\dolce b8 a8 g a b |

\centerText

c4.^"hi there!" d8 e f g d |

c4.\fthenp b8 c4 c-. |

}

}

\score {

{

\violin

}

}

PPh h
f 2nd p
PT

h h h hohT hhT h h
hhh

dolce

� º P hhi there!Ph
These variables are obviously useful for saving typing. But they’re worth considering even if

you only use them once – they reduce complexity. Let’s look at the previous example without
any variables. It’s a lot harder to read, especially the last line.

violin = \relative {

\repeat volta 2 {

c''4._\markup { \italic \bold dolce } b8 a8 g a b |

\once \override TextScript.self-alignment-X = #CENTER

c4.^"hi there!" d8 e f g d |

c4._\markup {

\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p

}

b8 c4 c-. |

}

Chapter 4: Fundamental concepts 86

}

Remember ‘post-events’? Articulations, fingerings, anything that has to be added after a note
(see Section 4.1.4 [Structure of a note entry], page 46), often prefixed with a dash or a direction
modifier. In fact, even these events can be stored in a variable – in which case the usual curly
braces are not wanted, since you wouldn’t use them between a note and its articulations.

If such a definition includes a prefix, then the variable can be used directly after the note –
unless you want to change its direction, in which case you can insert a modifier that will take
precedence:

articulationVar = -^-.

artEsprVar = \articulationVar ^>

\relative c' {

c\articulationVar d e2^\articulationVar

d2\artEsprVar c_\artEsprVar

}

o
l
I lIoNNº� oIh

o}
Nh

So far we’ve seen static substitution – when LilyPond sees \centerText, it replaces it with
the stuff that we’ve defined it to be (ie the stuff to the right of centerText=).

LilyPond can handle non-static substitution, too (you can think of these as functions).

padText =

#(define-music-function (padding) (number?)

#{

\once \override TextScript.padding = #padding

#})

\relative {

c''4^"piu mosso" b a b

\padText 1.8

c4^"piu mosso" b a b

\padText 2.6

c4^"piu mosso" b a b

}

h
piu mosso

hh hhhhhhº�
piu mossoh h

piu mossoh
Using variables is also a good way to reduce work if the LilyPond input syntax changes (see

Section “Updating files with convert-ly” in Application Usage). If you have a single definition
(such as \dolce) for all your input files (see Section 5.8.3 [Style sheets], page 149), then if
the syntax changes, you only need to update your single \dolce definition, instead of making
changes throughout every .ly file.

Chapter 4: Fundamental concepts 87

4.4.5 Scores and parts

In orchestral music, all notes are printed twice. Once in a part for the musicians, and once in a
full score for the conductor. Variables can be used to avoid double work. The music is entered
once, and stored in a variable. The contents of that variable is then used to generate both the
part and the full score.

It is convenient to define the notes in a special file. For example, suppose that the file
horn-music.ly contains the following part of a horn/bassoon duo

hornNotes = \relative {

\time 2/4

r4 f8 a | cis4 f | e4 d |

}

Then, an individual part is made by putting the following in a file

\include "horn-music.ly"

\header {

instrument = "Horn in F"

}

{

\transpose f c' \hornNotes

}

The line

\include "horn-music.ly"

substitutes the contents of horn-music.ly at this position in the file, so hornNotes is defined
afterwards. The command \transpose f c' indicates that the argument, being \hornNotes,
should be transposed by a fifth upwards. Sounding f is denoted by notated c', which corresponds
with the tuning of a normal French Horn in F. The transposition can be seen in the following
output

hh h�h24� � hh
In ensemble pieces, one of the voices often does not play for many measures. This is denoted

by a special rest, the multi-measure rest. It is entered with a capital ‘R’ followed by a duration
(‘1’ for a whole note, ‘2’ for a half note, etc.). By multiplying the duration, longer rests can be
constructed. For example, this rest takes 3 measures in 2/4 time

R2*3

When printing the part, multi-measure rests must be compressed. There is a music function
available to do this:

\compressMMRests { ... }

Applying this to hornNotes gives:

h h� � h�24� 3 hhh
The score is made by combining all of the music together. Assuming that the other voice is

in bassoonNotes in the file bassoon-music.ly, a score is made with

\include "bassoon-music.ly"

Chapter 4: Fundamental concepts 88

\include "horn-music.ly"

<<

\new Staff \hornNotes

\new Staff \bassoonNotes

>>

leading to

� h
hh hh

h h
h h

h� �� h
h�h�

� 24
�� 24

hh h �
�

h hh
See also

Learning Manual: Section 3.4.1 [Organizing pieces with variables], page 37.

Notation Reference: Section “Transpose” in Notation Reference, Section “Writing parts”
in Notation Reference, Section “Full measure rests” in Notation Reference, Section “Including
LilyPond files” in Notation Reference.

89

5 Tweaking output

This chapter discusses how to modify output. LilyPond is extremely configurable; virtually
every fragment of output may be changed.

5.1 Tweaking basics

‘Tweaking’ is a LilyPond term for the various methods available to the user for modifying the
actions taken during interpretation of the input file and modifying the appearance of the printed
output. Some tweaks are very easy to use; others are more complex. But taken together the
methods available for tweaking permit almost any desired appearance of the printed music to
be achieved.

In this section we cover the basic concepts required to understand tweaking. Later we give a
variety of ready-made commands which can simply be copied to obtain the same effect in your
own scores, and at the same time we show how these commands may be constructed so that you
may learn how to develop your own tweaks.

Before starting on this chapter you may wish to review the section Section 4.3 [Contexts
and engravers], page 60, as contexts, engravers, and the properties contained within them are
fundamental to understanding and constructing tweaks.

5.1.1 Objects and interfaces

Tweaking involves modifying the internal operation and structures of the LilyPond program, so
we must first introduce some terms which are used to describe those internal operations and
structures.

The term Object is a generic term used to refer to the multitude of internal structures built
by LilyPond during the processing of an input file. So when a command like \new Staff is
encountered a new object of type Staff is constructed. That Staff object then holds all the
properties associated with that particular staff, for example, its name and its key signature,
together with details of the engravers which have been assigned to operate within that staff’s
context. Similarly, there are objects to hold the properties of all other contexts, such as Voice

objects, Score objects, Lyrics objects, as well as objects to represent all notational elements
such as bar lines, note heads, ties, dynamics, etc. Every object has its own set of property
values.

Some types of object are given special names. Objects that represent items of notation on
the printed output such as note heads, stems, slurs, ties, fingering, clefs, etc are called ‘Layout
objects’, often known as ‘Graphical Objects’, or grobs for short. These are still objects in the
generic sense above, and so they too all have properties associated with them, such as their
position, size, color, etc.

Some layout objects are still more specialized. Phrasing slurs, crescendo hairpins, ottava
marks, and many other grobs are not localized in a single place – they have a starting point, an
ending point, and maybe other properties concerned with their shape. Objects with an extended
shape like these are called spanners.

Spanners cannot be tweaked after their creation. This includes both StaffSymbol and
LedgerLineSpanner, which continue throughout the score, except if they are terminated by
the \stopStaff command and then recreated using \startStaff command.

What is more, there are ‘abstract’ grobs which do not print anything of their own, but rather
collect, position and manage other grobs. Common examples for this are DynamicLineSpanner,
BreakAlignment, NoteColumn, VerticalAxisGroup, or NonMusicalPaperColumn. We will see
how some of these are used later.

It remains to explain what interfaces are. Many objects, even though they are quite different,
share common features which need to be processed in the same way. For example, all grobs

Chapter 5: Tweaking output 90

have a color, a size, a position, etc, and all these properties are processed in the same way
during LilyPond’s interpretation of the input file. To simplify these internal operations these
common actions and properties are grouped together in an object called a grob-interface.
There are many other groupings of common properties like this, each one given a name ending
in interface. In total there are over 100 such interfaces. We shall see later why this is of
interest and use to the user.

These, then, are the main terms relating to objects which we shall use in this chapter.

5.1.2 Naming conventions of objects and properties

We met some object naming conventions previously, in Section 4.3 [Contexts and engravers],
page 60. Here for reference is a list of the most common object and property types together
with the conventions for naming them and a couple of examples of some real names. We have
used ‘A’ to stand for any capitalized alphabetic character and ‘aaa’ to stand for any number of
lower-case alphabetic characters. Other characters are used verbatim.

Object/property type Naming convention Examples
Contexts Aaaa or AaaaAaaaAaaa Staff, GrandStaff

Layout Objects Aaaa or AaaaAaaaAaaa Slur, NoteHead

Engravers Aaaa_aaa_engraver Clef_engraver,
Note_heads_engraver

Interfaces aaa-aaa-interface grob-interface,
break-aligned-interface

Context Properties aaa or aaaAaaaAaaa alignAboveContext,
skipBars

Layout Object Properties aaa or aaa-aaa-aaa direction,
beam-thickness

As we shall see shortly, the properties of different types of object are modified by different
commands, so it is useful to be able to recognize the types of objects and properties from their
names.

See also

Notation Reference: Section “Naming conventions” in Notation Reference, Section “Modifying
properties” in Notation Reference.

5.1.3 Tweaking methods

This subsection discusses the most important tweaking commands.

The \override command

We have already met the commands \set and \with, used to change the properties of contexts
and to remove and add engravers, in Section 4.3.4 [Modifying context properties], page 63, and
Section 4.3.5 [Adding and removing engravers], page 68. We must now introduce some more
important commands.

The command to change the properties of layout objects is \override. Because this com-
mand has to modify internal properties deep within LilyPond its syntax is not as simple as the
commands you have used so far. It needs to know precisely which property of which object in
which context has to be modified, and what its new value is to be. Let’s see how this is done.

The general syntax of this command is:

\override Context.LayoutObject.layout-property = value

This sets the property with the name layout-property of the layout object with the name
LayoutObject, which is a member of the Context context, to the value value.

Chapter 5: Tweaking output 91

The Context may be omitted (and usually is) when the required context is unambiguously
implied and is one of lowest level contexts, i.e., Voice, ChordNames or Lyrics, and we shall omit
it in many of the following examples. We shall see later when it must be specified.

Later sections deal comprehensively with properties and their values, see Section 5.2.3 [Types
of properties], page 101. But in this section we shall use just a few simple properties and values
which are easily understood in order to illustrate the format and use of these commands.

LilyPond’s primary expressions are musical items like notes and durations, as well as strings
and markups. More specific expressions like symbols and lists are processed in ‘Scheme mode’,
which is invoked by prefixing the value with ‘#’. A special case are numbers, which must be
prefixed with ‘#’ only if used as arguments to a markup function (i.e., within \markup).1

For more information about Scheme mode, see Section “LilyPond Scheme syntax” in Ex-

tending .

\override is the most common command used in tweaking, and most of the rest of this
chapter will be directed to presenting examples of how it is used. Here is a simple example to
change the color of the note head:

\relative {

c'4 d

\override NoteHead.color = "red"

e4 f |

\override NoteHead.color = "green"

g4 a b c |

}

h hhh hh� º hh
The \revert command

Once overridden, the property retains its new value until it is overridden again or a \revert

command is encountered. The \revert command has the following syntax and causes the value
of the property to revert to its original default value; note, not its previous value if several
\override commands have been issued.2

\revert Context.LayoutObject.layout-property

Again, just like Context in the \override command, Context is often not needed. It will
be omitted in many of the following examples. Here we revert the color of the note head to the
default value for the final two notes:

\relative {

c'4 d

\override NoteHead.color = "red"

e4 f |

\override NoteHead.color = "green"

g4 a

\revert NoteHead.color

b4 c |

}

1 Note, however, that for LilyPond a number must start with a digit or a minus sign followed by a digit if not in
Scheme mode. In other words, ‘0.2’ or ‘-0.2’ are valid numbers, while ‘.2’ or ‘-.2’ are not. If really necessary
you can write ‘#.2’ or ‘#-.2’ instead – Scheme supports a much broader range of number representations.

2 The behaviour of \revert can be changed by using \temporary \override; see Section “Intermediate substi-
tution functions” in Extending .

Chapter 5: Tweaking output 92

h hhh hh� º hh
The \once prefix

\override, \revert, \set, and \unset commands may be prefixed with \once. This causes
such a command to be effective only during the current musical moment before the property
reverts back to its previous value (this can be different from the default if another \override

is still in effect). Using the same example, we can change the color of a single note like this:

\relative {

c'4 d

\override NoteHead.color = "red"

e4 f |

\once \override NoteHead.color = "green"

g4 a

\once \revert NoteHead.color

b c |

\revert NoteHead.color

f2 c |

}

Nhhh Nh hº� h hh
The \once prefix may also be used in front of many predefined commands to limit their effect

to one musical moment:

\relative {

c'4(d)

\once \slurDashed

e4(f) |

g4(a)

\once \hideNotes

b(c) |

}

h hhº� h hhh
The \tweak and \offset commands

The final tweaking commands of LilyPond are \tweak and \offset. They should be used when
several objects occur at the same musical moment, but you only want to change the properties
of selected ones, such as a single note within a chord. Using \override would affect all the
notes within a chord, whereas \tweak affects just the following item in the input stream.

Note that \offset can be used as an replacement for \override, too; it also has more syntax
forms. See Section “The offset command” in Notation Reference, for all the details.

Here’s an example. Suppose we wish to change the size of the middle note head (the E) in a
C major chord. Let’s first see what \once \override would do:

\relative {

<c' e g>4

Chapter 5: Tweaking output 93

\once \override NoteHead.font-size = -3

<c e g>4

<c e g>4

}

hhh hhhhhh� º
We see the override affects all the note heads in the chord. This is because all the notes of a

chord occur at the same musical moment, and the action of \once is to apply the override to all
layout objects of the type specified which occur at the same musical moment as the \override

command itself.

The \tweak and \offset commands operate in a different way. They act on the immediately
following item in the input stream. In their simplest forms, they are effective only on objects
which are created directly from the following item, essentially note heads and articulations.

So to return to our example, the size of the middle note of a chord would be changed in this
way:

\relative {

<c' e g>4

<c \tweak font-size -3 e g>4

}

hhhº� hhh
Let’s now try to change the vertical position of the \breathe symbol. By default, LilyPond

computes a vertical distance from the middle line automatically. If we would like to move it up
by two units, say, \offset is the right command. With \tweak it would be necessary to find
the correct position manually by trial and error.

\relative c'' {

c4

\breathe

c4

\offset Y-offset 2 \breathe

c2

\tweak Y-offset 4 \breathe

}

Nh hh� º hh
Obviously, \offset only works for values that actually have a numeric value. There are more

restrictions to that what can be changed; again, please refer to Section “The offset command”
in Notation Reference, for more details.

Note that the syntax of \tweak and \offset is different from that of the \override command.
The context should not be specified; in fact, it would generate an error to do so. Both context
and layout object are implied by the following item in the input stream. Note also that an
equals sign should not be present. So the simple form of the \tweak and \offset commands is

\tweak layout-property value

Chapter 5: Tweaking output 94

\offset layout-property value

\tweak and \offset can also be used to modify just one in a series of articulations, as shown
here:

a'4^"Black"

-\tweak color "red" ^"Red"

-\tweak color "green" _"Green"

º�
Green

Red
Blackh

Both \tweak and \offset must be preceded by an articulation mark since the tweaked expres-
sion needs to be applied as an articulation itself. In case of multiple direction overrides (‘^’ or
‘_’), the leftmost override wins since it is applied last.

Objects such as stems and accidentals are created later, and not directly from the following
event. It is still possible to use \tweak or \offset on such indirectly created objects by explicitly
naming the layout object, provided that LilyPond can trace its origin back to the original event:

<\tweak Accidental.color "red" cis''4

\tweak Accidental.color "green" es''

g''>

��º� hhh
This long form of the \tweak and \offset commands can be described as

\tweak LayoutObject.layout-property value

\offset LayoutObject.layout-property value

The \tweak command must also be used to change the appearance of one of a set of nested
tuplets which begin at the same musical moment. In the following example, the long tuplet
bracket and the first of the three short brackets begin at the same musical moment, so any
\override command would apply to both of them. In the example, \tweak is used to distinguish
between them. The first \tweak command specifies that the long tuplet bracket is to be placed
above the notes and the second one specifies that the tuplet number is to be printed in red on
the first short tuplet bracket.

\relative c'' {

\tweak direction #up

\tuplet 3/4 {

\tweak color "red"

\tuplet 3/2 { c8[c c] }

\tuplet 3/2 { c8[c c] }

\tuplet 3/2 { c8[c c] }

}

}

hhhh
33

3

3

hº� h hhh

Chapter 5: Tweaking output 95

If nested tuplets do not begin at the same moment, their appearance may be modified in the
usual way with \override commands:

\relative {

\tuplet 3/2 { c'8[c c] }

\once \override TupletNumber.text =

#tuplet-number::calc-fraction-text

\tuplet 3/2 {

c8[c]

c8[c]

\once \override TupletNumber.transparent = ##t

\tuplet 3/2 { c8[c c] }

\tuplet 3/2 { c8[c c] }

}

}

h hhhh 3
3:2

3 hhh hº� h h hh
See also

Notation Reference: Section “Tweak and single” in Notation Reference, Section “The offset
command” in Notation Reference

The \single prefix

Suppose we wanted to emphasize particular note heads by coloring them red and increasing
their size, and to make it easy suppose also we have defined a function to do this:

emphNoteHead = {

\override NoteHead.color = "red"

\override NoteHead.font-size = 2

}

\relative {

c''4 a \once \emphNoteHead f d |

}

h hh� º h
The \once prefix works fine to emphasize single notes or complete chords, but it cannot be

used to emphasize a single note within a chord. Earlier we have seen how \tweak can be used
to do this, see [The \tweak and \offset commands], page 92. But \tweak cannot be used with
a function; that’s where \single comes in:

emphNoteHead = {

\override NoteHead.color = "red"

\override NoteHead.font-size = 2

}

\relative {

<c'' a \single \emphNoteHead f d>4

}

� º hhhh

Chapter 5: Tweaking output 96

In summary, \single converts overrides into tweaks so when there are several objects at the
same point in musical time (like note heads in a chord), \single will only affect a single one,
the one generated by the immediately following music expression, in contrast to \once which
will affect all of those objects.

By using \single in this way any shorthand function containing just overrides may be applied
to individual notes in a chord. However, \single does not convert \revert, \set or \unset

into tweaks.

See also

Learning Manual: [The \tweak and \offset commands], page 92, Section 5.8.2 [Using vari-
ables for layout adjustments], page 147.

5.2 The Internals Reference manual

The Internals Reference manual (IR) is the ultimate answer to LilyPond’s configurability. To
understand how it can be used, however, you need a bunch of information that has not yet been
presented, and which follows in the next subsections.

5.2.1 Properties of layout objects

Suppose you have a slur in a score which, to your mind, appears too thin and you’d like to draw
it a little heavier. How do you go about doing this? You know from the statements earlier about
the flexibility of LilyPond that such a thing should be possible, and you would probably guess
that an \override command would be needed. But is there a heaviness property for a slur,
and if there is, how might it be modified? This is where the Internals Reference manual comes
in. It contains all the information you might need to construct this and all other \override

commands.

Before we look at the Internals Reference a word of warning. This is a reference document,
which means there is little or no explanation contained within it: its purpose is to present
information precisely and concisely. This means it might look daunting at first sight. Don’t
worry! The guidance and explanation presented here will enable you to extract the information
from the Internals Reference for yourself with just a little practice.

Let’s use a concrete example with a simple fragment of real music:

{

\key es \major

\time 6/8

\relative {

r4 bes'8 bes[(g]) g |

g8[(es]) es d[(f]) as |

as8 g

}

\addlyrics {

The man who | feels love's sweet e -- | mo -- tion

}

}

h hh
e

�
h

love's

� h
sweet

h
�

mo

� h
tion

h
The
T h

man

h68 �� ���
feels

h�h
who

Suppose now that we decide we would like the slurs to be a little heavier. Is this possible?
The slur is certainly a layout object, so the question is, ‘Is there a property belonging to a slur

Chapter 5: Tweaking output 97

which controls the heaviness?’ To answer this we must check the Internals Reference, or IR for
short.

The IR for the version of LilyPond you are using may be found on the LilyPond website at
https://lilypond.org. Go to the documentation page and click on the Internals Reference
link. For learning purposes you should use the standard HTML version, not the ‘one big page’
or the PDF. For the next few paragraphs to make sense you will need to actually do this as you
read.

Under the heading Top you will see five links. Select the link to the Backend, which is where
information about layout objects is to be found. There, under the heading Backend, select the
link to All layout objects. The page that appears lists all the layout objects used in your version
of LilyPond, in alphabetic order. Select the link to Slur, and the properties of slurs are listed.

An alternative way of finding this page is from the Notation Reference. On one of the pages
that deals with slurs you may find a link to the Internals Reference. This link will take you
directly to this page, but if you have an idea about the name of the layout object to be tweaked,
it is easier to go straight to the IR and search there.

This Slur page in the IR tells us first that Slur objects are created by the Slur_engraver.
Then it lists the standard settings. Browse through them looking for a property that might
control the heaviness of slurs, and you should find

thickness (number)

1.2

[...] For slurs and ties, this is the distance between the two

arcs of the curve's outline at its thickest point, [...] This

property is expressed as a multiple of the current staff-line

thickness [...]

This looks a good bet to change the heaviness. It tells us that the value of thickness is a
simple number, that the default value is 1.2, and that this value depends on the thickness of
staff lines – which means more or less that smaller staves have thinner slurs.

As we said earlier, there are few to no explanations in the IR, but we already have enough
information to try changing the slur thickness. We see that the name of the layout object is
Slur, that the name of the property to change is thickness and that the new value should be
a number somewhat larger than 1.2 if we are to make slurs thicker.

We can now construct the \override command by simply substituting the values we have
found for the names, omitting the context. Let’s use a very large value for the thickness at first,
so we can be sure the command is working. We get:

\override Slur.thickness = 5.0

The final question is, ‘Where should this command be placed?’ While you are unsure and
learning, the best answer is, ‘Within the music, before the first slur and close to it.’ Let’s do
that:

{

\key es \major

\time 6/8

\relative {

% Increase thickness of all following slurs from 1.2 to 5.0

\override Slur.thickness = 5.0

r4 bes'8 bes[(g]) g |

g8[(es]) es d[(f]) as |

as8 g

}

\addlyrics {

https://lilypond.org

Chapter 5: Tweaking output 98

The man who | feels love's sweet e -- | mo -- tion

}

}

h hh
e

�
h

love's

� h
sweet

h
�

mo

� h
tion

h
The
T h

man

h68 �� ���
feels

h�h
who

and we see that the slur is indeed heavier.

So this is the basic way of constructing \override commands. There are a few more com-
plications that we shall meet in later sections, but you now know all the essentials required to
make up your own – but you will still need some practice. This is provided in the examples that
follow.

Finding the context

But first, what if we had needed to specify the context? What should it be? We could guess
that slurs are in the Voice context, as they are clearly closely associated with individual lines
of music, but can we be sure? To find out, go back to the top of the IR page describing the
Slur grob, where it says ‘Slur objects are created by the following engraver(s): Slur_engraver.’
So slurs will be created in whichever context the Slur_engraver is in. Follow the link to the
Slur_engraver page. At the very bottom it tells us that Slur_engraver is part of ten voice
contexts, including the standard voice context, Voice, so our guess was correct. And because
Voice is one of the lowest-level contexts, which is implied unambiguously by the fact that we
are entering notes, we can omit it in this location.

Overriding once only

As you can see, all the slurs are thicker in the final example above. But what if we wanted just the
first slur to be thicker? This is achieved with the \once command. Placed immediately before
the \override command it causes it to change only the slur which begins on the immediately
following note. If the immediately following note does not begin a slur the command has no
effect at all – it is not remembered until a slur is encountered, it is simply discarded. So the
command with \once must be repositioned as follows:

{

\key es \major

\time 6/8

\relative {

r4 bes'8

% Increase thickness of immediately following slur only

\once \override Slur.thickness = 5.0

bes8[(g]) g |

g8[(es]) es d[(f]) as |

as8 g

}

\addlyrics {

The man who | feels love's sweet e -- | mo -- tion

}

}

h hh
e

�
h

love's

� h
sweet

h
�

mo

� h
tion

h
The
T h

man

h68 �� ���
feels

h�h
who

Chapter 5: Tweaking output 99

Now only the first slur is made heavier.

The \once command can also be used before the \set command.

An alternative to \once \override is to use the \tweak command; you get the same result
if you replace

\once \override Slur.thickness = 5.0

bes8[(

in the previous example with

bes8[\tweak thickness 5.0 (

Reverting

Finally, what if we wanted just the first two slurs to be heavier? Well, we could use two
commands, each preceded by \once placed immediately before each of the notes where the slurs
begin:

{

\key es \major

\time 6/8

\relative {

r4 bes'8

% Increase thickness of immediately following slur only

\once \override Slur.thickness = 5.0

bes[(g]) g |

% Increase thickness of immediately following slur only

\once \override Slur.thickness = 5.0

g8[(es]) es d[(f]) as |

as8 g

}

\addlyrics {

The man who | feels love's sweet e -- | mo -- tion

}

}

h hh
e

�
h

love's

� h
sweet

h
�

mo

� h
tion

h
The
T h

man

h68 �� ���
feels

h�h
who

or we could omit the \once command and use the \revert command to return the thickness

property to its default value after the second slur:

{

\key es \major

\time 6/8

\relative {

r4 bes'8

% Increase thickness of all following slurs from 1.2 to 5.0

\override Slur.thickness = 5.0

bes[(g]) g |

g8[(es]) es

% Revert thickness of all following slurs to default of 1.2

\revert Slur.thickness

d8[(f]) as |

as8 g

Chapter 5: Tweaking output 100

}

\addlyrics {

The man who | feels love's sweet e -- | mo -- tion

}

}

h hh
e

�
h

love's

� h
sweet

h
�

mo

� h
tion

h
The
T h

man

h68 �� ���
feels

h�h
who

The \revert command can be used to return any property changed with \override back to its
default value. You may use whichever method best suits what you want to do.

That concludes our introduction to the IR, and the basic method of tweaking. Several
examples follow in the later sections of this chapter, partly to introduce you to some of the
additional features of the IR, and partly to give you more practice in extracting information
from it. These examples will contain progressively fewer words of guidance and explanation.

5.2.2 Properties found in interfaces

Suppose now that we wish to print the lyrics in italics. What form of \override command
do we need to do this? We first look in the IR page listing ‘All layout objects’, as before, and
look for an object that might control lyrics. We find LyricText, which looks right. Clicking on
this shows the settable properties for lyric text. These include the font-series and font-size,
but nothing that might give an italic shape. This is because the shape property is one that is
common to all font objects, so, rather than including it in every layout object, it is grouped
together with other similar common properties and placed in an Interface, the font-interface.

So now we need to learn how to find the properties of interfaces, and to discover what objects
use these interface properties.

Look again at the IR page that describes LyricText. At the bottom of the page is a
list of clickable interfaces that LyricText supports. The list has several items, including
font-interface. Clicking on this brings up the properties associated with this interface, which
are also properties of all the objects which support it, including LyricText.

Now we see all the user-settable properties which control fonts, including ‘font-shape (sym-
bol)’. The value in parentheses gives the variable type expected by the property; here it is a
(Scheme) symbol. The IR also documents the possible values, which are upright, italics, or
slanted.

You will notice that font-series and font-size are also listed there. This immediately
raises the question: Why are the common font properties font-series and font-size listed
under LyricText as well as under the interface font-interface but font-shape is not? The
answer is that font-series and font-size are changed from their global default values when
a LyricText object is created, but font-shape is not. The entries in LyricText then tell you
the values for those two properties which apply to LyricText. Other objects which support
font-interface will set these properties differently when they are created.

Let’s see if we can now construct the \override command to change the lyrics to italics.
The object is LyricText, the property is font-shape and the value is italic. As before, we’ll
omit the context.

As an aside, although it is an important one, note that some properties take values that
are symbols, like italic, and must be preceded by an apostrophe, ‘'’. Symbols are then read
internally by LilyPond. Note the distinction from arbitrary text strings, which would appear as
"a text string"; for more details about symbols and strings, see Section “Scheme tutorial” in
Extending .

Chapter 5: Tweaking output 101

So we see that the \override command needed to print the lyrics in italics is:

\override LyricText.font-shape = #'italic

This should be placed just in front of the lyrics we wish to affect, like so:

{

\key es \major

\time 6/8

\relative {

r4 bes'8 bes[(g]) g |

g8[(es]) es d[(f]) as |

as8 g

}

\addlyrics {

\override LyricText.font-shape = #'italic

The man who | feels love's sweet e -- | mo -- tion

}

}

h hh
e

�
h

love's

� h
sweet

h
�

mo

� h
tion

h
The
T h

man

h68 �� ���
feels

h�h
who

and the lyrics are all printed in italics.
☛ ✟

Note: In lyrics, always leave whitespace between the final syllable and
the terminating brace.
✡ ✠

See also

Extending: Section “Scheme tutorial” in Extending .

5.2.3 Types of properties

So far we have seen two types of property: ‘number’ and ‘symbol’. To be valid, the value given
to a property must be of the correct type and obey the rules for that type. The type of property
is always shown in parentheses after the property name in the IR. Here is a list of the types
you may need, together with the rules for that type, and some examples. If you use a Scheme
expression you must add a hash symbol, ‘#’, to the front of these values when they are entered in
the \override command, even if the value itself already starts with ‘#’. We only give examples
for constants here: if you want to compute a value using Scheme, see Section “Calculations in
Scheme” in Extending .

Property type Rules Input examples
Boolean either ‘true’ or ‘false’, represented

by #t or #f

##t, ##f

dimension
(in staff spaces)

a decimal number (in units of
staff spaces)

2.5, 0.34

direction a valid direction constant or its
numerical equivalent (value 0

or CENTER indicate a neutral
direction)

#LEFT, #CENTER, #UP, 1, -1

integer a whole number 3, -1

Chapter 5: Tweaking output 102

list a sequence of constants or sym-
bols separated by spaces, enclosed
in parentheses and preceded by an
apostrophe (quote mark)

#'(left-edge staff-bar),
#'(1), #'(),
#'(1.0 0.25 0.5)

markup any valid markup \markup { \italic "cresc." },
"bagpipe"

moment a musical length; this type is dis-
tinct from a note duration

\musicLength 4.,
\musicLength { 2 2. }

number any positive or negative, possibly
decimal, value

3, -2.45

pair
(of numbers)

two numbers separated by the
sequence ‘whitespace’, ‘.’, ‘white-
space’, enclosed in parentheses,
and preceded by an apostrophe

#'(2 . 3.5),
#'(0.1 . -3.2)

symbol any of the set of permitted sym-
bols for that property, preceded
by an apostrophe

#'italic, #'inside

unknown a procedure, or #f to cause no
action

#bend::print,
#ly:text-interface::print,
##f

vector constants enclosed in #(. . .). ##(#t #t #f)

Note that number arguments to markup functions within a \markup block need a leading
hash mark.

See also

Extending: Section “Scheme tutorial” in Extending .

5.3 Appearance of objects

Let us now put what we have learned into practice with a few examples which show how tweaks
may be used to change the appearance of the printed music.

5.3.1 Visibility and color of objects

In the educational use of music we might wish to print a score with certain elements omitted as
an exercise for the student, who is required to supply them. As a simple example, let us suppose
the exercise is to supply the missing bar lines in a piece of music. But the bar lines are normally
inserted automatically. How do we prevent them printing?

Before we tackle this, let us remember that object properties are grouped in what are called
interfaces – see Section 5.2.2 [Properties found in interfaces], page 100. This is simply to group
together those properties that may be used together to tweak a graphical object – if one of
them is allowed for an object, so are the others. Some objects then use the properties in some
interfaces, others use them from other interfaces. The interfaces that contain the properties
used by a particular grob are listed in the IR at the bottom of the page describing that grob,
and those properties may be viewed by looking at those interfaces.

We explained how to find information about grobs in Section 5.2.1 [Properties of layout
objects], page 96. Using the same approach, we go to the IR to find the layout object which
prints bar lines. Going via Backend and All layout objects we find there is a layout object called
BarLine. Its properties include two that control its visibility: break-visibility and stencil.
BarLine also supports a number of interfaces, including the grob-interface, where we find the
transparent and the color properties. All of these can affect the visibility of bar lines (and,
of course, by extension, many other layout objects, too). Let’s consider each of these in turn.

Chapter 5: Tweaking output 103

The stencil property

This property controls the appearance of the bar lines by specifying the symbol (glyph) that
should be printed. In common with many other properties, it can be set to print nothing by
setting its value to #f. Let’s try it, as before, omitting the implied context, Voice.

\relative {

\time 12/16

\override BarLine.stencil = ##f

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
The bar lines are still printed. What is wrong? Go back to the IR and look again at the page

giving the properties of BarLine. At the top of the page it says “BarLine objects are created
by the following engraver(s): Bar_engraver”. Go to the Bar_engraver page. At the bottom it
gives a list of contexts in which the bar engraver operates. All of them are of the type Staff,
so the reason the \override command failed to work as expected is because BarLine is not
in the default Voice context. If the context is specified incorrectly, the command simply does
not work, without producing an error message or warning. Let’s try correcting it by adding the
correct context:

\relative {

\time 12/16

\override Staff.BarLine.stencil = ##f

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
Now the bar lines have vanished. Setting the stencil property to #f is such a frequent

operation that there is a shorthand for it called \omit:

\relative {

\time 12/16

\omit Staff.BarLine

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
Note, though, that setting the stencil property to #f will cause errors when the dimensions

of the object are required for correct processing. For example, errors will be generated if the

Chapter 5: Tweaking output 104

stencil property of the NoteHead object is set to #f. If this is the case, you can instead use
the point-stencil function, which sets the stencil to an object with zero size:

\relative {

c''4 c

\once \override NoteHead.stencil = #point-stencil

c4 c

}

hh� º h
The break-visibility property

We see from the BarLine properties in the IR that the break-visibility property requires a
vector of three Booleans. These control respectively whether bar lines are printed at the end
of a line, in the middle of lines, and at the beginning of lines. For our example we want all
bar lines to be suppressed, so the value we need is #(#f #f #f) (also available under the name
all-invisible). Let’s try that, remembering to include the Staff context. Note also that
in writing this value we have ## before the opening parenthesis. One ‘#’ is required as part of
vector constant syntax, and the first ‘#’ is required, as always, to precede the value itself in the
\override command.

\relative {

\time 12/16

\override Staff.BarLine.break-visibility = ##(#f #f #f)

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

hh hh ThUhhTh1216� h hhh h
And we see this too removes all the bar lines.

The transparent property

We see from the properties specified in the grob-interface page in the IR that the transparent

property is a Boolean. This should be set to #t to make the grob transparent. In this next
example let us make the time signature invisible rather than the bar lines. To do this we
need to find the grob name for the time signature. Back to the ‘All layout objects’ page in
the IR to find the properties of the TimeSignature layout object. This is produced by the
Time_signature_engraver; you can check that it also lives in the Staff context and also
supports the grob-interface. So the command to make the time signature transparent is

\relative {

\time 12/16

\override Staff.TimeSignature.transparent = ##t

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

Chapter 5: Tweaking output 105

h hh Th hUhhTh� h hhh h
Again, setting the transparent property is a rather frequent operation, so we have a short-

hand for it called \hide.

\relative {

\time 12/16

\hide Staff.TimeSignature

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh� h hhh h
In either case, the time signature is gone, but this command leaves a gap where the time

signature should be. Maybe this is what is wanted for an exercise for the student to fill it in,
but in other circumstances a gap might be undesirable. To remove it, the stencil for the time
signature should be set to #f instead:

\relative {

\time 12/16

\omit Staff.TimeSignature

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh� h hhh h
and the difference is obvious: setting the stencil to #f (possibly via \omit) removes the object
entirely; making the object transparent (which can be done using \hide) leaves it where it is,
but makes it invisible.

The color property

Finally let us try making the bar lines invisible by coloring them white. (There is a difficulty
with this in that the white bar line may or may not blank out the staff lines where they cross.
You may see in some of the examples below that this happens unpredictably. The details of
why this is so and how to control it are covered in Section “Painting objects white” in Notation

Reference. But at the moment we are learning about color, so please just accept this limitation
for now.)

The grob-interface specifies that the color property value is a list, but there is no expla-
nation of what that list should be. The list it requires is actually a list of values in internal
units, but, to avoid having to know what these are, several ways are provided to specify colors.
The first way is to use one of the predefined ‘CSS’ colors listed in Section “List of colors” in
Notation Reference. To set the bar lines to white we write

\relative {

\time 12/16

Chapter 5: Tweaking output 106

\override Staff.BarLine.color = "white"

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
and again, we see the bar lines are not visible. Note that "white" is not preceded by an apostro-
phe – it is not a symbol, but a character string, mapped to a predefined list of internal values.
In that regard, LilyPond’s syntax mimics the CSS language (https://www.w3.org/Style/CSS/

) commonly used in webpages; in addition to predefined names, we can specify a hexadecimal
color code:

\relative {

\time 12/16

\override Staff.BarLine.color = "#FFFFFF"

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
We could even define that color as a variable, and then use that variable as a property

definition. Since it is both a LilyPond variable and a Scheme object, it can be prefixed with a
backslash or with a hash character without any difference:

whiteVar = "#FFFFFF"

\relative {

\time 12/16

\override Staff.BarLine.color = \whiteVar

c''4 b8 c d16 c d8 |

\override Staff.BarLine.color = #whiteVar

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
Another way of adding colors to your score is by using a function. There are two useful

functions in this regard; one is the x11-color function, which we’ll get to use shortly. The
other one, the rgb-color function, closely demonstrates LilyPond’s internal logic: it takes
three arguments giving the intensities of the red, green, and blue colors. These take values in
the range 0 to 1. So to set the color to red the value should be (rgb-color 1 0 0) and to white
it should be (rgb-color 1 1 1):

\relative {

\time 12/16

https://www.w3.org/Style/CSS/
https://www.w3.org/Style/CSS/

Chapter 5: Tweaking output 107

\override Staff.BarLine.color = #(rgb-color 1 1 1)

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
Note that in this case the whole function call has to be enclosed in parentheses. The same can
be said of the x11-color function which we just skipped over.

x11-color, again, maps predefined color names to internal values – but offers many more
choices than CSS names, as you can see in Section “List of colors” in Notation Reference). For
example, the X11 set of colors includes an extensive grey scale, whose names range from black,
'grey0, to white, 'grey100, in steps of 1. Let’s illustrate this by setting all the layout objects
in our example to various shades of grey:

\relative {

\time 12/16

\override Staff.StaffSymbol.color = #(x11-color 'grey30)

\override Staff.TimeSignature.color = #(x11-color 'grey60)

\override Staff.Clef.color = #(x11-color 'grey60)

\override Voice.NoteHead.color = #(x11-color 'grey85)

\override Voice.Stem.color = #(x11-color 'grey85)

\override Staff.BarLine.color = #(x11-color 'grey10)

c''4 b8 c d16 c d8 |

g,8 a16 b8 c d4 e16 |

e8

}

h hh Th hUhhTh1216� h hhh h
Note the contexts associated with each of the layout objects. It is important to get these right,
or the commands will not work! Remember, the context is the one in which the appropriate
engraver is placed. The default context for engravers can be found by starting from the layout
object, going from there to the engraver which produces it, and on the engraver page in the IR
it tells you in which context the engraver will normally be found.

5.3.2 Size of objects

Let us begin by looking again at the earlier example (see Section 4.1.3 [Nesting music expressions],
page 45) which showed how to introduce a new temporary staff, as in an Section “ossia” in Music

Glossary .

\new Staff ="main" {

\relative {

r4 g'8 g c4 c8 d |

e4 r8

<<

{ f8 c c }

\new Staff \with {

alignAboveContext = "main" }

Chapter 5: Tweaking output 108

{ f8 f c }

>>

r4 |

}

}

h

h

¢
º
h
h� T
T
T
h
hT
�h h�� º h hh h

Ossia are normally written without clef and time signature, and are usually printed slightly
smaller than the main staff. We already know now how to remove the clef and time signature –
we simply set the stencil of each to #f, as follows:

\new Staff ="main" {

\relative {

r4 g'8 g c4 c8 d |

e4 r8

<<

{ f8 c c }

\new Staff \with {

alignAboveContext = "main"

}

{

\omit Staff.Clef

\omit Staff.TimeSignature

{ f8 f c }

}

>>

r4 |

}

}

h

h

¢ h
hT
T
T
h
hT
�h h�� º h hh h

where the extra pair of braces after the \with clause are required to ensure the enclosed overrides
and music are applied to the ossia staff.

But what is the difference between modifying the staff context by using \with and modifying
the stencils of the clef and the time signature with \override, or in this case \omit? The main
difference is that changes made in a \with clause are made at the time the context is created,
and remain in force as the default values for the duration of that context, whereas \set or
\override commands embedded in the music are dynamic – they make changes synchronized
with a particular point in the music. If changes are unset or reverted using \unset or \revert

they return to their default values, which will be the ones set in the \with clause, or if none
have been set there, the normal default values.

Chapter 5: Tweaking output 109

Some context properties can be modified only in \with clauses. These are those properties
which cannot sensibly be changed after the context has been created. alignAboveContext and
its partner, alignBelowContext, are two such properties – once the staff has been created its
alignment is decided and it would make no sense to try to change it later.

The default values of layout object properties can also be set in \with clauses. Simply use
the normal \override command leaving out the context name, since this is unambiguously
defined as the context which the \with clause is modifying. If fact, an error will be generated
if a context is specified in this location.

So we could replace the example above with

\new Staff ="main" {

\relative {

r4 g'8 g c4 c8 d |

e4 r8

<<

{ f8 c c }

\new Staff \with {

alignAboveContext = "main"

% Don't print clefs in this staff

\override Clef.stencil = ##f

% Don't print time signatures in this staff

\override TimeSignature.stencil = ##f

}

{ f8 f c }

>>

r4 |

}

}

h

h

¢ h
hT
T
T
h
hT
�h h�� º h hh h

It turns out that we can also employ the shorthands \hide and \omit for setting the
transparent property and clearing the stencil here, leading to the result

\new Staff ="main" {

\relative {

r4 g'8 g c4 c8 d |

e4 r8

<<

{ f8 c c }

\new Staff \with {

alignAboveContext = "main"

% Don't print clefs in this staff

\omit Clef

% Don't print time signatures in this staff

\omit TimeSignature

}

{ f8 f c }

>>

Chapter 5: Tweaking output 110

r4 |

}

}

h

h

¢ h
hT
T
T
h
hT
�h h�� º h hh h

Finally we come to changing the size of layout objects.

Some layout objects are created as glyphs selected from a typeface font. These include note
heads, accidentals, markup, clefs, time signatures, dynamics, and lyrics. Their size is changed
by modifying the font-size property, as we shall shortly see. Other layout objects such as
slurs and ties – in general, spanner objects – are drawn individually, so there is no font-size

associated with them. These objects generally derive their size from the objects to which they
are attached, so usually there is no need to change their size manually. Still other properties
such as the length of stems and bar lines, thickness of beams and other lines, and the separation
of staff lines all need to be modified in special ways.

Returning to the ossia example, let us first change the font size. We can do this in two ways.
We can either change the size of the fonts of each object type, like NoteHeads with commands
like

\override NoteHead.font-size = -2

or we can change the size of all fonts by setting a special property, fontSize, using \set, or
by including it in a \with clause (but without the \set).

\set fontSize = -2

Both of these statements would cause the font size to be reduced by two steps from its
previous value, where each step reduces or increases the size by approximately 12%.

Let’s try it in our ossia example:

\new Staff ="main" {

\relative {

r4 g'8 g c4 c8 d |

e4 r8

<<

{ f8 c c }

\new Staff \with {

alignAboveContext = "main"

\omit Clef

\omit TimeSignature

% Reduce all font sizes by ~24%

fontSize = -2

}

{ f8 f c }

>>

r4 |

}

}

Chapter 5: Tweaking output 111

h

h

¢ h
h
T

T
T

h
h
T

�h h�� º h hh h
This is still not quite right. The note heads and flags are smaller, but the stems are too long

in proportion and the staff lines are spaced too widely apart. These need to be scaled down in
proportion to the font reduction. The next sub-section discusses how this is done.

5.3.3 Length and thickness of objects

Distances and lengths in LilyPond are generally measured in staff spaces, i.e., the distance be-
tween adjacent lines in the staff (or occasionally half staff spaces), while most thickness properties
are measured as multiples of the current staff-line thickness (which is given by the thickness

property of the StaffSymbol grob). For example, by default, the lines of hairpins are given
a thickness of 1 unit of the staff-line thickness, while the thickness of a note stem is 1.3 units.
Note, though, that some thickness properties are different; for example, the thickness of beams
is controlled by the value of the beam-thickness property, which is measured in staff spaces.

So how are lengths to be scaled in proportion to the font size? This can be done with the help
of a special function called magstep provided for exactly this purpose. It takes one argument,
the change in font size (value -2 in the example above) and returns a scaling factor suitable for
reducing other objects in proportion. The trick is now not to actually change the lengths of
stems and other grobs but to rather change the unit on which the length values are based – it
is the staff-space property of the StaffSymbol grob.

\new Staff ="main" {

\relative {

r4 g'8 g c4 c8 d |

e4 r8

<<

{ f8 c c }

\new Staff \with {

alignAboveContext = "main"

\omit Clef

\omit TimeSignature

fontSize = -2

% Reduce stem length and line spacing to match

\override StaffSymbol.staff-space = #(magstep -2)

}

{ f8 f c }

>>

r4 |

}

}

h
h

¢ h
h
T

T
T

h
h
T

�h h�� º h hh h

Chapter 5: Tweaking output 112

While changing staff-space affects the scale of the ossia, it does not affect the horizontal
spacing – this is determined by the layout of the main music in order to remain synchronized
with it, so it is not affected by any of these changes in size. Of course, if the scale of all the main
music were changed in this way then the horizontal spacing would be affected. This is discussed
later in the layout section.

This, then, completes the creation of an ossia. The sizes and lengths of all other objects may
be modified in analogous ways.

For small changes in scale, as in the example above, the thickness of the various drawn lines
such as bar lines, beams, hairpins, slurs, etc., does not usually require global adjustment. If
the thickness of any particular layout object needs to be adjusted this can be best achieved by
overriding its thickness property. An example of changing the thickness of slurs was shown
above in Section 5.2.1 [Properties of layout objects], page 96. The thickness of all drawn objects
(i.e., those not produced from a font) may be changed in the same way.

5.4 Offsets and alignments

LilyPond needs to know where each and every grob should be placed. This placement information
is stored using relative coordinates: the position of a grob is defined relative to the position of
its parent (if we had to use absolute coordinates instead – e.g., distances from the edges of the
page – it would be hard to maintain spatial relationships between grobs).

Every grob knows which grob is its parent in the respective axis. For example, a Flag grob
knows that its x-parent is a particular Stem grob.

Relative coordinates that describe a grob’s placement are stored in grob properties called
X-offset and Y-offset. They are measured in staff spaces. X-offset is the horizontal dis-
placement between a grob’s reference point and the reference point of a grob’s x-parent (similarly
with Y-offset).

What is a reference point? It’s a special point that defines the grob’s position. Think about
geometry: if you have to define where a figure is placed on a plane, you’ll usually say something
like “the lower left corner of this square has coordinates (0, 2)”, or “the center of this circle is
at (-1, 3)”. ‘Lower left corner’ and ‘center’ would be the reference points for square and circle,
respectively.

This illustration shows where reference points of particular grobs are located, indicated as
red dots (for example, the middle staff line for bars and stems, the intersection between the
baseline and the left edge for a text box, or the vertical center at the left side for a note head).

{

\override NoteHead.style = #'altdefault % for breve

\time 4/2 g'2-> c''\fermata as'1^"Yogi" |

b'\breve _"Larry" |

\mark "Twinkle" e''8 s4.. \bar "|."

}

P P P PTwinkleP hPTPP
yPNPP42P�P lPNP

LarryP
�P�PP YogiP.P

By overriding the X-offset or Y-offset value we can move grobs relative to their parents:

{

\override Script.X-offset = 3 % fermata, accent

Chapter 5: Tweaking output 113

\override TextScript.X-offset = 2 % "Yogi", "Larry"

\override Stem.X-offset = -2

\override Score.RehearsalMark.Y-offset = 5 % "Twinkle"

\override NoteHead.style = #'altdefault % for breve

\time 4/2 g'2-> c''\fermata as'1^"Yogi" |

b'\breve _"Larry" |

\mark "Twinkle" e''8 s4.. \bar "|."

}

P P P P
TwinkleP hPTPP

yPNPP42P�P lPNP
LarryP

�P�PP YogiP.P
Note that the Flag grob moved together with its Stem grob.

☛ ✟

Note: Changing X-offset or Y-offset doesn’t always work as ex-
pected, see Section “Aligning objects” in Notation Reference.
✡ ✠

Now, let’s explain another pair of properties: X-extent and Y-extent. Each of them is a
pair of numbers (internally, LilyPond calls this an interval), and they store a grob’s dimensions
relative to its reference point. For example, X-extent equal to (-1 . 4) means that the left edge
of the grob is 1 staff space to the left of its reference point, and the right edge is 4 staff spaces
to the right from reference point, for a total width of 4 - (-1) = 4 + 1 = 5 staff spaces. Both
numbers in an extent may be positive; for example, (2 . 3) is a valid extent: it means that the
whole grob is on the right of its reference point, and the width of the grob is 3 - 2 = 1 staff
space. Similarly, both numbers can be negative; these situations are quite unusual but won’t
give LilyPond headaches. The most common situation (at least for X-extent) is that the first
number is 0, which means that the reference point is on the left edge of the grob.

The previous example demonstrates this nicely: both the accent’s and the fermata’s left edge
is left of the reference point; the same holds for the breve note head (we selected the 'altdefault

note head style to make this better visible).

Now, suppose that we want to position a RehearsalMark grob so that its right edge is aligned
with a bar line (by default, LilyPond horizontally centers the rehearsal mark). With X-offset

equal to zero (i.e., its reference point is aligned on the parent, which is equal to the bar line in
this situation), the RehearsalMark grob is placed like this:

{

\override Score.RehearsalMark.X-offset = 0

b4 b b b \mark "Twinkle" b b b b

}

h
Twinkle

hhhº� h hhh
So, we need to shift it. Remember what the second number in X-extent means? It’s the position
of a grob’s right edge relative to its reference point. If we subtract this value from zero, we’ll
get the x-offset we want:

Chapter 5: Tweaking output 114

{

% value -10.4 found by trial and error

\override Score.RehearsalMark.X-offset = -10.4

b4 b b b \mark "Twinkle" b b b b

}

h
Twinkle

hhhº� h hhh
What if we wanted to center some grob on the reference point on its parent? That’s simple:

calculate the displacement between a grob’s reference point and the center of its extent. Some
examples:

• X-extent = (-2 . 2)
⇒ X-offset = 0 - 0 = 0

• X-extent = (0 . 4)
⇒ X-offset = 0 - (0 + 0.5 * 4) = -2

• X-extent = (-2 . 4)
⇒ X-offset = 0 - ((0.5 * -2) + (0.5 * 4)) = 0 - (-1 + 2) = -1

There is already a function with a super-long name available that can do these calculations
for us:

\override GrobName.X-offset =

#ly:self-alignment-interface::x-aligned-on-self

and we only need to specify what alignment we want:

\override GrobName.self-alignment-X = #RIGHT

This code tells the procedure to find the displacement between a grob’s reference point and
its right edge, and use it as the x-offset, which will result in the grob being right-aligned.

So, if you change a grob’s extent, you will affect how it will be aligned (because LilyPond
will think that the grob’s dimensions are different):

{

\override Score.RehearsalMark.X-extent = #'(0 . 8)

\override Score.RehearsalMark.self-alignment-X = #RIGHT

b4 b b b \mark "Twinkle" b b b b

}

h
Twinkle

hhhº� h hhh
Also, if a grob’s extent is empty (i.e., it’s not an interval pair), procedures like

x-aligned-on-self won’t have any information about a grob’s dimensions, so they won’t be
able to calculate an offset (they’ll just return value 0). In other words, a grob with an empty
extent can only be ‘aligned’ on its reference point because there’s no other information that
can be used for alignment:

{

\override Score.RehearsalMark.X-extent = ##f

b4 b b b \mark "Twinkle" b b b b

}

Chapter 5: Tweaking output 115

h
Twinkle

hhhº� h hhh
Notice that an empty extent and a zero extent result in the same positioning:

{

\override Score.RehearsalMark.X-extent = #'(0 . 0)

b4 b b b \mark "Twinkle" b b b b

}

h
Twinkle

hhhº� h hhh
However, an empty extent (or a zero extent, or any other extent) doesn’t prevent us from

placing the grob at any location we want – we just can’t use alignment procedures for that. We
can still specify any offset we want, and it will work as usual:

{

\override Score.RehearsalMark.X-extent = ##f

\override Score.RehearsalMark.X-offset = -10.4

b4 b b b \mark "Twinkle" b b b b

}

h
Twinkle

hhhº� h hhh
Now, there is one more thing to keep in mind: a grob’s parent has its own dimensions, too,

and we need to take them into account. For example, if we write

{ a'1 }

\addlyrics {

\override LyricText.X-offset =

#ly:self-alignment-interface::x-aligned-on-self

\override LyricText.self-alignment-X = #CENTER

nn

}

� .º
nn

the LyricText grob will be centered, but on the reference point of its parent (i.e., the center of
the syllable will be aligned to the reference point of the note head). If we want the center of
the LyricText grob to be aligned with the center of its parent NoteHead grob, we have to use a
different procedure: aligned-on-x-parent. It works very similar to x-aligned-on-self, but
in addition to calculating an offset based on a grob’s own extent, it also uses the grob’s parent
extent and computes positions relative to the center of the extent:

{ a'1 }

\addlyrics {

\override LyricText.X-offset =

#ly:self-alignment-interface::aligned-on-x-parent

Chapter 5: Tweaking output 116

\override LyricText.self-alignment-X = #CENTER

nn

}

� .º
nn

5.5 Placement of objects

There are some objects in musical notation that belong to the staff and there are other objects
that should be placed outside the staff. These are called within-staff objects and outside-staff

objects, respectively.

Within-staff objects are those that are located on the staff – note heads, stems, accidentals,
etc. The positions of these are usually fixed by the music itself – they are vertically positioned
on specific lines of the staff or are tied to other objects that are so positioned. Collisions of note
heads, stems and accidentals in closely set chords are normally avoided automatically. There
are commands and overrides which can modify this automatic behavior, as we shall shortly see.

5.5.1 Automatic behavior

Objects belonging outside the staff include things such as rehearsal marks, text and dynamic
markings. LilyPond’s rule for the vertical placement of outside-staff objects is to place them as
close to the staff as possible but not so close that they collide with any other object. LilyPond
uses the outside-staff-priority property to determine the order in which the objects should
be placed, as follows.

First, LilyPond places all the within-staff objects. Then it sorts the outside-staff objects
according to their outside-staff-priority. The outside-staff objects are taken one by one,
beginning with the object with the lowest outside-staff-priority, and placed so that they
do not collide with any objects that have already been placed. That is, if two outside-staff
grobs are competing for the same space, the one with the lower outside-staff-priority will
be placed closer to the staff. If two objects have the same outside-staff-priority the one
encountered first will be placed closer to the staff.

In the following example all the markup texts have the same priority (since it is not explicitly
set). Note that ‘Text3’ is automatically positioned close to the staff again, nestling under ‘Text2’.

c''2^"Text1"

c''2^"Text2" |

c''2^"Text3"

c''2^"Text4" |

NText4NText1� º Text3NText2N
Staves are also positioned, by default, as closely together as possible (subject to a minimum

separation). If notes project a long way towards an adjacent staff they will force the staves
further apart only if an overlap of the notation would otherwise occur. The following example
demonstrates this ‘nestling’ of the notes on adjacent staves:

<<

\new Staff {

\relative { c'4 a, }

Chapter 5: Tweaking output 117

}

\new Staff {

\relative { c''''4 a, }

}

>>

hh
h� º
h

� º
5.5.2 Within-staff objects

We have already seen how the commands \voiceXXX affect the direction of slurs, ties, fingering,
and everything else that depends on the direction of the stems – see Section 4.2.2 [Explicitly
instantiating voices], page 53. These commands are essential when writing polyphonic music
to permit interweaving melodic lines to be distinguished. But occasionally it may be necessary
to override this automatic behavior. This can be done for whole sections of music or even
for an individual note. The property that controls this behavior is the direction property of
each layout object. We first explain what this does, and then introduce a number of ready-made
commands which avoid you having to code explicit overrides for the more common modifications.

Some layout objects like slurs and ties curve, bend, or point either up or down; others like
stems and flags also move to the right or left when they point up or down. This is controlled
automatically when direction is set.

The direction property

The following example shows the default positioning of slurs in the first bar, with slurs starting
on high notes positioned above the notes and those starting on low notes positioned below,
followed by a bar with both slurs forced down, a bar with both slurs forced up, and finally a bar
with both slurs reverted back to the default behavior.

a'4(g') c''(a') |

\override Slur.direction = #DOWN

a'4(g') c''(a') |

\override Slur.direction = #UP

a'4(g') c''(a') |

\revert Slur.direction

a'4(g') c''(a') |

h hh h h h hh h hh� º h h h h h
Here we have used the constants DOWN and UP. These have the values -1 and +1, respectively,

and these numerical values may be used instead. The value 0 may also be used in some cases.
It is simply treated as meaning UP for slurs, but for some objects it means ‘center’. There is a
constant, CENTER, which has the value 0.

However, these explicit overrides are not usually used, as there are simpler and equivalent
predefined commands available. Here is a table of the commonest. The meaning of each is
stated where it is not obvious.

Chapter 5: Tweaking output 118

Down/Left Up/Right Revert Effect
\arpeggioArrowDown \arpeggioArrowUp \arpeggioNormal Arrow is at bottom, at top,

or no arrow

\dotsDown \dotsUp \dotsNeutral Direction of movement to
avoid staff lines

\dynamicDown \dynamicUp \dynamicNeutral
\phrasingSlurDown \phrasingSlurUp \phrasingSlurNeutral Note: distinct from slur

commands

\slurDown \slurUp \slurNeutral
\stemDown \stemUp \stemNeutral
\textSpannerDown \textSpannerUp \textSpannerNeutral Text entered as spanner is

below/above staff

\tieDown \tieUp \tieNeutral
\tupletDown \tupletUp \tupletNeutral Tuplets are below/above

notes

The neutral/normal variants of these commands are implemented using \revert and these
may not be preceded by \once. If you wish to limit the effect of the other commands (which
are implemented using \override) to a single timestep, you can precede them with \once like
you would do with explicit overrides.

Or, if just a single layout object needs to be forced up or down, the direction indicators, ‘^’
or ‘_’, may be used:

a'4(g') c''(a') |

a'4^(g') c''_(a') |

hh hhº� h hhh
Fingering

The placement of fingering on single notes can also be controlled by the direction property,
but changing direction has no effect on chords. As we shall see, there are special commands
which allow the fingering of individual notes of chords to be controlled, with the fingering being
placed above, below, to the left, or to the right of each note.

First, here’s the effect of direction on the fingering attached to single notes. The first bar
shows the default behavior, and the following two bars shows the effect of specifying DOWN and
UP:

\relative {

c''4-5 a-3 f-1 c'-5 |

\override Fingering.direction = #DOWN

c4-5 a-3 f-1 c'-5 |

\override Fingering.direction = #UP

c4-5 a-3 f-1 c'-5 |

}

h�
�

h
�

h �h�h�h
�

�h�hº� �h hh�
�

h
However, overriding the direction property is not the easiest way of manually setting the

fingering above or below the notes; using ‘_’ or ‘^’ instead of ‘-’ before the fingering number is
usually preferable. Here is the previous example using this method:

\relative {

c''4-5 a-3 f-1 c'-5 |

c4_5 a_3 f_1 c'_5 |

Chapter 5: Tweaking output 119

c4^5 a^3 f^1 c'^5 |

}

h�
�

h
�

h �h�h�h
�

�h�hº� �h hh�
�

h
The direction property is ignored for chords, but the directional prefixes, ‘_’ and ‘^’, do

work. By default, the fingering is automatically placed both above and below the notes of a
chord, as shown:

\relative {

<c''-5 g-3>4

<c-5 g-3 e-2>4

<c-5 g-3 e-2 c-1>4

}

hhh
�
�

hhh
�
�

�

hh� º �

�

h

but this may be overridden to manually force all or any of the individual fingering numbers
above or below:

\relative {

<c''-5 g-3 e-2 c-1>4

<c^5 g_3 e_2 c_1>4

<c^5 g^3 e^2 c_1>4

}

hhhh
�

�

�

hhhh
�
�

�

hhhh� º
�
�

�

Even greater control over the placement of fingering of the individual notes in a chord is
possible by using the \set fingeringOrientations command. The format of this command
is:

\set fingeringOrientations = #'([up] [left/right] [down])

\set is used because fingeringOrientations is a property of the Voice context, created and
used by the New_fingering_engraver.

The property may be set to a list of one to three values. It controls whether fingerings may
be placed above (if up appears in the list), below (if down appears), to the left (if left appears,
or to the right (if right appears). Conversely, if a location is not listed, no fingering is placed
there. LilyPond takes these constraints and works out the best placement for the fingering of
the notes of the following chords. Note that left and right are mutually exclusive – fingerings
may be placed only on one side or the other, not both.

☛ ✟

Note: To control the placement of the fingering of a single note using
this command it is necessary to write it as a single-note chord by
placing angle brackets round it.
✡ ✠

Chapter 5: Tweaking output 120

Here are a few examples:

\relative {

\set fingeringOrientations = #'(left)

<f'-2>4

<c-1 e-2 g-3 b-5>4

\set fingeringOrientations = #'(left)

<f-2>4

<c-1 e-2 g-3 b-5>4 |

\set fingeringOrientations = #'(up left down)

<f-2>4

<c-1 e-2 g-3 b-5>4

\set fingeringOrientations = #'(up left)

<f-2>4

<c-1 e-2 g-3 b-5>4 |

\set fingeringOrientations = #'(right)

<f-2>4

<c-1 e-2 g-3 b-5>4

}

�h hhhh
�
 hhhh

�

�

�

hhhh
�

�
�h�

 �hhhh
�

� hh� º

h �
�h hhh
�

If the fingering seems a little crowded the font-size could be reduced. The default value can
be seen from the Fingering object in the IR to be -5, so let’s try -7:

\relative {

\override Fingering.font-size = -7

\set fingeringOrientations = #'(left)

<f'-2>4

<c-1 e-2 g-3 b-5>4

\set fingeringOrientations = #'(left)

<f-2>4

<c-1 e-2 g-3 b-5>4 |

\set fingeringOrientations = #'(up left down)

<f-2>4

<c-1 e-2 g-3 b-5>4

\set fingeringOrientations = #'(up left)

<f-2>4

<c-1 e-2 g-3 b-5>4 |

\set fingeringOrientations = #'(right)

<f-2>4

<c-1 e-2 g-3 b-5>4

}

�h hhhh� hhhh
�

�

�

hhhh �

�
�h�

 �hhhh� � hh� º

h �
�h hhh�

5.5.3 Outside-staff objects

Outside-staff objects are automatically placed to avoid collisions. There are several ways to
override the automatic placement if the positioning is not optimum.

Chapter 5: Tweaking output 121

The outside-staff-priority property

Objects with the lower value of the outside-staff-priority property are placed nearer to
the staff, and other outside-staff objects are then raised as far as necessary to avoid collisions.
The outside-staff-priority is defined in the grob-interface and so is a property of all
layout objects. By default it is set to #f for all within-staff objects, and to a numerical value
appropriate to each outside-staff object when the object is created. See Section “Default values
for outside-staff-priority” in Notation Reference for an exhaustive table.

Note the unusual names for some of the objects: spanner objects are automatically created
to control the vertical positioning of grobs which (might) start and end at different musical
moments, so changing the outside-staff-priority of the underlying grob will have no effect.
For example, changing outside-staff-priority of the Hairpin object will have no effect on the
vertical positioning of hairpins – you must change outside-staff-priority of the associated
DynamicLineSpanner object instead. This override must be placed at the start of the spanner,
which might include several linked hairpins and dynamics.

Here is an example showing the default placement of some of these.

% set details for later TextSpanner

\override TextSpanner.bound-details.left.text =

\markup { \small \bold Slower }

% place dynamics above staff

\dynamicUp

% start ottava bracket

\ottava 1

c''4 \startTextSpan

% add dynamic text and hairpin

c''4\pp\<

c''4

% add text script

c''4^Text |

c''4 c''

% add dynamic text and terminate hairpin

c''4\ff c'' \stopTextSpan |

% stop ottava bracket

\ottava 0

c'4 c' c' c' |

hh
ff
h

8
Slower

hhhhh
pp
hº� h

Text

h h
This example also shows how to create text spanners – text with extender lines above a section

of music. The spanner extends from the \startTextSpan command to the \stopTextSpan

command, and the format of the text is defined by the \override TextSpanner command. For
more details see Section “Text spanners” in Notation Reference.

It also shows how ottava brackets are created.

If the default values of outside-staff-priority do not give you the placing you want, the
priority of any of the objects may be overridden. Suppose we would like the ottava bracket to
be placed below the text spanner in the example above. All we need to do is to look up the
priority of OttavaBracket in the table at Section “Default values for outside-staff-priority” in

Chapter 5: Tweaking output 122

Notation Reference or in the IR, and reduce it to a value lower than that of a TextSpanner,
remembering that OttavaBracket is created in the Staff context:

% set details for later text spanner

\override TextSpanner.bound-details.left.text =

\markup { \small \bold Slower }

% place dynamics above staff

\dynamicUp

% place following ottava bracket below text spanners

\once \override Staff.OttavaBracket.outside-staff-priority = 340

% start ottava bracket

\ottava 1

c''4 \startTextSpan

% add dynamic text

c''4\pp

% add dynamic line spanner

c''4\<

% add text script

c''4^Text |

c''4 c''

% add dynamic text

c''4\ff c'' \stopTextSpan |

% stop ottava bracket

\ottava 0

c'4 c' c' c' |

hh
ff
h

8
Slower

hhhhh
pp
hº� h

Text

h h
Note that some of these objects, in particular bar numbers, metronome marks, and rehearsal

marks, live by default in the Score context, so be sure to use the correct context when these
are being overridden.

Slurs by default are classed as within-staff objects, but they often appear above the staff if
the notes to which they are attached are high on the staff. This can push outside-staff objects
such as articulations too high, as the slur will be placed first. The avoid-slur property of the
articulation can be set to 'inside to bring the articulation inside the slur, but the avoid-slur

property is effective only if the outside-staff-priority is also set to #f. Alternatively, the
outside-staff-priority of the slur can be set to a numerical value to cause it to be placed
along with other outside-staff objects according to that value. Here’s an example showing the
effect of the two methods:

\relative c'' {

c4(c^\markup { \tiny \sharp } d4.) c8 |

c4(

\once \override TextScript.avoid-slur = #'inside

\once \override TextScript.outside-staff-priority = ##f

c4^\markup { \tiny \sharp } d4.) c8 |

\once \override Slur.outside-staff-priority = 500

c4(c^\markup { \tiny \sharp } d4.) c8 |

}

Chapter 5: Tweaking output 123

hTh
Ph Th hPh�hPh�hº� h hh �

T
Changing the outside-staff-priority can also be used to control the vertical placement

of individual objects, although the results may not always be desirable. Suppose we would
like “Text3” to be placed above “Text4” in the example under Automatic behavior, above (see
Section 5.5.1 [Automatic behavior], page 116). All we need to do is to look up the priority of
TextScript in the IR or in the tables above, and increase the priority of “Text3” to a higher
value:

c''2^"Text1"

c''2^"Text2" |

\once \override TextScript.outside-staff-priority = 500

c''2^"Text3"

c''2^"Text4" |

NText4NText1� º
Text3

NText2N
This certainly lifts “Text3” above “Text4” but it also lifts it above “Text2”, and “Text4” now

drops down. Perhaps this is not so good. What we would really like to do is to position all the
annotation at the same distance above the staff. To do this, we clearly will need to space the
notes out horizontally to make more room for the text. This is done using the \textLengthOn

command.

The \textLengthOn command

By default, text produced by markup takes up no horizontal space as far as laying out the music
is concerned. The \textLengthOn command changes this behavior, causing the notes to be
spaced out as far as is necessary to accommodate the text:

\textLengthOn % Cause notes to space out to accommodate text

c''2^"Text1"

c''2^"Text2" |

c''2^"Text3"

c''2^"Text4" |

NText4NText1� º Text3NText2N
The command to revert to the default behavior is \textLengthOff. Alternatively, \once

may be used with \textLengthOn if the effect is to be limited to just a single musical moment.
The corresponding spacing behavior for rehearsal marks and tempo indications is independently
controlled with the commands \markLengthOn and \markLengthOff.

Markup text will also avoid notes which project above the staff. If this is not desired, the
automatic displacement upwards may be turned off by setting the priority to #f. Here’s an
example to show how markup text interacts with such notes.

\relative {

% This markup is short enough to fit without collision

c''2^"Tex" c'' |

Chapter 5: Tweaking output 124

R1 |

% This is too long to fit, so it is displaced upwards

c,,2^"Text" c'' |

R1 |

% Turn off collision avoidance

\once \override TextScript.outside-staff-priority = ##f

c,,2^"Long Text " c'' |

R1 |

% Turn off collision avoidance

\once \override TextScript.outside-staff-priority = ##f

\textLengthOn % and turn on textLengthOn

c,,2^"Long Text " % Spaces at end are honored

c''2 |

}

Long Text N��
NN

º� TexN �
NText

N
N

�7 NLong Text

Dynamics placement

Dynamic markings will normally be positioned beneath the staff, but may be positioned above
with the \dynamicUp command. They will be positioned vertically relative to the note to which
they are attached, and will float below (or above) all within-staff objects such as phrasing slurs
and bar numbers. This can give quite acceptable results, as this example shows:

\relative {

\clef "bass"

\key aes \major

\time 9/8

\dynamicUp

bes4.~\f\< \(bes4 bes8 des4\ff\> c16 bes\! |

ees,2.~\)\mf ees4 r8 |

}

hPmfN ¢hP98�����
fh hhffh

Th
However, if the notes and attached dynamics are close together the automatic placement will

avoid collisions by displacing later dynamic markings further away, but this may not be the
optimum placement, as this rather artificial example shows:

\dynamicUp

Chapter 5: Tweaking output 125

\relative { a'4\f b\mf a\mp b\p }

h
mp

hphf� º hmf

Should a similar situation arise in ‘real’ music, it may be preferable to space out the notes a
little further, so the dynamic markings can all fit at the same vertical distance from the staff.
We were able to do this for markup text by using the \textLengthOn command, but there is
no equivalent command for dynamic marks. So we shall have to work out how to do this using
\override commands.

Grob sizing

In general, all grobs support the grob-interface, which contains, among other things, the prop-
erties X-offset, Y-offset, X-extent, and Y-extent (see Section 5.4 [Offsets and alignments],
page 112, for a thorough introduction).

By default, outside-staff objects are given a width (i.e., a horizontal extent) of zero so that
they may overlap in the horizontal direction. By convention, this is done by positioning a grob’s
left edge at infinity and the right edge at minus infinity by setting the extra-spacing-width

property to '(+inf.0 . -inf.0). To ensure grobs do not overlap in the horizontal direction
we must override this value of extra-spacing-width to give them a little extra spacing. The
units are the space between two staff lines, so moving the left edge half a unit to the left and
the right edge half a unit to the right should do it:

\override DynamicText.extra-spacing-width = #'(-0.5 . 0.5)

Let’s see whether this works in our previous example:

\dynamicUp

% Extend width by 1 staff space

\override DynamicText.extra-spacing-width = #'(-0.5 . 0.5)

\relative { a'4\f b\mf a\mp b\p }

h
mp

hphf� º hmf

This looks better, but maybe we would prefer the dynamic marks to be aligned along the
same baseline rather than going up and down with the notes. The property to do this is
staff-padding, which is covered in the section on collisions (see Section 5.7 [Collisions of
objects], page 130).

5.6 Vertical spacing

As a rule, LilyPond’s vertical spacing of musical objects is pretty good. Let’s see how it does
with a simple song, with 2 voices and piano accompaniment:

Chapter 5: Tweaking output 126

N

N

N
N

N

lyrics

º
N� º

� N

7

6

X

N� º
HereN� º
N

N
some

N
N

are

N

N
N

There’s nothing wrong with the default vertical spacing. However, let’s assume that you’re
working with a publisher with some specific requirements for vertical spacing of staves and lyrics:
they want the lyrics spaced away from any notes, they want the piano accompaniment spaced
away from the vocal line and they want the two piano staves pushed together tightly. Let’s start
with the lyrics.

Lyrics sit within a system, and therefore the commands to space them are found in Section
“Flexible vertical spacing within systems” in Notation Reference. It tells us that lyrics are ‘non-
staff lines’ and therefore the command to change their spacing will refer to a property that has
the word nonstaff in its name. Spacing them away from the staff to which they relate (the top
line) is indicated by the the word relatedstaff. Spacing them from the lower line is indicated
by the word unrelatedstaff. The vocal parts are part of a VerticalAxisGroup, so we need
to adjust its properties. Let’s try it and see if it works.

<<

\new ChoirStaff

<<

\new Staff {

\new Voice = "music" {

b'2 c' c' c'

}

}

\new Lyrics \with {

\override VerticalAxisGroup

.nonstaff-relatedstaff-spacing.padding = 5

\override VerticalAxisGroup

.nonstaff-unrelatedstaff-spacing.padding = 5

}

\lyricsto "music" {

Here are some lyrics

}

\new Staff {

\clef bass e'2 f e c

}

>>

\new PianoStaff

<<

\new Staff {

Chapter 5: Tweaking output 127

g''2 c'' c'' a''

}

\new Staff {

\clef bass e2 f c e

}

>>

>>

N

N

N
N

N

lyrics

º
N� º

� N

7

6

X

N� º

Here

N� º
N

N
some

N

N
are

N

N
N

Well – yes it does, but perhaps too well. When we set the padding to 5, LilyPond adds
5 staff spaces to the distance between objects, which is too much for us here. We’ll use value 2
instead.

Next, let’s move the piano music away from the vocal parts. The vocal music is a ChoirStaff

context, so we need to increase the spacing between that group of staves and the piano staff
below. We’ll do this by changing the basic-distance sub-property of the StaffGrouper grob’s
staffgroup-staff-spacing.

<<

\new ChoirStaff \with {

\override StaffGrouper

.staffgroup-staff-spacing.basic-distance = 15

}

<<

\new Staff {

\new Voice = "music" {

b'2 c' c' c'

}

}

\new Lyrics \with {

\override VerticalAxisGroup

.nonstaff-relatedstaff-spacing.padding = 2

\override VerticalAxisGroup

.nonstaff-unrelatedstaff-spacing.padding = 2

}

\lyricsto "music" {

Chapter 5: Tweaking output 128

Here are some lyrics

}

\new Staff {

\clef bass e'2 f e c

}

>>

\new PianoStaff

<<

\new Staff {

g''2 c'' c'' a''

}

\new Staff {

\clef bass e2 f c e

}

>>

>>

N

N

N

N

N

lyrics

º
N� º

� N

7

6

X

N� º
HereN� º

N

N
some

N

N
are

N

N
N

Excellent. Now just for the last requirement to make the piano staves closer together. To
do this, we again alter the properties of the StaffGrouper grob, but this time we’re going to
reduce both the basic-distance and the padding. We can do this as shown below.

<<

\new ChoirStaff \with {

\override StaffGrouper

.staffgroup-staff-spacing.basic-distance = 15

}

<<

\new Staff {

\new Voice = "music" {

b'2 c' c' c'

}

}

\new Lyrics \with {

\override VerticalAxisGroup

.nonstaff-relatedstaff-spacing.padding = 2

Chapter 5: Tweaking output 129

\override VerticalAxisGroup

.nonstaff-unrelatedstaff-spacing.padding = 2

}

\lyricsto "music" {

Here are some lyrics

}

\new Staff {

\clef bass e'2 f e c

}

>>

\new PianoStaff \with {

\override StaffGrouper.staff-staff-spacing =

#'((basic-distance . 0)

(padding . 0))

}

<<

\new Staff {

g''2 c'' c'' a''

}

\new Staff {

\clef bass e2 f c e

}

>>

>>

N

N

N

N

N

lyrics

º
N� º

� N

7

6

J

N� º
HereN� º

N

N
some

N

N
are

N

N
N

That’s put them really close together – but it’s what the publisher wanted. They could be
moved further apart by altering the padding or basic-distance if wanted.

There are many ways of altering vertical spacing. A key point to remember is that the
spacing between objects in a StaffGroup (like GrandStaff or PianoStaff groups) is controlled
by the spacing variables of the StaffGrouper. Spacing from ungrouped staves (like Lyrics

and Staff) is controlled by the variables of the VerticalAxisGroup. See the Section “Flexible
vertical spacing paper variables” in Notation Reference and Section “Flexible vertical spacing
within systems” in Notation Reference for more details.

Chapter 5: Tweaking output 130

5.7 Collisions of objects

The tips and tricks covered in this section are applications and extensions of previous parts of
this manual. In particular, you should be comfortable with the concepts of extents, offsets, and
alignments, see Section 5.4 [Offsets and alignments], page 112.

5.7.1 Moving objects

This may come as a surprise, but LilyPond is not perfect. Some notation elements can overlap.
This is unfortunate, but in fact rather rare. Usually the need to move objects is for clarity or
aesthetic reasons – they would look better with a little more or a little less space around them.

There are three main approaches to resolving overlapping notation. They should be consid-
ered in the following order:

1. The direction of one of the overlapping objects may be changed using the predefined
commands listed earlier for within-staff objects (see Section 5.5.2 [Within-staff objects],
page 117). Stems, slurs, beams, ties, dynamics, text, and tuplets may be repositioned easily
in this way. The limitation is that you have a choice of only two positions, and neither may
be suitable.

2. The object properties, which LilyPond uses when positioning layout objects, may be mod-
ified using \override. The advantages of making changes to this type of property are
(a) that some other objects will be moved automatically if necessary to make room, and
(b) that the single override can apply to all instances of the same type of object. Such
properties include:

• direction

This has already been covered in some detail – see Section 5.5.2 [Within-staff objects],
page 117.

• padding, right-padding, staff-padding

As an object is being positioned the value of its padding property specifies the gap that
must be left between itself and the nearest edge of the object against which it is being
positioned. Note that it is the padding value of the object being placed that is used;
the padding value of the object which is already placed is ignored. Gaps specified by
padding can be applied to all objects that support the side-position-interface.

Instead of padding, the placement of groups of accidentals is controlled by
right-padding. This property is to be found in the AccidentalPlacement grob
which, note, lives in the Staff context. In the typesetting process the note heads are
typeset first and then the accidentals, if any, are added to the left of the note heads
using the right-padding property to determine the separation from the note heads
and between individual accidentals. So only the right-padding property of the
AccidentalPlacement grob has any effect on the placement of the accidentals.

The staff-padding property is closely related to the padding property: padding

controls the minimum amount of space between any object that supports the
side-position-interface and the nearest other object (generally the note or the
staff lines); staff-padding applies only to those objects that are always set outside
the staff – it controls the minimum distance from the staff to the outside-staff object.
Note that staff-padding has no effect on objects that are positioned relative to the
note rather than the staff, even though it may be overridden without error for such
objects – it is simply ignored.

To discover which padding property is required for the object you wish to reposition,
you need to return to the IR and look up the object’s properties. Be aware that the
padding properties might not be located in the obvious object, so look in objects that
appear to be related.

Chapter 5: Tweaking output 131

All padding values are measured in staff spaces. For most objects, this value is set by
default to be around 1.0 or less (it varies with each object). It may be overridden if a
larger (or smaller) gap is required.

• self-alignment-X

Use this property to align the object to the left, to the right, or to center it with respect
to the parent object’s reference point. It may be used with all objects that support
the self-alignment-interface. In general these are objects that contain text. The
values are LEFT, RIGHT or CENTER. Alternatively, a numerical value between -1 and +1

may be specified, where -1 is left-aligned, +1 is right-aligned, and numbers in between
move the text progressively from left-aligned to right-aligned. Numerical values greater
than 1 may be specified to move the text even further to the left, or less than -1 to
move the text even further to the right. A change of 1 in the value corresponds to a
movement of half the text’s length.

• extra-spacing-width

This property is available for all objects that support the item-interface. It takes
two numbers, the first is added to the left edge of the extent and the second is added
to the right edge. Negative numbers move the edge to the left, positive to the right, so
to widen an object the first number must be negative, the second positive. Note that
not all objects honor both numbers. For example, the Accidental object only takes
notice of the first (left edge) number.

• staff-position

This property is part of the staff-symbol-referencer-interface, which is supported
by objects that are positioned relative to the staff. It specifies the vertical position of
the object relative to the center line of the staff in half staff spaces. It is useful in
resolving collisions between layout objects like multi-measure rests, ties, and notes in
different voices.

• horizontal-shift

Within a voice, all the notes occurring at the same musical moment are grouped into
a note column, and a NoteColumn grob is created to control the horizontal positioning
of that group of notes (see “Note columns” in Section 4.2.2 [Explicitly instantiating
voices], page 53). If and only if two or more note columns within a single Staff context,
both with stems in the same direction, occur at the same musical moment, the values
of their horizontal-shift properties are used to rank them, and the columns in the
higher ranks are progressively offset to avoid collisions of the note heads. This property
is set by the \voiceXXX commands and may be overridden directly with an \override

command or, more usually, by the \shiftOn commands. Note that this property is
used to rank the note columns for off-setting – it does not specify the magnitude of
the offset, which is progressively increased in steps based on the note head’s width for
each rank. The steps are usually of half a note head’s width, but may be a full note
head’s width when a closely spaced group of notes is involved.

• force-hshift

The force-hshift property is part of NoteColumn grobs (actually of the
note-column-interface). Changing it permits a note column to be moved in
situations where the note columns overlap. Note that it has no effect on note columns
that do not overlap. It is specified in units appropriate to a note column, viz. the
note head width of the first voice note. It should be used in complex situations
where the normal \shiftOn commands (see Section 4.2.2 [Explicitly instantiating
voices], page 53) do not resolve the note conflict satisfactorily. It is preferable to the
extra-offset property for this purpose as there is no need to work out the distance

Chapter 5: Tweaking output 132

in staff spaces, and moving the notes into or out of a NoteColumn affects other actions
such as merging note heads.

3. Finally, when everything else fails, objects may be manually repositioned relative to the
staff center line vertically, or by displacing them by any distance to a new position. The
disadvantages are that the correct values for the repositioning have to be worked out, often
by trial and error, for every object individually, and, because the movement is done after
LilyPond has placed all other objects, the user is responsible for avoiding any collisions
that might ensue. However, the main difficulty with this approach is that the repositioning
values may need to be reworked if the music is later modified. The properties that can be
used for this type of manual repositioning are as follows.

• extra-offset

This property applies to any layout object supporting the grob-interface. It takes
a pair of numbers that specify the extra displacement in the horizontal and vertical
directions. Negative numbers move the object to the left or down. The units are staff
spaces. The extra displacement is made after the typesetting of objects is finished, so
an object may be repositioned anywhere without affecting anything else.

• positions

This is most useful for manually adjusting the slope and height of beams, slurs, and
tuplets. It takes a pair of numbers giving the position of the left and right ends of
the beam, slur, etc., relative to the center line of the staff. Units are staff spaces.
Note, though, that slurs and phrasing slurs cannot be repositioned by arbitrarily large
amounts. LilyPond first generates a list of possible positions for the slur and by default
finds the slur that “looks best”. If the positions property has been overridden the
slur that is closest to the requested positions is selected from the list.

A particular object may not have all of these properties. It is necessary to go to the IR to
look up which properties are available for the object in question.

Here is a list of the objects which are most likely to be involved in collisions, together with
the name of the object which should be looked up in the IR in order to discover which properties
should be used to move them.

Object type Object name
articulations, e.g., ‘->’ Script

beams Beam

dynamics (vertically) DynamicLineSpanner

dynamics (horizontally) DynamicText

fingerings Fingering

rehearsal marks RehearsalMark

text marks TextMark

slurs Slur

text, e.g., ‘^"text"’ TextScript

ties Tie

tuplets TupletBracket

5.7.2 Fixing overlapping notation

Let’s now see how the properties in the previous section can help resolve overlapping notation.

The padding property

The padding property can be set to increase (or decrease) the distance between symbols that
are printed above or below notes.

c'2\fermata

Chapter 5: Tweaking output 133

\override Script.padding = 3

b2\fermata

N
y

N
y� º

% This will not work, see below

\override MetronomeMark.padding = 3

\tempo 4 = 120

c'1 |

% This works

\override Score.MetronomeMark.padding = 3

\tempo 4 = 80

d'1 |

h = 80

.� ºh = 120

.
Note in the second example how important it is to figure out what context handles a certain

object. Since the MetronomeMark grob is handled in the Score context, property changes in
the Voice context will not be noticed. For more details, see Section “Modifying properties” in
Notation Reference.

If the padding property of an object is increased when that object is in a stack of objects
being positioned according to their outside-staff-priority, then that object and all objects
outside of it are moved.

The right-padding property

The right-padding property affects the spacing between the accidental and the note to which
it applies.3 It is not often required, but it can help in horizontally tight situations, for example.

\relative c' {

cis8[dis eis fis gis ais bis cis]

}

\relative c' {

% move accents nearer to note heads

\override Score.AccidentalPlacement.right-padding = -0.1

cis8[dis eis fis gis ais bis cis]

}

h h�� �h �h�� hº� h h�� h
h h�� �h �h�� hº� h h�� h

3 The DynamicText grob also has a right-padding property but with a completely different function: it controls
the horizontal space between an absolute dynamic and a dynamic text span that starts at the same moment.

Chapter 5: Tweaking output 134

The staff-padding property

staff-padding can be used to align objects such as dynamics along a baseline at a fixed distance
from the staff, when no other notation forces them further from the staff. It is not a property
of DynamicText but of DynamicLineSpanner. This is because the baseline should apply equally
to all dynamics, including those created as extended spanners. So this is the way to align the
dynamic marks in the example taken from the previous section:

\override DynamicLineSpanner.staff-padding = 3

\relative { a'4\f b\mf a\p b\mp }

h
p
h
mp

h
f

� º h
mf

The self-alignment-X property

The following example shows how to adjust the position of a string fingering object relative to
a note’s stem by aligning the right edge with the reference point of the parent note:

\voiceOne

<a''\2>

\once \override StringNumber.self-alignment-X = #RIGHT

<a''\2>

2h2

º� h

The staff-position property

Multi-measure rests in one voice can collide with notes in another. Since these rests are typeset
centered between the bar lines, it would require significant effort for LilyPond to figure out
which other notes might collide with it, since all the current collision handling between notes
and between notes and rests is done only for notes and rests that occur at the same time. Here’s
an example of a collision of this type:

<< \relative { c'4 c c c } \\ { R1 } >>

h h�h� º h
The best solution here is to move the multi-measure rest down, since the rest is in the lower

voice. The default in \voiceTwo (i.e., in the second voice of a <<{...} \\ {...}>> construct)
is that staff-position is set to -6 for MultiMeasureRest, so we need to move it, say, four
half-staff spaces down to -10.

<<

\relative { c'4 c c c }

\\

\override MultiMeasureRest.staff-position = -10

{ R1 }

>>

Chapter 5: Tweaking output 135

h h�h� º h
This is better than using, for example, extra-offset, because the ledger line above the rest

is inserted automatically.

Note that there is a peculiarity with this property if applied to a Tie grob: LilyPond distin-
guishes between exact numbers (like integers and fractions) and inexact numbers (like numbers
with a decimal point). See Section “engraving ties manually” in Notation Reference for the
difference between exact and inexact values.

The extra-offset property

The extra-offset property provides complete control over the positioning of an object both
horizontally and vertically.

In the following example, the second fingering is moved a little to the left, and 1.8 staff space
downwards:

f'4-5

\once \override Fingering.extra-offset = #'(-0.3 . -1.8)

f'4-5

�hº� �h
The positions property

The positions property allows the vertical position and hence the slope of tuplets, slurs, phras-
ing slurs, and beams to be controlled manually.

Here’s an example in which the phrasing slur and slur collide:

\relative { a'8 \((a'16) a \) }

h hh� º
One possibility would be to move the two ends of the phrasing slur higher. We can try setting
the left end to 2.5 staff spaces above the center line and the right end to 4.5 above, and LilyPond
will select the phrasing slur from the candidates it has found with its end points closest to these:

\once \override PhrasingSlur.positions = #'(2.5 . 4.5)

a'8 \((a''16) a'' \)

h hh� º
This is an improvement, but why not lower the right end of the slur a little? If you try it

you’ll find it can’t be done in this way. That’s because there are no candidate slurs lower than
the one already selected, and in this case the positions property has no effect. However, ties,
slurs and phrasing slurs can be positioned and shaped very precisely when necessary. To learn
how to do this, see Section “Modifying ties and slurs” in Notation Reference.

Here’s a further example. We see that the beams collide with the ties:

{

Chapter 5: Tweaking output 136

\time 4/2

<<

\relative { c'1~ 2. e8 f }

\\

\relative {

e''8 e e e

e e e e

f2 g

}

>>

<<

\relative { c'1~ 2. e8 f }

\\

\relative {

e''8 e e e

e e e e

f2 g

}

>>

}

h h h hhh hh
N
N
P
N
hh h h h h

.
h� 42 .
h h

N h hh
N
N
P

This can be resolved by manually moving both ends of the beam up from their position at 1.81
staff spaces below the center line to, say, 1:

{

\time 4/2

<<

\relative { c'1~ 2. e8 f }

\\

\relative {

\override Beam.positions = #'(-1 . -1)

e''8 e e e

e e e e

f2 g

}

>>

<<

\relative { c'1~ 2. e8 f }

\\

\relative {

e''8 e e e

e e e e

f2 g

\revert Beam.positions

}

>>

}

Chapter 5: Tweaking output 137

h h h hhh hh
N
N
P
N
hh h h h h

.
h� 42 .
h h

N h hh
N
N
P

Note that the override continues to apply in the second voice of the second measure of eighth
notes, but not to any of the beams in the first voice, even those in the later second measure. As
soon as the override should no longer apply it should be reverted, as shown.

The force-hshift property

We can now see how to apply the final corrections to the Chopin example introduced at the end
of Section 4.2.1 [I’m hearing voices], page 48, which was left looking like this:

\new Staff \relative {

\key aes \major

<<

{ c''2 aes4. bes8 }

\\

{ <ees, c>2 des }

\\

\\

{ aes'2 f4 fes }

>> |

<c ees aes c>1 |

}

....
�h�hº����� NNNN PhNh

The inner note of the first chord (i.e., the A-flat in the fourth Voice) need not be shifted away
from the note column of the higher note, so we use \shiftOff.

In the second chord we prefer the F to line up with the A-flat and the lowest note to be
positioned slightly right to avoid a collision of stems. We achieve this by setting force-hshift

in the NoteColumn of the low D-flat to move it to the right by half a staff space, and setting
force-hshift for the F to zero. Note that we use \once to avoid the settings propagating
beyond the immediate musical moment, although in this small example the \once and the
second \override in Voice four could be omitted. This would not be good practice.

Here’s the final result:

\new Staff \relative {

\key aes \major

<<

{ c''2 aes4. bes8 }

\\

{ <ees, c>2 \once \override NoteColumn.force-hshift = 0.5 des }

\\

\\

{ \once \shiftOff aes'2 \once \shiftOff f4 fes }

>> |

<c ees aes c>1 |

}

Chapter 5: Tweaking output 138

....
�h�hº����� NNNN PhNh

5.7.3 Real music example

We end this section on tweaks by showing the steps to be taken to deal with a tricky example,
which needs several adjustments to produce the desired output. The example has been delib-
erately chosen to illustrate the use of the Notation Reference to resolve unusual problems with
notation. It is not representative of the more usual engraving process, so please do not let these
difficulties put you off! Fortunately, difficulties like these are not very common.

The example is from Chopin’s Première Ballade, Op. 23, bars 6 to 9, the transition from
the opening ‘Lento’ to ‘Moderato’.4 Here, first, is what we want the output to look like, but
to avoid over-complicating the example too much we have left out the dynamics, fingering and
pedalling, and we aren’t going to tweak the appearance as much as would be possible.

�
N hh¢

h

Moderato

hT N N
�
PP�� h

�
hh

NNN
P h� .

;;;;
.

��
X �� �� º

�� º
N64
�64

P
. P.

We note first that the right hand part in the third bar requires four voices. These are the five
beamed eighth notes, the tied C, the half-note D which is merged with the eighth note D, and
the dotted quarter note F-sharp, which is also merged with the eighth note at the same pitch.
Everything else is in a single voice, so the easiest way is to introduce these extra three voices
temporarily at the time they are needed. If you have forgotten how to do this, see Section 4.2.1
[I’m hearing voices], page 48, and Section 4.2.2 [Explicitly instantiating voices], page 53. Here
we choose to use explicitly instantiated voices for the polyphonic passage, as LilyPond is better
able to avoid collisions if all voices are instantiated explicitly in this way.

So let us begin by entering the notes as two variables, setting up the staff structure in a score
block, and seeing what LilyPond produces by default:

rhMusic = \relative {

\new Voice {

r2 c''4. g8 |

bes1~ |

\time 6/4

bes2. r8

% Start polyphonic section of four voices

<<

{ c,8 d fis bes a } % continuation of main voice

\new Voice {

\voiceTwo

c,8~ 2

}

\new Voice {

\voiceThree

4 This is taken from an older edition that deviates from the Urtext version as shown by Henle, for example.

Chapter 5: Tweaking output 139

s8 d2

}

\new Voice {

\voiceFour

s4 fis4.

}

>> |

g2. % continuation of main voice

}

}

lhMusic = \relative {

r2 <c' g ees>2 |

<d g, d>1 |

r2. d,,4 r4 r |

r4

}

\score {

\new PianoStaff <<

\new Staff = "RH" <<

\key g \minor

\rhMusic

>>

\new Staff = "LH" <<

\key g \minor

\clef "bass"

\lhMusic

>>

>>

}

hh¢

h
hh
�T
hNN

�
PNP�� h

�
hh

NN
P
N

� .
..

�� º
�� �� º .

� � h
P�64

P64X N

All the notes are right, but the appearance is far from satisfactory. The tie collides with the
change in time signature, some notes are not merged together, and several notation elements
are missing. Let’s first deal with the easier things. We can easily add the left hand slur and the
right hand phrasing slur, since these were all covered in the Tutorial. Doing this gives:

rhMusic = \relative {

\new Voice {

r2 c''4.\(g8 |

bes1~ |

\time 6/4

bes2. r8

% Start polyphonic section of four voices

<<

{ c,8 d fis bes a } % continuation of main voice

Chapter 5: Tweaking output 140

\new Voice {

\voiceTwo

c,8~ 2

}

\new Voice {

\voiceThree

s8 d2

}

\new Voice {

\voiceFour

s4 fis4.

}

>> |

g2.\) % continuation of main voice

}

}

lhMusic = \relative {

r2 <c' g ees>2(|

<d g, d>1) |

r2. d,,4 r4 r |

r4

}

\score {

\new PianoStaff <<

\new Staff = "RH" <<

\key g \minor

\rhMusic

>>

\new Staff = "LH" <<

\key g \minor

\clef "bass"

\lhMusic

>>

>>

}

N hh¢

h
hh
�T
hN N

�
PP�� h

�
hh

NNN
P h� .

.
��

X �� �� º
�� º

N64
�64

P
. P.

The first bar is now correct. The second bar contains an arpeggio and is terminated by a
double bar line. How do we do these, as they have not been mentioned in this Learning Manual?
This is where we need to turn to the Notation Reference. Looking up ‘arpeggio’ and ‘bar line’
in the index quickly shows us that an arpeggio is produced by appending \arpeggio to a chord,
and a double bar line is produced by the \bar "||" command. That’s easily done. We next
need to correct the collision of the tie with the time signature. This is best done by moving the

Chapter 5: Tweaking output 141

tie upwards.5 Moving objects was covered earlier in Section 5.7.1 [Moving objects], page 130,
which says that objects positioned relative to the staff can be moved vertically by overriding
their staff-position property, which is specified in half staff-space units relative to the center
line of the staff. So the following override placed just before the first tied note would move the
tie up to 3.5 half staff spaces above the center line:

\once \override Tie.staff-position = 3.5

This completes bar two, giving:

rhMusic = \relative {

\new Voice {

r2 c''4.\(g8 |

\once \override Tie.staff-position = 3.5

bes1~ |

\bar "||"

\time 6/4

bes2. r8

% Start polyphonic section of four voices

<<

{ c,8 d fis bes a } % continuation of main voice

\new Voice {

\voiceTwo

c,8~ 2

}

\new Voice {

\voiceThree

s8 d2

}

\new Voice {

\voiceFour

s4 fis4.

}

>> |

g2.\) % continuation of main voice

}

}

lhMusic = \relative {

r2 <c' g ees>2(|

<d g, d>1)\arpeggio |

r2. d,,4 r4 r |

r4

}

\score {

\new PianoStaff <<

\new Staff = "RH" <<

\key g \minor

\rhMusic

>>

\new Staff = "LH" <<

5 An alternative would be to adjust Tie.details.height-limit, making the tie more concave.

Chapter 5: Tweaking output 142

\key g \minor

\clef "bass"

\lhMusic

>>

>>

}

N hh¢

h
hh
�T
hN N

�
PP�� h

�
h

N
P h
N

� .
;;;;
..

�� º
�� �� º .

� h�
N 64

P
P�

64X N

On to bar three and the start of the Moderato section. The tutorial showed how to add a
tempo indication with the \tempo command, so adding “Moderato” is easy. But how do we
merge notes in different voices together? This is where we need to turn again to the Notation
Reference for help. A search for “merge” in the Notation Reference index quickly leads us to
the commands for merging differently headed and differently dotted notes in Section “Collision
resolution” in Notation Reference. In our example we need to merge both types of note for the
duration of the polyphonic section in bar 3, so using the information we find in the Notation
Reference we add

\mergeDifferentlyHeadedOn

\mergeDifferentlyDottedOn

to the start of that section and

\mergeDifferentlyHeadedOff

\mergeDifferentlyDottedOff

to the end, giving:

�
N hh¢

h

Moderato

hT hN
N
�
PP�� h

�
hh

NNN
P h� .

;;;;
.

��
X �� �� º

�� º
N64
�64

P
. P.

These overrides have merged the two F-sharp notes, but not the two on D. Why not? The
answer is there in the same section in the Notation Reference – notes being merged must have
stems in opposite directions and two notes cannot be merged successfully if there is a third note
in the same note column. Here the two D’s both have upward stems and there is a third note –
the C. We know how to change the stem direction using \stemDown, and the Notation Reference
also says how to move the C – apply a shift using one of the \shift commands. But which one?
The C is in voice two which has shift off, and the two D’s are in voices one and three, which
have shift off and shift on, respectively. So we have to shift the C a further level still using
\shiftOnn to avoid it interfering with the two D’s. Applying these changes gives:

rhMusic = \relative {

\new Voice {

r2 c''4.\(g8 |

\once \override Tie.staff-position = 3.5

Chapter 5: Tweaking output 143

bes1~ |

\bar "||"

\time 6/4

bes2.\tempo "Moderato" r8

\mergeDifferentlyHeadedOn

\mergeDifferentlyDottedOn

% Start polyphonic section of four voices

<<

{ c,8 d fis bes a } % continuation of main voice

\new Voice {

\voiceTwo

% Move the c2 out of the main note column

% so the merge will work

c,8~ \shiftOnn c2

}

\new Voice {

\voiceThree

% Stem on the d2 must be down to permit merging

s8 \stemDown d2

}

\new Voice {

\voiceFour

s4 fis4.

}

>> |

\mergeDifferentlyHeadedOff

\mergeDifferentlyDottedOff

g2.\) % continuation of main voice

}

}

lhMusic = \relative {

r2 <c' g ees>2(|

<d g, d>1)\arpeggio |

r2. d,,4 r4 r |

r4

}

\score {

\new PianoStaff <<

\new Staff = "RH" <<

\key g \minor

\rhMusic

>>

\new Staff = "LH" <<

\key g \minor

\clef "bass"

\lhMusic

>>

>>

}

Chapter 5: Tweaking output 144

�
N hh¢

h

Moderato

hT N
N
�
PP�� h

�
hh

NNN
P h� .

;;;;
.

��
X �� �� º

�� º
N64
�64

P
. P.

Nearly there. Only two problems remain: The downward stem on the merged D should not
be there, and the C would be better positioned to the right of the D’s. We know how to do
both of these from the earlier tweaks: we make the stem transparent, and move the C with the
force-hshift property. Here’s the final result:

rhMusic = \relative {

\new Voice {

r2 c''4.\(g8 |

\once \override Tie.staff-position = 3.5

bes1~ |

\bar "||"

\time 6/4

bes2.\tempo "Moderato" r8

\mergeDifferentlyHeadedOn

\mergeDifferentlyDottedOn

% Start polyphonic section of four voices

<<

{ c,8 d fis bes a } % continuation of main voice

\new Voice {

\voiceTwo

c,8~

% Reposition the c2 to the right of the merged note

\once \override NoteColumn.force-hshift = 1.0

% Move the c2 out of the main note column

% so the merge will work

\shiftOnn

c2

}

\new Voice {

\voiceThree

s8

% Stem on the d2 must be down to permit merging

\stemDown

% Stem on the d2 should be invisible

\tweak Stem.transparent ##t

d2

}

\new Voice {

\voiceFour

s4 fis4.

}

>> |

\mergeDifferentlyHeadedOff

\mergeDifferentlyDottedOff

Chapter 5: Tweaking output 145

g2.\) % continuation of main voice

}

}

lhMusic = \relative {

r2 <c' g ees>2(|

<d g, d>1)\arpeggio |

r2. d,,4 r4 r |

r4

}

\score {

\new PianoStaff <<

\new Staff = "RH" <<

\key g \minor

\rhMusic

>>

\new Staff = "LH" <<

\key g \minor

\clef "bass"

\lhMusic

>>

>>

}

�
N hh¢

h

Moderato

hT N N
�
PP�� h

�
hh

NNN
P h� .

;;;;
.

��
X �� �� º

�� º
N64
�64

P
. P.

5.8 Further tweaking

We have almost completed our introduction into tweaking, and only some topics remain that
we would like to discuss.

5.8.1 Other uses for tweaks

Here we describe situations that occur rather frequently in real-world scores.

Tying notes across voices

The following example demonstrates how to connect notes in different voices using ties. Normally,
only notes in the same voice can be connected with ties. By using two voices, with the tied
notes in one of them

hh
�hh� º �

and removing the first up-stem and its flag in that voice, the tie appears to cross voices:

<<

Chapter 5: Tweaking output 146

{

\once \omit Stem

\once \omit Flag

b'8~ 8\noBeam

}

\\

{ b'8[g'] }

>>

hh
�hh� º

See also

Learning Manual: [The \once prefix], page 92, [The stencil property], page 103.

Simulating a fermata in MIDI

For outside-staff objects it is usually better to override the object’s stencil property rather
than its transparent property when you wish to remove it from the printed output. Setting
the stencil property of an object to #f will remove that object entirely from the printed output.
This means it has no effect on the placement of other objects placed relative to it.

For example, if we wished to change the metronome setting in order to simulate a fermata in
the MIDI output we would not want the metronome markings to appear in the printed output,
and we would not want it to influence the spacing between the two systems or the positions of
adjacent annotations on the staff. So setting its stencil property to #f would be the best way.
We show here the effect of the two methods:

\score {

\relative {

% Visible tempo marking

\tempo 4=120

a'4 a a

\once \hide Score.MetronomeMark

% Invisible tempo marking to lengthen fermata in MIDI

\tempo 4=80

a4\fermata |

% New tempo for next section

\tempo 4=100

a4 a a a |

}

\layout { }

\midi { }

}

hh
h = 100

hh
h = 120º� h h hyh

\score {

\relative {

% Visible tempo marking

Chapter 5: Tweaking output 147

\tempo 4=120

a'4 a a

\once \omit Score.MetronomeMark

% Invisible tempo marking to lengthen fermata in MIDI

\tempo 4=80

a4\fermata |

% New tempo for next section

\tempo 4=100

a4 a a a |

}

\layout { }

\midi { }

}

hh
h = 100 hh

h = 120º� h h hyh
Both methods remove the metronome mark which lengthens the fermata from the printed output,
and both affect the MIDI timing as required, but the transparent metronome mark in the first
line forces the following tempo indication too high while the second (with the stencil removed)
does not.

See also

Music Glossary: Section “system” in Music Glossary .

5.8.2 Using variables for layout adjustments

Override commands are often long and tedious to type, and they have to be absolutely correct.
If the same overrides are to be used many times it may be worth defining variables to hold them.

Suppose we wish to emphasize certain words in lyrics by printing them in bold italics. The
\italic and \bold commands only work within lyrics if they are embedded, together with the
word or words to be modified, within a \markup block, which makes them tedious to enter. The
need to embed the words themselves prevents their use in simple variables. As an alternative
can we use \override and \revert commands?

\override Lyrics.LyricText.font-shape = #'italic

\override Lyrics.LyricText.font-series = #'bold

\revert Lyrics.LyricText.font-shape

\revert Lyrics.LyricText.font-series

These would also be extremely tedious to enter if there were many words requiring emphasis.
But we can define these as two variables and use those to bracket the words to be emphasized.
Another advantage of using variables for these overrides is that the spaces around the dot are
not necessary, since they are not being interpreted in \lyricmode directly. Here’s an example of
this, although in practice we would choose shorter names for the variables to make them quicker
to type:

emphasize = {

\override Lyrics.LyricText.font-shape = #'italic

\override Lyrics.LyricText.font-series = #'bold

}

Chapter 5: Tweaking output 148

normal = {

\revert Lyrics.LyricText.font-shape

\revert Lyrics.LyricText.font-series

}

global = { \key c \major \time 4/4 \partial 4 }

SopranoMusic = \relative { c'4 | e4. e8 g4 g | a4 a g }

AltoMusic = \relative { c'4 | c4. c8 e4 e | f4 f e }

TenorMusic = \relative { e4 | g4. g8 c4. b8 | a8 b c d e4 }

BassMusic = \relative { c4 | c4. c8 c4 c | f8 g a b c4 }

VerseOne = \lyricmode {

E -- | ter -- nal \emphasize Fa -- ther, | \normal strong to save,

}

VerseTwo = \lyricmode {

O | \once \emphasize Christ, whose voice the | wa -- ters heard,

}

VerseThree = \lyricmode {

O | \emphasize Ho -- ly Spi -- rit, | \normal who didst brood

}

VerseFour = \lyricmode {

O | \emphasize Tri -- ni -- ty \normal of | love and pow'r

}

\score {

\new ChoirStaff <<

\new Staff <<

\clef "treble"

\new Voice = "Soprano" { \voiceOne \global \SopranoMusic }

\new Voice = "Alto" { \voiceTwo \AltoMusic }

\new Lyrics \lyricsto "Soprano" { \VerseOne }

\new Lyrics \lyricsto "Soprano" { \VerseTwo }

\new Lyrics \lyricsto "Soprano" { \VerseThree }

\new Lyrics \lyricsto "Soprano" { \VerseFour }

>>

\new Staff <<

\clef "bass"

\new Voice = "Tenor" { \voiceOne \TenorMusic }

\new Voice = "Bass" { \voiceTwo \BassMusic }

>>

>>

}

Chapter 5: Tweaking output 149

hh

h

hh
and

didst
ters
to

hhh

�h

strong

hh
love
who
wa

hh

save,

hh
pow'r
brood
heard,

hhP

hh
Tri
Ho

Christ,
ter

hh

PP

P

O
O
O
E

º� hh

h

7

6 º� h
ty

hh
Spi
voice
Fa

hh

T h
of

rit,
the

ther,

hh

P

h�

h
ni
ly

whose
nal

h

h
�

T

5.8.3 Style sheets

The output that LilyPond produces can be heavily modified; see Chapter 5 [Tweaking output],
page 89, for details. But what if you have many input files that you want to apply your tweaks
to? Or what if you simply want to separate your tweaks from the actual music? This is quite
easy to do.

Let’s look at an example. Don’t worry if you don’t understand the parts with all the #(...).
This is explained in Section 5.8.5 [Advanced tweaks with Scheme], page 153.

mpdolce =

\tweak self-alignment-X -0.6

#(make-dynamic-script

#{ \markup { \dynamic mp \normal-text \italic \bold dolce } #})

inst =

#(define-music-function

(string)

(string?)

#{ <>^\markup \bold \box #string #})

\relative {

\tempo 4=50

a'4.\mpdolce d8 cis4--\glissando a |

b4 bes a2 |

\inst "Clarinet"

cis4.\< d8 e4 fis |

g8(\! fis)-. e(d)-. cis2 |

}

� hhT h
h �No� hh ho�T hqh h hhmp dolce

� ºh = 50P
Clarinet

� N h P�h
Let’s do something about the mpdolce and inst definitions. They produce the output we

desire, but we might want to use them in another piece. We could simply copy-and-paste them
at the top of every file, but that’s an annoyance. It also leaves those definitions in our input
files, and I personally find all the #() somewhat ugly. Let’s hide them in another file:

%%% save this to a file called "definitions.ily"

mpdolce =

Chapter 5: Tweaking output 150

\tweak self-alignment-X -0.6

#(make-dynamic-script

#{ \markup { \dynamic mp \normal-text \italic \bold dolce } #})

inst =

#(define-music-function

(string)

(string?)

#{ <>^\markup \bold \box #string #})

We will refer to this file using the \include command near the top of the music file. (The
extension .ily is used to distinguish this included file, which is not meant to be compiled on
its own, from the main file.) Now let’s modify our music (let’s save this file as music.ly).

\include "definitions.ily"

\relative {

\tempo 4=50

a'4.\mpdolce d8 cis4--\glissando a |

b4 bes a2 |

\inst "Clarinet"

cis4.\< d8 e4 fis |

g8(\! fis)-. e(d)-. cis2 |

}

� hhT h
h �No� hh ho�T hqh h hhmp dolce

� ºh = 50P
Clarinet

� N h P�h
That looks better, but let’s make a few changes. The glissando is hard to see, so let’s make it

thicker and closer to the note heads. Let’s put the metronome marking above the clef, instead
of over the first note. And finally, my composition professor hates ‘C’ time signatures, so we’d
better make that ‘4/4’ instead.

Don’t change music.ly, though. Replace our definitions.ily with this:

%%% definitions.ily

mpdolce =

\tweak self-alignment-X -0.6

#(make-dynamic-script

#{ \markup { \dynamic mp \normal-text \italic \bold dolce } #})

inst =

#(define-music-function

(string)

(string?)

#{ <>^\markup \bold \box #string #})

\layout{

\context {

\Score

\override MetronomeMark.extra-offset = #'(-5 . 0)

\override MetronomeMark.padding = 3

}

Chapter 5: Tweaking output 151

\context {

\Staff

\numericTimeSignature

}

\context {

\Voice

\override Glissando.thickness = 3

\override Glissando.gap = 0.1

}

}

� hhT h
h �No� hh ho�T hqh h hhmp dolce

� 44
h = 50

P
Clarinet

� N h P�h
That looks nicer! But now suppose that I want to publish this piece. My composition

professor doesn’t like ‘C’ time signatures, but I’m somewhat fond of them. Let’s copy the
current definitions.ily to web-publish.ily and modify that. Since this music is aimed at
producing a pdf which will be displayed on the screen, we’ll also increase the overall size of the
output.

%%% web-publish.ily

mpdolce =

\tweak self-alignment-X -0.6

#(make-dynamic-script

#{ \markup { \dynamic mp \normal-text \italic \bold dolce } #})

inst =

#(define-music-function

(string)

(string?)

#{ <>^\markup \bold \box #string #})

#(set-global-staff-size 23)

\layout{

\context {

\Score

\override MetronomeMark.extra-offset = #'(-5 . 0)

\override MetronomeMark.padding = 3

}

\context {

\Staff

}

\context {

\Voice

\override Glissando.thickness = 3

\override Glissando.gap = 0.1

}

}

Chapter 5: Tweaking output 152

P�h
Clarinet

hN� �hh
ThhT hqP

h = 50

º� mp dolce

h h� h
h Noh �4 h�
o�h

Now in our music, I simply replace \include "definitions.ily" with \include

"web-publish.ily". Of course, we could make this even more convenient. We could
make a definitions.ily file that contains only the definitions of \mpdolce and \inst,
a web-publish.ily file that contains only the \layout section listed above, and a
university.ily file that contains only the tweaks to produce the output that my professor
prefers. The top of music.ly would then look like this:

\include "definitions.ily"

%%% Only uncomment one of these two lines!

\include "web-publish.ily"

%\include "university.ily"

This approach can be useful even if you are only producing one set of parts. I use half
a dozen different ‘style sheet’ files for my projects. I begin every music file with \include

"../global.ily", which contains

%%% global.ily

\version "2.25.20"

#(ly:set-option 'point-and-click #f)

\include "../init/init-defs.ly"

\include "../init/init-layout.ly"

\include "../init/init-headers.ly"

\include "../init/init-paper.ly"

5.8.4 Other sources of information

The Internals Reference documentation contains a lot of information about LilyPond, but even
more information can be gathered by looking at the internal LilyPond files. To explore these, you
must first find the directory appropriate to your system. The location of this directory depends
on whether you obtained LilyPond by downloading a precompiled binary from lilypond.org or
whether you installed it from a package manager (i.e., distributed with GNU/Linux, or installed
under MacPorts, Homebrew, Cygwin, Chocolatey, etc.) or compiled it from source.

• Downloaded from lilypond.org

Navigate to

INSTALLDIR/lilypond-2.25.20/share/lilypond/2.25.20/

• Installed from a package manager or compiled from source

Navigate to PREFIX/share/lilypond/2.25.20/, where PREFIX is set by your package
manager or configure script.

Within this directory the two interesting subdirectories are

ly/ contains files in LilyPond format

Chapter 5: Tweaking output 153

scm/ contains files in Scheme format

Let’s begin by looking at some files in ly/. Open ly/property-init.ly in a text editor –
the one you normally use for .ly files will be fine. This file contains the definitions of all the
standard LilyPond predefined commands, such as \tieUp and \slurDotted. You will see that
these are nothing more than definitions of variables containing one or a group of \override

commands. For example, \textLengthOn is defined to be:

textLengthOn = {

% 0.4 staff-space between adjacent texts

\override TextScript.extra-spacing-width = #'(-0.0 . 0.4)

\override TextScript.extra-spacing-height = #'(-inf.0 . +inf.0)

}

If you do not like the default values these predefined commands can be redefined easily, just
like any other variable, at the head of your input file.

The following are the most useful files to be found in ly/:

Filename Contents
ly/engraver-init.ly Definitions of engraver contexts
ly/paper-defaults-init.ly Specifications of paper-related defaults
ly/performer-init.ly Definitions of performer contexts
ly/property-init.ly Definitions of all common predefined

commands

ly/spanner-init.ly Definitions of spanner-related predefined
commands

Other settings (such as the definitions of markup commands) are stored as .scm (Scheme)
files. The Scheme programming language is used to provide a programmable interface into
LilyPond’s internal operation. Further explanation of these files is outside the scope of this
manual, as some knowledge of the Scheme language is required. Users should be warned that a
substantial amount of technical knowledge or time is required to understand Scheme and these
files (see Section “Scheme tutorial” in Extending).

If you have this knowledge, the Scheme files that may be of interest are:

Filename Contents
scm/auto-beam.scm Sub-beaming defaults
scm/define-grobs.scm Default settings for grob properties
scm/define-markup-commands.scm Almost all markup commands
scm/midi.scm Default settings for MIDI output
scm/output-lib.scm Settings that affect appearance of frets, col-

ors, accidentals, bar lines, etc.

scm/parser-clef.scm Definitions of supported clefs
scm/script.scm Default settings for articulations

5.8.5 Advanced tweaks with Scheme

Although many things are possible with the \override and \tweak commands, an even more
powerful way of modifying the action of LilyPond is available through a programmable interface
to the LilyPond internal operation. Code written in the Scheme programming language can be
incorporated directly in the internal operation of LilyPond. Of course, at least a basic knowledge
of programming in Scheme is required to do this, and an introduction is provided in the Section
“Scheme tutorial” in Extending .

As an illustration of one of the many possibilities, instead of setting a property to a constant
it can be set to a Scheme procedure, which is then called whenever that property is accessed by
LilyPond. The property can then be set dynamically to a value determined by the procedure at

Chapter 5: Tweaking output 154

the time it is called. In this example we color the note head in accordance with its position on
the staff.

#(define (color-notehead grob)

"Color the notehead according to its position on the staff."

(let ((mod-position (modulo (ly:grob-property grob 'staff-position)

7)))

(case mod-position

;; Return rainbow colors

((1) (x11-color 'red)) ; for C

((2) (x11-color 'orange)) ; for D

((3) (x11-color 'yellow)) ; for E

((4) (x11-color 'green)) ; for F

((5) (x11-color 'blue)) ; for G

((6) (x11-color 'purple)) ; for A

((0) (x11-color 'violet)) ; for B

)))

\relative {

% Arrange to obtain color from color-notehead procedure

\override NoteHead.color = #color-notehead

a2 b | c2 d | e2 f | g2 a |

}

NN NNN NN� º N
Further examples showing the use of these programmable interfaces can be found in Section

“Callback functions” in Extending .

155

Appendix A Templates

This section of the manual contains templates with the LilyPond score already set up for you.
Just add notes, run LilyPond, and enjoy beautiful printed scores!

A.1 Built-in templates

Some templates, suitable for a range of choral music, are built into LilyPond. These may be
used to create simple choral music, with or without piano accompaniment, in two, four or eight
staves. Unlike other templates, these templates are ‘built-in’, which means they do not need to
be copied and edited: instead, they are simply \include’d in the input file.

☛ ✟

Note: Unlike most included files, these built-in templates must be
\include’d at the end of the input file.
✡ ✠

The required music expressions are entered by defining values for specific variables. These
definitions must come before the \include’d file.

A.1.1 SATB template

The music may be set out with one or two voices per staff by setting TwoVoicesPerStaff to
##f or ##t, respectively.

Here’s the complete input file for producing a full four-part SATB arrangement with individ-
ual lyrics and piano accompaniment:

SopranoMusic = \relative { a'4\f a8 a a4 a }

SopranoLyrics = \lyricmode { Sop -- ra -- no ly -- rics }

AltoMusic = \relative { d'4\f d d d }

AltoLyrics = \lyricmode { Al -- to ly -- rics }

TenorMusic = \relative { a4\p a a a }

TenorLyrics = \lyricmode { Te -- nor ly -- rics }

BassMusic = \relative { c2\p c4 c }

BassLyrics = \lyricmode { Bass ly -- rics }

PianoRHMusic = \relative { c' e g c }

PianoDynamics = { s2\mp s4 s4 }

PianoLHMusic = \relative { c e g c }

\include "satb.ly"

Appendix A: Templates 156

h
rics

h
rics

h
rics

h
rics

h
h

h
ly

h
ly

h
ly

h
ly

h
h

h

f
� º

Al

hp�
8

º
Te

Np� º
Bass

h

� º
mp
h� º

SOPRANO

ALTO

TENOR

BASS

7

6

PIANO]

hf� º
Sop ra

to

h
nor

h
h

h

h
no

h

The same input can be used to produce a score with two voices per staff just by setting
TwoVoicesPerStaff to ##t. Again, each voice has individual lyrics.

SopranoMusic = \relative { a'4\f a8 a a4 a }

SopranoLyrics = \lyricmode { Sop -- ra -- no ly -- rics }

AltoMusic = \relative { d'4\f d d d }

AltoLyrics = \lyricmode { Al -- to ly -- rics }

TenorMusic = \relative { a4\p a a a }

TenorLyrics = \lyricmode { Te -- nor ly -- rics }

BassMusic = \relative { c2\p c4 c }

BassLyrics = \lyricmode { Bass ly -- rics }

PianoRHMusic = \relative { c' e g c }

PianoDynamics = { s2\mp s4 s4 }

PianoLHMusic = \relative { c e g c }

TwoVoicesPerStaff = ##t

\include "satb.ly"

Appendix A: Templates 157

hh
rics

rics

hh
rics

ricsh
h

hh
ly

ly

hh
ly

ly

h
hº

hpN
p

� º
Te

Bass

h� º
mp
h�

Al

SOPRANO

ALTO

TENOR

BASS

7

6

PIANO]

hfhf
� º

Sop

h
h

h
no

nor

h
to

ra

hh

When TwoVoicesPerStaff is set to #f (false) or allowed to default, any of the music variables
may be omitted to produce arrangements with fewer voices. Here, for example, is how the input
file for a Soprano-Bass duet might be written:

SopranoMusic = \relative { c'' c c c }

SopranoLyrics = \lyricmode { High voice ly -- rics }

BassMusic = \relative { a a a a }

BassLyrics = \lyricmode { Low voice ly -- rics }

\include "satb.ly"

h
ricsh
ricsly

hly
hh

Low

º� hHigh

º�7

6BASS

SOPRANO

voice

hvoice

h

A second verse or alternative lyrics may be added to each of the parts:

SopranoMusic = \relative { a'4 a a a }

SopranoLyricsOne = \lyricmode {

\set stanza = "1."

Words to verse one

}

SopranoLyricsTwo = \lyricmode {

\set stanza = "2."

Words to verse two

}

\include "satb.ly"

Appendix A: Templates 158

one
two

h
verse
verse

h
Words

2. Words

º� h
1.

SOPRANO

to
to

h

When the lyrics and rhythms are the same for every part, the vocal music is best arranged on
two staves with two voices in each. Up to nine verses may be provided. Here’s an unaccompanied
example with just three verses.

SopranoMusic = \relative { a' a a a }

AltoMusic = \relative { f' f f f }

VerseOne = \lyricmode {

\set stanza = "1."

Words to verse one

}

VerseTwo = \lyricmode {

\set stanza = "2."

Words to verse two

}

VerseThree = \lyricmode {

\set stanza = "3."

Words to verse three

}

TenorMusic = \relative { a a a a }

BassMusic = \relative { f f f f }

TwoVoicesPerStaff = ##t

\include "satb.ly"

h

hh
one
two

three

h

hh
verse
verse
verse

hh
2.

Words3.

hh� º
Words

SOPRANO

ALTO

TENOR

BASS

7

6

hh� º
Words1.

hh
to
to

hh
to

Other variables may be given values. The key signature and the time signature may be
changed from the default:

Key = \key a \major

Time = {

\time 5/4

\tempo "Allegro" 4 = 144

}

SopranoMusic = \relative { gis' gis gis gis gis }

AltoMusic = \relative { cis' cis cis cis cis }

VerseOne = \lyricmode { Words to this du -- et }

TwoVoicesPerStaff = ##t

\include "satb.ly"

Appendix A: Templates 159

h
this du

hh h
et

��� h
Allegro (h = 144)

Words

54� hhSOPRANO

ALTO
h

to

hh

The instrument names and/or the short instrument names may be changed:

SopranoMusic = \relative { c'' c c c }

SopranoLyrics = \lyricmode { High voice ly -- rics }

SopranoInstrumentName = "Soprano 1"

SopranoShortInstrumentName = "S1"

AltoMusic = \relative { a' a a a }

AltoLyrics = \lyricmode { Low voice ly -- rics }

AltoInstrumentName = "Soprano 2"

AltoShortInstrumentName = "S2"

\include "satb.ly"

h
rics

h
ricsly

h
ly

hh

Low

º� h
High

º�7

6SOPRANO 2

SOPRANO 1

voice

h
voice

h

although rather than doing this it might be easier to use the ssaattbb.ly template, see
Section A.1.2 [SSAATTBB template], page 160.

A descant may be added by defining values for the variable DescantMusic and descant lyrics
may be provided by defining values for DescantLyrics. In a similar way a solo part may be
added above the grouped choir staves by defining values for SoloMusic and SoloLyrics.

\header and \paper blocks may be added as normal. A \layout block may be provided as
usual at top level, and the contents will be combined with (but will not override) the default
settings provided in the template. Alternatively, all the default settings provided by the template
can be discarded by defining a Layout variable containing all the required settings:

Layout = \layout { ... }

The complete set of variables which may be changed can be seen by examining the file
ly/satb.ly, see Section 5.8.4 [Other sources of information], page 152.

See also

Learning Manual: Section 3.4.1 [Organizing pieces with variables], page 37, Section A.5 [Vocal
ensembles templates], page 172, Section 4.4 [Extending the templates], page 70, Section 5.8.4
[Other sources of information], page 152.

Known issues and warnings

The setting of the TwoVoicesPerStaff variable applies for the entire duration of the score: it
cannot be given different values at different times.

More complex arrangements of SATB choral music are not possible with this simple built-in
template.

Appendix A: Templates 160

A.1.2 SSAATTBB template

All the variables defined for the SATB template, with the exception of the VerseXxx variables,
are also available for the SSAATTBB template, see Section A.1.1 [SATB template], page 155.
In addition, music and lyrics for first and second voices in any or all of the four parts may
be specified by providing values for SopranoOneMusic, SopranoTwoMusic, etc., with lyrics in
SopranoOneLyrics and SopranoTwoLyrics, etc. Up to four additional stanzas may be defined
for all the voice parts by using the variables SopranoOneLyricsOne, with the others defined in
an analogous way.

Setting TwoVoicesPerStaff to ##t will cause all voice parts to be placed on single staves
as divisi voices. If TwoVoicesPerStaff is left to default or set to ##f then individual voice
parts may be set on one or two staves according to the setting of SopranoTwoVoicesPerStaff,
MenTwoVoicesPerStaff, etc.

As an example, suppose we have a piece for soprano and alto that begins with all voices
in unison, progresses to a section with two parts, soprano and alto, and ends with a four-part
section. This would be coded like this:

Time = { s1 \break s1 \break }

WomenMusic = \relative { a'4 a a a }

WomenLyrics = \lyricmode { Wo -- men ly -- rics }

SopranoMusic = \relative { s1 | c''4 c c c8 c }

SopranoLyrics = \lyricmode{ So -- pra -- no ly -- rics }

AltoMusic = \relative { s1 | g'4 g g g }

AltoLyrics = \lyricmode { Al -- to ly -- rics }

SopranoOneMusic = \relative { s1 | s1 |e''4 e e e }

SopranoOneLyrics = \lyricmode { Sop One ly -- rics }

SopranoTwoMusic = \relative { s1 | s1 | c''4 c c c }

SopranoTwoLyrics = \lyricmode { Sop Two ly -- rics }

AltoOneMusic = \relative { s1 | s1 | g'4 g g g8 g }

AltoOneLyrics = \lyricmode { Al -- to One ly -- rics }

AltoTwoMusic = \relative { s1 | s1 | e'4 e e e8 e }

AltoTwoLyrics = \lyricmode { Al -- to Two ly -- rics }

\layout { ragged-right = ##t }

\include "ssaattbb.ly"

h
ricsly

h
men

hWOMEN h� º
Wo

h
ly

h
rics

h
ricspra

h
to

h
no

h
ly

h7

6

S

A h

h
So

Al

�
�2

Appendix A: Templates 161

ly

h
ly

h

h
rics

h
rics

h
lyh
ly

h
One

h
Two

h

ricsh
rics

�
�
�
�

3

S 1

S 2

A 1

A 2

7

6

h
Oneh
Two

h
to

h
to

h
Soph
Sop

h
Al

Al

h
Male voices may be added in an analogous way.

To change the layout so that the divisi soprano voices use a shared staff, we simply set
SopranoTwoVoicesPerStaff to ##t, leaving all other variables unchanged, like this:

SopranoTwoVoicesPerStaff = ##t

Time = { s1 \break s1 \break }

WomenMusic = \relative { a'4 a a a }

WomenLyrics = \lyricmode { Wo -- men ly -- rics }

SopranoMusic = \relative { s1 | c''4 c c c8 c }

SopranoLyrics = \lyricmode{ So -- pra -- no ly -- rics }

AltoMusic = \relative { s1 | g'4 g g g }

AltoLyrics = \lyricmode { Al -- to ly -- rics }

SopranoOneMusic = \relative { s1 | s1 |e''4 e e e }

SopranoOneLyrics = \lyricmode { Sop One ly -- rics }

SopranoTwoMusic = \relative { s1 | s1 | c''4 c c c }

SopranoTwoLyrics = \lyricmode { Sop Two ly -- rics }

AltoOneMusic = \relative { s1 | s1 | g'4 g g g8 g }

AltoOneLyrics = \lyricmode { Al -- to One ly -- rics }

AltoTwoMusic = \relative { s1 | s1 | e'4 e e e8 e }

AltoTwoLyrics = \lyricmode { Al -- to Two ly -- rics }

\layout { ragged-right = ##t }

\include "ssaattbb.ly"

h
ricsly

h
men

hWOMEN

Wo

º� h

h
ly

h
rics

h
ricsno

to

h

h
ly

h

7

6

�S

A

h
So

h
Al

�

h
pra

2

Appendix A: Templates 162

ly

h
ly

h

h

h
rics

h

hh
ly

ly

h
One

h
Two

rics

h
rics

rics

�
�

�

3

S 1

S 2

A 1

A 2

7

6 h

hh
One

Two

h
to

toAl

hh
Sop

Sop

h
Al

h

or, to make all paired voices share a single staff, set TwoVoicesPerStaff to ##t:

TwoVoicesPerStaff = ##t

Time = { s1 \break s1 \break }

WomenMusic = \relative { a'4 a a a }

WomenLyrics = \lyricmode { Wo -- men ly -- rics }

SopranoMusic = \relative { s1 | c''4 c c c8 c }

SopranoLyrics = \lyricmode{ So -- pra -- no ly -- rics }

AltoMusic = \relative { s1 | g'4 g g g }

AltoLyrics = \lyricmode { Al -- to ly -- rics }

SopranoOneMusic = \relative { s1 | s1 |e''4 e e e }

SopranoOneLyrics = \lyricmode { Sop One ly -- rics }

SopranoTwoMusic = \relative { s1 | s1 | c''4 c c c }

SopranoTwoLyrics = \lyricmode { Sop Two ly -- rics }

AltoOneMusic = \relative { s1 | s1 | g'4 g g g8 g }

AltoOneLyrics = \lyricmode { Al -- to One ly -- rics }

AltoTwoMusic = \relative { s1 | s1 | e'4 e e e8 e }

AltoTwoLyrics = \lyricmode { Al -- to Two ly -- rics }

\layout { ragged-right = ##t }

\include "ssaattbb.ly"

rics

h
ly

h
men

hWOMEN

Wo

º� h

hh
ly

rics

hricsnohh
ly

�S

A

Al

So hh
pra

to

h2 h

Appendix A: Templates 163

ly

ly

hh

h
ly

hh
One

Two

rics

h

rics

rics

h
rics

ly

h

�

�

3 hh
Sop

Sop

h

S 1

S 2

hA 1

A 2

7

6

One

hh
to

to

Two

hh
Al

Al

hh

The complete set of variables which may be changed can be seen by examining the file
ly/ssaattbb.ly, see Section 5.8.4 [Other sources of information], page 152.

See also

Learning Manual: Section 3.4.1 [Organizing pieces with variables], page 37, Section A.5 [Vocal
ensembles templates], page 172, Section 4.4 [Extending the templates], page 70, Section 5.8.4
[Other sources of information], page 152.

Known issues and warnings

The setting of the various ...TwoVoicesPerStaff variables apply for the entire duration of the
score: they cannot be given different values at different times.

More complex arrangements of 8-part choral music are not possible with this simple built-in
template.

A.2 Single staff templates

A.2.1 Notes only

This very simple template gives you a staff with notes, suitable for a solo instrument or a melodic
fragment. Cut and paste this into a file, add notes, and you’re finished!

melody = \relative c' {

\clef treble

\key c \major

\time 4/4

a4 b c d

}

\score {

\new Staff \melody

\layout { }

\midi { }

}

h hh� º h

Appendix A: Templates 164

A.2.2 Notes and lyrics

This small template demonstrates a simple melody with lyrics. Cut and paste, add notes, then
words for the lyrics. This example turns off automatic beaming, which is common for vocal
parts. To use automatic beaming, change or comment out the relevant line.

melody = \relative c' {

\clef treble

\key c \major

\time 4/4

a4 b c d

}

text = \lyricmode {

Aaa Bee Cee Dee

}

\score{

<<

\new Voice = "one" {

\autoBeamOff

\melody

}

\new Lyrics \lyricsto "one" \text

>>

\layout { }

\midi { }

}

h
Cee

h
Dee

h� º
Aaa Bee

h
A.2.3 Notes and chords

Want to prepare a lead sheet with a melody and chords? Look no further!

melody = \relative c' {

\clef treble

\key c \major

\time 4/4

f4 e8[c] d4 g

a2 ~ a

}

harmonies = \chordmode {

c4:m f:min7 g:maj c:aug

d2:dim b4:5 e:sus

}

\score {

<<

Appendix A: Templates 165

\new ChordNames {

\set chordChanges = ##t

\harmonies

}

\new Staff \melody

>>

\layout{ }

\midi { }

}

C+ ND°

h
E

sus4

NB
5

h
Fm

7

º� h
Cm

h
G

h
A.2.4 Notes, lyrics, and chords

This template allows the preparation of a song with melody, words, and chords.

melody = \relative c' {

\clef treble

\key c \major

\time 4/4

a4 b c d

}

text = \lyricmode {

Aaa Bee Cee Dee

}

harmonies = \chordmode {

a2 c

}

\score {

<<

\new ChordNames {

\set chordChanges = ##t

\harmonies

}

\new Voice = "one" { \autoBeamOff \melody }

\new Lyrics \lyricsto "one" \text

>>

\layout { }

\midi { }

}

C

h
Cee

h
Dee

A

h� º
Aaa Bee

h

Appendix A: Templates 166

A.3 Piano templates

A.3.1 Solo piano

Here is a simple piano staff with some notes.

upper = \relative c'' {

\clef treble

\key c \major

\time 4/4

a4 b c d

}

lower = \relative c {

\clef bass

\key c \major

\time 4/4

a2 c

}

\score {

\new PianoStaff \with { instrumentName = "Piano" }

<<

\new Staff = "upper" \upper

\new Staff = "lower" \lower

>>

\layout { }

\midi { }

}

h

N
hh h

º� N

º�XPiano

A.3.2 Piano and melody with lyrics

Here is a typical song format: one staff with the melody and lyrics, with piano accompaniment
underneath.

melody = \relative c'' {

\clef treble

\key c \major

\time 4/4

a b c d

}

text = \lyricmode {

Aaa Bee Cee Dee

}

Appendix A: Templates 167

upper = \relative c'' {

\clef treble

\key c \major

\time 4/4

a4 b c d

}

lower = \relative c {

\clef bass

\key c \major

\time 4/4

a2 c

}

\score {

<<

\new Voice = "mel" { \autoBeamOff \melody }

\new Lyrics \lyricsto mel \text

\new PianoStaff <<

\new Staff = "upper" \upper

\new Staff = "lower" \lower

>>

>>

\layout {

\context { \Staff \RemoveEmptyStaves }

}

\midi { }

}

hDee

h

N
hCee

hº

º� N

º� h
Aaa

� h

X h
Bee

h

A.3.3 Piano-centered lyrics

Instead of having a full staff for the melody and lyrics, lyrics can be centered between the staves
of a piano staff.

upper = \relative c'' {

\clef treble

\key c \major

\time 4/4

a4 b c d

Appendix A: Templates 168

}

lower = \relative c {

\clef bass

\key c \major

\time 4/4

a2 c

}

text = \lyricmode {

Aaa Bee Cee Dee

}

\score {

\new PianoStaff <<

\new Staff = upper { \new Voice = "singer" \upper }

\new Lyrics \lyricsto "singer" \text

\new Staff = lower { \lower }

>>

\layout { }

\midi { }

}

Dee

h

N
Cee

h�
º� N

Aaa

º he Bee

h

A.4 String quartet templates

A.4.1 String quartet

This template demonstrates a simple string quartet. It also uses a \global section for time and
key signatures

global= {

\time 4/4

\key c \major

}

violinOne = \new Voice \relative c'' {

c2 d

e1

\bar "|."

}

violinTwo = \new Voice \relative c'' {

g2 f

e1

\bar "|."

Appendix A: Templates 169

}

viola = \new Voice \relative c' {

\clef alto

e2 d

c1

\bar "|."

}

cello = \new Voice \relative c' {

\clef bass

c2 b

a1

\bar "|."

}

\score {

\new StaffGroup <<

\new Staff \with { instrumentName = "Violin 1" }

<< \global \violinOne >>

\new Staff \with { instrumentName = "Violin 2" }

<< \global \violinTwo >>

\new Staff \with { instrumentName = "Viola" }

<< \global \viola >>

\new Staff \with { instrumentName = "Cello" }

<< \global \cello >>

>>

\layout { }

\midi { }

}

.

.

.

.

� º
N� º
N�

N

º

Violin 1

Violin 2

Viola

Cello

7

6

N� º N

N
N
N

A.4.2 String quartet parts

The “String quartet template” snippet produces a nice string quartet, but what if you needed
to print parts? This new template demonstrates how to use the \tag feature to easily split a
piece into individual parts.

You need to split this template into separate files; the filenames are contained in comments
at the beginning of each file. piece.ly contains all the music definitions. The other files –
score.ly, vn1.ly, vn2.ly, vla.ly, and vlc.ly – produce the appropriate part.

Appendix A: Templates 170

Do not forget to remove specified comments when using separate files!

% piece.ly

% (This is the global definitions file)

global= {

\time 4/4

\key c \major

}

Violinone = \new Voice \relative c'' {

c2 d e1

\bar "|."

}

Violintwo = \new Voice \relative c'' {

g2 g e1

\bar "|."

}

Viola = \new Voice \relative c' {

\clef alto

e2 d c1

\bar "|."

}

Cello = \new Voice \relative c' {

\clef bass

c2 b a1

\bar "|."

}

music = {

<<

\tag #'score \tag #'vn1

\new Staff \with { instrumentName = "Violin 1" }

<< \global \Violinone >>

\tag #'score \tag #'vn2

\new Staff \with { instrumentName = "Violin 2" }

<< \global \Violintwo >>

\tag #'score \tag #'vla

\new Staff \with { instrumentName = "Viola" }

<< \global \Viola >>

\tag #'score \tag #'vlc

\new Staff \with { instrumentName = "Cello" }

<< \global \Cello >>

>>

}

Appendix A: Templates 171

% These are the other files you need to save on your computer

% score.ly

% (This is the main file)

% uncomment the line below when using a separate file

%\include "piece.ly"

#(set-global-staff-size 14)

\score {

\new StaffGroup \keepWithTag #'score \music

\layout { }

\midi { }

}

%{ Uncomment this block when using separate files

% vn1.ly

% (This is the Violin 1 part file)

\include "piece.ly"

\score {

\keepWithTag #'vn1 \music

\layout { }

}

% vn2.ly

% (This is the Violin 2 part file)

\include "piece.ly"

\score {

\keepWithTag #'vn2 \music

\layout { }

}

% vla.ly

% (This is the Viola part file)

\include "piece.ly"

\score {

\keepWithTag #'vla \music

\layout { }

}

% vlc.ly

% (This is the Cello part file)

\include "piece.ly"

\score {

\keepWithTag #'vlc \music

Appendix A: Templates 172

\layout { }

}

%}

.

.

.

.

� º
N� º
N�

N

º

Violin 1

Violin 2

Viola

Cello

7

6

N� º N

N
N
N

A.5 Vocal ensembles templates

The templates shown below should be copied into your score and edited there. If you have a
relatively simple SATB layout you may prefer to use the built-in templates, which can simply
be \include’d, see Section A.1 [Built-in templates], page 155.

A.5.1 SATB vocal score

Here is a standard four-part SATB vocal score. With larger ensembles, it is often useful to include
a section which is included in all parts. For example, the time signature and key signature are
almost always the same for all parts. Like in the “Hymn” template, the four voices are regrouped
on only two staves.

\paper {

top-system-spacing.basic-distance = 10

score-system-spacing.basic-distance = 20

system-system-spacing.basic-distance = 20

last-bottom-spacing.basic-distance = 10

}

global = {

\key c \major

\time 4/4

}

sopMusic = \relative {

c''4 c c8[(b)] c4

}

sopWords = \lyricmode {

hi hi hi hi

}

altoMusic = \relative {

e'4 f d e

}

altoWords = \lyricmode {

ha ha ha ha

}

Appendix A: Templates 173

tenorMusic = \relative {

g4 a f g

}

tenorWords = \lyricmode {

hu hu hu hu

}

bassMusic = \relative {

c4 c g c

}

bassWords = \lyricmode {

ho ho ho ho

}

\score {

\new ChoirStaff <<

\new Lyrics = "sopranos" \with {

% this is needed for lyrics above a staff

\override VerticalAxisGroup.staff-affinity = #DOWN

}

\new Staff = "women" <<

\new Voice = "sopranos" {

\voiceOne

<< \global \sopMusic >>

}

\new Voice = "altos" {

\voiceTwo

<< \global \altoMusic >>

}

>>

\new Lyrics = "altos"

\new Lyrics = "tenors" \with {

% this is needed for lyrics above a staff

\override VerticalAxisGroup.staff-affinity = #DOWN

}

\new Staff = "men" <<

\clef bass

\new Voice = "tenors" {

\voiceOne

<< \global \tenorMusic >>

}

\new Voice = "basses" {

\voiceTwo << \global \bassMusic >>

}

>>

\new Lyrics = "basses"

\context Lyrics = "sopranos" \lyricsto "sopranos" \sopWords

\context Lyrics = "altos" \lyricsto "altos" \altoWords

\context Lyrics = "tenors" \lyricsto "tenors" \tenorWords

\context Lyrics = "basses" \lyricsto "basses" \bassWords

>>

}

Appendix A: Templates 174

h
hi

hh
ha

huhh
ho

hu

hh
ho

º
ho

�
ha

hi7

6

hh� º
ha

huhh

hi

hh
hi

hh
ha

huhh
ho

A.5.2 SATB vocal score and automatic piano reduction

This template adds an automatic piano reduction to the standard SATB vocal score demon-
strated in “Vocal ensemble template”. This demonstrates one of the strengths of LilyPond –
you can use a music definition more than once. If any changes are made to the vocal notes (say,
tenorMusic), then the changes will also apply to the piano reduction.

\paper {

top-system-spacing.basic-distance = 10

score-system-spacing.basic-distance = 20

system-system-spacing.basic-distance = 20

last-bottom-spacing.basic-distance = 10

}

global = {

\key c \major

\time 4/4

}

sopMusic = \relative {

c''4 c c8[(b)] c4

}

sopWords = \lyricmode {

hi hi hi hi

}

altoMusic = \relative {

e'4 f d e

}

altoWords =\lyricmode {

ha ha ha ha

}

tenorMusic = \relative {

g4 a f g

}

tenorWords = \lyricmode {

hu hu hu hu

}

bassMusic = \relative {

Appendix A: Templates 175

c4 c g c

}

bassWords = \lyricmode {

ho ho ho ho

}

\score {

<<

\new ChoirStaff <<

\new Lyrics = "sopranos" \with {

% This is needed for lyrics above a staff

\override VerticalAxisGroup.staff-affinity = #DOWN

}

\new Staff = "women" <<

\new Voice = "sopranos" { \voiceOne << \global \sopMusic >> }

\new Voice = "altos" { \voiceTwo << \global \altoMusic >> }

>>

\new Lyrics = "altos"

\new Lyrics = "tenors" \with {

% This is needed for lyrics above a staff

\override VerticalAxisGroup.staff-affinity = #DOWN

}

\new Staff = "men" <<

\clef bass

\new Voice = "tenors" { \voiceOne << \global \tenorMusic >> }

\new Voice = "basses" { \voiceTwo << \global \bassMusic >> }

>>

\new Lyrics = "basses"

\context Lyrics = "sopranos" \lyricsto "sopranos" \sopWords

\context Lyrics = "altos" \lyricsto "altos" \altoWords

\context Lyrics = "tenors" \lyricsto "tenors" \tenorWords

\context Lyrics = "basses" \lyricsto "basses" \bassWords

>>

\new PianoStaff <<

\new Staff <<

\set Staff.printPartCombineTexts = ##f

\partCombine

<< \global \sopMusic >>

<< \global \altoMusic >>

>>

\new Staff <<

\clef bass

\set Staff.printPartCombineTexts = ##f

\partCombine

<< \global \tenorMusic >>

<< \global \bassMusic >>

>>

>>

>>

}

Appendix A: Templates 176

h
h

h

hh

ho

hi

hh
ha

huh

hh

h

h

º
hh� º

� h

h7

6

X

hi

h� º
ha

huhh� º
ho

hh

hi

hh
ha

hu

hh
ho

h

hi

hh
hu

hh
hh

ho

hh
ha

A.5.3 SATB with aligned contexts

This template is basically the same as the simple “Vocal ensemble” template, with the exception
that here all the lyrics lines are placed using alignAboveContext and alignBelowContext.

global = {

\key c \major

\time 4/4

}

sopMusic = \relative c'' {

c4 c c8[(b)] c4

}

sopWords = \lyricmode {

hi hi hi hi

}

altoMusic = \relative c' {

e4 f d e

}

altoWords = \lyricmode {

ha ha ha ha

}

tenorMusic = \relative c' {

g4 a f g

}

tenorWords = \lyricmode {

hu hu hu hu

}

bassMusic = \relative c {

c4 c g c

}

bassWords = \lyricmode {

Appendix A: Templates 177

ho ho ho ho

}

\score {

\new ChoirStaff <<

\new Staff = "women" <<

\new Voice = "sopranos" { \voiceOne << \global \sopMusic >> }

\new Voice = "altos" { \voiceTwo << \global \altoMusic >> }

>>

\new Lyrics \with { alignAboveContext = "women" }

\lyricsto "sopranos" \sopWords

\new Lyrics \with { alignBelowContext = "women" }

\lyricsto "altos" \altoWords

% we could remove the line about this with the line below, since

% we want the alto lyrics to be below the alto Voice anyway.

% \new Lyrics \lyricsto "altos" \altoWords

\new Staff = "men" <<

\clef bass

\new Voice = "tenors" { \voiceOne << \global \tenorMusic >> }

\new Voice = "basses" { \voiceTwo << \global \bassMusic >> }

>>

\new Lyrics \with { alignAboveContext = "men" }

\lyricsto "tenors" \tenorWords

\new Lyrics \with { alignBelowContext = "men" }

\lyricsto "basses" \bassWords

% again, we could replace the line above this with the line below.

% \new Lyrics \lyricsto "basses" \bassWords

>>

}

h hh
hi

ha

hh
hu

ho

hh
hu

ho

º
hu

ho

�
ha

7

6

hh� º
hi

ha

hh

hh
hi

ho

hh
hi

ha

hh
hu

A.5.4 SATB on four staves

This is a template for a SATB choir on four staves.

global = {

\key c \major

\time 4/4

\dynamicUp

}

sopranonotes = \relative c'' {

c2 \p \< d c d \f

Appendix A: Templates 178

}

sopranowords = \lyricmode { do do do do }

altonotes = \relative c'' {

c2\p d c d

}

altowords = \lyricmode { re re re re }

tenornotes = {

\clef "G_8"

c2\mp d c d

}

tenorwords = \lyricmode { mi mi mi mi }

bassnotes = {

\clef bass

c2\mf d c d

}

basswords = \lyricmode { mi mi mi mi }

\score {

\new ChoirStaff <<

\new Staff <<

\new Voice = "soprano" <<

\global

\sopranonotes

>>

\new Lyrics \lyricsto "soprano" \sopranowords

>>

\new Staff <<

\new Voice = "alto" <<

\global

\altonotes

>>

\new Lyrics \lyricsto "alto" \altowords

>>

\new Staff <<

\new Voice = "tenor" <<

\global

\tenornotes

>>

\new Lyrics \lyricsto "tenor" \tenorwords

>>

\new Staff <<

\new Voice = "bass" <<

\global

\bassnotes

>>

\new Lyrics \lyricsto "bass" \basswords

>>

>>

}

Appendix A: Templates 179

Nf
do

N
re

N
mi

N
mi

mi

N
mimi

N
mp

�
8

º
mi

N
mf� º

re

N

7

6

Np� º
do

Np� º

N
do

N
re

N

N
do

N
re

N
mi

mi

A.5.5 Solo verse and two-part refrain

This template creates a score that starts with a solo verse and continues into a refrain for two
voices. It also demonstrates the use of spacer rests within the \global variable to define meter
changes (and other elements common to all parts) throughout the entire score.

\header { tagline = ##f }

global = {

\key g \major

% verse

\time 3/4

s2.*2

\break

% refrain

\time 2/4

s2*2

\bar "|."

}

SoloNotes = \relative g' {

\clef "treble"

% verse

g4 g g |

b4 b b |

% refrain

R2*2 |

}

SoloLyrics = \lyricmode {

One two three |

Appendix A: Templates 180

four five six |

}

SopranoNotes = \relative c'' {

\clef "treble"

% verse

R2.*2 |

% refrain

c4 c |

g4 g |

}

SopranoLyrics = \lyricmode {

la la |

la la |

}

BassNotes = \relative c {

\clef "bass"

% verse

R2.*2 |

% refrain

c4 e |

d4 d |

}

BassLyrics = \lyricmode {

dum dum |

dum dum |

}

\score {

<<

\new Voice = "SoloVoice" << \global \SoloNotes >>

\new Lyrics \lyricsto "SoloVoice" \SoloLyrics

\new ChoirStaff <<

\new Voice = "SopranoVoice" << \global \SopranoNotes >>

\new Lyrics \lyricsto "SopranoVoice" \SopranoLyrics

\new Voice = "BassVoice" << \global \BassNotes >>

\new Lyrics \lyricsto "BassVoice" \BassLyrics

>>

>>

\layout {

ragged-right = ##t

\context { \Staff

% these lines prevent empty staves from being printed

Appendix A: Templates 181

\RemoveEmptyStaves

\override VerticalAxisGroup.remove-first = ##t

}

}

}

h
five

h
sixfour

24
One

34�� h
three

h
two

h h

h
la

dum

h
la

h
h

dum

24

� � 24
� �

37

6
dum

hla
hh

la

h
dum

A.5.6 Hymn tunes

This code shows one way of setting out a hymn tune when each line starts and ends with a
partial measure. It also shows how to add the verses as stand-alone text under the music.

Timeline = {

\time 4/4

\tempo 4=96

\partial 2

s2 | s1 | s2 \breathe s2 | s1 | s2 \caesura \break

s2 | s1 | s2 \breathe s2 | s1 | s2 \fine

}

SopranoMusic = \relative g' {

g4 g | g g g g | g g g g | g g g g | g2

g4 g | g g g g | g g g g | g g g g | g2

}

AltoMusic = \relative c' {

d4 d | d d d d | d d d d | d d d d | d2

d4 d | d d d d | d d d d | d d d d | d2

}

TenorMusic = \relative a {

b4 b | b b b b | b b b b | b b b b | b2

b4 b | b b b b | b b b b | b b b b | b2

}

BassMusic = \relative g {

g4 g | g g g g | g g g g | g g g g | g2

g4 g | g g g g | g g g g | g g g g | g2

}

global = {

\key g \major

Appendix A: Templates 182

}

\score { % Start score

<<

\new PianoStaff << % Start pianostaff

\new Staff << % Start Staff = RH

\global

\clef "treble"

\new Voice = "Soprano" << % Start Voice = "Soprano"

\Timeline

\voiceOne

\SopranoMusic

>> % End Voice = "Soprano"

\new Voice = "Alto" << % Start Voice = "Alto"

\Timeline

\voiceTwo

\AltoMusic

>> % End Voice = "Alto"

>> % End Staff = RH

\new Staff << % Start Staff = LH

\global

\clef "bass"

\new Voice = "Tenor" << % Start Voice = "Tenor"

\Timeline

\voiceOne

\TenorMusic

>> % End Voice = "Tenor"

\new Voice = "Bass" << % Start Voice = "Bass"

\Timeline

\voiceTwo

\BassMusic

>> % End Voice = "Bass"

>> % End Staff = LH

>> % End pianostaff

>>

} % End score

\markup {

\fill-line {

""

{

\column {

\left-align {

"This is line one of the first verse"

"This is line two of the same"

"And here's line three of the first verse"

"And the last line of the same"

}

}

}

""

}

Appendix A: Templates 183

}

\layout {

\context {

\Score

caesuraType = #'((bar-line . "||"))

fineBarType = "||"

}

}

\paper { % Start paper block

indent = 0 % don't indent first system

line-width = 130 % shorten line length to suit music

tagline = ##f % Don't print tag line, can be removed

} % End paper block

hh
hh hh
hh

hh hh
hh
h

hh
hh

NN
NN

hh
hh
hh
hh

hhh
hh
hh
hh

h

h = 96

º�� h
º�� hhX hh

hh hh
hh
hh
hh

hh
hh
h
hhh

hh
hh hh
hh

hh hh
hh
h

hh
hh

NN
NN

hh
hh h
hh
h

hhh
hh
hh
hh

hh
hh

��

��X hh
hh

hh
hh
hh
hhhh

hh
hh
hh

This is line one of the first verse

This is line two of the same

And here's line three of the first verse

And the last line of the same

A.5.7 Psalms

This template shows one way of setting out an Anglican psalm chant. It also shows how the
verses may be added as stand-alone text under the music. The two verses are coded in different
styles to demonstrate more possibilities.

\paper { tagline = ##f }

SopranoMusic = \relative g' {

g1 | c2 b | a1 | \bar "||"

a1 | d2 c | c b | c1 | \bar "||"

}

AltoMusic = \relative c' {

e1 | g2 g | f1 |

f1 | f2 e | d d | e1 |

}

TenorMusic = \relative a {

Appendix A: Templates 184

c1 | c2 c | c1 |

d1 | g,2 g | g g | g1 |

}

BassMusic = \relative c {

c1 | e2 e | f1 |

d1 | b2 c | g' g | c,1 |

}

global = {

\time 2/2

}

dot = \markup {

\raise #0.7 \musicglyph "dots.dot"

}

tick = \markup {

\raise #1 \fontsize #-5 \musicglyph "scripts.rvarcomma"

}

% Use markup to center the chant on the page

\markup {

\fill-line {

\score { % centered

<<

\new ChoirStaff <<

\new Staff <<

\global

\clef "treble"

\new Voice = "Soprano" <<

\voiceOne

\SopranoMusic

>>

\new Voice = "Alto" <<

\voiceTwo

\AltoMusic

>>

>>

\new Staff <<

\clef "bass"

\global

\new Voice = "Tenor" <<

\voiceOne

\TenorMusic

>>

\new Voice = "Bass" <<

\voiceTwo

\BassMusic

>>

>>

>>

Appendix A: Templates 185

>>

\layout {

\context {

\Score

\override SpacingSpanner.base-shortest-duration =

\musicLength 2

}

\context {

\Staff

\remove "Time_signature_engraver"

}

}

} % End score

}

} % End markup

\markup {

\fill-line {

\column {

\left-align {

\null \null \null

\line {

\fontsize #5 O

\fontsize #3 come

let us \bold sing | unto \dot the | Lord : let

}

\line {

us heartily

\concat { re \bold joice }

in the | strength of | our

}

\line {

sal | vation.

}

\null

\line {

\hspace #2.5 8. Today if ye will hear his voice *

}

\line {

\concat { \bold hard en }

\tick not your \tick hearts : as in the pro-

}

\line {

vocation * and as in the \bold day of tempt- \tick

}

\line {

-ation \tick in the \tick wilderness.

}

}

}

}

}

Appendix A: Templates 186

NN
NN

NN
NN

NN
NN

..NN
NN ..NNN

NN
.� .

� ..
7

6
N
NN .

..

..
..
.

O come let us sing | unto P the | Lord : let

us heartily rejoice in the | strength of | our

sal | vation.

8. Today if ye will hear his voice *

harden j not your j hearts : as in the pro-

vocation * and as in the day of tempt- j

-ation j in the j wilderness.

A.6 Orchestral templates

A.6.1 Orchestra, choir and piano

This template demonstrates the use of nested StaffGroup and GrandStaff contexts to sub-
group instruments of the same type together, and a way to use \transpose so that variables
hold music for transposing instruments at concert pitch.

#(set-global-staff-size 17)

\paper {

indent = 3.0\cm % add space for instrumentName

short-indent = 1.5\cm % add less space for shortInstrumentName

}

\header { tagline = ##f }

fluteMusic = \relative c' { \key g \major g'1 b }

% Pitches as written on a manuscript for Clarinet in A

% are transposed to concert pitch.

clarinetMusic = \transpose c' a

\relative c'' { \key bes \major bes1 d }

trumpetMusic = \relative c { \key g \major g''1 b }

% Key signature is often omitted for horns

hornMusic = \transpose c' f

\relative c { d'1 fis }

percussionMusic = \relative c { \key g \major g1 b }

Appendix A: Templates 187

sopranoMusic = \relative c'' { \key g \major g'1 b }

sopranoLyrics = \lyricmode { Lyr -- ics }

altoIMusic = \relative c' { \key g \major g'1 b }

altoIIMusic = \relative c' { \key g \major g'1 b }

altoILyrics = \sopranoLyrics

altoIILyrics = \lyricmode { Ah -- ah }

tenorMusic = \relative c' { \clef "treble_8" \key g \major g1 b }

tenorLyrics = \sopranoLyrics

pianoRHMusic = \relative c { \key g \major g''1 b }

pianoLHMusic = \relative c { \clef bass \key g \major g1 b }

violinIMusic = \relative c' { \key g \major g'1 b }

violinIIMusic = \relative c' { \key g \major g'1 b }

violaMusic = \relative c { \clef alto \key g \major g'1 b }

celloMusic = \relative c { \clef bass \key g \major g1 b }

bassMusic = \relative c { \clef "bass_8" \key g \major g,1 b }

\score {

<<

\new StaffGroup = "StaffGroup_woodwinds" <<

\new Staff = "Staff_flute" \with { instrumentName = "Flute" }

\fluteMusic

\new Staff = "Staff_clarinet" \with {

instrumentName = \markup { \concat { "Clarinet in B" \flat } }

}

% Declare that written Middle C in the music

% to follow sounds a concert B flat, for

% output using sounded pitches such as MIDI.

%\transposition bes

% Print music for a B-flat clarinet

\transpose bes c' \clarinetMusic

>>

\new StaffGroup = "StaffGroup_brass" <<

\new Staff = "Staff_hornI" \with { instrumentName = "Horn in F" }

Appendix A: Templates 188

% \transposition f

\transpose f c' \hornMusic

\new Staff = "Staff_trumpet" \with { instrumentName = "Trumpet in C" }

\trumpetMusic

>>

\new RhythmicStaff = "RhythmicStaff_percussion"

\with { instrumentName = "Percussion" }

<<

\percussionMusic

>>

\new PianoStaff \with { instrumentName = "Piano" }

<<

\new Staff { \pianoRHMusic }

\new Staff { \pianoLHMusic }

>>

\new ChoirStaff = "ChoirStaff_choir" <<

\new Staff = "Staff_soprano" \with { instrumentName = "Soprano" }

\new Voice = "soprano"

\sopranoMusic

\new Lyrics \lyricsto "soprano" { \sopranoLyrics }

\new GrandStaff = "GrandStaff_altos"

\with { \accepts Lyrics } <<

\new Staff = "Staff_altoI" \with { instrumentName = "Alto I" }

\new Voice = "altoI"

\altoIMusic

\new Lyrics \lyricsto "altoI" { \altoILyrics }

\new Staff = "Staff_altoII" \with { instrumentName = "Alto II" }

\new Voice = "altoII"

\altoIIMusic

\new Lyrics \lyricsto "altoII" { \altoIILyrics }

>>

\new Staff = "Staff_tenor" \with { instrumentName = "Tenor" }

\new Voice = "tenor"

\tenorMusic

\new Lyrics \lyricsto "tenor" { \tenorLyrics }

>>

\new StaffGroup = "StaffGroup_strings" <<

\new GrandStaff = "GrandStaff_violins" <<

\new Staff = "Staff_violinI" \with { instrumentName = "Violin I" }

\violinIMusic

\new Staff = "Staff_violinII" \with { instrumentName = "Violin II" }

\violinIIMusic

>>

Appendix A: Templates 189

\new Staff = "Staff_viola" \with { instrumentName = "Viola" }

\violaMusic

\new Staff = "Staff_cello" \with { instrumentName = "Cello" }

\celloMusic

\new Staff = "Staff_bass" \with { instrumentName = "Double Bass" }

\bassMusic

>>

>>

\layout { }

}

�

.

.

ics.

.ics

.

.ah

ics.

.

.

.

.

.Lyr

º�� .
º�� .
º��

�

º .
º�� .
º� .
º���� .

Lyr

.
�� .

º�� .
º�� .

º

º�
8

� .Ah

º�� .Lyr

º�

Alto II

Alto I

Soprano

�Piano

Percussion

7

6Trumpet in C

Horn in F

7

6Clarinet in B�
Flute

Viola

�� .

7

6Double Bass

Cello

º

!
Violin II

Violin I

7

6Tenor

(

�

.

.

.

.

.

.

º�
8

� .
º�

A.7 Ancient notation templates

A.7.1 Transcription of mensural music

When transcribing mensural music, an incipit at the beginning of the piece is useful to indicate
the original key and tempo. While today musicians are used to bar lines in order to faster

Appendix A: Templates 190

recognize rhythmic patterns, bar lines were not yet invented during the period of mensural
music; in fact, the meter often changed after every few notes. As a compromise, bar lines are
often printed between the staves rather than on the staves.

%%

% A short excerpt from the Jubilate Deo by Orlande de Lassus

%%

\header { tagline = ##f }

global = {

\set Score.skipBars = ##t

\key g \major

\time 4/4

% the actual music

\skip 1*8

% let finis bar go through all staves

\override Staff.BarLine.transparent = ##f

% finis bar

\bar "|."

}

discantusIncipit = {

\clef "neomensural-c1"

\key f \major

\time 2/2

c''1.

}

discantusNotes = {

\transpose c' c'' {

\clef "treble"

d'2. d'4 |

b e' d'2 |

c'4 e'4.(d'8 c' b |

a4) b a2 |

b4.(c'8 d'4) c'4 |

\once \hide NoteHead

c'1 |

b\breve |

}

}

discantusLyrics = \lyricmode {

Ju -- bi -- la -- te De -- o,

om -- nis ter -- ra, __ om-

"..."

-us.

}

Appendix A: Templates 191

altusIncipit = {

\clef "neomensural-c3"

\key f \major

\time 2/2

r1 f'1.

}

altusNotes = {

\transpose c' c'' {

\clef "treble"

r2 g2. e4 fis g |

a2 g4 e |

fis g4.(fis16 e fis4) |

g1 |

\once \hide NoteHead

g1 |

g\breve |

}

}

altusLyrics = \lyricmode {

Ju -- bi -- la -- te

De -- o, om -- nis ter -- ra,

"..."

-us.

}

tenorIncipit = {

\clef "neomensural-c4"

\key f \major

\time 2/2

r\longa

r\breve

r1 c'1.

}

tenorNotes = {

\transpose c' c' {

\clef "treble_8"

R1 |

R1 |

R1 |

% two measures

r2 d'2. d'4 b e' |

\once \hide NoteHead

e'1 |

d'\breve |

}

}

tenorLyrics = \lyricmode {

Appendix A: Templates 192

Ju -- bi -- la -- te

"..."

-us.

}

bassusIncipit = {

\clef "mensural-f"

\key f \major

\time 2/2

r\maxima

f1.

}

bassusNotes = {

\transpose c' c' {

\clef "bass"

R1 |

R1 |

R1 |

R1 |

g2. e4 |

\once \hide NoteHead

e1 |

g\breve |

}

}

bassusLyrics = \lyricmode {

Ju -- bi-

"..."

-us.

}

\score {

<<

\new StaffGroup = choirStaff <<

\new Voice = "discantusNotes" <<

\set Staff.instrumentName = "Discantus"

\incipit \discantusIncipit

\global

\discantusNotes

>>

\new Lyrics \lyricsto discantusNotes { \discantusLyrics }

\new Voice = "altusNotes" <<

\set Staff.instrumentName = "Altus"

\global

\incipit \altusIncipit

\altusNotes

>>

\new Lyrics \lyricsto altusNotes { \altusLyrics }

\new Voice = "tenorNotes" <<

\set Staff.instrumentName = "Tenor"

Appendix A: Templates 193

\global

\incipit \tenorIncipit

\tenorNotes

>>

\new Lyrics \lyricsto tenorNotes { \tenorLyrics }

\new Voice = "bassusNotes" <<

\set Staff.instrumentName = "Bassus"

\global

\incipit \bassusIncipit

\bassusNotes

>>

\new Lyrics \lyricsto bassusNotes { \bassusLyrics }

>>

>>

\layout {

\context {

\Score

%% no bar lines in staves or lyrics

\hide BarLine

}

%% the next two instructions keep the lyrics between the bar lines

\context {

\Lyrics

\consists "Bar_engraver"

\consists "Separating_line_group_engraver"

}

\context {

\Voice

%% no slurs

\hide Slur

%% Comment in the below "\remove" command to allow line

%% breaking also at those bar lines where a note overlaps

%% into the next measure. The command is commented out in this

%% short example score, but especially for large scores, you

%% will typically yield better line breaking and thus improve

%% overall spacing if you comment in the following command.

%%\remove "Forbid_line_break_engraver"

}

indent = 6\cm

incipit-width = 4\cm

}

}

Appendix A: Templates 194

N
De

h
la

�

h
te

h
bi te

P
Altus

�� � » = h
Discantus

=� � » P P
� º

�
8

� º
� � º

�
�

P
Bassus µ� � » =

7

6 �

N� � º
Ju�

hh
bi la

P� =»�� ²Tenor ® �
N

Ju

P

N

h
P

P

Ju

P
h

Ju

N

ter

h
ra,

.
ra,

h

N

h

� la

h

hTh

bi

bi-

hte
h

om-

hP
om

h

De

N

h
o,

7

6

o,

h
�

8

�

��

��

�
�

h h3

��

P
ter

h
nis

hh

om
h

�nis

h

h

-us.

�-us.

�-us.
�

�

� �

� �

8

�
� �

6

-us.

7

6

�
...

...

...

...

A.7.2 Gregorian transcription template

This example demonstrates how to do modern transcription of Gregorian music. Gregorian
music has no measure, no stems; it uses only half and quarter note heads, and special marks,
indicating rests of different length.

chant = \relative c' {

\set Score.timing = ##f

f4 a2 \divisioMinima

Appendix A: Templates 195

g4 b a2 f2 \divisioMaior

g4(f) f(g) a2 \finalis

}

verba = \lyricmode {

Lo -- rem ip -- sum do -- lor sit a -- met

}

\score {

\new GregorianTranscriptionStaff <<

\new GregorianTranscriptionVoice = "melody" \chant

\new GregorianTranscriptionLyrics = "one" \lyricsto melody \verba

>>

}

h
a

h
sit

h h N
met

h
rem ip

h�
Lo

N
do

NNh
sum lor

A.8 Other templates

A.8.1 Jazz combo

This is quite an advanced template, for a jazz ensemble. Note that all instruments are notated in
\key c \major. This refers to the key in concert pitch; the key will be automatically transposed
if the music is within a \transpose section.

\header {

title = "Song"

subtitle = "(tune)"

composer = "Me"

meter = "moderato"

piece = "Swing"

tagline = \markup {

\column {

"LilyPond example file by Amelie Zapf,"

"Berlin 07/07/2003"

}

}

}

% To make the example display in the documentation

\paper {

paper-width = 130

}

%#(set-global-staff-size 16)

\include "english.ly"

%%%%%%%%%%%% Some macros %%%%%%%%%%%%%%%%%%%

sl = {

\override NoteHead.style = #'slash

\hide Stem

}

Appendix A: Templates 196

nsl = {

\revert NoteHead.style

\undo \hide Stem

}

crOn = \override NoteHead.style = #'cross

crOff = \revert NoteHead.style

%% insert chord name style stuff here.

jazzChords = { }

%%%%%%%%%%%% Keys'n'thangs %%%%%%%%%%%%%%%%%

global = { \time 4/4 }

Key = { \key c \major }

% ############ Horns ############

% ------ Trumpet ------

trpt = \transpose c d \relative c'' {

\Key

c1 | c | c |

}

trpHarmony = \transpose c' d {

\jazzChords

}

trumpet = {

\global

\clef treble

<<

\trpt

>>

}

% ------ Alto Saxophone ------

alto = \transpose c a \relative c' {

\Key

c1 | c | c |

}

altoHarmony = \transpose c' a {

\jazzChords

}

altoSax = {

\global

\clef treble

<<

\alto

>>

}

% ------ Baritone Saxophone ------

Appendix A: Templates 197

bari = \transpose c a' \relative c {

\Key

c1

c1

\sl

d4^"Solo" d d d

\nsl

}

bariHarmony = \transpose c' a \chordmode {

\jazzChords s1 s d2:maj e:m7

}

bariSax = {

\global

\clef treble

<<

\bari

>>

}

% ------ Trombone ------

tbone = \relative c {

\Key

c1 | c | c

}

tboneHarmony = \chordmode {

\jazzChords

}

trombone = {

\global

\clef bass

<<

\tbone

>>

}

% ############ Rhythm Section #############

% ------ Guitar ------

gtr = \relative c'' {

\Key

c1

\sl

b4 b b b

\nsl

c1

}

gtrHarmony = \chordmode {

\jazzChords

s1 c2:min7+ d2:maj9

}

guitar = {

\global

Appendix A: Templates 198

\clef treble

<<

\gtr

>>

}

%% ------ Piano ------

rhUpper = \relative c'' {

\voiceOne

\Key

c1 | c | c

}

rhLower = \relative c' {

\voiceTwo

\Key

e1 | e | e

}

lhUpper = \relative c' {

\voiceOne

\Key

g1 | g | g

}

lhLower = \relative c {

\voiceTwo

\Key

c1 | c | c

}

PianoRH = {

\clef treble

\global

<<

\new Voice = "one" \rhUpper

\new Voice = "two" \rhLower

>>

}

PianoLH = {

\clef bass

\global

<<

\new Voice = "one" \lhUpper

\new Voice = "two" \lhLower

>>

}

piano = {

<<

\new Staff = "upper" \PianoRH

\new Staff = "lower" \PianoLH

>>

}

Appendix A: Templates 199

% ------ Bass Guitar ------

Bass = \relative c {

\Key

c1 | c | c

}

bass = {

\global

\clef bass

<<

\Bass

>>

}

% ------ Drums ------

up = \drummode {

\voiceOne

hh4 <hh sn> hh <hh sn>

hh4 <hh sn> hh <hh sn>

hh4 <hh sn> hh <hh sn>

}

down = \drummode {

\voiceTwo

bd4 s bd s

bd4 s bd s

bd4 s bd s

}

drumContents = {

\global

<<

\new DrumVoice \up

\new DrumVoice \down

>>

}

%%%%%%%%% It All Goes Together Here %%%%%%%%%%%%%%%%%%%%%%

\score {

<<

\new StaffGroup = "horns" <<

\new Staff = "trumpet" \with { instrumentName = "Trumpet" }

\trumpet

\new Staff = "altosax" \with { instrumentName = "Alto Sax" }

\altoSax

\new ChordNames = "barichords" \with { instrumentName = "Trumpet" }

\bariHarmony

\new Staff = "barisax" \with { instrumentName = "Bari Sax" }

\bariSax

\new Staff = "trombone" \with { instrumentName = "Trombone" }

\trombone

>>

Appendix A: Templates 200

\new StaffGroup = "rhythm" <<

\new ChordNames = "chords" \gtrHarmony

\new Staff = "guitar" \with { instrumentName = "Guitar" }

\guitar

\new PianoStaff = "piano" \with {

instrumentName = "Piano"

midiInstrument = "acoustic grand"

}

\piano

\new Staff = "bass" \with { instrumentName = "Bass" }

\bass

\new DrumStaff \with { instrumentName = "Drums" }

\drumContents

>>

>>

\layout {

\context { \Staff \RemoveEmptyStaves }

\context {

\Score

\override BarNumber.padding = 3

\override RehearsalMark.padding = 2

skipBars = ##t

}

}

\midi { }

}

Song
(tune)

Me

moderato

Swing

Appendix A: Templates 201

Solo

..

.

.

hj
.

..

h hj

}D 9

j

}

B

.

.

}

hj

}

hj

}

hj

}
C�m7

hj

}

º� hj

��� .

7

6Drums

Bass

XPiano

º

Guitar

7

6Trombone

Bari Sax

Alto Sax

Trumpet

º� .

º� ..
º� ..

º� .

º� .

º���� .

º���� .

jh

.

.
hjhjhj

..

..
}Cm

.

.

.

202

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c⃝ 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

https://fsf.org/

Appendix B: GNU Free Documentation License 203

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

Appendix B: GNU Free Documentation License 204

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix B: GNU Free Documentation License 205

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

Appendix B: GNU Free Documentation License 206

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Appendix B: GNU Free Documentation License 207

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://

www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

Appendix B: GNU Free Documentation License 208

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

209

Appendix C LilyPond index

!
\! . 25

#
#, Scheme expressions . 63, 101
#f (false) . 63, 101
#t (true) . 63, 101

%
% . 18
%{ ... %} . 18

’
' . 14

(
(...) . 23

,
, . 14

–
- . 118

<

\< . 25, 31
< ... > . 31
<< . 29, 32
<< ... \\ ... >> . 32, 48
<< ... >> . 29

>

\> . 25, 31
>> . 29, 32

[
[. 26

\
\\ . 32, 48

]
] . 26

ˆ
^ . 118
^ . 25

_ . 118

_ . 25

{
{ ... } . 18

˜
~ . 23

A
absolute mode . 39

absolute note names . 39

absolute value, for pitches . 39

accent . 24

\acciaccatura . 27

AccidentalPlacement, example of overriding 133

accidentals . 22

accidentals, and key signature . 22

accidentals, and relative mode . 14

adding engravers . 68

adding text . 26

\addlyrics . 32

\addlyrics, example . 96, 101

adjustment, using variable for 147

alignAboveContext property, example . 107, 108, 109,

110, 111

aligning lyrics . 33

aligning object, on a baseline . 134

alto clef . 17

ambitus engraver . 68

anacrusis . 27

\appoggiatura . 27

articulation . 24

articulation, and slurs . 122

assigning variables . 37

\autoBeamOff . 26, 57

\autoBeamOn . 26

automatic beams . 26

avoid-slur property . 122

Appendix C: LilyPond index 210

B
bar number, tweaking placement 121
bare duration . 23
BarLine, example of overriding . 103, 104, 105, 106, 107
basic-distance sub-property 127
bass clef . 17
beam, automatic . 26
beam, by hand . 26
beam, controlling manually . 135
Beam, example of overriding . 136
beam, manual . 26
beaming . 26
beaming, and lyrics . 57
block comment . 18, 19
\book . 41, 42
\book block, implicit . 42
bound-details property, example 121, 122
brace, curly . 18
bracket types . 47
bracket, enclosing vs. marking . 47
bracket, nesting . 47
bracket, triplet . 94
bracket, tuplet . 94
break-visibility property . 104
break-visibility property, example 104

C
case-sensitive . 13, 18
CENTER . 117
changing size, of objects . 107
character, allowed in variables . 37
choir staff . 31, 57
ChoirStaff context . 31, 57, 127
chord . 31
chord repetition . 32
chord, vs. voice . 48
ChordNames context . 30
\clef . 17
Clef, example of overriding . . . 107, 108, 109, 110, 111
clickable examples . 19
collision, notes . 56, 131
color property . 105
color property, example 91, 92, 94, 105, 106, 107
color property, setting to Scheme procedure 154
color, css . 105
color, rgb . 106
color, X11 . 107
combining expressions, in parallel 29
comma . 14
comment . 18, 19
comment, line . 18
common errors . 19
compiling . 13
compound music expression 28, 43
concurrent music . 48
\consists . 68
constructing files, tips . 19
content, vs. layout . 22
contents of a \score block . 43
context . 30
\context . 66
context properties . 63
context properties, modifying . 63

context properties, setting with \context 66
context properties, setting with \with 66
context, creating . 61
context, explained . 60
context, finding . 98
context, identifying correct . 98
context, implicit . 41
context, naming . 62
context, notation . 30
context, Voice . 48
controlling tuplets, slurs, phrasing slurs, and beams

manually . 135
creating contexts . 61
crescendo . 25
css colors . 105
curly braces . 18

D
decrescendo . 25
default properties, reverting to . 99
direction property . 117
direction property, example 94, 117, 118
distance, between objects . 111
dotted note . 15
double flat . 22
double sharp . 22
DOWN . 117
duration . 15
duration, bare . 23
DynamicLineSpanner, example of overriding 134
dynamics . 25
dynamics, tweaking placement 124
DynamicText, example of overriding 125, 134

E
engravers . 62
engravers, adding . 68
engravers, removing . 68
errors, common . 19
es . 22
eses . 22
example, clickable . 19
example, first . 13
example, of writing a score . 79
expression . 18
expression, multiple in parallel . 29
expression, music . 28
extender line . 33
extra-offset property . 132
extra-offset property, example 135
extra-spacing-width property 125, 131
extra-spacing-width property, example 125, 134

Appendix C: LilyPond index 211

F
\f . 25
false (#f) . 63, 101
fermata, implementing in MIDI 146
\ff . 25
file, structure . 41
file, tips for constructing . 19
fingering . 25
fingering, chords . 118
fingering, example . 118, 119, 120
Fingering, example of overriding 118, 135
fingering, placement . 118
fingeringOrientations property 119
fingeringOrientations property, example 120
first example . 13
\fixed . 39
fixing overlapping notation . 132
Flag, example of removing . 145
flat . 22
flat, double . 22
font-series property, example 147
font-shape property, example 101, 147
font-size property, example 92, 93
fontSize property, default and setting 66
fontSize property, example 110, 111
force-hshift property . 131
force-hshift property, example 137, 144

G
\grace . 27
grace notes . 27
grand staff . 31
GrandStaff context . 31
graphical object . 81
grob . 81, 89
grob, moving colliding . 130
grob, positioning . 135
grob, properties of . 96
grob, sizing . 125

H
half note . 15
\header . 38, 42
header block . 38
\hide . 105
horizontal-shift property . 131
how to read the manual . 19
hymn structure . 58
hyphen . 33

I
identifier . 37
implicit \book block . 42
implicit contexts . 41
input format . 41
interface . 89, 100
interface properties . 100
Internals Reference . 96
Internals Reference, example of using 96
is . 22
isis . 22
italic, example . 101

K
\key . 22
key signature . 22

L
layers . 48
\layout . 42, 69
layout adjustment, using variable for 147
\layout block, effect of location 42
layout object . 89
layout object, properties of . 96
layout, vs. content . 22
length, of objects . 111
line comment . 18, 19
\lyricmode . 57
lyrics . 32
Lyrics context . 30
Lyrics context, creating . 57
lyrics, aligning . 33
lyrics, and beaming . 57
lyrics, and multiple staves . 36
lyrics, linking to voice . 57
lyrics, multi-syllable words . 33
\lyricsto . 57
LyricText, example of overriding 101, 147

M
macro . 37
magstep function, example of using 111
\major . 22
major key . 22
manual beams . 26
manual, reading . 19
manually controlling tuplets, slurs, phrasing slurs,

and beams . 135
\markLengthOff . 123
\markLengthOn . 123
\markup . 26
markup example . 116
markup text, allowing collisions 123
melisma . 33
metronome mark . 17
metronome mark, tweaking placement 121
MetronomeMark, example of overriding 133, 146
\mf . 25
\midi . 42
\minor . 22
minor key . 22

Appendix C: LilyPond index 212

modifying context properties . 63
modifying templates . 70
moving colliding grobs . 130
moving colliding objects . 130
moving overlapping objects . 130
\mp . 25
MultiMeasureRest, example of overriding 134
multiple staves . 29, 30
multiple staves and lyrics . 36
multiple vocal verses . 58
multiple voices . 32, 48
music expression . 28
music expression, compound 28, 43
music functions . 86
music, concurrent . 48
music, simultaneous . 48

N
naming contexts . 62
naming convention, for objects . 90
naming convention, for properties 90
natural . 22
nesting music expressions . 55
nesting simultaneous constructs 55
nesting voices . 55
\new . 30, 57, 61
new contexts . 61
\new Voice . 53
nonstaff-relatedstaff-spacing property 126
nonstaff-unrelatedstaff-spacing property 126
notating rests . 16
notation context . 30
notation, simple . 13
note column . 56, 131
note name . 39
note name, absolute . 39
note, collision . 56, 131
note, duration . 15
note, duration, in chords . 31
note, increase width with text 123
NoteColumn, example of overriding 137, 144
NoteHead, example of overriding 91, 92, 107, 154

O
object . 89
object, aligning on a baseline . 134
object, changing size of . 107
object, collision within a staff . 134
object, graphical . 81
object, layout . 89
object, moving colliding . 130
object, naming conventions . 90
object, outside-staff . 116
object, positioning . 135
object, properties . 89
object, removing . 145
object, size of . 107
object, within-staff . 116
\offset . 92
\offset, example . 93
\omit . 103, 108, 145
\omit, example . 145

\once . 92, 98
\once \override . 98
\oneVoice . 53
ossias . 45
ottava bracket . 121
outside-staff objects . 116
outside-staff-priority property 116
outside-staff-priority property, example 123
overlapping notation . 132
\override . 90
\override, example . 96
override, only once . 98
override, using variable for . 147

P
\p . 25
padding . 132
padding property . 130
padding property, example 132, 133
padding sub-property . 126
parallel expression, and relative notes 29
parallel expression, multiple . 29
\partial . 27
partial measure . 27
phrasing slur . 23
phrasing slur, controlling manually 135
PhrasingSlur, example of overriding 135
piano staff . 31
PianoStaff context . 31
pickup . 27
pitch . 14
pitch, absolute values . 39
polyphony . 29, 32, 48
polyphony, and relative note entry 51
positioning grobs . 135
positioning objects . 135
positions property . 132
positions property, example 135, 136
post-event . 46
post-event, in variables . 86
\pp . 25
property, in interfaces . 100
property, naming conventions . 90
property, object . 89
property, of grob . 96
property, of layout object . 96
property, operating in contexts 64
property, sub-property . 81
property, types . 101

Q
q . 31
quarter note . 15
quote, single . 14

Appendix C: LilyPond index 213

R
reading the manual . 19
rehearsal mark, tweaking placement 121
\relative . 14
relative mode . 14
relative mode, and accidentals . 14
relative notes, and parallel expressions 29
relative notes, and simultaneous music 29
relative notes, entry and polyphony 51
\remove . 68
removing engravers . 68
removing objects . 145
repetition, of chords . 32
rest . 16
rest, spacer . 32
\revert . 91, 99
reverting to a single voice . 53
rgb-color . 106
rhythm . 15
right-padding property . 130, 133
right-padding property, example 133

S
SATB structure . 58
SATB template . 73
Scheme expressions (#) . 63, 101
\score . 41, 43
\score block, contents of . 43
Score context . 30
score, example of writing . 79
\score, multiple . 42
Script, example of overriding 132
self-alignment-X property . 131
self-alignment-X property, example 134
\set . 63
\set, example of using . 120
setting properties, within contexts 64
sharp . 22
sharp, double . 22
shift commands . 56, 131
\shiftOff . 56, 131
\shiftOn . 56, 131
\shiftOnn . 56, 131
\shiftOnnn . 56, 131
simple notation . 13
simultaneous music . 48
simultaneous music, and relative notes 29
\single . 95
single-staff polyphony . 32
size, changing . 111
size, of objects . 107
sizing grobs . 125
slur . 23
slur, and articulations . 122
slur, and outside-staff-priority 122
slur, controlling manually . 135
Slur, example of overriding 97, 98, 99, 117
slur, phrasing . 23
slur, vs. tie . 24
songs . 32
spacer rest . 32, 56
spanner . 89, 121
staccato . 24

Staff context . 30
staff group . 31
staff line spacing, changing . 111
staff space, unit . 111
staff, choir . 31
staff, grand . 31
staff, piano . 31
staff, positioning . 46
staff-padding property . 130
staff-padding property, example 134
staff-position property . 131
staff-position property, example 134, 142
staff-space property, example 111
staffgroup-staff-spacing property 127
StaffGrouper . 127
StaffSymbol, example of overriding 107, 111
\startTextSpan . 121
staves, multiple . 29, 30
staves, stretchability . 81
staves, temporary . 45
stem direction, and voices . 52
stem down . 52
stem length, changing . 111
stem up . 52
Stem, example of overriding 107, 144
Stem, example of removing . 145
stencil property . 103
stencil property, example 103, 105, 111, 146
\stopTextSpan . 121
stretchability of staves . 81
StringNumber, example of overriding 134
sub-property . 81

T
template . 19
template, modifying . 70
template, SATB . 73
template, writing your own . 79
\tempo . 17
tempo mark . 17
temporary staves . 45
tenor clef . 17
text property, example . 95
text spanner . 121
text, adding . 26
\textLengthOff . 123
\textLengthOn . 123
TextScript, example of overriding 123
TextSpanner, example of overriding 121, 122
thickness property, example 97, 98, 99
thickness, of objects . 111
tie . 23
Tie, example of overriding . 142
\time . 16
time signature . 16
TimeSignature, example of overriding . 104, 105, 107,

108, 109, 110, 111
tips for constructing files . 19
title . 38
transparent property . 104
transparent property, example 95, 104, 144, 146
treble clef . 17
triplet bracket . 94

Appendix C: LilyPond index 214

triplets . 27
triplets, nested . 94
troubleshooting . 19
true (#t) . 63, 101
\tuplet . 27
tuplet beam, controlling manually 135
tuplet bracket . 94
tuplet-number function, example 95
TupletBracket . 94
TupletNumber, example of overriding 95
tuplets . 27
tuplets, nested . 94
\tweak . 92
\tweak, accidental . 94
\tweak, example . 93, 94
tweak, generated from \override 95
\tweak, specific layout object . 94
tweaking bar number placement 121
tweaking dynamics placement 124
tweaking methods . 90
tweaking metronome mark placement 121
tweaking rehearsal mark placement 121
tying notes across voices . 145

U
underscore . 33
\unset . 63
UP . 117
using variables . 37

V
variable . 37, 42, 84
variable, characters allowed in . 37
variable, containing functions . 86
variable, containing music expressions 37
variable, containing post-events 86
variable, containing tweaks . 84
variable, defining . 37
variable, using . 37
variable, using for overrides . 147
verses, multiple vocal . 58
\version . 18
version number . 18
VerticalAxisGroup . 126
vocal score, structure . 57

vocal score, with multiple verses 58
Voice context . 30, 48
Voice context, creating . 53
voice, and stem directions . 52
voice, continued . 55
voice, multiple . 48
voice, multiple on one staff . 32
voice, naming . 50
voice, nesting . 55
voice, reverting to single . 53
voice, temporary . 55
voice, vs. chord . 48
\voiceFour . 53
\voiceFourStyle . 51
\voiceNeutralStyle . 51
\voiceOne . 53
\voiceOneStyle . 51
\voices . 50, 55
\voiceThree . 53
\voiceThreeStyle . 51
\voiceTwo . 53
\voiceTwoStyle . 51

W
whitespace, insensitive . 18
whole note . 15
\with . 66
\with, example 107, 108, 109, 110, 111
within-staff objects . 116
words, in lyrics, with multiple syllables 33
writing a score, example . 79

X
x11-color . 107
x11-color, example of using 107, 154
X-extent property . 113
X-offset property . 112
X-offset property, example . 112

Y
Y-extent property . 113
Y-offset property . 112
Y-offset property, example . 112

	1 Installing
	Graphical setup under GNU/Linux
	Graphical setup under Windows
	Graphical setup under macOS
	Command line setup

	2 Tutorial
	Compiling a file
	How to write input files
	Input characters
	Simple notation
	Pitches
	Durations (rhythms)
	Rests
	Time signature
	Tempo marks
	Clef
	All together

	Working on input files

	Dealing with errors
	How to read the manuals
	Omitted material
	Clickable examples
	Overview of manuals

	3 Common notation
	Single-staff notation
	Bar lines and bar checks
	Bar lines
	Bar checks

	Pitches and key signatures
	Pitch alterations
	Key signatures
	Warning: key signatures and pitches

	Ties and slurs
	Ties
	Slurs
	Phrasing slurs
	Warnings: slurs vs. ties

	Articulations and dynamics
	Articulations
	Fingerings
	Dynamics

	Adding text
	Automatic and manual beams
	Advanced rhythmic commands
	Partial measure
	Tuplets
	Grace notes

	Multiple notes at once
	Music expressions explained
	Analogy: mathematical expressions
	Simultaneous music expressions: multiple staves
	Simultaneous music expressions: single-staff

	Multiple staves
	Staff groups
	Combining notes into chords
	Single-staff polyphony

	Songs
	Setting simple songs
	Aligning lyrics to a melody
	Lyrics to multiple staves

	Final touches
	Organizing pieces with variables
	Adding titles
	Absolute note names
	After the tutorial

	4 Fundamental concepts
	How LilyPond input files work
	Introduction to the LilyPond file structure
	A score is a (single) compound musical expression
	Nesting music expressions
	Structure of a note entry
	On the un-nestedness of brackets and ties

	Voices contain music
	I'm hearing voices
	Explicitly instantiating voices
	Voices and vocals

	Contexts and engravers
	Contexts explained
	Creating contexts
	Engravers explained
	Modifying context properties
	Adding and removing engravers

	Extending the templates
	Soprano and cello
	Four-part SATB vocal score
	Building a score from scratch
	Saving typing with variables and functions
	Scores and parts

	5 Tweaking output
	Tweaking basics
	Objects and interfaces
	Naming conventions of objects and properties
	Tweaking methods
	The override command
	The evert command
	The once prefix
	The 	weak and offset commands
	The single prefix

	The Internals Reference manual
	Properties of layout objects
	Properties found in interfaces
	Types of properties

	Appearance of objects
	Visibility and color of objects
	The stencil property
	The break-visibility property
	The transparent property
	The color property

	Size of objects
	Length and thickness of objects

	Offsets and alignments
	Placement of objects
	Automatic behavior
	Within-staff objects
	The direction property
	Fingering

	Outside-staff objects
	The outside-staff-priority property
	The 	extLengthOn command
	Dynamics placement
	Grob sizing

	Vertical spacing
	Collisions of objects
	Moving objects
	Fixing overlapping notation
	The padding property
	The right-padding property
	The staff-padding property
	The self-alignment-X property
	The staff-position property
	The extra-offset property
	The positions property
	The force-hshift property

	Real music example

	Further tweaking
	Other uses for tweaks
	Tying notes across voices
	Simulating a fermata in MIDI

	Using variables for layout adjustments
	Style sheets
	Other sources of information
	Advanced tweaks with Scheme

	A Templates
	Built-in templates
	SATB template
	SSAATTBB template

	Single staff templates
	Notes only
	Notes and lyrics
	Notes and chords
	Notes, lyrics, and chords

	Piano templates
	Solo piano
	Piano and melody with lyrics
	Piano-centered lyrics

	String quartet templates
	String quartet
	String quartet parts

	Vocal ensembles templates
	SATB vocal score
	SATB vocal score and automatic piano reduction
	SATB with aligned contexts
	SATB on four staves
	Solo verse and two-part refrain
	Hymn tunes
	Psalms

	Orchestral templates
	Orchestra, choir and piano

	Ancient notation templates
	Transcription of mensural music
	Gregorian transcription template

	Other templates
	Jazz combo

	B GNU Free Documentation License
	C LilyPond index

