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1 Scheme tutorial

LilyPond uses the Scheme programming language, both as part of the input syntax, and as inter-
nal mechanism to glue modules of the program together. This section is a very brief overview of
entering data in Scheme. If you want to know more about Scheme, see https://www.schemers

.org.

LilyPond uses the GNU Guile implementation of Scheme, which is based on the Scheme
“R5RS” standard. If you are learning Scheme to use with LilyPond, working with a different
implementation (or referring to a different standard) is not recommended. Information on guile
can be found at https://www.gnu.org/software/guile/. The “R5RS” Scheme standard is
located at https://www.schemers.org/Documents/Standards/R5RS/.

1.1 Introduction to Scheme

We begin with an introduction to Scheme. For this brief introduction, we will use the Guile
interpreter to explore how the language works. Once we are familiar with Scheme, we will show
how the language can be integrated in LilyPond files.

1.1.1 Scheme sandbox

The LilyPond installation includes the Guile implementation of Scheme. A hands-on Scheme
sandbox with all of LilyPond loaded is available with this command line:

lilypond scheme-sandbox

Once the sandbox is running, you will receive a guile prompt:

guile>

You can enter Scheme expressions at this prompt to experiment with Scheme. If you want
to be able to use the GNU readline library for nicer editing of the Scheme command line, check
the file ly/scheme-sandbox.ly for more information. If you already have enabled the readline
library for your interactive Guile sessions outside of LilyPond, this should work in the sandbox
as well.

1.1.2 Scheme variables

Scheme variables can have any valid Scheme value, including a Scheme procedure.

Scheme variables are created with define:

guile> (define a 2)

guile>

Scheme variables can be evaluated at the guile prompt simply by typing the variable name:

guile> a

2

guile>

Scheme variables can be printed on the display by using the display function:

guile> (display a)

2guile>

Note that both the value 2 and the guile prompt guile showed up on the same line. This can
be avoided by calling the newline procedure or displaying a newline character.

guile> (display a)(newline)

2

guile> (display a)(display "\n")

2

guile>

https://www.schemers.org
https://www.schemers.org
https://www.gnu.org/software/guile/
https://www.schemers.org/Documents/Standards/R5RS/
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Once a variable has been created, its value can be changed with set!:

guile> (set! a 12345)

guile> a

12345

guile>

1.1.3 Scheme simple data types

The most basic concept in a language is data typing: numbers, character strings, lists, etc. Here
is a list of simple Scheme data types that are often used with LilyPond.

Booleans Boolean values are True or False. The Scheme for True is #t and False is #f.

Numbers Numbers are entered in the standard fashion, 1 is the (integer) number one, while
-1.5 is a floating point number (a non-integer number).

Strings Strings are enclosed in double quotes:

"this is a string"

Strings may span several lines:

"this

is

a string"

and the newline characters at the end of each line will be included in the string.

Newline characters can also be added by including \n in the string.

"this\nis a\nmultiline string"

Quotation marks and backslashes are added to strings by preceding them with a
backslash. The string \a said "b" is entered as

"\\a said \"b\""

There are additional Scheme data types that are not discussed here. For a complete list-
ing see the Guile reference guide, https://www.gnu.org/software/guile/docs/docs-1.8/

guile-ref/Simple-Data-Types.html.

1.1.4 Scheme compound data types

There are also compound data types in Scheme. The types commonly used in LilyPond pro-
gramming include pairs, lists, alists, and hash tables.

Pairs

The foundational compound data type of Scheme is the pair. As might be expected from its
name, a pair is two values glued together. The operator used to form a pair is called cons.

guile> (cons 4 5)

(4 . 5)

guile>

Note that the pair is displayed as two items surrounded by parentheses and separated by
whitespace, a period (.), and more whitespace. The period is not a decimal point, but rather
an indicator of the pair.

Pairs can also be entered as literal values by preceding them with a single quote character.

guile> '(4 . 5)

(4 . 5)

guile>

The two elements of a pair may be any valid Scheme value:

guile> (cons #t #f)

https://www.gnu.org/software/guile/docs/docs-1.8/guile-ref/Simple-Data-Types.html
https://www.gnu.org/software/guile/docs/docs-1.8/guile-ref/Simple-Data-Types.html
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(#t . #f)

guile> '("blah-blah" . 3.1415926535)

("blah-blah" . 3.1415926535)

guile>

The first and second elements of the pair can be accessed by the Scheme procedures car and
cdr, respectively.

guile> (define mypair (cons 123 "hello there")

... )

guile> (car mypair)

123

guile> (cdr mypair)

"hello there"

guile>

Note: cdr is pronounced "could-er", according Sussman and Abelson, see https://

mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-14.html#

footnote_Temp_133

Lists

A very common Scheme data structure is the list. Formally, a ‘proper’ list is defined to be either
the empty list with its input form '() and length 0, or a pair whose cdr in turn is a shorter list.

There are many ways of creating lists. Perhaps the most common is with the list procedure:

guile> (list 1 2 3 "abc" 17.5)

(1 2 3 "abc" 17.5)

Representing a list as individual elements separated by whitespace and enclosed in parenthe-
ses is actually a compacted rendition of the actual dotted pairs constituting the list, where the
dot and an immediately following starting paren are removed along with the matching closing
paren. Without this compaction, the output would have been

(1 . (2 . (3 . ("abc" . (17.5 . ())))))

As with the output, a list can also be entered (after adding a quote to avoid interpretation
as a function call) as a literal list by enclosing its elements in parentheses:

guile> '(17 23 "foo" "bar" "bazzle")

(17 23 "foo" "bar" "bazzle")

Lists are a central part of Scheme. In, fact, Scheme is considered a dialect of lisp, where ‘lisp’
is an abbreviation for ‘List Processing’. Scheme expressions are all lists.

Association lists (alists)

A special type of list is an association list or alist. An alist is used to store data for easy retrieval.

Alists are lists whose elements are pairs. The car of each element is called the key, and the
cdr of each element is called the value. The Scheme procedure assoc is used to retrieve an entry
from the alist, and cdr is used to retrieve the value:

guile> (define my-alist '((1 . "A") (2 . "B") (3 . "C")))

guile> my-alist

((1 . "A") (2 . "B") (3 . "C"))

guile> (assoc 2 my-alist)

(2 . "B")

guile> (cdr (assoc 2 my-alist))

"B"

guile>

Alists are widely used in LilyPond to store properties and other data.

https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-14.html#footnote_Temp_133
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-14.html#footnote_Temp_133
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-14.html#footnote_Temp_133
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Hash tables

A data structure that is used occasionally in LilyPond. A hash table is similar to an array, but
the indexes to the array can be any type of Scheme value, not just integers.

Hash tables are more efficient than alists if there is a lot of data to store and the data changes
very infrequently.

The syntax to create hash tables is a bit complex, but you can see examples of it in the
LilyPond source.

guile> (define h (make-hash-table 10))

guile> h

#<hash-table 0/31>

guile> (hashq-set! h 'key1 "val1")

"val1"

guile> (hashq-set! h 'key2 "val2")

"val2"

guile> (hashq-set! h 3 "val3")

"val3"

Values are retrieved from hash tables with hashq-ref.

guile> (hashq-ref h 3)

"val3"

guile> (hashq-ref h 'key2)

"val2"

guile>

Keys and values are retrieved as a pair with hashq-get-handle. This is a preferred way,
because it will return #f if a key is not found.

guile> (hashq-get-handle h 'key1)

(key1 . "val1")

guile> (hashq-get-handle h 'frob)

#f

guile>

1.1.5 Calculations in Scheme

Scheme can be used to do calculations. It uses prefix syntax. Adding 1 and 2 is written as (+

1 2) rather than the traditional 1 + 2.

guile> (+ 1 2)

3

Calculations may be nested; the result of a function may be used for another calculation.

guile> (+ 1 (* 3 4))

13

These calculations are examples of evaluations; an expression like (* 3 4) is replaced by its
value 12.

Scheme calculations are sensitive to the differences between integers and non-integers. Integer
calculations are exact, while non-integers are calculated to the appropriate limits of precision:

guile> (/ 7 3)

7/3

guile> (/ 7.0 3.0)

2.33333333333333

When the Scheme interpreter encounters an expression that is a list, the first element of the
list is treated as a procedure to be evaluated with the arguments of the remainder of the list.
Therefore, all operators in Scheme are prefix operators.
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If the first element of a Scheme expression that is a list passed to the interpreter is not an
operator or procedure, an error will occur:

guile> (1 2 3)

Backtrace:

In current input:

52: 0* [1 2 3]

<unnamed port>:52:1: In expression (1 2 3):

<unnamed port>:52:1: Wrong type to apply: 1

ABORT: (misc-error)

guile>

Here you can see that the interpreter was trying to treat 1 as an operator or procedure, and
it couldn’t. Hence the error is "Wrong type to apply: 1".

Therefore, to create a list we need to use the list operator, or to quote the list so that the
interpreter will not try to evaluate it.

guile> (list 1 2 3)

(1 2 3)

guile> '(1 2 3)

(1 2 3)

guile>

This is an error that can appear as you are working with Scheme in LilyPond.

1.1.6 Scheme procedures

Scheme procedures are executable Scheme expressions that return a value resulting from their
execution. They can also manipulate variables defined outside of the procedure.

Defining procedures

Procedures are defined in Scheme with define

(define (function-name arg1 arg2 ... argn)

scheme-expression-that-gives-a-return-value)

For example, we could define a procedure to calculate the average:

guile> (define (average x y) (/ (+ x y) 2))

guile> average

#<procedure average (x y)>

Once a procedure is defined, it is called by putting the procedure name and the arguments
in a list. For example, we can calculate the average of 3 and 12:

guile> (average 3 12)

15/2

Predicates

Scheme procedures that return boolean values are often called predicates. By convention (but
not necessity), predicate names typically end in a question mark:

guile> (define (less-than-ten? x) (< x 10))

guile> (less-than-ten? 9)

#t

guile> (less-than-ten? 15)

#f
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Return values

Scheme procedures always return a return value, which is the value of the last expression executed
in the procedure. The return value can be any valid Scheme value, including a complex data
structure or a procedure.

Sometimes the user would like to have multiple Scheme expressions in a procedure. There are
two ways that multiple expressions can be combined. The first is the begin procedure, which
allows multiple expressions to be evaluated, and returns the value of the last expression.

guile> (begin (+ 1 2) (- 5 8) (* 2 2))

4

The second way to combine multiple expressions is in a let block. In a let block, a series
of bindings are created, and then a sequence of expressions that can include those bindings is
evaluated. The return value of the let block is the return value of the last statement in the let
block:

guile> (let ((x 2) (y 3) (z 4)) (display (+ x y)) (display (- z 4))

... (+ (* x y) (/ z x)))

508

1.1.7 Scheme conditionals

if

Scheme has an if procedure:

(if test-expression true-expression false-expression)

test-expression is an expression that returns a boolean value. If test-expression returns #t,
the if procedure returns the value of true-expression, otherwise it returns the value of false-

expression.

guile> (define a 3)

guile> (define b 5)

guile> (if (> a b) "a is greater than b" "a is not greater than b")

"a is not greater than b"

cond

Another conditional procedure in Scheme is cond:

(cond (test-expression-1 result-expression-sequence-1)

(test-expression-2 result-expression-sequence-2)

...

(test-expression-n result-expression-sequence-n))

For example:

guile> (define a 6)

guile> (define b 8)

guile> (cond ((< a b) "a is less than b")

... ((= a b) "a equals b")

... ((> a b) "a is greater than b"))

"a is less than b"

1.2 Scheme in LilyPond

1.2.1 LilyPond Scheme syntax

The Guile interpreter is part of LilyPond, which means that Scheme can be included in LilyPond
input files. There are several methods for including Scheme in LilyPond.
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The simplest way is to use a hash mark # before a Scheme expression.

Now LilyPond’s input is structured into tokens and expressions, much like human language is
structured into words and sentences. LilyPond has a lexer that recognizes tokens (literal numbers,
strings, Scheme elements, pitches and so on), and a parser that understands the syntax. Once
it knows that a particular syntax rule applies, it executes actions associated with it.

The hash mark # method of embedding Scheme is a natural fit for this system. Once the
lexer sees a hash mark, it calls the Scheme reader to read one full Scheme expression (this can be
an identifier, an expression enclosed in parentheses, or several other things). After the Scheme
expression is read, it is stored away as the value for an SCM_TOKEN in the grammar. Once the
parser knows how to make use of this token, it calls Guile for evaluating the Scheme expression.
Since the parser usually requires a bit of lookahead from the lexer to make its parsing decisions,
this separation of reading and evaluation between lexer and parser is exactly what is needed to
keep the execution of LilyPond and Scheme expressions in sync. For this reason, you should use
the hash mark # for calling Scheme whenever this is feasible.

Another way to call the Scheme interpreter from LilyPond is the use of dollar $ instead of a
hash mark for introducing Scheme expressions. In this case, LilyPond evaluates the code right
after the lexer has read it. It checks the resulting type of the Scheme expression and then picks
a token type (one of several xxx_IDENTIFIER in the syntax) for it. It creates a copy of the value
and uses that for the value of the token. If the value of the expression is void (Guile’s value of
*unspecified*), nothing at all is passed to the parser.

This is, in fact, exactly the same mechanism that LilyPond employs when you call any variable
or music function by name, as \name, with the only difference that the name is determined by the
LilyPond lexer without consulting the Scheme reader, and thus only variable names consistent
with the current LilyPond mode are accepted.

The immediate action of $ can lead to surprises, see Section 1.2.5 [Importing Scheme in
LilyPond], page 9. Using # where the parser supports it is usually preferable. Inside of music
expressions, expressions created using # are interpreted as music. However, they are not copied
before use. If they are part of some structure that might still get used, you may need to use
ly:music-deep-copy explicitly.

There are also ‘list splicing’ operators $@ and #@ that insert all elements of a list in the
surrounding context.

Now let’s take a look at some actual Scheme code. Scheme procedures can be defined in
LilyPond input files:

#(define (average a b c) (/ (+ a b c) 3))

Note that LilyPond comments (% and %{ %}) cannot be used within Scheme code, even in a
LilyPond input file, because the Guile interpreter, not the LilyPond lexer, is reading the Scheme
expression. Comments in Guile Scheme are entered as follows:

; this is a single-line comment

#!

This a (non-nestable) Guile-style block comment

But these are rarely used by Schemers and never in

LilyPond source code

!#

For the rest of this section, we will assume that the data is entered in a music file, so we add
a # at the beginning of each Scheme expression.

All of the top-level Scheme expressions in a LilyPond input file can be combined into a single
Scheme expression by use of the begin statement:

#(begin
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(define foo 0)

(define bar 1))

1.2.2 LilyPond variables

LilyPond variables are stored internally in the form of Scheme variables. Thus,

twelve = 12

is equivalent to

#(define twelve 12)

This means that LilyPond variables are available for use in Scheme expressions. For example,
we could use

twentyFour = #(* 2 twelve)

which would result in the number 24 being stored in the LilyPond (and Scheme) variable
twentyFour.

Scheme allows modifying complex expressions in-place and LilyPond makes use of this ‘in-
place modification’ when using music functions. But when music expressions are stored in
variables rather than entered directly the usual expectation, when passing them to music func-
tions, would be that the original value is unmodified. So when referencing a music variable with
leading backslash (such as \twentyFour), LilyPond creates a copy of that variable’s music value
for use in the surrounding music expression rather than using the variable’s value directly.

Therefore, Scheme music expressions written with the # syntax should be used for material
that is created ‘from scratch’ (or that is explicitly copied) rather than being used, instead, to
directly reference material.

See also

Extending: Section 1.2.1 [LilyPond Scheme syntax], page 6.

1.2.3 Debugging Scheme code

When debugging large Scheme programs, it is helpful when an error occurs to be pointed to the
precise line in the program where it was raised. In order to enable source locations to be shown
for errors in Scheme code, LilyPond must be run with the command-line option -dcompile-

scheme-code. Alternatively, writing #(ly:set-option 'compile-scheme-code) at the top of
the LilyPond file has the same effect.

Furthermore, to obtain even more information about the error, you may use the -ddebug-

eval option, or the code #(debug-enable 'backtrace) in the file. Under this mode, when an
error occurs, a verbose “backtrace” is displayed, containing information about all function calls
that led to the problematic spot.

Known issues and warnings

Due to a limitation in the Guile implementation, the -dcompile-scheme-code option currently
makes it impossible to compile LilyPond files with more than a few thousand Scheme expressions.

1.2.4 Input variables and Scheme

The input format supports the notion of variables: in the following example, a music expression
is assigned to a variable with the name traLaLa.

traLaLa = { c'4 d'4 }

There is also a form of scoping: in the following example, the \layout block also contains a
traLaLa variable, which is independent of the outer \traLaLa.

traLaLa = { c'4 d'4 }
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\layout { traLaLa = 1.0 }

In effect, each input file is a scope, and all \header, \midi, and \layout blocks are scopes
nested inside that toplevel scope.

Both variables and scoping are implemented in the Guile module system. An anonymous
Scheme module is attached to each scope. An assignment of the form:

traLaLa = { c'4 d'4 }

is internally converted to a Scheme definition:

(define traLaLa Scheme value of '...')

This means that LilyPond variables and Scheme variables may be freely mixed. In the
following example, a music fragment is stored in the variable traLaLa, and duplicated using
Scheme. The result is imported in a \score block by means of a second variable twice:

traLaLa = { c'4 d'4 }

#(define newLa (map ly:music-deep-copy

(list traLaLa traLaLa)))

#(define twice

(make-sequential-music newLa))

\twice

h hh� º h
This is actually a rather interesting example. The assignment will only take place after the

parser has ascertained that nothing akin to \addlyrics follows, so it needs to check what comes
next. It reads # and the following Scheme expression without evaluating it, so it can go ahead
with the assignment, and afterwards execute the Scheme code without problem.

1.2.5 Importing Scheme in LilyPond

The above example shows how to ‘export’ music expressions from the input to the Scheme
interpreter. The opposite is also possible. By placing it after $, a Scheme value is interpreted
as if it were entered in LilyPond syntax. Instead of defining \twice, the example above could
also have been written as

...

$(make-sequential-music newLa)

You can use $ with a Scheme expression anywhere you could use \name after having assigned
the Scheme expression to a variable name. This replacement happens in the ‘lexer’, so LilyPond
is not even aware of the difference.

One drawback, however, is that of timing. If we had been using $ instead of # for defining
newLa in the above example, the following Scheme definition would have failed because traLaLa

would not yet have been defined. For an explanation of this timing problem, Section 1.2.1
[LilyPond Scheme syntax], page 6.

A further convenience can be the ‘list splicing’ operators $@ and #@ for inserting the elements
of a list in the surrounding context. Using those, the last part of the example could have been
written as

...

{ #@newLa }



Chapter 1: Scheme tutorial 10

Here, every element of the list stored in newLa is taken in sequence and inserted into the list,
as if we had written

{ #(first newLa) #(second newLa) }

Now in all of these forms, the Scheme code is evaluated while the input is still being consumed,
either in the lexer or in the parser. If you need it to be executed at a later point of time, check
out Section 2.2.3 [Void Scheme functions], page 24, or store it in a procedure:

#(define (nopc)

(ly:set-option 'point-and-click #f))

...

#(nopc)

{ c'4 }

1.2.6 Object properties

Object properties are stored in LilyPond in the form of alist-chains, which are lists of alists.
Properties are set by adding values at the beginning of the property list. Properties are read by
retrieving values from the alists.

Setting a new value for a property requires assigning a value to the alist with both a key and
a value. The LilyPond syntax for doing this is:

\override Stem.thickness = #2.6

This instruction adjusts the appearance of stems. An alist entry '(thickness . 2.6) is
added to the property list of the Stem object. thickness is measured relative to the thickness
of staff lines, so these stem lines will be 2.6 times the width of staff lines. This makes stems
almost twice as thick as their normal size. To distinguish between variables defined in input
files (like twentyFour in the example above) and variables of internal objects, we will call the
latter ‘properties’ and the former ‘variables.’ So, the stem object has a thickness property,
while twentyFour is a variable.

1.2.7 LilyPond compound variables

Offsets

Two-dimensional offsets (X and Y coordinates) are stored as pairs. The car of the offset is the
X coordinate, and the cdr is the Y coordinate.

\override TextScript.extra-offset = #'(1 . 2)

This assigns the pair (1 . 2) to the extra-offset property of the TextScript object. These
numbers are measured in staff-spaces, so this command moves the object 1 staff space to the
right, and 2 spaces up.

Procedures for working with offsets are found in scm/lily-library.scm.

Fractions

Fractions as used by LilyPond are again stored as pairs, this time of unsigned integers. While
Scheme can represent rational numbers as a native type, musically ‘2/4’ and ‘1/2’ are not the
same, and we need to be able to distinguish between them. Similarly there are no negative
‘fractions’ in LilyPond’s mind. So 2/4 in LilyPond means (2 . 4) in Scheme, and #2/4 in
LilyPond means 1/2 in Scheme.

Extents

Pairs are also used to store intervals, which represent a range of numbers from the minimum (the
car) to the maximum (the cdr). Intervals are used to store the X- and Y- extents of printable
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objects. For X extents, the car is the left hand X coordinate, and the cdr is the right hand X
coordinate. For Y extents, the car is the bottom coordinate, and the cdr is the top coordinate.

Procedures for working with intervals are found in scm/lily-library.scm. These procedures
should be used when possible to ensure consistency of code.

Property alists

A property alist is a LilyPond data structure that is an alist whose keys are properties and
whose values are Scheme expressions that give the desired value for the property.

LilyPond properties are Scheme symbols, such as 'thickness.

Alist chains

An alist chain is a list containing property alists.

The set of all properties that will apply to a grob is typically stored as an alist chain. In
order to find the value for a particular property that a grob should have, each alist in the chain
is searched in order, looking for an entry containing the property key. The first alist entry found
is returned, and the value is the property value.

The Scheme procedure chain-assoc-get is normally used to get grob property values.

1.2.8 Internal music representation

Internally, music is represented as a Scheme list. The list contains various elements that af-
fect the printed output. Parsing is the process of converting music from the LilyPond input
representation to the internal Scheme representation.

When a music expression is parsed, it is converted into a set of Scheme music objects. The
defining property of a music object is that it takes up time. The time it takes up is called its
duration. Durations are expressed as a rational number that measures the length of the music
object in whole notes.

A music object has three kinds of types:

• music name: Each music expression has a name. For example, a note leads to a Section
“NoteEvent” in Internals Reference, and \simultaneous leads to a Section “Simultaneous-
Music” in Internals Reference. A list of all expressions available is in the Internals Reference
manual, under Section “Music expressions” in Internals Reference.

• ‘type’ or interface: Each music name has several ‘types’ or interfaces, for example, a note is
an event, but it is also a note-event, a rhythmic-event, and a melodic-event. All classes
of music are listed in the Internals Reference, under Section “Music classes” in Internals

Reference.

• C++ object: Each music object is represented by an object of the C++ class Music.

The actual information of a music expression is stored in properties. For example, a Section
“NoteEvent” in Internals Reference has pitch and duration properties that store the pitch and
duration of that note. A list of all properties available can be found in the Internals Reference,
under Section “Music properties” in Internals Reference.

A compound music expression is a music object that contains other music objects in its
properties. A list of objects can be stored in the elements property of a music object, or a
single ‘child’ music object in the element property. For example, Section “SequentialMusic”
in Internals Reference has its children in elements, and Section “GraceMusic” in Internals

Reference has its single argument in element. The body of a repeat is stored in the element

property of Section “RepeatedMusic” in Internals Reference, and the alternatives in elements.
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1.3 Building complicated functions

This section explains how to gather the information necessary to create complicated music
functions.

1.3.1 A first approach (example)

1. The problem

Using the following input, the ‘espressivo’ sign (i.e., the two small hairpins) should become
wider, but not taller.

{ f'\espressivo }

º� Vh
2. Possible solutions

A. create a new stencil

B. scale the default stencil in direction of the X-axis

3. Thoughts about previous item

Solution A is doable. However, it will result in a higher coding effort. On the other hand,
solution B is cheaper, but it has the disadvantage that it doesn’t print acceptable results
in all cases (although you may not know this before you’ve actually tried).

⇒ choose solution B.

4. Coding

• If you want to manipulate the default stencil you have to find information about it.

The espressivo sign is a Script grob. Looking this up in the IR (Section “script” in
Internals Reference), we see

‘stencil’ (stencil):

‘ly:script-interface::print’

Let us test whether this is correct. To be sure that we affect the correct grob we
are going to use colors. There is a predefined function for that, see Section “Scheme
functions” in Internals Reference.

-- Function: stencil-with-color stencil color

Return a modified version of the given stencil that is

colored with the given color. See ‘normalize-color’ for

possible color formats.

-- Function: normalize-color color

Convert a color given in any of the supported formats into

a list of 4 numbers: R, G, B, A. Possible formats are:

such a list of 4 numbers; a list of 3 numbers (transparency

defaults to 1.0); a CSS string (named color, or �#RRGGBB�,

or �#RRGGBBAA�, or �#RGB�, or �#RGBA�).

Using a named color (‘red’), this results in the following code.

colorDefaultStencil =

\once \override Script.stencil =

% `lambda` starts a procedure; its argument is `grob`.

#(lambda (grob)

;; With `let`, local variables are defined.

(let ((stil (ly:script-interface::print grob)))

;; The procedure returns the colored default stencil.
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(stencil-with-color stil red)))

{ \colorDefaultStencil f'\espressivo }

º� Vh
Fine, works.

• This kind of operation – taking a default stencil or property and returning a modi-
fied version of it – is very common, and LilyPond provides a special function for it:
grob-transformer.

-- Function: grob-transformer property func

Create an override value good for applying FUNC to either

pure or unpure values. FUNC is called with the

respective grob as first argument and the default value

(after resolving all callbacks) as the second.

Let’s try that. (The concept of pure vs. unpure gets explained later, see Section 2.8
[Unpure-pure containers], page 41; we can ignore it for now).

colorDefaultStencil =

\once \override Script.stencil =

#(grob-transformer 'stencil

(lambda (grob orig)

(stencil-with-color orig red)))

{ \colorDefaultStencil f'\espressivo }

º� Vh
Success!

• To get a scaled stencil we have to use

-- Function: ly:stencil-scale stil x y

Scale stencil STIL using the horizontal and vertical

scaling factors X and optional Y (defaulting to X).

Negative values flip or mirror STIL without changing its

origin; this may result in collisions unless it is

repositioned.

from the same chapter in the Internals Reference.

Result:

scaleColorDefaultStencil =

\once \override Script.stencil =

#(grob-transformer 'stencil

(lambda (grob orig)

(stencil-with-color

(ly:stencil-scale

orig

;; 1 is the neutral element with ly:stencil-scale,

;; i.e., scaling with '1 1' (for x- and y-axis)

;; returns a visibly unchanged stencil.
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2 1)

red)))

{ \scaleColorDefaultStencil f'\espressivo }

º� Vh
Apart from the color that seems to be the desired output.

• There are some problems, though, as can be seen in the following example

{ \scaleColorDefaultStencil f'_\espressivo ^\fermata }

º� y
Vh

− The fermata is scaled, too.

− Having to type the command before the note(s) and \espressivo after the note(s)
is annoying.

Solution for both: use \tweak!

{

f'-\tweak stencil

#(grob-transformer 'stencil

(lambda (grob orig)

(stencil-with-color

(ly:stencil-scale orig 2 1)

red)))

_\espressivo

^\fermata

}

º� y
Vh

This does what we want, however, typing so much isn’t nice – let’s define a variable
and use it with the tweak. With some copy and paste we get

#(define longer-script

(grob-transformer 'stencil

(lambda (grob orig)

(stencil-with-color

(ly:stencil-scale orig 2 1)

red))))

{

f'-\tweak stencil #longer-script _\espressivo

^\fermata

}

º� y
Vh
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Works fine, though the scaling values are hard-coded, and typing -\tweak stencil

#longer-script repeatedly is still awkward.

To fix that, let’s first introduce some variables in longer-script for x and y scaling
values.

#(define (longer-script x y)

(grob-transformer 'stencil

(lambda (grob orig)

(stencil-with-color

(ly:stencil-scale orig x y)

red))))

Second, to reduce typing, we define an event function, see Section 2.4 [Event functions],
page 28. The elements in the first parenthesis group (‘(x-val y-val)’) are the function
variables, the elements in the second parenthesis group the respective variable types
(two times we check for a number; see Section “Predefined type predicates” in Notation

Reference for possible tests).

scaleEspr =

#(define-event-function (x-val y-val) (number? number?)

#{

\tweak stencil #(longer-script x-val y-val)

\espressivo

#})

{ f'_\scaleEspr 2 1

^\fermata }

º� y
Vh

Works as expected, fine! Note the use of #{ ... #}: Within this Scheme construction,
we can use LilyPond syntax, and the function’s arguments (like x-val) are properly
expanded. See Section 2.1 [LilyPond code blocks], page 22.

5. The finished code

Finally, we want to do some clean-up.

− We only want scaling in the x-direction, so let’s hard-code y-scaling in the event func-
tion.

− Delete the color.

This eventually leads to the following code.

#(define (longer-script x y)

(grob-transformer 'stencil

(lambda (grob orig)

(ly:stencil-scale orig x y))))

longEspressivo =

#(define-event-function (x-val) (number?)

#{

\tweak stencil #(longer-script x-val 1)

\espressivo

#})
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{ f'^\longEspressivo #2 _\fermata }

º� E
V
h

Voilà!

The main benefit of using grob-transformer is that we no longer have to take care of the
actual name of the stencil function. In the next example we rotate the stencil of a slur and
a beam by 90 degrees – that the actual stencil functions are called ly:slur::print and
ly:beam::print, respectively, is of no concern here.

#(define rotate-90

(grob-transformer 'stencil

(lambda (grob orig)

(ly:stencil-rotate orig 90 0 0))))

{ f'8( g')

f'8-\tweak stencil #rotate-90 ( g')

f'8[ g']

f'8-\tweak stencil #rotate-90 [ g'] }

hh hhhº� h h h
1.3.2 Displaying music expressions

When writing a music function it is often instructive to inspect how a music expression is stored
internally. This can be done with the music function \displayMusic.

{

\displayMusic { c'4\f }

}

will display

(make-music

'SequentialMusic

'elements

(list (make-music

'NoteEvent

'articulations

(list (make-music

'AbsoluteDynamicEvent

'text

"f"))

'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch 0 0 0))))

By default, LilyPond will print these messages to the console along with all the other messages.
To split up these messages and save the results of \display{STUFF}, you can specify an optional
output port to use:

{

\displayMusic #(open-output-file "display.txt") { c'4\f }
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}

This will overwrite a previous output file whenever it is called; if you need to write more
than one expression, you would use a variable for your port and reuse it:

{

port = #(open-output-file "display.txt")

\displayMusic \port { c'4\f }

\displayMusic \port { d'4 }

#(close-output-port port)

}

Guile’s manual describes ports in detail. Closing the port is actually only necessary if you
need to read the file before LilyPond finishes; in the first example, we did not bother to do so.

A bit of reformatting makes the above information easier to read:

(make-music 'SequentialMusic

'elements (list

(make-music 'NoteEvent

'articulations (list

(make-music 'AbsoluteDynamicEvent

'text

"f"))

'duration (ly:make-duration 2 0 1/1)

'pitch (ly:make-pitch 0 0 0))))

A { ... } music sequence has the name SequentialMusic, and its inner expressions
are stored as a list in its 'elements property. A note is represented as a NoteEvent ob-
ject (storing the duration and pitch properties) with attached information (in this case, an
AbsoluteDynamicEvent with a "f" text property) stored in its articulations property.

\displayMusic returns the music it displays, so it will get interpreted as well as displayed.
To avoid interpretation, write \void before \displayMusic.

1.3.3 Music properties

Let’s look at an example:

someNote = c'

\displayMusic \someNote

===>

(make-music

'NoteEvent

'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch 0 0 0))

The NoteEvent object is the representation of someNote. Straightforward. How about
putting c’ in a chord?

someNote = <c'>

\displayMusic \someNote

===>

(make-music

'EventChord

'elements

(list (make-music

'NoteEvent
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'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch 0 0 0))))

Now the NoteEvent object is the first object of the 'elements property of someNote.

The display-scheme-music function is the function used by \displayMusic to display the
Scheme representation of a music expression.

#(display-scheme-music (first (ly:music-property someNote 'elements)))

===>

(make-music

'NoteEvent

'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch 0 0 0))

Then the note pitch is accessed through the 'pitch property of the NoteEvent object.

#(display-scheme-music

(ly:music-property (first (ly:music-property someNote 'elements))

'pitch))

===>

(ly:make-pitch 0 0 0)

The note pitch can be changed by setting this 'pitch property.

#(set! (ly:music-property (first (ly:music-property someNote 'elements))

'pitch)

(ly:make-pitch 0 1 0)) ;; set the pitch to d'.

\displayLilyMusic \someNote

===>

d'4

1.3.4 Doubling a note with slurs (example)

Suppose we want to create a function that translates input like a into { a( a) }. We begin by
examining the internal representation of the desired result.

\displayMusic{ a'( a') }

===>

(make-music

'SequentialMusic

'elements

(list (make-music

'NoteEvent

'articulations

(list (make-music

'SlurEvent

'span-direction

-1))

'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch 0 5 0))

(make-music

'NoteEvent
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'articulations

(list (make-music

'SlurEvent

'span-direction

1))

'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch 0 5 0))))

The bad news is that the SlurEvent expressions must be added ‘inside’ the note (in its
articulations property).

Now we examine the input.

\displayMusic a'

===>

(make-music

'NoteEvent

'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch 0 5 0))))

So in our function, we need to clone this expression (so that we have two notes to build the
sequence), add a SlurEvent to the 'articulations property of each one, and finally make a
SequentialMusic with the two NoteEvent elements. For adding to a property, it is useful to
know that an unset property is read out as '(), the empty list, so no special checks are required
before we put another element at the front of the articulations property.

doubleSlur = #(define-music-function (note) (ly:music?)

"Return: { note ( note ) }.

`note` is supposed to be a single note."

(let ((note2 (ly:music-deep-copy note)))

(set! (ly:music-property note 'articulations)

(cons (make-music 'SlurEvent 'span-direction -1)

(ly:music-property note 'articulations)))

(set! (ly:music-property note2 'articulations)

(cons (make-music 'SlurEvent 'span-direction 1)

(ly:music-property note2 'articulations)))

(make-music 'SequentialMusic 'elements (list note note2))))

1.3.5 Adding articulation to notes (example)

The easy way to add articulation to notes is to juxtapose two music expressions. However,
suppose that we want to write a music function that does this.

A $variable inside the #{...#} notation is like a regular \variable in classical LilyPond
notation. We could write

{ \music -. -> }

but for the sake of this example, we will learn how to do this in Scheme. We begin by examining
our input and desired output.

% input

\displayMusic c4

===>

(make-music

'NoteEvent
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'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch -1 0 0))))

=====

% desired output

\displayMusic c4->

===>

(make-music

'NoteEvent

'articulations

(list (make-music

'ArticulationEvent

'articulation-type 'accent))

'duration

(ly:make-duration 2 0 1/1)

'pitch

(ly:make-pitch -1 0 0))

We see that a note (c4) is represented as a NoteEvent expression. To add an accent articula-
tion, an ArticulationEvent expression must be added to the articulations property of the
NoteEvent expression.

To build this function, we begin with

(define (add-accent note-event)

"Add an accent ArticulationEvent to the articulations of `note-event`,

which is supposed to be a NoteEvent expression."

(set! (ly:music-property note-event 'articulations)

(cons (make-music 'ArticulationEvent

'articulation-type 'accent)

(ly:music-property note-event 'articulations)))

note-event)

The first line is the way to define a function in Scheme: the function name is add-accent,
and has one variable called note-event. In Scheme, the type of variable is often clear from its
name. (this is good practice in other programming languages, too!)

"Add an accent..."

is a description of what the function does. This is not strictly necessary, but just like clear
variable names, it is good practice.

You may wonder why we modify the note event directly instead of working on a copy
(ly:music-deep-copy can be used for that). The reason is a silent contract: music functions are
allowed to modify their arguments: they are either generated from scratch (like user input) or
are already copied (referencing a music variable with ‘\name’ or music from immediate Scheme
expressions ‘$(...)’ provides a copy). Since it would be inefficient to create unnecessary copies,
the return value from a music function is not copied. So to heed that contract, you must not
use any arguments more than once, and returning it counts as one use.

In an earlier example, we constructed music by repeating a given music argument. In that
case, at least one repetition had to be a copy of its own. If it weren’t, strange things may happen.
For example, if you use \relative or \transpose on the resulting music containing the same
elements multiple times, those will be subjected to relativation or transposition multiple times.
If you assign them to a music variable, the curse is broken since referencing ‘\name’ will again
create a copy which does not retain the identity of the repeated elements.
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Now while the above function is not a music function, it will normally be used within music
functions. So it makes sense to heed the same contract we use for music functions: the input
may be modified for producing the output, and the caller is responsible for creating copies if it
still needs the unchanged argument itself. If you take a look at LilyPond’s own functions like
music-map, you’ll find that they stick with the same principles.

Where were we? We now have a note-event we may modify, not because of using
ly:music-deep-copy but because of a long-winded explanation. We add the accent to its
'articulations list property.

(set! place new-value)

Here, what we want to set (the ‘place’) is the 'articulations property of note-event

expression.

(ly:music-property note-event 'articulations)

ly:music-property is the function used to access music properties (the 'articulations,
'duration, 'pitch, etc, that we see in the \displayMusic output above). The new value is
the former 'articulations property, with an extra item: the ArticulationEvent expression,
which we copy from the \displayMusic output,

(cons (make-music 'ArticulationEvent

'articulation-type 'accent)

(ly:music-property result-event-chord 'articulations))

cons is used to add an element to the front of a list without modifying the original list. This
is what we want: the same list as before, plus the new ArticulationEvent expression. The
order inside the 'articulations property is not important here.

Finally, once we have added the accent articulation to its articulations property, we can
return note-event, hence the last line of the function.

Now we transform the add-accent function into a music function (a matter of some syntactic
sugar and a declaration of the type of its argument).

addAccent = #(define-music-function (note-event) (ly:music?)

"Add an accent ArticulationEvent to the articulations of `note-event`,

which is supposed to be a NoteEvent expression."

(set! (ly:music-property note-event 'articulations)

(cons (make-music 'ArticulationEvent

'articulation-type 'accent)

(ly:music-property note-event 'articulations)))

note-event)

We then verify that this music function works correctly:

\displayMusic \addAccent c4
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2 Interfaces for programmers

Advanced tweaks may be performed by using Scheme. If you are not familiar with Scheme, you
may wish to read our Chapter 1 [Scheme tutorial], page 1.

2.1 LilyPond code blocks

Creating music expressions in Scheme can be tedious, as they are heavily nested and the resulting
Scheme code is large. For some simple tasks this can be avoided by using LilyPond code blocks,
which enable common LilyPond syntax to be used within Scheme.

LilyPond code blocks look like

#{ LilyPond code #}

Here is a trivial example:

ritpp = #(define-event-function () ()

#{ ^"rit." \pp #}

)

{ c'4 e'4\ritpp g'2 }

pp Nh� º rit.

h
LilyPond code blocks can be used anywhere where you can write Scheme code. The Scheme

reader actually is changed for accommodating LilyPond code blocks and can deal with embedded
Scheme expressions starting with ‘$’ and ‘#’.

The reader extracts the LilyPond code block and generates a runtime call to the LilyPond
parser to interpret the LilyPond code. Scheme expressions embedded in the LilyPond code
are evaluated in the lexical environment of the LilyPond code block, so all local variables and
function parameters available at the point the LilyPond code block is written may be accessed.
Variables defined in other Scheme modules, like the modules containing \header and \layout

blocks, are not accessible as Scheme variables, i.e., prefixed with ‘#’, but they are accessible as
LilyPond variables, i.e., prefixed with ‘\’.

All music generated inside the code block has its ‘origin’ set to the current input location.

A LilyPond code block may contain anything that you can use on the right side of an
assignment. In addition, an empty LilyPond block corresponds to a void music expression, and
a LilyPond block containing multiple music events gets turned into a sequential music expression.

2.2 Scheme functions

Scheme functions are Scheme procedures that can create Scheme expressions from input written
in LilyPond syntax. They can be called in pretty much all places where using ‘#’ for specifying
a value in Scheme syntax is allowed. While Scheme has functions of its own, this chapter
is concerned with syntactic functions, functions that receive arguments specified in LilyPond
syntax.

2.2.1 Scheme function definitions

The general form for defining Scheme functions is:

function =

#(define-scheme-function

(arg1 arg2 ...)
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(type1? type2? ...)

body)

where

argN nth argument.

typeN? A Scheme type predicate for which argN must return #t. There is also a special
form (predicate? default) for specifying optional arguments. If the actual
argument is missing when the function is being called, the default value is
substituted instead. Default values are evaluated at definition time (including
LilyPond code blocks!), so if you need a default calculated at runtime, instead
write a special value you can easily recognize. If you write the predicate in
parentheses but don’t follow it with a default value, #f is used as the default.
Default values are not verified with predicate? at either definition or run time:
it is your responsibility to deal with the values you specify. Default values that
happen to be music expressions are copied while setting origin to the current
input location.

body A sequence of Scheme forms evaluated in order, the last one being used as
the return value of the Scheme function. It may contain LilyPond code blocks
enclosed in hashed braces ( #{...#} ), like described in Section 2.1 [LilyPond
code blocks], page 22. Within LilyPond code blocks, use ‘#’ to reference func-
tion arguments (e.g., #arg1) or to start an inline Scheme expression contain-
ing function arguments (e.g., ‘#(cons arg1 arg2)’). Where normal Scheme
expressions using ‘#’ don’t do the trick, you might need to revert to immediate
Scheme expressions using ‘$’, for example as $music.

If your function returns a music expression, it is given a useful value of origin.

Suitability of arguments for the predicates is determined by actually calling the predicate after
LilyPond has already converted them into a Scheme expression. As a consequence, the argument
can be specified in Scheme syntax if desired (introduced with ‘#’ or as the result of calling a
Scheme function), but LilyPond will also convert a number of LilyPond constructs into Scheme
before actually checking the predicate on them. Currently, those include music, postevents,
simple strings (with or without quotes), numbers, full markups and markup lists, score, book,
bookpart, context definition and output definition blocks.

Some ambiguities LilyPond sorts out by checking with predicate functions: is ‘-3’ a fingering
postevent or a negative number? Is "a" 4 in lyric mode a string followed by a number, or a lyric
event of duration 4? LilyPond tries the argument predicate on successive interpretations until
success, with an order designed to minimize inconsistent interpretations and lookahead.

For example, a predicate accepting both music expressions and pitches will consider c'' to
be a pitch rather than a music expression. Immediately following durations or postevents will
change that interpretation. It’s best to avoid overly permissive predicates like scheme? when
the application rather calls for more specific argument types.

For a list of available predefined type predicates, see Section “Predefined type predicates” in
Notation Reference.

See also

Notation Reference: Section “Predefined type predicates” in Notation Reference.

Installed Files: lily/music-scheme.cc, scm/c++.scm, scm/lily.scm.

2.2.2 Scheme function usage

Scheme functions can be called pretty much anywhere where a Scheme expression starting with
‘#’ can be written. You call a Scheme function from LilyPond by writing its name preceded by \,
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followed by its arguments. Once an optional argument predicate does not match an argument,
LilyPond skips this and all following optional arguments, replacing them with their specified
default, and ‘backs up’ the argument that did not match to the place of the next mandatory
argument. Since the backed up argument needs to go somewhere, optional arguments are not
actually considered optional unless followed by a mandatory argument.

There is one exception: if you write \default in the place of an optional argument, this and
all following optional arguments are skipped and replaced by their default. This works even
when no mandatory argument follows since \default does not need to get backed up. The mark

and key commands make use of that trick to provide their default behavior when just followed
by \default.

Apart from places where a Scheme value is required, there are a few places where ‘#’ expres-
sions are currently accepted and evaluated for their side effects but otherwise ignored. Mostly
those are the places where an assignment would be acceptable as well.

Since it is a bad idea to return values that can be misinterpreted in some context, you should
use normal Scheme functions only for those cases where you always return a useful value, and
use void Scheme functions (see Section 2.2.3 [Void Scheme functions], page 24) otherwise.

For convenience, Scheme functions may also be called directly from Scheme bypassing the
LilyPond parser. Their name can be used like the name of an ordinary function. Typechecking of
the arguments and skipping optional arguments will happen in the same manner as when called
from within LilyPond, with the Scheme value *unspecified* taking the role of the \default

reserved word for explicitly skipping optional arguments. Optional arguments at the end of an
argument list can just be omitted without indication when called via Scheme.

2.2.3 Void Scheme functions

Sometimes a procedure is executed in order to perform an action rather than return a value.
Some programming languages (like C and Scheme) use functions for either concept and just
discard the returned value (usually by allowing any expression to act as statement, ignoring the
result). This is clever but error-prone: most C compilers nowadays offer warnings for various
non-‘void’ expressions being discarded. For many functions executing an action, the Scheme
standards declare the return value to be unspecified. LilyPond’s Scheme interpreter Guile has a
unique value *unspecified* that it usually (such when using set! directly on a variable) but
unfortunately not consistently returns in such cases.

Defining a LilyPond function with define-void-function makes sure that this special value
(the only value satisfying the predicate void?) will be returned.

noPointAndClick =

#(define-void-function

()

()

(ly:set-option 'point-and-click #f))

...

\noPointAndClick % disable point and click

If you want to evaluate an expression only for its side-effect and don’t want any value it may
return interpreted, you can do so by prefixing it with \void:

\void #(hashq-set! some-table some-key some-value)

That way, you can be sure that LilyPond will not assign meaning to the returned value regard-
less of where it encounters it. This will also work for music functions such as \displayMusic.

2.3 Music functions

Music functions are Scheme procedures that can create music expressions automatically, and
can be used to greatly simplify the input file.
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2.3.1 Music function definitions

The general form for defining music functions is:

function =

#(define-music-function

(arg1 arg2 ...)

(type1? type2? ...)

body)

quite in analogy to Section 2.2.1 [Scheme function definitions], page 22. More often than not,
body will be a Section 2.1 [LilyPond code blocks], page 22.

For a list of available type predicates, see Section “Predefined type predicates” in Notation

Reference.

See also

Notation Reference: Section “Predefined type predicates” in Notation Reference.

Installed Files: lily/music-scheme.cc, scm/c++.scm, scm/lily.scm.

2.3.2 Music function usage

With regard to handling the argument list, music functions don’t differ from Scheme functions,
Section 2.2.2 [Scheme function usage], page 23.

A ‘music function’ has to return an expression matching the predicate ly:music?. This
makes music function calls suitable as arguments of type ly:music? for another music function
call.

When using a music function call in other contexts, the context may cause further semantic
restrictions.

• At the top level in a music expression a post-event is not accepted.

• When a music function (as opposed to an event function) returns an expression of type
post-event, LilyPond requires one of the named direction indicators (-, ^, and _) in order
to properly integrate the post-event produced by the music function call into the surrounding
expression.

• As a chord constituent. The returned expression must be of a rhythmic-event type, most
likely a NoteEvent.

‘Polymorphic’ functions, like \tweak, can be applied to post-events, chord constituent and top
level music expressions.

2.3.3 Simple substitution functions

Simple substitution functions are music functions whose output music expression is written in
LilyPond format and contains function arguments in the output expression. They are described
in Section “Substitution function examples” in Notation Reference.

2.3.4 Intermediate substitution functions

Intermediate substitution functions involve a mix of Scheme code and LilyPond code in the
music expression to be returned.

Some \override commands require an argument consisting of a pair of numbers (called a
cons cell in Scheme).

The pair can be directly passed into the music function, using a pair? variable:

manualBeam =

#(define-music-function

(beg-end)
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(pair?)

#{

\once \override Beam.positions = #beg-end

#})

\relative c' {

\manualBeam #'(3 . 6) c8 d e f

}

Alternatively, the numbers making up the pair can be passed as separate arguments, and the
Scheme code used to create the pair can be included in the music expression:

manualBeam =

#(define-music-function

(beg end)

(number? number?)

#{

\once \override Beam.positions = #(cons beg end)

#})

\relative c' {

\manualBeam #3 #6 c8 d e f

}

h h hh� º
Properties are maintained conceptually using one stack per property per grob per context.

Music functions may need to override one or several properties for the duration of the function,
restoring them to their previous value before exiting. However, normal overrides pop and discard
the top of the current property stack before pushing to it, so the previous value of the property
is lost when it is overridden. When the previous value must be preserved, prefix the \override

command with \temporary, like this:

\temporary \override ...

The use of \temporary causes the (usually set) pop-first property in the override to be
cleared, so the previous value is not popped off the property stack before pushing the new value
onto it. When a subsequent \revert pops off the temporarily overriden value, the previous
value will re-emerge.

In other words, calling \temporary \override and \revert in succession on the same prop-
erty will have a net effect of zero. Similarly, pairing \temporary and \undo on the same music
containing overrides will have a net effect of zero.

Here is an example of a music function which makes use of this. The use of \temporary

ensures the values of the cross-staff and style properties are restored on exit to whatever
values they had when the crossStaff function was called. Without \temporary the default
values would have been set on exit.

crossStaff =

#(define-music-function (notes) (ly:music?)

(_i "Create cross-staff stems")

#{

\temporary \override Stem.cross-staff = #cross-staff-connect

\temporary \override Flag.style = #'no-flag
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#notes

\revert Stem.cross-staff

\revert Flag.style

#})

2.3.5 Mathematics in functions

Music functions can involve Scheme programming in addition to simple substitution,

AltOn =

#(define-music-function

(mag)

(number?)

#{

\override Stem.length = #(* 7.0 mag)

\override NoteHead.font-size =

#(inexact->exact (* (/ 6.0 (log 2.0)) (log mag)))

#})

AltOff = {

\revert Stem.length

\revert NoteHead.font-size

}

\relative {

c'2 \AltOn #0.5 c4 c

\AltOn #1.5 c c \AltOff c2

}

h Nº� N hh h

This example may be rewritten to pass in music expressions,

withAlt =

#(define-music-function

(mag music)

(number? ly:music?)

#{

\override Stem.length = #(* 7.0 mag)

\override NoteHead.font-size =

#(inexact->exact (* (/ 6.0 (log 2.0)) (log mag)))

#music

\revert Stem.length

\revert NoteHead.font-size

#})

\relative {

c'2 \withAlt #0.5 { c4 c }

\withAlt #1.5 { c c } c2

}

h Nº� N hh h



Chapter 2: Interfaces for programmers 28

2.3.6 Functions without arguments

In most cases a function without arguments should be written with a variable,

dolce = \markup{ \italic \bold dolce }

However, in rare cases it may be useful to create a music function without arguments,

displayBarNum =

#(define-music-function

()

()

(if (eq? #t (ly:get-option 'display-bar-numbers))

#{ \once \override Score.BarNumber.break-visibility = ##f #}

#{#}))

To actually display bar numbers where this function is called, invoke lilypond with

lilypond -d display-bar-numbers FILENAME.ly

2.3.7 Void music functions

A music function must return a music expression. If you want to execute a function only
for its side effect, you should use define-void-function. But there may be cases where you
sometimes want to produce a music expression, and sometimes not (like in the previous example).
Returning a void music expression via #{ #} will achieve that.

2.4 Event functions

To use a music function in the place of an event, you need to write a direction indicator before
it. But sometimes, this does not quite match the syntax of constructs you want to replace. For
example, if you want to write dynamics commands, those are usually attached without direction
indicator, like c'\pp. Here is a way to write arbitrary dynamics:

dyn=#(define-event-function (arg) (markup?)

(make-dynamic-script arg))

\relative { c'\dyn pfsss }

º�
pfsssh

You could do the same using a music function, but then you always would have to write a
direction indicator before calling it, like c-\dyn pfsss.

2.5 Markup functions

Markups are implemented as special Scheme functions which produce a Stencil object given a
number of arguments.

2.5.1 Markup construction in Scheme

Markup expressions are internally represented in Scheme using the markup macro:

(markup expr)

To see a markup expression in its Scheme form, use the \displayScheme command:

\displayScheme

\markup {

\column {
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\line { \bold \italic "hello" \raise #0.4 "world" }

\larger \line { foo bar baz }

}

}

Compiling the code above will send the following to the display console:

(markup

#:line

(#:column

(#:line

(#:bold (#:italic "hello") #:raise 0.4 "world")

#:larger

(#:line ("foo" "bar" "baz")))))

To prevent the markup from printing on the page, use ‘\void \displayScheme markup’.
Also, as with the \displayMusic command, the output of \displayScheme can be saved to an
external file. See Section 1.3.2 [Displaying music expressions], page 16.

This example demonstrates the main translation rules between regular LilyPond markup syntax
and Scheme markup syntax. Using #{ ... #} for entering in LilyPond syntax will often be most
convenient, but we explain how to use the markup macro to get a Scheme-only solution.

LilyPond Scheme

\markup markup1 (markup markup1)

\markup { markup1 markup2 ... } (markup markup1 markup2 ...)

\markup-command #:markup-command

\variable variable

\center-column { ... } #:center-column (...)

string "string"

#scheme-arg scheme-arg

The whole Scheme language is accessible inside the markup macro. For example, You may
use function calls inside markup in order to manipulate character strings. This is useful when
defining new markup commands (see Section 2.5.3 [New markup command definition], page 30).

Known issues and warnings

The markup-list argument of commands such as #:line, #:center, and #:column cannot be a
variable or the result of a function call.

(markup #:line (function-that-returns-markups))

is invalid. One should use the make-line-markup, make-center-markup, or
make-column-markup functions instead,

(markup (make-line-markup (function-that-returns-markups)))

2.5.2 How markups work internally

In a markup like

\raise #0.5 "text example"

\raise is actually represented by the raise-markup function. The markup expression is stored
as

(list raise-markup 0.5 "text example")

When the markup is converted to printable objects (Stencils), the raise-markup function is
called as

(apply raise-markup

\layout object
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list of property alists

0.5

the "text example" markup)

The raise-markup function first creates the stencil for the text example string, and then it
raises that Stencil by 0.5 staff space. This is a rather simple example; more complex examples
are in the rest of this section, and in scm/define-markup-commands.scm.

2.5.3 New markup command definition

This section discusses the definition of new markup commands.

Markup command definition syntax

New markup commands can be defined using the define-markup-command Scheme macro, at
top-level.

(define-markup-command (command-name layout props arg1 arg2 ...)

(arg1-type? arg2-type? ...)

[ #:properties ((property1 default-value1)

...) ]

[ #:as-string expression ]

...command body...)

The arguments are

command-name

the markup command name

layout the ‘layout’ definition.

props a list of associative lists, containing all active properties.

argi ith command argument

argi-type?

a type predicate for the ith argument

If the command uses properties from the props arguments, the #:properties keyword can
be used to specify which properties are used along with their default values.

Arguments are distinguished according to their type:

• a markup, corresponding to type predicate markup?;

• a list of markups, corresponding to type predicate markup-list?;

• any other Scheme object, corresponding to type predicates such as list?, number?,
boolean?, etc.

There is no limitation on the order of arguments (after the standard layout and props

arguments). However, markup functions taking a markup as their last argument are somewhat
special as you can apply them to a markup list, and the result is a markup list where the markup
function (with the specified leading arguments) has been applied to every element of the original
markup list.

Since replicating the leading arguments for applying a markup function to a markup list
is cheap mostly for Scheme arguments, you avoid performance pitfalls by just using Scheme
arguments for the leading arguments of markup functions that take a markup as their last
argument.

Markup commands have a rather complex life cycle. The body of a markup command
definition is responsible for converting the arguments of the markup command into a stencil
expression which is returned. Quite often this is accomplished by calling the interpret-markup
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function on a markup expression, passing the layout and props arguments on to it. Those
arguments are usually only known at a very late stage in typesetting. Markup expressions
have their components assembled into markup expressions already when \markup in a LilyPond
expression or the markup macro in Scheme is expanded. The evaluation and typechecking of
markup command arguments happens at the time \markup/markup are interpreted.

But the actual conversion of markup expressions into stencil expressions by executing the
markup function bodies only happens when interpret-markup is called on a markup expression.

On properties

The layout and props arguments of markup commands bring a context for the markup inter-
pretation: font size, line width, etc.

The layout argument allows access to properties defined in paper blocks, using the
ly:output-def-lookup function. For instance, the line width (the same as the one used in
scores) is read using:

(ly:output-def-lookup layout 'line-width)

The props argument makes some properties accessible to markup commands. For instance,
when a book title markup is interpreted, all the variables defined in the \header block are auto-
matically added to props, so that the book title markup can access the book title, composer, etc.
It is also a way to configure the behavior of a markup command: for example, when a command
uses font size during processing, the font size is read from props rather than having a font-size

argument. The caller of a markup command may change the value of the font size property in
order to change the behavior. Use the #:properties keyword of define-markup-command to
specify which properties shall be read from the props arguments.

The example in next section illustrates how to access and override properties in a markup
command.

A complete example

The following example defines a markup command to draw a double box around a piece of text.

Firstly, we need to build an approximative result using markups. Consulting the Section
“Text markup commands” in Notation Reference shows us the \box command is useful:

\markup \box \box HELLO

HELLO

Now, we consider that more padding between the text and the boxes is preferable. According
to the \box documentation, this command uses a box-padding property, which defaults to 0.2.
The documentation also mentions how to override it:

\markup \box \override #'(box-padding . 0.6) \box A

A

Then, the padding between the two boxes is considered too small, so we override it too:

\markup \override #'(box-padding . 0.4) \box

\override #'(box-padding . 0.6) \box A

A

Repeating this lengthy markup would be painful. This is where a markup command is needed.
Thus, we write a double-box markup command, taking one argument (the text). This draws
the two boxes, with some padding.

#(define-markup-command (double-box layout props text) (markup?)
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"Draw a double box around text."

(interpret-markup layout props

#{\markup \override #'(box-padding . 0.4) \box

\override #'(box-padding . 0.6) \box { #text }#}))

or, equivalently

#(define-markup-command (double-box layout props text) (markup?)

"Draw a double box around text."

(interpret-markup layout props

(markup #:override '(box-padding . 0.4) #:box

#:override '(box-padding . 0.6) #:box text)))

text is the name of the command argument, and markup? its type: it identifies it as a
markup. The interpret-markup function is used in most of markup commands: it builds a
stencil, using layout, props, and a markup. In the second case, this markup is built using
the markup Scheme macro, see Section 2.5.1 [Markup construction in Scheme], page 28. The
transformation from \markup expression to Scheme markup expression is straight-forward.

The new command can be used as follow:

\markup \double-box A

It would be nice to make the double-box command customizable: here, the box-padding

values are hard coded, and cannot be changed by the user. Also, it would be better to distinguish
the padding between the two boxes, from the padding between the inner box and the text. So
we will introduce a new property, inter-box-padding, for the padding between the two boxes.
The box-padding will be used for the inner padding. The new code is now as follows:

#(define-markup-command (double-box layout props text) (markup?)

#:properties ((inter-box-padding 0.4)

(box-padding 0.6))

"Draw a double box around text."

(interpret-markup layout props

#{\markup \override #`(box-padding . ,inter-box-padding) \box

\override #`(box-padding . ,box-padding) \box

{ #text } #}))

Again, the equivalent version using the markup macro would be:

#(define-markup-command (double-box layout props text) (markup?)

#:properties ((inter-box-padding 0.4)

(box-padding 0.6))

"Draw a double box around text."

(interpret-markup layout props

(markup #:override `(box-padding . ,inter-box-padding) #:box

#:override `(box-padding . ,box-padding) #:box text)))

Here, the #:properties keyword is used so that the inter-box-padding and box-padding

properties are read from the props argument, and default values are given to them if the
properties are not defined.

Then, these values are used to override the box-padding properties used by the two \box

commands. Note the backquote and the comma in the \override argument: they allow you to
introduce a variable value into a literal expression.

Now, the command can be used in a markup, and the boxes padding be customized:

#(define-markup-command (double-box layout props text) (markup?)

#:properties ((inter-box-padding 0.4)

(box-padding 0.6))

"Draw a double box around text."
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(interpret-markup layout props

#{\markup \override #`(box-padding . ,inter-box-padding) \box

\override #`(box-padding . ,box-padding) \box

{ #text } #}))

\markup \double-box A

\markup \override #'(inter-box-padding . 0.8) \double-box A

\markup \override #'(box-padding . 1.0) \double-box A

A

A

A

Adapting builtin commands

A good way to start writing a new markup command, is to take example on a builtin
one. Most of the markup commands provided with LilyPond can be found in file
scm/define-markup-commands.scm.

For instance, we would like to adapt the \draw-line command, to draw a double line instead.
The \draw-line command is defined as follow (documentation stripped):

(define-markup-command (draw-line layout props dest)

(number-pair?)

#:category graphic

#:properties ((thickness 1))

"...documentation..."

(let ((th (* (ly:output-def-lookup layout 'line-thickness)

thickness))

(x (car dest))

(y (cdr dest)))

(make-line-stencil th 0 0 x y)))

To define a new command based on an existing one, copy the definition, and change the com-
mand name. The #:category keyword can be safely removed, as it is only used for generating
LilyPond documentation, and is of no use for user-defined markup commands.

(define-markup-command (draw-double-line layout props dest)

(number-pair?)

#:properties ((thickness 1))

"...documentation..."

(let ((th (* (ly:output-def-lookup layout 'line-thickness)

thickness))

(x (car dest))

(y (cdr dest)))

(make-line-stencil th 0 0 x y)))

Then, a property for setting the gap between two lines is added, called line-gap, defaulting,
e.g., to 0.6:

(define-markup-command (draw-double-line layout props dest)

(number-pair?)

#:properties ((thickness 1)

(line-gap 0.6))
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"...documentation..."

...

Finally, the code for drawing two lines is added. Two calls to make-line-stencil are used
to draw the lines, and the resulting stencils are combined using ly:stencil-add:

#(define-markup-command (my-draw-line layout props dest)

(number-pair?)

#:properties ((thickness 1)

(line-gap 0.6))

"..documentation.."

(let* ((th (* (ly:output-def-lookup layout 'line-thickness)

thickness))

(dx (car dest))

(dy (cdr dest))

(w (/ line-gap 2.0))

(x (cond ((= dx 0) w)

((= dy 0) 0)

(else (/ w (sqrt (+ 1 (* (/ dx dy) (/ dx dy))))))))

(y (* (if (< (* dx dy) 0) 1 -1)

(cond ((= dy 0) w)

((= dx 0) 0)

(else (/ w (sqrt (+ 1 (* (/ dy dx) (/ dy dx))))))))))

(ly:stencil-add (make-line-stencil th x y (+ dx x) (+ dy y))

(make-line-stencil th (- x) (- y) (- dx x) (- dy y)))))

\markup \my-draw-line #'(4 . 3)

\markup \override #'(line-gap . 1.2) \my-draw-line #'(4 . 3)

Converting markups to strings

Markups are occasionally converted to plain strings, such as when outputting PDF metadata
based on the title header field or for converting lyrics to MIDI. This conversion is inherently
lossy, but tries to as accurate as feasible. The function used for this is markup->string.

composerName = \markup \box "Arnold Schönberg"

\markup \composerName

\markup \typewriter #(markup->string composerName)

Arnold Schönberg

[Arnold Schönberg]

For custom markup commands, the default behavior is to convert all markup or markup list
arguments first, and join the results by spaces.

#(define-markup-command (authors-and layout props authorA authorB)

(markup? markup?)

(interpret-markup layout props

#{



Chapter 2: Interfaces for programmers 35

\markup \fill-line { \box #authorA and \box #authorB }

#}))

defaultBehavior = \markup \authors-and "Bertolt Brecht" "Kurt Weill"

\markup \defaultBehavior

\markup \typewriter #(markup->string defaultBehavior)

Bertolt Brecht and Kurt Weill

Bertolt Brecht Kurt Weill

markup->string can also receive the named arguments #:layout layout and #:props

props, with the same meaning as in the definition of a markup command. However, they are
optional because they cannot always be provided (such as the layout argument when converting
to MIDI).

To support special conversions in custom markup commands, the #:as-string parameter
can be given to define-markup-command. It expects an expression, which is evaluated by
markup->string in order to yield the string result.

#(define-markup-command (authors-and layout props authorA authorB)

(markup? markup?)

#:as-string (format #f "~a and ~a"

(markup->string authorA #:layout layout #:props props)

(markup->string authorB #:layout layout #:props props))

(interpret-markup layout props

#{

\markup \fill-line { \box #authorA and \box #authorB }

#}))

customized = \markup \authors-and "Bertolt Brecht" "Kurt Weill"

\markup \customized

\markup \typewriter #(markup->string customized)

Bertolt Brecht and Kurt Weill

Bertolt Brecht and Kurt Weill

Within the expression, the same bindings are available as in the main markup command
body, namely layout and props, the command argument, and optionally the properties.

#(define-markup-command (authors-and layout props authorA authorB)

(markup? markup?)

#:properties ((author-separator " and "))

#:as-string (format #f "~a~a~a"

(markup->string authorA #:layout layout #:props props)

(markup->string author-separator #:layout layout #:props props)

(markup->string authorB #:layout layout #:props props))

(interpret-markup layout props

#{

\markup { \box #authorA #author-separator \box #authorB }
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#}))

customized = \markup \override #'(author-separator . ", ")

\authors-and "Bertolt Brecht" "Kurt Weill"

\markup \customized

\markup \typewriter #(markup->string customized)

Bertolt Brecht , Kurt Weill

Bertolt Brecht, Kurt Weill

Most often, a custom handler only needs to call markup->string recursively on certain
arguments, as demonstrated above. However, it can also make use of the layout and props

directly, in the same way as in the main body. Care must be taken that the layout argument
is #f if no #:layout has been given to markup->string. The props argument defaults to the
empty list.

2.5.4 New markup list command definition

Markup list commands are defined with the define-markup-list-command Scheme macro,
which is similar to the define-markup-command macro described in Section 2.5.3 [New markup
command definition], page 30, except that where the latter returns a single stencil, the former
returns a list of stencils.

In a similar vein, interpret-markup-list is used instead of interpret-markup for convert-
ing a markup list into a list of stencils.

In the following example, a \paragraph markup list command is defined, which returns a
list of justified lines, the first one being indented. The indent width is taken from the props

argument.

#(define-markup-list-command (paragraph layout props args) (markup-list?)

#:properties ((par-indent 2))

(interpret-markup-list layout props

#{\markuplist \justified-lines { \hspace #par-indent #args } #}))

The version using just Scheme is more complex:

#(define-markup-list-command (paragraph layout props args) (markup-list?)

#:properties ((par-indent 2))

(interpret-markup-list layout props

(make-justified-lines-markup-list (cons (make-hspace-markup par-indent)

args))))

Besides the usual layout and props arguments, the paragraph markup list command takes
a markup list argument, named args. The predicate for markup lists is markup-list?.

First, the function gets the indent width, a property here named par-indent, from the
property list props. If the property is not found, the default value is 2. Then, a list of justified
lines is made using the built-in markup list command \justified-lines, which is related to the
make-justified-lines-markup-list function. A horizontal space is added at the beginning
using \hspace (or the make-hspace-markup function). Finally, the markup list is interpreted
using the interpret-markup-list function.

This new markup list command can be used as follows:

\markuplist {

\paragraph {
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The art of music typography is called \italic {(plate) engraving.}

The term derives from the traditional process of music printing.

Just a few decades ago, sheet music was made by cutting and stamping

the music into a zinc or pewter plate in mirror image.

}

\override-lines #'(par-indent . 4) \paragraph {

The plate would be inked, the depressions caused by the cutting

and stamping would hold ink. An image was formed by pressing paper

to the plate. The stamping and cutting was completely done by

hand.

}

}

2.6 Contexts for programmers

2.6.1 Context evaluation

Contexts can be modified during interpretation with Scheme code. In a LilyPond code block,
the syntax for this is:

\applyContext function

In Scheme code, the syntax is:

(make-apply-context function)

function should be a Scheme function that takes a single argument: the context in which
the \applyContext command is being called. The function can access as well as override/set
grob properties and context properties. Any actions taken by the function that depend on the
state of the context are limited to the state of the context when the function is called. Also,
changes effected by a call to \applyContext remain in effect until they are directly modified
again, or reverted, even if the initial conditions that they depended on have changed.

The following Scheme functions are useful when using \applyContext:

ly:context-property

look up a context property value

ly:context-set-property!

set a context property

ly:context-grob-definition

ly:assoc-get

look up a grob property value

ly:context-pushpop-property

do a \temporary \override or a \revert on a grob property

The following example looks up the current fontSize value, and then doubles it:

doubleFontSize =

\applyContext

#(lambda (context)

(let ((fontSize (ly:context-property context 'fontSize)))

(ly:context-set-property! context 'fontSize (+ fontSize 6))))

{

\set fontSize = -3

b'4

\doubleFontSize
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b'

}

hº� h

The following example looks up the current colors of the NoteHead, Stem, and Beam grobs,
and then changes each to a less saturated shade.

desaturate =

\applyContext

#(lambda (context)

(define (desaturate-grob grob)

(let* ((grob-def (ly:context-grob-definition context grob))

(color (ly:assoc-get 'color grob-def black))

(new-color (map (lambda (x) (min 1 (/ (1+ x) 2))) color)))

(ly:context-pushpop-property context grob 'color new-color)))

(for-each desaturate-grob '(NoteHead Stem Beam)))

\relative {

\time 3/4

g'8[ g] \desaturate g[ g] \desaturate g[ g]

\override NoteHead.color = #darkred

\override Stem.color = #darkred

\override Beam.color = #darkred

g[ g] \desaturate g[ g] \desaturate g[ g]

}

hhh hhhh34� h hhh h
This also could be implemented as a music function, in order to restrict the modifica-

tions to a single music block. Notice how ly:context-pushpop-property is used both as a
\temporary \override and as a \revert:

desaturate =

#(define-music-function

(music) (ly:music?)

#{

\applyContext

#(lambda (context)

(define (desaturate-grob grob)

(let* ((grob-def (ly:context-grob-definition context grob))

(color (ly:assoc-get 'color grob-def black))

(new-color (map (lambda (x) (min 1 (/ (1+ x) 2))) color)))

(ly:context-pushpop-property context grob 'color new-color)))

(for-each desaturate-grob '(NoteHead Stem Beam)))

#music

\applyContext

#(lambda (context)

(define (revert-color grob)

(ly:context-pushpop-property context grob 'color))

(for-each revert-color '(NoteHead Stem Beam)))
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#})

\relative {

\override NoteHead.color = #darkblue

\override Stem.color = #darkblue

\override Beam.color = #darkblue

g'8 a b c

\desaturate { d c b a }

g b d b g2

}

hhh Nhhh� hº h h hhh
2.6.2 Running a function on all layout objects

The most versatile way of tuning an object is \applyOutput which works by inserting an event
into the specified context (Section “ApplyOutputEvent” in Internals Reference). Its syntax is
either

\applyOutput Context proc

or

\applyOutput Context.Grob proc

where proc is a Scheme function, taking three arguments.

When interpreted, the function proc is called for every layout object (with grob name Grob if
specified) found in the context Context at the current time step, with the following arguments:

• the layout object itself,

• the context where the layout object was created, and

• the context where \applyOutput is processed.

In addition, the cause of the layout object, i.e., the music expression or object that was
responsible for creating it, is in the object property cause. For example, for a note head, this
is a Section “NoteHead” in Internals Reference event, and for a stem object, this is a Section
“Stem” in Internals Reference object.

Here is a function to use for \applyOutput; it blanks note-heads on the center-line and next
to it:

#(define (blanker grob grob-origin context)

(if (< (abs (ly:grob-property grob 'staff-position)) 2)

(set! (ly:grob-property grob 'transparent) #t)))

\relative {

a'4 e8 <<\applyOutput Voice.NoteHead #blanker a c d>> b2

}

h Nh� º h
To have function interpreted at the Score or Staff level use these forms

\applyOutput Score...

\applyOutput Staff...
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2.7 Callback functions

Properties (like thickness, direction, etc.) can be set at fixed values with \override, e.g.

\override Stem.thickness = #2.0

Properties can also be set to a Scheme procedure:

\override Stem.thickness = #(lambda (grob)

(if (= UP (ly:grob-property grob 'direction))

2.0

7.0))

\relative { c'' b a g b a g b }

h hhh hh� º hh
In this case, the procedure is executed as soon as the value of the property is requested during
the formatting process.

Most of the typesetting engine is driven by such callbacks. Properties that typically use
callbacks include

stencil The printing routine, that constructs a drawing for the symbol

X-offset The routine that sets the horizontal position

X-extent The routine that computes the width of an object

The procedure always takes a single argument, being the grob.

That procedure may access the usual value of the property, by first calling the function that
is the usual callback for that property, which can by found in the Internals Reference or the file
’define-grobs.scm’:

\relative {

\override Flag.X-offset = #(lambda (flag)

(let ((default (ly:flag::calc-x-offset flag)))

(* default 4.0)))

c''4. d8 a4. g8

}

It is also possible to get the value of the existing default by employing the function
grob-transformer:

\relative {

\override Flag.X-offset = #(grob-transformer 'X-offset

(lambda (flag default) (* default 4.0)))

c''4. d8 a4. g8

}

h P h�h� º P Th
From within a callback, the easiest method for evaluating a markup is to use grob-interpret-

markup. For example:

my-callback = #(lambda (grob)

(grob-interpret-markup grob (markup "foo")))
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2.8 Unpure-pure containers

☛ ✟

Note: While this subsubsection reflects the current state, the given
example is moot and does not show any effect.
✡ ✠

Unpure-pure containers are useful for overriding Y-axis spacing calculations – specifically
Y-offset and Y-extent – with a Scheme function instead of a literal (i.e., a number or pair).

For certain grobs, the Y-extent is based on the stencil property, overriding the stencil
property of one of these will require an additional Y-extent override with an unpure-pure
container. When a function overrides a Y-offset and/or Y-extent it is assumed that this will
trigger line breaking calculations too early during compilation. So the function is not evaluated
at all (usually returning a value of ‘0’ or ‘'(0 . 0)’) which can result in collisions. A ‘pure’
function will not affect properties, objects or grob suicides and therefore will always have its
Y-axis-related evaluated correctly.

Currently, there are about thirty functions that are already considered ‘pure’ and Unpure-
pure containers are a way to set functions not on this list as ‘pure’. The ‘pure’ function is
evaluated before any line-breaking and so the horizontal spacing can be adjusted ‘in time’. The
‘unpure’ function is then evaluated after line breaking.

☛ ✟

Note: As it is difficult to always know which functions are on this list
we recommend that any ‘pure’ functions you create do not use Beam

or VerticalAlignment grobs.
✡ ✠

An unpure-pure container is constructed as follows;

(ly:make-unpure-pure-container f0 f1)

where f0 is a function taking n arguments (n >= 1) and the first argument must always be the
grob. This is the function that gives the actual result. f1 is the function being labeled as ‘pure’
that takes n + 2 arguments. Again, the first argument must always still be the grob but the
second and third are ‘start’ and ‘end’ arguments.

start and end are, for all intents and purposes, dummy values that only matter for Spanners

(i.e Hairpin or Beam), that can return different height estimations based on a starting and
ending column.

The rest are the other arguments to the first function (which may be none if n = 1).

The results of the second function are used as an approximation of the value needed which
is then used by the first function to get the real value which is then used for fine-tuning much
later during the spacing process.

#(define (square-line-circle-space grob)

(let* ((pitch (ly:event-property (ly:grob-property grob 'cause)

'pitch))

(notename (ly:pitch-notename pitch)))

(if (= 0 (modulo notename 2))

(make-circle-stencil 0.5 0.0 #t)

(make-filled-box-stencil '(0 . 1.0)

'(-0.5 . 0.5)))))

squareLineCircleSpace = {

\override NoteHead.stencil = #square-line-circle-space

}
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smartSquareLineCircleSpace = {

\squareLineCircleSpace

\override NoteHead.Y-extent =

#(ly:make-unpure-pure-container

ly:grob::stencil-height

(lambda (grob start end) (ly:grob::stencil-height grob)))

}

\new Voice \with { \remove Stem_engraver }

\relative c'' {

\squareLineCircleSpace

cis4 ces disis d

\smartSquareLineCircleSpace

cis4 ces disis d

}

�� ���� º � ��
In the first measure, without the unpure-pure container, the spacing engine does not know the
width of the note head and lets it collide with the accidentals. In the second measure, with
unpure-pure containers, the spacing engine knows the width of the note heads and avoids the
collision by lengthening the line accordingly.

Usually for simple calculations nearly-identical functions for both the ‘unpure’ and ‘pure’
parts can be used, by only changing the number of arguments passed to, and the scope of, the
function. This use case is frequent enough that ly:make-unpure-pure-container constructs
such a second function by default when called with only one function argument.

☛ ✟

Note: If a function is labeled as ‘pure’ and it turns out not to be, the
results can be unexpected.
✡ ✠

2.9 Difficult tweaks

There are a few classes of difficult adjustments.

• One type of difficult adjustment involves the appearance of spanner objects, such as slurs
and ties. Usually, only one spanner object is created at a time, and it can be adjusted with
the normal mechanism. However, occasionally a spanner crosses a line break. When this
happens, the object is cloned. A separate object is created for every system in which the
spanner appears. The new objects are clones of the original object and inherit all properties,
including \overrides.

In other words, an \override always affects all pieces of a broken spanner. To change only
one part of a spanner at a line break, it is necessary to hook into the formatting process.
The after-line-breaking callback contains the Scheme procedure that is called after the
line breaks have been determined and layout objects have been split over different systems.

In the following example, we define a procedure my-callback. This procedure

• determines if the spanner has been split across line breaks

• if yes, retrieves all the split objects

• checks if this grob is the last of the split objects

• if yes, it sets extra-offset.
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This procedure is installed into Section “Tie” in Internals Reference, so the last part of the
broken tie is repositioned.

#(define (my-callback grob)

(let* (

;; have we been split?

(orig (ly:grob-original grob))

;; if yes, get the split pieces (our siblings)

(siblings (if (ly:grob? orig)

(ly:spanner-broken-into orig)

'())))

(if (and (>= (length siblings) 2)

(eq? (car (last-pair siblings)) grob))

(ly:grob-set-property! grob 'extra-offset '(1 . -4)))))

\relative {

\override Tie.after-line-breaking =

#my-callback

c''1 ~ \break

c2 ~ 2

}

.� º
N�

2 N
When applying this trick, the new after-line-breaking callback should also call
the old one, if such a default exists. For example, if using this with Hairpin,
ly:spanner::kill-zero-spanned-time should also be called.

• Some objects cannot be changed with \override for technical reasons. They can be changed
with the \overrideProperty function, which works similar to \once \override, but uses
a different syntax.1

\overrideProperty [ContextName].GrobName.property-name[.subproperty-name] value

1 Over time, \overrideProperty is being replaced with the more usual \once \override command. If you still
find yourself needing \overrideProperty, a bug report would be appreciated.
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3 LilyPond Scheme interfaces

This chapter covers the various tools provided by LilyPond to help Scheme programmers get
information into and out of the music streams.

TODO – figure out what goes in here and how to organize it
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Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c⃝ 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

https://fsf.org/
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A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
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covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its



Appendix A: GNU Free Documentation License 48

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.
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In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.
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Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://

www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set
of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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