
OpenML V1.0 Specification
19 July 2001

Editor: Steve Howell

Copyright © 2001 3Dlabs Inc., ATI Technologies Inc., Discreet Logic Inc., Evans and Sutherland
Computer Corporation, Intel Corporation, NVIDIA Corporation, Silicon Graphics, Inc.,

Sun Microsystems, Inc.

OpenGL is a registered trademark of Silicon Graphics, Inc.
OpenML is a trademark of Silicon Graphics, Inc., used with permission by the Khronos Special Interest

Group.
*Other brands and names are the property of their respective owners.
i i O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Contents
I Introduction and Overview of OpenML™ 1

1 Introduction 3
Motivation . 3
Objective of the Specification . 3
Scope of the Document. 4
Document Organization. 4

2 Background 5
Goals of the Khronos Group . 5
The Application Space . 5
Feature List . 6
OS Invariance . 6

3 Architectural Overview 9
Synchronizing Audio, Video and Graphics . 10
ML Features . 10
OpenGL Features . 12
Video Back-end Device Control. 12
The Future. 12

II Digital Media Input/Output Programming 13
Description . 13

4 Overview of ML 15
Components of ML . 15
Capability Tree. 15

Physical Devices. 16
Logical Devices . 16
Buffers . 16
Jacks . 17
Paths . 17
Transcoders . 17
Pipes. 18
Parameters . 18

Messages and Communication . 18
Opening a Jack. 18
Constructing a Message. 18
Sending a Message . 19
Receiving Reply Messages . 19
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 i i i

Closing a Jack . 19
Out-of-Band and In-Band Messages . 20

Queue Model. 20
Queuing Messages. 20
Path Example . 21
Opening a Logical Path . 21
Sending In-Band Messages . 21
Processing In-Band Messages. 22
Receiving In-Band Reply Messages. 23
Processing Exceptional Events . 24
Beginning Transfers . 25
Closing a Logical Path . 25

Pipes and Transcoders . 26
Finding a Suitable Transcoder . 26
Controlling the Transcoder . 26
Sending Buffers . 27
Starting a Transfer . 27
Changing Controls During a Transfer . 27
Receiving a Reply Message . 28
Transcoder Work Functions . 28
Multi-Stream Transcoders. 28
Ending Transfers. 28
Closing a Transcoder . 29

Synchronization. 29

5 ML Parameters 31
Param/Value Pairs . 31

Scalar Parameters . 33
Array Parameters . 33
Pointer Parameters . 34
User Parameters. 35

6 ML Capabilities 37
Accessing Capabilities . 38

System Capabilities . 39
Physical Device Capabilities. 39
Jack Logical Device Capabilities . 40
Path Logical Device Capabilities . 41
Transcoder Logical Device Capabilities . 42
Pipe Logical Device Capabilities . 44

Finding a Parameter in a Capabilities List . 44
Obtaining Parameter Capabilities . 44
Freeing Capabilities Lists . 46

7 ML Video Parameters 47
Video Jack and Path Control Parameters . 47

ML_VIDEO_TIMING_INT32 . 47
ML_VIDEO_SAMPLING_INT32 . 53
i v O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

ML_VIDEO_COLORSPACE_INT32 . 53
ML_VIDEO_PRECISION_INT32 . 54
ML_VIDEO_SIGNAL_PRESENT_INT32 . 54
ML_VIDEO_GENLOCK_SOURCE_TIMING_INT32 . 54
ML_VIDEO_GENLOCK_TYPE _INT32 . 54
ML_VIDEO_GENLOCK_SIGNAL_PRESENT_INT32 . 54
ML_VIDEO_BRIGHTNESS_INT32 . 54
ML_VIDEO_CONTRAST_INT32 . 54
ML_VIDEO_HUE_INT32 . 54
ML_VIDEO_SATURATION_INT32 . 54
ML_VIDEO_RED_SETUP_INT32 . 55
ML_VIDEO_GREEN_SETUP_INT32. 55
ML_VIDEO_BLUE_SETUP_INT32 . 55
ML_VIDEO_ALPHA_SETUP_INT32 . 55
ML_VIDEO_H_PHASE_INT32. 55
ML_VIDEO_V_PHASE_INT32 . 55
ML_VIDEO_FLICKER_FILTER_INT32 . 55
ML_VIDEO_DITHER_FILTER_INT32 . 55
ML_VIDEO_NOTCH_FILTER_INT32. 55
ML_VIDEO_OUTPUT_DEFAULT_SIGNAL_INT64 . 55

Video Path Control Parameters. 56
ML_VIDEO_START_X_INT32 . 56
ML_VIDEO_START_Y_F1_INT32 . 56
ML_VIDEO_START_Y_F2_INT32 . 56
ML_VIDEO_WIDTH_INT32 . 56
ML_VIDEO_HEIGHT_F1_INT32 . 56
ML_VIDEO_HEIGHT_F2_INT32 . 56
ML_VIDEO_OUTPUT_REPEAT_INT32. 56
ML_VIDEO_FILL_Y_REAL32 . 57
ML_VIDEO_FILL_Cr_REAL32 . 57
ML_VIDEO_FILL_Cb_REAL32 . 57
ML_VIDEO_FILL_RED_REAL32 . 57
ML_VIDEO_FILL_GREEN_REAL32 . 57
ML_VIDEO_FILL_BLUE_REAL32 . 57
ML_VIDEO_FILL_ALPHA_REAL32 . 57

Examples. 58

8 ML Image Parameters 59
Introduction . 59
Image Buffer Parameters . 60

ML_IMAGE_BUFFER_POINTER. 60
ML_IMAGE_WIDTH_INT32 . 60
ML_IMAGE_HEIGHT_1_INT32 . 60
ML_IMAGE_HEIGHT_2_INT32 . 60
ML_IMAGE_DOMINANCE_INT32 . 61
ML_IMAGE_ROW_BYTES_INT32. 61
ML_IMAGE_SKIP_PIXELS_INT32 . 61
ML_IMAGE_SKIP_ROWS_INT32 . 61
ML_IMAGE_TEMPORAL_SAMPLING_INT32. 61
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 v

ML_IMAGE_INTERLEAVE_MODE_INT32 . 62
ML_IMAGE_ORIENTATION_INT32 . 62
ML_IMAGE_COMPRESSION_INT32 . 62
ML_IMAGE_BUFFER_SIZE_INT32. 63
ML_IMAGE_COMPRESSION_FACTOR_REAL32 . 63
ML_IMAGE_PACKING_INT32 . 63
ML_IMAGE_COLORSPACE_INT32. 65
ML_IMAGE_SAMPLING_INT32. 65
ML_IMAGE_SWAP_BYTES_INT32 . 67

9 ML Audio Parameters 69
Audio Buffer Layout . 69
Audio Parameters . 70

ML_AUDIO_BUFFER_POINTER. 70
ML_AUDIO_FRAME_SIZE_INT32. 70
ML_AUDIO_SAMPLE_RATE_REAL64 . 70
ML_AUDIO_PRECISION_INT32 . 71
ML_AUDIO_FORMAT_INT32. 71
ML_AUDIO_GAINS_REAL64_ARRAY. 72
ML_AUDIO_CHANNELS_INT32 . 72
ML_AUDIO_COMPRESSION_INT32. 72

Uncompressed Audio Buffer Size Computation . 73

10 ML Processing 75
ML Program Structure . 75
Parameter Access Controls. 77
Opening a Jack, Path, or Transcoder . 78
Transcoder Component Selection . 81
Set Controls. 82
Get Controls . 82
Send Controls . 83
Send Buffers . 83
Query Controls . 84
Get Wait Handle . 85
Begin Transfer . 85
Transcoder Work . 86
Get Message Count . 86
Receive Message . 87
End Transfer . 89
Close Processing . 90
Utility Functions . 90

Get Version. 90
Status Name. 90
Message Name . 91
MLpv String Conversion routines . 91

11 Synchronization in ML 93
UST . 93
v i O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

MSC . 94
UST/MSC/ASC Parameters . 94

ML_AUDIO_UST_INT64, ML_VIDEO_UST_INT64 . 94
ML_AUDIO_MSC_INT64, ML_VIDEO_MSC_INT64 . 94
ML_AUDIO_ASC_INT64, ML_VIDEO_ASC_INT64. 95

UST/MSC Example . 95
UST/MSC For Input. 95
UST/MSC For Output . 96
Predicate Controls. 97

ML_WAIT_FOR_AUDIO_MSC_INT64, ML_WAIT_FOR_VIDEO_MSC_INT64. . 97
ML_WAIT_FOR_AUDIO_UST_INT64, ML_WAIT_FOR_VIDEO_UST_INT64 . . 97
ML_IF_VIDEO_UST_LT, ML_IF_AUDIO_UST_LT . 98

III OpenGL Requirements and Extensions 99

12 Integration of OpenGL and ML 101
Video Image Formats . 101

Color Space Conversion. 101
Upsampled and Downsampled Images . 101
Interlaced Images. 102

Synchronization. 102
Stream / Buffer Swap Synchronization . 102

Rasterization and Texturing. 104
Imaging Functions . 104
Texture Border Clamping . 105
Texture Color Mask. 105
Texture Level of Detail Bias . 105

IV MLdc Video Display Inquiry and Control 107
Description . 107

13 Overview of MLdc 109
Components of the MLdc . 110
Terminology. 110

Video Output Device. 110
Display area . 110
Channels . 110
Gamma Correction . 110
Genlock . 111

Initialization . 111
Communication . 112

Events and Messages . 112
Errors . 112
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 v i i

Monitor Communication . 113
Extensions to MLdc . 113

14 Initialization 115
Initializing MLdc. 115

mldcConnect. 115
Freeing Memory Allocated by MLdc . 116

mldcFree. 116
Finding MLdc Video Output Devices . 116

mldcQueryAvailableDevices . 116
Opening and Closing an MLdc Video Output Device . 117

mldcOpen . 117
mldcClose. 117

Checking the MLdc Version. 118
mldcQueryVersion . 118

Acquiring Information About the Video Output Device . 118
mldcQueryVideoDeviceInfo . 119
mldcQueryMonitorCapabilities . 120

15 Setting and Querying Video Parameters 121
Setting Parameters . 121
Querying Video Parameters . 122
Freeing Query Return Buffers . 122

16 Receiving MLdc Event Messages 123
Selecting the Event Messages to Receive . 123

mldcSetEventMask. 123
mldcQueryEventMask . 124

Receiving an Event Message . 124
mldcSetEventModel . 124

Receiving MLdc Events Through Native Windowing Systems 125
mldcQueryEventId . 125

Receiving MLdc Events Via the X Window System. 126
Receiving an Event Message Via Windows Messages. 126

mldcSetWindowsMessageQueue. 126
Receiving An Event Message Via MLdc Messaging . 127

mldcGetReceiveQueueWaitHandle . 127
mldcReceiveMessage . 127

MLdc Event Message Structures . 128
Receiving Error Events . 130

17 Channels 131
Channel Structures . 131

MLDCrectangle. 131
MLDCchannelSyncInfo. 132
MLDCfieldInfo. 133
MLDCvideoFormatInfo . 134
v i i i O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

MLDCvideoFormat . 135
MLDCchannelInfo. 136

Querying Channel Parameters . 138
mldcQueryChannelInfo. 138

Enabling and Disabling Channels . 139
mldcEnableChannel . 139

Channel Input Rectangles . 139
mldcSetChannelInputRectangle . 140
mldcQueryBestChannelRectangle . 140

18 Video Formats 143
Video Format Names . 143
Querying Video Formats . 144
Listing Available Video Formats . 144

mldcListVideoFormats . 144
Match Monitor Query . 146

Loading Video Formats . 146
mldcLoadVideoFormat . 147
mldcLoadVideoFormatByName . 148

19 Blanking 151
mldcSetOutputBlanking . 151
mldcQueryOutputBlanking . 152

20 Gamma Correction Tables and Output Gain 153
Gamma Correction . 153

mldcQueryGammaMaps . 154
mldcQueryGammaMap . 154
mldcQueryGammaColors. 155
mldcStoreGammaColors16, mldcStoreGammaColors8. 157
mldcSetChannelGammaMap . 158
mldcQueryChannelGammaMap. 159

Output Gain . 159
mldcSetOutputGain . 159
mldcQueryOutputGain . 160

21 External Synchronization (Lock and Genlock) 163
Terminology and Operation . 163
Usage . 163
Lock Quality. 164
External Sync Sources . 164
External Sync Functions . 164

mldcSetInputSyncSource . 164
mldcQueryInputSyncSource. 165
mldcSetExternalSyncSource . 166
mldcQueryExternalSyncSource . 167
mldcQueryExternalSyncSourceName . 167
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 i x

mldcSetOutputPhaseH. 168
mldcQueryOutputPhaseH . 169
mldcSetOutputPhaseV . 169
mldcQueryOutputPhaseV. 170
mldcSetOutputPhaseSCH . 171
mldcQueryOutputPhaseSCH . 171

22 Output Sync 173
Terminology. 173
Configurations . 173

mldcSetOutputSync . 174
mldcQueryOutputSync . 174

23 Output Pedestal 177
Introduction . 177

mldcSetOutputPedestal . 177
mldcQueryOutputPedestal . 178

24 Monitor Commands 179
Introduction . 179

mldcInitMonitorBaseProtocol . 179
mldcQueryMonitorBaseProtocol. 180
mldcQueryMonitorName . 180
mldcSendMonitorCommand. 181
mldcSendMonitorQuery . 181

25 Extending MLdc 183
Introduction . 183
Functions. 184

mldcQueryExtensionNames. 184
mldcIsExtensionSupported. 184
mldcQueryExtensionFuncPtr . 185

V Appendices 187

A OpenML Programming Environment Requirements
Window System Independent OpenGL Requirements . 189
X Window System Requirements . 209

GLX Requirements . 209
Microsoft Windows Requirements. 217

WGL Requirements . 217

B Recommended Practices
x O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Pixel Array Color Formats . 225
Image Orientation. 225
Scan Line Alignment. 225
Correspondence Between ML and OpenGL Pixel Formats 226
RGB and RGBA Pixel Formats. 227
RGB vs BGR component ordering . 227
Greater Than 8 Bits Per Component Pixel Formats . 227

Pixel Format/Visual Selection Criteria . 228
Color Space Conversion with OpenGL Extensions . 229

Chroma Upsampling. 229
Color Space Conversion. 229
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 x i

x i i O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

List of Figures

3.1The OpenML Programming Environment. 9
3.2Data Flow in the OpenML Environment . 11
4.1Capability Tree Overview . 16
4.2Logical Flow of Media Data. 17
4.3Queue Model . 21
4.4Sending In-Band Messages . 22
4.5Processing In-Band Messages. 23
4.6Receiving Reply Messages . 24
4.7Processing Exceptional Events . 24
6.1The Capabilities Tree . 37
7.1525/60 Timing (NTSC) . 49
7.2625/50 Timing (PAL) . 50
7.31080i Timing (High Definition) . 51
7.4720p Timing (High Definition). 52
8.1General Image Buffer Layout . 59
8.2A Simple Image Buffer Layout . 60
8.3Field Dominance . 61
8.4 Mapping Colorspace representation Parameters . 65
9.1Different Audio Sample Frames . 69
9.2Layout of an Audio Buffer With 4 Channels . 70
13.1MLdc and Video Output Devices . 109
13.2A Video Output Device with a Display Area, Channels, Genlock and Gamma Correction 111
13.3Communication Between the Application and MLdc . 113
17.1The MLDCrectangle Structure . 131
17.2The MLDCchannelSyncInfo Structure . 132
17.3The MLDCfieldInfo Structure . 133
17.4The MLDCvideoFormatInfo Structure . 134
17.6The MLDCvideoFormat Structure . 135
17.7The MLDCchannelInfo Structure . 136
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 xiii

x i v O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

List of Tables

2.1 The Current OpenML Programming Environment . 6
5.1 Correspondence Between param Type and value Interpretation . 32
6.1 System Capabilities . 39
6.2 Physical Device Capabilities. 39
6.3 Jack Logical Device Capabilities . 40
6.4 Path Logical Device Capabilities . 41
6.5 Transcoder Logical Device Capabilities . 42
6.6 Pipe Logical Device Capabilities . 44
6.7 Parameters returned by mlPvGetCapabilities . 45
8.1 Effect of Sampling and Colorspace on Component Definitions . 66
8.2 Effect of ML_IMAGE_SWAP_BYTES_INT32 on Image Bit Reordering. 67

10.1 Parameter Access Control Values . 77
10.2 mlOpen Options for Jacks . 78
10.3 mlOpen Options for Paths . 79
10.4 mlOpen Options for Transcoders . 80
10.5 mlSendControls Reply Message Types . 88
10.6 mlSendBuffers Reply Message Types . 89
10.7 mlQueryControls Reply Message Types . 89
10.8 Exception Message Types . 89
12.1 Subsampled Pixel Formats and Corresponding Host Memory Data Formats 101
15.1 MLdc Event Message Types . 121
16.1 Event Model Types. 125
17.1 Sync Port Selection Constants . 132
17.2 Sync Type Selection Constants . 132
17.5 Possible Format Flags for Video Formats . 135
17.8 Channel Flag Descriptions . 137
18.1 Industry Standard Video Format Name Suffixes . 143
18.2 Video Format Query Mask Bits. 145
20.1 Gamma Map Attribute Bits . 155
25.1 OpenGL Feature Requirements . 189
25.2 GLX feature requirements . 209
25.3 WGL Feature Requirements. 218
25.4 Correspondance Between ML and OpenGL Pixel Formats . 226
x v O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

x v i O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

S E C T I O N

I
INTRODUCTION AND OVERVIEW OF OPENML™

OpenML is a standard, cross-platform interface that supports the creation and playback of digital media
(including audio, video and graphics). This specification is not intended to be a programmer’s guide. The
specification instead strives to accomplish two objectives: provide guidance to developers regarding the
functionalities that are important to digital media applications, and define a set of application programming
interfaces that are guaranteed to exist in an OpenML environment. Stated more succinctly, the goal of the
specification is to provide for developers an interface to which applications should be written.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1

2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

1
INTRODUCTION

Motivation
The development of media authoring and playback systems has evolved from early, highly customized,
monolithic approaches. Today’s systems are assembled from a diverse set of standard components. How-
ever while the burden of hardware development has been eased, system-level software problems have
been compounded, especially when the system is required to interoperate with other media devices.
There are numerous examples of how the establishment of an industry standard has helped to accelerate
market growth and acceptance of new technology. Industry standards exist for many technologies, such as
3D graphics programming APIs, web page programming APIs, network protocols, and high speed bus
interfaces.
Standards are defined to establish a common ground for developers looking at a problem from two or more
directions. For instance, a standard for 3D graphics programming benefits both 3D graphics application
developers and 3D graphics hardware developers by defining a common interface to which both sides can
implement. When completed, a 3D graphics application written to this interface will run on any hardware
that supports the interface. Conversely, hardware developed to support the interface can support any appli-
cation written to the standard interface. In a similar manner, both computer manufacturers and peripheral
manufacturers benefit from having a common interconnection standard and bus protocol. Finally, end
users benefit from standards as the market grows and costs decline.
The members of the Khronos Group SIG believe that a standard is necessary to accelerate the develop-
ment of both digital media hardware and application software.

Objective of the Specification
This document defines Version 1.0 of the OpenML (Open Media Library) programming environment. An
architectural overview is included in order to present a broad overview of the entire OpenML environment
and describe how various OpenML components are interrelated and interact with one another. This docu-
ment also precisely specifies the various programming interfaces that comprise the OpenML programming
environment, and it enumerates and defines each of the function calls that comprise those interfaces. It is
assumed that implementors will use the API definition sections to properly develop a conforming OpenML
implementation, and application programmers will use these sections to determine how to develop
OpenML-based multimedia application programs. Some of the intent of the OpenML design team is also
communicated through a “recommended practices” section. This section includes topics that are not
reflected directly in the design of the APIs themselves, but are presented to provide additional guidance to
OpenML implementors and application programmers.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 3

The specification is also intended to be forward looking. No hardware that exists at this moment incorpo-
rates all of the functionality contained in Version 1.0 of this specification. However, the specification
attempts to provide guidance to hardware developers regarding the design of future generations of multi-
media hardware.
The overall goal of this specification is to enable digital media devices to interoperate in an open architec-
ture. In the future it is expected that the specification will be implemented on a wide range of device types
from high end workstations for professional content authoring through portable PCs to dedicated playback
appliances such as set-top boxes and game devices, as well as on servers dedicated to serving streaming
media content.

Scope of the Document
This document is targeted at both programmers and implementors, although, as stated in the overview, it is
not meant to serve as a programmer’s guide. To the programmer, the API describes a set of commands for
creation and playback of complex digital media streams. To the implementor, OpenML describes a concep-
tual machine which creates, manages, and consumes streams of digital content. OpenML defines only the
semantic nature of the conceptual machine, allowing for a wide range of implementations.

Document Organization
The basic layout for this document is as follow:
• Section I provides an overview for all readers.
• Section II contains detailed technical information defining the ML Digital Media I/O API.
• Section III addresses the specifics of OpenGL as they pertain to the OpenML environment.
• Section IV defines the MLdc API for the control of video display devices
• Section V contains the appendix for this document.
4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

2
BACKGROUND

Goals of the Khronos Group
The goal of the Khronos Group is to develop and manage OpenML, a standard set of open application pro-
gramming interfaces (APIs) for media content creation and playback.
It is the intent of the Khronos Group to:
• Foster a cross-platform, cross-OS development environment. The group will drive open standards

between platform, hardware, and application vendors to enable a seamless interoperability to
customers for transparent migration of content creation and playback across a variety of platforms and
devices.

• Enable integration and synchronization of video, audio and 2D/3D graphics to deliver compelling
content through media-rich interactive applications.

• Enable hardware and software providers to produce a larger number of standardized, transportable, and
compelling media products to be brought to market in a more timely fashion. This in turn will foster user
acceptance and market growth with customers benefiting from a larger selection of systems,
applications, and peripherals to choose from.

• Establish synergy to multi-purpose and re-purpose content for a variety of distribution mediums such as
broadcast and the Internet.

• Build on the strengths of OpenGL® and work with the OpenGL Architecture Review Board to strengthen
OpenGL.

The Application Space
In developing a cross-platform programming environment for capturing, transporting, processing, display-
ing and synchronizing digital media, there are certain technical goals to be considered:
• The standard must provide support for audio, video, 2D graphics and 3D graphics at the lowest level

that provides the desired functionality and unification (i.e., the thinnest possible layer on top of the
hardware).

• The standard must support a range of operating environments, from embedded systems to high-end
workstations.

• Existing standards should be utilized wherever possible.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 5

• At a minimum, comparable functionality must exist across operating environments, but the desirable
case is to support the exact same API across multiple environments.

• Conformance and performance tests need to be developed to not only certify implementations, but to
allow for comparison as well.

Although there are certainly many target application spaces for OpenML, it is expected that the first imple-
mentations will be in the desktop and workstation environments.

Feature List
The OpenML environment provides many powerful features to the programmer, among them:
• support for asynchronous communication between an application and media devices such as video

input, audio output, and graphics
• synchronization primitives that give applications the ability to correlate multiple digital media streams

and coordinate their presentation to an end user
• processing capabilities (transcoders) for digital media streams
• device control and device capability queries
• buffering mechanisms that support the smooth delivery of digital media and obtain the best possible

performance on a given system
• reading and writing of interlaced video images
• control of video back-end features
• direct OpenGL support for video pixel formats such as CbYCr
• extended texturing functionality in support of compositing

OS Invariance
OpenML is intended to be a cross-platform standard environment for the creation and display of digital con-
tent. However, due to the often substantial differences between various OS environments, it is inevitable
that OpenML implementations will vary from one OS environment to another.
It is intended that, to the extent possible, the OpenML programming environment is syntactically and
semantically identical between various OS environments. Where it is not possible to make the environment
identical, OpenML defines APIs that are semantically identical. Thus, applications can count on the same
functionality being present in all OS environments, even though some function calls may not have the exact
same syntax.
OpenML is not meant to be a pixel-exact specification. Thus, there is no guarantee of an exact match
between images that are produced by different OpenML implementations. Aside from external events, a
conforming OpenML implementation shall produce the same results on the same machine each time a
specific set of commands is given from the same initial conditions.

Table 2.1 The Current OpenML Programming Environment

Operating
Environment

Window
System

Window
System
‘Glue’

2D
Graphics

3D
Graphics

Audio,
Video I/O

Digital
Media

Transcoding

Display
Control

Windows Windows wgl OpenGL/Win32 OpenGL ML ML MLdc
Linux/Unix X11 GLX OpenGL/X11 OpenGL ML ML MLdc
6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

As a programmer or implementor surveys the landscape of the target OS and system, there are various
segmentations within the system itself to consider. For instance, are there separate 2D and 3D APIs? What
are the given capabilities of those systems? And in the ultimate goal of producing an OpenML compliant
application, what API is used to influence those separate pieces of the system? Table 2.1 represents our
answers to this question based on implementations of OpenML that we expect to become available. It
strives to show a clear picture of which APIs are utilized in specific portions of the target environment. It is
expected that in the future the OpenML programming environment will be available on additional target
operating systems.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 7

8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

3
ARCHITECTURAL OVERVIEW

The OpenML programming environment provides standard APIs for dealing with video, graphics, and audio
and it is expected that the standard OpenML APIs will be supported on major operating environments,
including Microsoft Windows*, Linux*, and UNIX*.

Figure 3.1 The OpenML Programming Environment

Applications

ThirdParty Libraries (Quicktime*, MPEG-4*,...)

OpenML APIs
ML Digital Media I/O API

MLdc
Video
Device
Control

API

O
penM

L
E

xtensions to
O

penG
L

UST Device Driver

V
ideo D

evice
M

odule

V
ideo D

evice
M

odule

::

A
udio D

evice
M

odule

A
udio D

evice
M

odule

OpenGL API

O
penG

L
 D

evice
D

river

O
penG

L
 D

evice
D

river

O
penG

L
 D

evice
D

river

OpenGL Utility
Libraries

OpenGL Utility
Libraries

Audio
and Video

Devices

Graphics
Devices
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 9

Figure 3.1 is a pictorial representation of the OpenML environment from a programmer’s perspective. It
identifies the major components of the OpenML environment.
The three main APIs available in the OpenML environment are OpenGL, ML, and MLdc. OpenGL is the
natural choice for a cross-platform standard for 3D graphics because it is a mature API that is supported on
every major operating system.
ML is an API that fills the need for a cross-platform standard dealing with media input, output, and device
control. ML and OpenGL communicate with each other through shared buffers in system memory. It is the
intention of the Khronos Group that future versions of OpenML will support communication between ML
and OpenGL at the device control level in order to efficiently utilize system resources, and to achieve max-
imum performance and throughput, particularly for devices which integrate video and graphics.
MLdc is an application programming interface meant to control the display of video streams in a system. It
provides application developers with a portable and powerful API to control system display devices that
may not be available through the native windowing environment. The display may be a desktop screen or
another device such as a special studio monitor. The native windowing system may or may not possess
knowledge of the display device controlled by MLdc. Parameters controlled through MLdc include refresh
rate, pixel resolution, external synchronization (genlock), and gamma correction lookup tables.

Synchronizing Audio, Video and Graphics
OpenML also defines facilities that provide precise timing and synchronization information. The Unadjusted
System Time or UST is a high-resolution, 64-bit, monotonically increasing counter that is available through-
out the system. In addition, each media channel in the OpenML environment maintains a Media Stream
Counter or MSC that is incremented at the sampling rate of the channel. Thus the MSC of a video channel
is incremented at the frame rate of the corresponding device. The MSC of a graphics accelerator is incre-
mented for each vertical retrace on the device. By using UST/MSC pairs, an application can accurately
control and synchronize media streams between different devices in the system.
In addition, each OpenGL device maintains a per-window Swap Buffer Counter (SBC) that is incremented
at each buffer swap on the corresponding window. UST, MSC and SBC values are available to applications
through the ML API and through extensions to OpenGL.

ML Features
ML is a new API based on dmSDK* 2.0 from SGI. It represents the culmination of several generations of
API development aimed at supporting digital media in a hardware and OS-independent fashion. ML is a
low-level API in the same sense that OpenGL is considered a low-level API; it exposes the capabilities of
the underlying hardware in a way that imposes little policy. Policy decisions can be made by higher-level
software such as utility libraries or toolkits, or left up to the application itself.
The primary functions of ML are to:
• Support asynchronous communication between an application and media devices such as video input,

audio output, and graphics.
• Provide synchronization primitives that give applications the ability to correlate multiple digital media

streams and coordinate their presentation to an end user.
• Provide processing capabilities (transcoders) for digital media streams.
• Provide device control and device capability queries.
• Provide buffering mechanisms that support the smooth delivery of digital media and obtain the best

possible performance on a given system.
1 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

An underlying paradigm of ML is the concept of a path, which is a directed connection between a device
and a buffer, or between two (2) devices. A path may operate on data as it is moved from the source to
destination.
In OpenML 1.0, a buffer is a user-allocated and managed region of system memory. It is the intent of the
Khronos Group that, in future versions of OpenML, such buffers may be located in the local memory of a
video/graphics combination device. This will allow video frames to be streamed directly to or from OpenGL
where they can be used as textures or otherwise operated on (for example to perform transcoding opera-
tions). Using video images as texture images in OpenGL is the basis for the implementation of the compos-
iting operations common to digital content creation and playback.
Figure 3.2 is a simplified representation of the possible data flow paths in the OpenML environment.

Figure 3.2 Data Flow in the OpenML Environment

ML Digital Media I/O API OpenGL API

Audio Processing

Audio Buffers
in System
Memory

Video Buffers
in System
Memory

Video
Devices

Audio
Devices

Video Processing Compositing

Pbuffers
in Graphics

Memory

Graphics Devices
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 1

OpenGL Features
OpenGL is known as an API with a rich and robust set of features for 3D graphics programming. OpenGL
also has an extensive set of capabilities for dealing with pixel data (images), both on their way into and out
of the frame buffer and textures. OpenGL has achieved a level of standardization and popularity that no
other 3D graphics API has ever achieved. This makes it a natural choice as the API that provides graphics
and access to the frame buffer. OpenML compliance requires support of OpenGL 1.2. OpenML compliance
also requires the OpenGL 1.2 Imaging Subset.
OpenGL has a well-defined extension mechanism that has led to the definition of more than 200 unique
extensions. Some of these extensions were developed to address the needs of multimedia application
developers. The existing OpenGL extensions that address the needs of digital media creation have been
evaluated for their applicability to the OpenML environment. Certain of these extensions are a required part
of an OpenML-compliant environment. In addition, as part of OpenML V1.0, the Khronos Group has devel-
oped new OpenGL extensions to strengthen OpenGL’s rendering and video integration capabilities. This
set of extensions is an integral part of OpenML and is required as part of an OpenML compliant content
authoring implementation.
The list of OpenGL extensions required for OpenML V1.0 content authoring provides:
• synchronization using UST/MSC/SBC information
• reading and writing of interlaced video images
• direct support for video pixel formats such as CbYCr
• asynchronous behavior for certain OpenGL operations

Video Back-end Device Control
MLdc is an API that allows applications to control the video back-end of graphics devices. It is based on
Xdc, an extension to the X Window System designed by SGI. MLdc is a platform-independent API that can
be used to obtain information about the monitor, set gamma correction tables, provide genlock notification,
load video formats, set video output gain, set pedestal, and change H-phase (horizontal genlock phase).

The Future
OpenML is intended for use in a range of application scenarios, from professional content authoring
through playback on desktops, in set-top boxes, and even in such devices as PDAs. We believe that all of
these domains require similar functionality but with different performance profiles. For example, profes-
sional content authoring typically requires substantial bandwidth, the ability to composite several layers in
real time, and hardware support for full scene anti-aliasing, among other requirements. Playback usually
involves only modest bandwidth utilization, compositing of just one or two layers and simple rendering
primitives but may require sophisticated full scene anti-aliasing so that the image will look acceptable on a
very small display.
The Khronos Group is looking at ways to create small-footprint APIs to bring dynamic media capabilities to
a wide variety of appliances and embedded devices. Efforts will focus on producing API profiles to meet the
requirements of a range of market segments such as safety-critical automotive and avionics displays,
handheld and line-powered appliances and rich-media devices such as advanced digital TVs, set top
boxes and game consoles. Embedded applications typically have strong requirements for a few key graph-
ics capabilities. For instance, the smaller screens that will be typical of handheld devices demand high-
quality anti-aliasing for text and graphics.
Finally, the Khronos Group intends to develop both conformance tests and performance benchmarks. Con-
formance tests will allow implementors to demonstrate compliance with the OpenML specification. The
benchmarks will be designed to provide performance information for a variety of application profiles.
1 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

S E C T I O N

II
DIGITAL MEDIA INPUT/OUTPUT PROGRAMMING

Description
This section provides an overview of the OpenML Media Library (ML) as well as detailed descriptions of its
structure, components and capabilities. The Application Programming Interface (API) is also presented.
The section is composed of the following chapters:

• Chapter 4: “Overview of ML.”
A global look at ML and how its various parts fit together. The concepts pertaining to Systems, Devices,
Jacks, Paths and Transcoders (Xcoders) are discussed, as well as key components of ML, including the
message and buffer queue model.

• Chapter 5: “ML Parameters.”
How parameters are constructed and the various types of parameters are described.

• Chapter 6: “ML Capabilities.”
An important concept of ML is the ability of an application to discover the capabilities of the system, its
devices, and those jacks, paths and transcoders attached to the devices (as well as software only
transcoders).

• Chapter 7: “ML Video Parameters.”
Video parameters are those that refer to the video signal as it enters or exits via a jack. Video parameters
are common to Video Jacks and Video Paths.

• Chapter 8: “ML Image Parameters.”
Image parameters describe how the various parts of an image are represented while in memory. Aspects
such as size, color space, and pixel packing are discussed. Image parameters are common to both Video
Paths and Video Transcoders.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 3

• Chapter 9: “ML Audio Parameters.”
Audio parameters describe various aspects and components of an audio stream as it exists as a set of
audio samples. These include the layout of an Audio Buffer as well as the precision, format, sample rate,
etc. Audio parameters are common to Audio Jacks, Audio Paths, and Audio Xcodes.

• Chapter 10: “ML Processing.”
The API functions needed to interact with ML are presented.

• Chapter 11: “Synchronization in ML.”
Another powerful concept in ML is the ability to synchronize simultaneous streams of digital media such as
a video and audio stream. This chapter describes the ML synchronization methods.
1 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

4
OVERVIEW OF ML

The OpenML Media Library (ML) provides an application programming interface to the digital media I/O,
digital media data conversion, and digital media synchronization facilities in an OpenML programming envi-
ronment.

Components of ML
ML is based on the following components

• A capability tree of the system’s media devices, their parameters, and methods of transforming data.
• Messages, passed between the application and media devices.
• A queuing system for buffering messages, both to and from devices.
• Synchronization for media streams.

An overview of each of these components is given in the sections below, along with some simple examples
for controlling and buffering media data.

Capability Tree
A capability tree is a hierarchy of all ML devices in the system, and contains information about each ML
device (see Figure 4.1). An application may search a capability tree to find suitable media devices for oper-
ations it wishes to perform. Capability trees always have a computer system as their root. The root’s
descendents are the system’s physical media devices. Under the physical devices are logical devices,
which are ML’s abstraction of media devices: jacks as sources and destinations of media data, plus paths,
pipes, and transcoders to move and operate on the data between jacks. Finally, each logical device has a
set of parameters that can be used to query and set the device’s controls.
Access to a capability tree is via two functions:
mlGetCapabilities returns the capabilities of a particular ML object.
mlPvGetCapabilities returns the capabilities for a parameter on a given device.
The root of the tree for the local system can be found using the name ML_SYSTEM_LOCALHOST.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 5

See Chapter 6, ”ML Capabilities” for details on traversing and using the capability tree. The objects in the
tree are described in more detail below.

Figure 4.1 Capability Tree Overview

Physical Devices
ML physical devices are exposed by the device-dependent modules provided for the devices in a system.
Typically, each device-dependent module supports a set of software transcoders, or a single piece of hard-
ware. Examples of devices are audio cards on a PCI bus, DV camcorders on an IEEE 1394 bus, or soft-
ware Digital Video (DV) transcoder modules.
It is possible for a single ML physical device to be built from multiple devices as seen by the hardware or
operating system. For example, a single graphical display shown on two monitors through two graphics
cards could be presented to ML as a single physical device by using an appropriate device-dependent
module.

Logical Devices
Logical devices are created by software layered on top of the physical devices. These are the key devices
that applications will use to manipulate media data. Typically, a single physical device will be used to
expose multiple logical devices. The ML abstractions of jacks, paths, transcoders, and pipes are all logical
devices.

Buffers
A buffer is a block of host memory, described by a single virtual address and a length. ML applications do
not manipulate media data as a continuous stream, but instead as discrete segments stored in buffers.
Buffers don’t appear in the ML capability tree, as they are allocated and managed by the application.

Logical

Parameter

System

Physical
Device

Physical
Device

Device
Logical
Device

Logical
Device

(control)
Parameter
(control)
1 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Figure 4.2 Logical Flow of Media Data.

Jacks
A jack is a logical device that represents an input or output interface to the system. Examples of jacks are
composite video connectors and microphone jacks. Jacks often, but not always, correspond to a physical
connector, and it is possible for a single ML jack to refer to several such connectors. It is also possible for a
single physical connector to appear as several logical devices. Jacks have associated controls that are
used to filter or otherwise manipulate the signal. Such controls might include contrast, brightness, volume,
etc.

Paths
A path is a logical device that provides logical connections between buffers and jacks. For example, a
video output path transports data from buffers to a video output jack. A single path can have more than one
instance. Depending on the device, it is possible for several instances of a path to be open and in use con-
currently. Controls for a path deal with data formats and image quality, including any compression if avail-
able.

Transcoders
A transcoder is a logical device that performs an operation on a stream of data. Example transcoders are
DV compression, or JPEG decompression. Pipes, described next, are used to provide the input data to the
transcoder and deliver the output data from the transcoder.

Jack JackBuffer Buffer

Source

Path

Destination

Transcoder

Application

Path

Pipe Pipe
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 7

Pipes
A pipe is a logical device that connects a transcoder to buffers. A source pipe connects a buffer to the input
of a transcoder. A destination pipe connects the output of a transcoder to a buffer. Jacks, paths and
transcoders are all explicitly opened for use. Pipes, on the other hand, are opened for use as a side effect
of opening the transcoder with which they are associated.

Parameters
All devices have a set of parameters that the application can read and possibly modify. These parameters
include any controls the device may have. All parameters for all devices are described in the API with the
same format. As we'll see in the section on messages, arrays of parameters are built up to form messages.

Messages and Communication
The fundamental unit of communication between application and device is the message. Messages are
composed of arrays of parameters, where the last parameter is always ML_END. The term “parameter” is
used in ML to refer to both the components of a message and the device controls which these components
may affect. Parameters may define control values (e.g. the frame rate, or the size of an image) or they may
describe the location of data (perhaps a single video frame, or some Vertical Interval Time Code data).
Some simple examples will be used to show how to construct and send a message.

Opening a Jack
Messages can be used to set the controls of a jack. Before sending messages to a jack, a connection must
be opened. This is done by calling mlOpen. The ID of the object to open is passed in, and an openId is
returned as a handle to use when referring to the jack in later calls.
Applications will use mlSetControls or mlGetControls calls to send messages that manipulate the jack’s
controls.

Constructing a Message
A message is an array of parameters. All parameters (or digital media parameters, or MLpv’s) have an
identical structure, containing four items:

param

A unique numeric tag identifying the parameter. An example is ML_IMAGE_WIDTH_INT32. Bits within
the name indicate the type and size of the parameter (including which member of the value union to
use).

value

The value of the named parameter. This is a union of several basic types, including 64-bit integers, 32-
bit integers and pointers to basic types.

length

The number of valid elements in the value array. It is ignored when the value is a scalar (single basic
type). If length is set to -1, after a mlSetControls or mlSendControls call, it indicates the array
parameter encountered an error.
1 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

maxLength

The maximum number of elements in the value array. It is ignored for scalars. If maxLength is set to 0
on a mlGetControls or mlGetCapabilities call then the size of the array is returned.

Every piece of information in the ML API is represented in the same, consistent manner. Every message is
constructed from MLpv’s, every video buffer is described using MLpv’s, every control parameter is an
MLpv.
Messages are arrays of parameters, where the last parameter is always ML_END. For example, the flicker
and notch filters can be adjusted with a message such as the following:

MLpv message[3];

message[0].param = ML_VIDEO_FLICKER_FILTER_INT32;
message[0].value.int32 = 1;
message[1].param = ML_VIDEO_NOTCH_FILTER_INT32;
message[1].value.int32 = 1;
message[2].param = ML_END;

Sending a Message
Here is an example of how the genlock vertical and horizontal phase can be obtained:

MLpv message[3];

message[0].param = ML_VIDEO_H_PHASE_INT32;
message[1].param = ML_VIDEO_V_PHASE_INT32;
message[2].param = ML_END;

if (!mlGetControls(aJackConnection, message))
handleError();

else
printf("Horizontal offset is %d, Vertical offset is %d\n",

 message[0].value.int32, message[1].value.int32);

mlSetControls and mlGetControls are blocking calls: when the call returns, the message has been pro-
cessed. Note that not all controls may be set via mlSetControls. The access privilege in the param capa-
bilities can be used to verify when and how controls can be modified.

Receiving Reply Messages
Some jacks support sending asynchronous messages such as sync lost or acquired. To receive a reply
message from a device, use mlReceiveMessage. This routine returns back to the application with the old-
est unread message sent from the device. More detail about managing the flow of the messages from a
device is given in the Queue Model section.

Closing a Jack
When an application has finished using a jack it may close it with mlClose. All controls previously set by
this application normally remain in effect though they may be modified by other applications.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 9

Out-of-Band and In-Band Messages
ML supports two types of communication between application and device. The simpler mechanism is
based on out-of-band delivery and receipt of messages. The term “out-of-band” is borrowed from commu-
nications. These messages are sent using mlSetControls and mlGetControls as in the example above.
Calls to send out-of-band messages block until the message has been processed. Out-of-band messages
are only used for setting and inquiring the control state of a device, as in the above example.
In-band messages are queued and non-blocking. Thus, calls to send them typically return before the mes-
sage has been processed. In-band messages are mostly used to send buffers to logical devices, using
mlSendBuffers. Such buffers may contain data to be output to the device or may serve as a repository for
data that the device receives. Like out-of-band messages, in-band messages can also be used to set the
control state of a device using mlSendControls. Messages sent from a device to the application will be
received by calling mlReceiveMessage.
Out-of-band messages are not buffered or enqueued and are treated as higher priority than messages that
have been buffered or queued up.

Queue Model
Because a typical system has unpredictable latencies due to interrupts and context switches for multi-task-
ing, a buffering mechanism is needed to ensure the continuous flow of data through a jack. In ML, queues
of messages serve this purpose. Queues provide delivery of in-band, buffered messages between an
application and a logical device. The queue model is designed to minimize the effects of latency as well as
provide an abstraction between the producer and consumer of buffers. Care is taken to ensure that the
ownership of messages and buffers is well defined.
Two queues are used to connect an application with a logical device. The send queue is used for mes-
sages going from the application to the device, and the receive queue is used for messages going from the
device to the application.

Queuing Messages
Four areas of memory are allocated and managed by ML to handle queued messages. The payload area
keeps copies of messages sent by the application, two queues of headers point to the messages, and an
exception area stores exceptional event messages sent asynchronously from a device. The application has
control over the sizes of these areas, but otherwise they are maintained by ML.
When an in-band message is sent to a logical device, a copy of the message is placed in the payload area
and a small header is placed on the send header queue for eventual processing by a device.
The bulk of media data itself is not contained within a message, but within buffers, which messages can
point to. Buffers are not copied to the payload when a message is sent.
Sending an in-band message eventually results in the logical device sending a reply back to the applica-
tion, using the receive header queue.
All of the messages sent to a queue observe a strictly ordered relationship. All messages on a send queue
are processed by the associated device in the order in which they are enqueued. Each message is com-
pletely processed before the processing of the next message begins, and if message A is sent before mes-
sage B, then the reply to A must arrive before the reply to B.
2 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Figure 4.3 Queue Model

Path Example
ML is concerned with three types of interfaces: Jacks for control of external adjustments, Paths for audio
and video through jacks in or out of the machine, and Pipes to or from transcoders. All share common con-
trol, buffer, and queuing mechanisms. In this section these mechanisms are described in the context of
operating on a jack and its associated path. In subsequent sections, the application of these mechanisms
to transcoders and pipes is discussed.
Paths for audio and video through jacks in or out of the machine deal with the transfer of data; usually
accompanied by some processing. For example, extensive controls are available to adjust the size of
images as well as the packing, colorspace, and encoding of the individual pixels. Images may be inverted
to accommodate special hardware or placed inside of other images.

Opening a Logical Path
Before sending messages to a device, a connection to some processing path through the device must be
opened. This is done by calling mlOpen, which will return an openId for future use. A path is a logical
device; a physical device (e.g. a PCI card) may simultaneously support several such paths. A side effect of
opening a path is that space is allocated for the send and receive header queues for messages between
the application and the path.

Sending In-Band Messages
Out-of-band messages are appropriate for simple control changes, but they provide no buffering between
the application and the device. For most applications, processing real-time data will require using a queu-
ing communication model. ML supports this with the mlSendControls, mlSendBuffers and
mlReceiveMessage calls.

Send Header Queue

PAYLOAD

Receive Header Queue

APPLICATION
LOGICAL
DEVICE

QUEUE MODEL

OUT-OF-BAND

IN-BAND

IN-BAND

Exception Data
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 1

Figure 4.4 Sending In-Band Messages

For example, a controls message is sent to a device send queue using mlSendControls:
MLstatus mlSendControls(MLopenid openId, MLpv* message);

Devices interpret messages in the order in which they are enqueued. Because of this, the time relationship
is explicit between, for example, video buffers and changes in video modes. Note that the Send calls,
mlSendControls and mlSendBuffers, do not wait for a device to process the message. Rather, they copy
the message to the device send queue and then return. A primary difference between mlSendControls
and mlSendBuffers is that control processing may be deferred until a buffer is enqueued. This allows a
device driver to optimize its access to the send queue, and to also collapse differing control settings to sin-
gle values. For this reason, reply messages might not be generated for a set of mlSendControls until the
next mlSendBuffers is enqueued. On start-up the application should avoid completely filling the send
queue with controls such that a buffer can not be enqueued.
When an application successfully sends a message, it is copied into the payload area and a small header
is placed on the send header queue.
Sometimes there is not enough space in the payload or send queue for a new message. In that case, the
return code indicates that the message was not enqueued. As a rule, a full send queue is not a problem --
it simply indicates that the application is generating messages faster than the device can process them.

Processing In-Band Messages
A device processes a message as follows:
 1. remove the message header from the send header queue,
 2. process the message and write any response into the payload area,
 3. place a reply header on the receive header queue.

The application must allow space in the message for any reply that it expects the device to return. Notice
that the device performs no memory allocation, but rather uses the memory allocated when the application
enqueued the message. This is important because it guarantees there will never be any need for the
device to block because it didn't have enough space for the reply.

APPLICATION
LOGICAL
DEVICE

Receive Header
2 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Figure 4.5 Processing In-Band Messages

Receiving In-Band Reply Messages
Each message sent successfully is guaranteed to result in at least one reply message from the device. The
reply messages can be used to determine when the sent message was interpreted and what the result
was.
• The reply message for an mlSendControls indicates the success of the control, and should be checked

by the application to ensure that the control executed correctly.
• The reply message for an mlSendBuffers call indicates that the device has completed the request. The

application is then free to reuse the buffer.
In addition to these reply messages, some devices can send messages to advise the application of impor-
tant events (for example some video devices can notify the application of every vertical retrace). However,
it is guaranteed that no such notification messages will be generated until the application explicitly asks for
them.
To receive a reply message from a device, an application calls mlReceiveMessage:

MLstatus mlReceiveMessage(MLopenid openId, MLint32* messageType, MLpv** reply);

This routine returns the oldest unread message sent from the device back to an application. The message-
Type parameter indicates why this reply was generated. It could result from a call to mlSendControls or
mlSendBuffers, or it could have been generated spontaneously by the device as the result of an event.
The reply pointer is guaranteed to remain valid until an application attempts to receive a subsequent mes-
sage. This allows the application to overwrite a value in a reply message and then send that as a new mes-
sage.
The application must read its receive queue frequently enough to prevent the device from running out of
space for messages which it was asked to enqueue.

APPLICATION

Receive Header
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 3

Figure 4.6 Receiving Reply Messages

Processing Exceptional Events
In some cases an exceptional event occurs which requires that the device pass a message back to the
application. Examples of such events include ML_EVENT_VIDEO_SYNC_LOST or ML_EVENT_VIDEO_
VERTICAL_RETRACE. The application must explicitly ask for such events.

Figure 4.7 Processing Exceptional Events

APPLICATION

APPLICATION

!Exceptions
2 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Here’s an example of how to request video sequence loss and vertical retrace events in a message:

MLpv message[2];
MLint32 myEvents[2];

myEvents[0] = ML_EVENT_VIDEO_SEQUENCE_LOST;
myEvents[1] = ML_EVENT_VIDEO_VERTICAL_RETRACE;
message[0].param = ML_DEVICE_EVENTS_INT32_ARRAY;
message[0].value.pInt32 = myEvents;
message[0].length = sizeof(myEvents)/sizeof(MLint32);
message[0].maxLength=sizeof(myEvents)/sizeof(MLint32);
message[1].param = ML_END;

mlSetControls(someOpenPath, message);

If the application does ask for exceptional events, it must read its receive queue frequently enough to pre-
vent the device from running out of space for messages which it is asked to enqueue. If the queue starts to
fill up, then the device will enqueue an event message advising that it is stopping notification of exceptional
events.
The device never needs to allocate space in the payload area for reply messages. It will automatically stop
sending notifications of events if the receive queue starts to fill up. Space is reserved in the receive queue
for a reply to every message the application enqueues. If there is insufficient payload space, then any
attempt by the application to send new messages will fail.

Beginning Transfers
On both paths and pipes, messages containing buffers are treated in a special way. The very first call to
mlSendBuffers will cause the device send queue to stall. That message, and subsequent messages, will
not be processed until an application issues an mlBeginTransfer call.

MLstatus mlBeginTransfer(MLopenid openId);

This call frees the device to begin processing messages containing buffers. It also commands the device to
begin generating exceptional events. Typically, an application will open a device, enqueue several buffers
(priming the send queue) and then call mlBeginTransfer. In this way, the application avoids the underflow
which could otherwise occur if the application were swapped out immediately after enqueuing the first
buffer to the device.

Closing a Logical Path
When an application has finished using a device it may close it with mlClose.

MLstatus mlClose(MLopenid openId);

This causes an implicit mlEndTransfer on the specified device. It then frees any resources consumed by
the device. To process all pending messages prior to closing a device, an application may uniquely identify
a message, perhaps by adding a piece of userdata (See “User Parameters” on page 35.) or remembering
its MSC number (See “Synchronization in ML” on page 93.) as the last message that it expects to enqueue.
When that message appears on the receive queue, all messages have been processed and the application
may close the device.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 5

Pipes and Transcoders
An ML transcoder device is composed of:
• a transcoder engine that performs the actual processing
• a number of source pipes and destination pipes
The engine takes data from buffers in the source pipes, processes the data, and stores the results in buff-
ers in the destination pipes. Each pipe acts much like a path: source pipes provide a way for the application
to send buffers containing data to be processed, and destination pipes provide a way to send empty buffers
to hold the results of the processing.

Finding a Suitable Transcoder
mlGetCapabilities is used to obtain details of all transcoders on the system. The selected transcoder ID is
then used as the objectid parameter to mlOpen. A side effect of opening a transcoder is that it creates any
required source and destination pipes. The opened transcoder openId is a logical entity. A single physical
device may support several transcoders simultaneously.

Controlling the Transcoder
The transcoder engine is controlled indirectly by using controls on the source and destination pipes:
• controls on the source pipe describe what an application will be sending the transcoder for input.
• controls on the destination pipe describe the desired output format.
The difference between the source and destination controls dictates what operations the transcoder should
perform.
For example, if the ML_IMAGE_CODING_INT32 is ML_CODING_UNCOMPRESSED on the source and
ML_CODING_DVCPRO_50 on the destination, then an application is requesting the transcoder to:
• take uncompressed data from the source pipe
• apply a DVCPRO_50 compression
• write the results to the destination pipe.
To set controls on a transcoder, a controls message is constructed just as for a path. The only difference is
that an application must explicitly direct controls to a particular pipe. This is achieved using the ML_
SELECT_ID_INT64 parameter, which directs all following controls to a particular ID (in this case, the ID of
a pipe on the transcoder).
For example, here is a code fragment to set image width and height on both the source and destinations
pipes:

MLpv msg[7];

msg[0].param = ML_SELECT_ID_INT64;
msg[0].value.int64 = ML_XCODE_SRC_PIPE;
msg[1].param = ML_IMAGE_WIDTH_INT32;
msg[1].value.int32 = 1920;
msg[2].param = ML_IMAGE_HEIGHT_INT32;
msg[2].value.int32 = 1080;
msg[3].param = ML_SELECT_ID_INT64;
msg[3].value.int64 = ML_XCODE_DST_PIPE;
msg[4].param = ML_IMAGE_WIDTH_INT32;
msg[4].value.int32 = 1920;
2 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

msg[5].param = ML_IMAGE_HEIGHT_INT32;
msg[5].value.int32 = 1280;
msg[6].param = ML_END;

mlSetControls(someOpenXcode, msg);

Sending Buffers
Once the controls on a pipe have been set, an application may begin to send buffers to it for processing.
Do this with the mlSendBuffers call.

MLstatus mlSendBuffers(MLopenid openId, MLpv* buffers);

Call mlSendBuffers once for all the buffers corresponding to a single instant in time. For example, if the
transcoder expects both an image buffer and an audio buffer, an application must send both in a single
mlSendBuffers call.
For example, here is a code fragment to send a source buffer to the source pipe, and a destination buffer to
the destination pipe:

MLpv msg[5];

msg[0].param = ML_SELECT_ID_INT64;
msg[0].value.int64 = ML_XCODE_SRC_PIPE;
msg[1].param = ML_IMAGE_BUFFER_POINTER;
msg[1].value.pByte = srcBuffer;
msg[1].length = srcImageSize;
msg[2].param = ML_SELECT_ID_INT64;
msg[2].value.int64 = ML_XCODE_DST_PIPE;
msg[3].param = ML_IMAGE_BUFFER_POINTER;
msg[3].value.pByte = dstBuffer;
msg[3].maxLength = dstImageSize;
msg[4].param = ML_END;

mlSendBuffer(someOpenXcode, msg);

Starting a Transfer
The mlSendBuffers call places buffer messages on a pipe queue to the device. An application must then
call mlBeginTransfer to tell the transcoder engine to start processing messages. The mlBeginTransfer
call may fail if the source and destination pipe settings are inconsistent.

Changing Controls During a Transfer
During a transfer, an application could attempt to change controls by using mlSetControls, but this is often
undesirable since the effect of the control change on buffers currently being processed is undefined. A bet-
ter method is to send control changes in the same queue as the buffer messages. This is performed with
the same mlSendControls call as on a path, again using ML_SELECT_ID to direct particular controls to a
particular pipe.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 7

Note that parameter changes sent with mlSendControls are guaranteed to only affect buffers sent with
subsequent send calls.

Note also that some hardware transcoders may be unable to accommodate control changes during a trans-
fer. If in doubt, examine the capabilities of a particular parameter to determine if it may be changed while a
transfer is in progress.

Receiving a Reply Message
Whenever an application passes buffer pointers to the transcoder (by calling mlSendBuffers) the applica-
tion gives up all rights to that memory until the transcoder has finished using it. As the transcoder finishes
processing each buffer’s message, it will enqueue a reply message back to the application. An application
may read these reply messages in exactly the same way as on a path by calling mlReceiveMessage.
The transcoder queue maintains a strict first-in, first-out ordering. If buffer A is sent before buffer B, then
the reply to A will come before the reply to B. This is guaranteed even on transcoders which parallelize
across multiple physical processors.
By examining the reply to each message, an application can determine whether or not it was successfully
processed.

Transcoder Work Functions
In most cases, the difference between hardware and software transcoders is transparent to an application.
Software transcoders may have more options and may run more slowly, but for many applications these
differences are not significant.
One notable difference between hardware and software transcoders is that software transcoders will
attempt to use as much of the available processor time as possible. This may be undesirable for some
applications. To counter this, an application has the option to do the work of the transcoder itself, in its own
thread. This is achieved with the mlXcodeWork function.

MLstatus mlXcodeWork(MLopenid openId);

If a software transcoder is opened with the ML_XCODE_MODE_SYNCHRONOUS option, the transcoder
will not spawn any threads and will not do any processing on its own. To perform a unit of transcoding
work, the application must now call the mlXcodeWork function.

Multi-Stream Transcoders
This chapter has described the operation of a single-stream transcoder (one in which all controls/buffers
can be sent to the transcoder engine using the ML_SELECT_ID parameter). Some transcoders, however,
particularly those which need to consume source and destination buffers at different rates, will not work
efficiently with this programming model. For those cases, it is possible to access each transcoder pipe indi-
vidually, sending/receiving buffers on the source pipe at a different rate than on the destination pipe. It is
expected that this capability will be supported in a future revision of OpenML.

Ending Transfers
To stop a transfer, call mlEndTransfer.

MLstatus mlEndTransfer(MLopenid openId);
This causes the device to flush its send queue, to stop processing messages containing buffers, and to
stop notification of exceptional events.
It is also acceptable to call mlEndTransfer before mlBeginTransfer has been called. In that case any
messages in the queue are aborted and returned to the application. If an application is not interested in the
2 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

result of any pending buffers, the application can simply close the transcoder without bothering to first end
the transfer.

Closing a Transcoder
An application calls mlClose when it has finished using a transcoder. This causes an implicit call to
mlEndTransfer. mlClose then frees any resources used by the device.

Synchronization
Normal operating system methods of synchronization fail when multiple streams of media must stay “in
sync” with each other. Each stream, as has been described in this chapter, is broken into a set of buffers
and put into a queue to avoid the large (and unpredictable) processing delays that frequently occur on non-
real time operating systems. However, a new problem is introduced by now having multiple independent
queues of buffers that need to be synchronized.
To solve this problem, ML provides feedback to the application about when each buffer actually started
passing through its jack. By looking at the returned time-stamps, the application can see how much two
streams of buffers are drifting from each other, relative to how far apart they should be. It can then make
any corrections, for example skipping a video frame, to reduce the drift.
ML models this time-stamp feedback after the existing media industry practice of using a global UST, or
Unadjusted System Time, and a per-device MSC, or Media Stream Count.
See Chapter 11, ”Synchronization in ML” for the specification of the ML UST and MSC architecture.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 9

3 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

5
ML PARAMETERS

This chapter describes the semantics of ML parameters. These parameters may define control values (the
frame rate, or the width of an image) or they may describe the location of data (perhaps a single video
field). Applications communicate with digital media devices by passing arrays of param/value pairs.

Param/Value Pairs
The fundamental building block of ML is the param/value pair, also referred to as a parameter. The param
of the param/value pair is a unique identifier that determines the usage of the parameter and is used by ML
to interpret the value component. The C-language binding of the param/value pair is the MLpv structure:

typedef struct __MLpv{
MLint64 param;
typedef union {

MLbyte byte; /* 8-bit unsigned byte value */
MLint32 int32; /* 32-bit signed integer value */
MLint64 int64; /* 64-bit signed integer value */
MLreal32 real32 /* 32-bit floating point value */
MLreal64 real64; /* 64-bit floating point value */
MLbyte* pByte; /* pointer to an array of bytes */
MLint32* pInt32; /* pointer to an array of 32-bit signed integer values */
MLint64* pInt64; /* pointer to an array of 64-bit signed integer values */
MLreal32* pReal32; /* pointer to an array of 32-bit floating point values */
MLreal64* pReal64; /* pointer to an array of 64-bit floating point values */
struct __MLpv* pPv; /* pointer to a message of param/value pairs */
struct __MLpv** ppPv; /* pointer to an array of messages */

} MLvalue value;
MLint32 length;
MLint32 maxLength;

} MLpv;
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 3 1

The param of MLpv is a unique 64-bit numeric tag. The value, length and maxLength components com-
prise the remainder of the param/value pair. The value is a union of several possible types.
Every param has a type that determines how ML will interpret the value of a param/value pair. Bits within
the name indicate the type and size of the parameter (including which member of the value union to use).
The following table shows the correspondence between param type and value interpretation:

Similarly, each parameter has an ID of the form ML_parameterID_type where the type suffix is one of
INT32, INT64, REAL32, REAL64, BYTE_POINTER, BYTE_ARRAY, INT32_POINTER, INT32_ARRAY,
INT64_POINTER, INT64_ARRAY, REAL32_POINTER, REAL32_ARRAY, REAL64_POINTER,
REAL64_ARRAY, MSG and MSG_ARRAY. These suffixes indicate the same value interpretation as
shown in the preceding table.
ML is described in terms of capabilities (sometimes referred to as capability lists) and messages. Capabili-
ties and messages have different uses but each is realized as a list of param/value pairs, terminated with
an ML_END param/value pair. The C-language implementation of such a list is as an array of param/value
pairs.
Applications obtain the capabilities of an ML object by querying the capabilities tree (discussed in the next
chapter).
Applications communicate with ML devices by sending messages. Such messages contain param/value
pairs that are used to set or query the state of a device. Messages can also be used to deliver buffers of
data to a device.
For example, the image width can be set to 720 and the image height to 486 using a message such as the
following:

MLpv message[3];

message[0].param = ML_IMAGE_WIDTH_INT32;
message[0].value.int32 = 720;
message[1].param = ML_IMAGE_HEIGHT_INT32;
message[1].value.int32 = 486;

param type value interpretation
ML_TYPE_BYTE byte
ML_TYPE_INT32 int32
ML_TYPE_INT64 int64
ML_TYPE_REAL32 real32
ML_TYPE_REAL64 real64
ML_TYPE_BYTE_POINTER
ML_TYPE_BYTE_ARRAY

pByte

ML_TYPE_INT32_POINTER
ML_TYPE_INT32_ARRAY

pInt32

ML_TYPE_INT64_POINTER
ML_TYPE_INT64_ARRAY

pInt64

ML_TYPE_REAL32_POINTER
ML_TYPE_REAL32_ARRAY

pReal32

ML_TYPE_REAL64_POINTER
ML_TYPE_REAL64_ARRAY

pReal64

ML_TYPE_MSG pPv
ML_TYPE_MSG_ARRAY ppPv

Table 5.1 Correspondence Between param Type and value Interpretation
3 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

message[2].param = ML_END;

Scalar Parameters
Some parameters take only a scalar value, for example a single integer or floating point number. Such sca-
lar values are placed directly in the value component of MLpv. For such parameters, the length and max-
Length components are ignored except that on return (mlReceiveMessage) a length parameter that
equals -1 indicates that this parameter was in error. For example, the following code fragment shows how a
parameter might be initialized for use in setting video timing:

MLpv message[2];

message[0].param = ML_VIDEO_TIMING_INT32;
message[0].value.int32 = ML_TIMING_525;
message[1].param = ML_END;

If in the message returned, message[0].length == -1, it indicates that the device does not support a timing
of 525 for that jack, path, or xcode.
To obtain the value of a scalar parameter, the application needs only to initialize the param component.
The following code fragment shows how a parameter might be initialized for use in querying video timing:

MLpv message[2];

message[0].param = ML_VIDEO_TIMING_INT32;
message[1].param = ML_END;

Array Parameters
Some ML parameters have a value that is an array. In such a case, the value component of the MLpv is a
pointer to the first element of the array, the length component is the number of valid elements in the array,
and the maxLength component is the total length of the array. In general, an application sets the
length component when setting an array parameter, and specifies the maxLength component when get-
ting an array parameter. In this latter case, ML sets the length component to the number of valid elements
returned.
To set the value of an array parameter, the application fills out the param, value, maxLength and length
fields. The returned length will be unaltered if the values are valid. An error status will be returned and
length will be set to -1 if the values are invalid or if the parameter is not recognized at all by the device.
During the execution of a routine that passes an array parameter to ML (e.g. mlSetControl,
mlSendControl), ML makes a copy of the contents of the parameter including the array data. Thus the
application is free to modify or delete an array except during the execution of such a routine.
The following code fragment shows how a parameter might be initialized for use in setting a look-up table:

MLreal64 data[] = { 0, 0.2, 0.4, 0.6, 1.0};
MLpv message[2];

message[0].param = ML_PATH_LUT_REAL64_ARRAY;
message[0].value.pReal64 = data;
message[0].length = sizeof(data)/sizeof(MLreal64);
message[1].param = ML_END;
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 3 3

The following code fragment shows how a parameter might be initialized for use in getting a look-up table:

MLint32 data[10];
MLpv message[2];

message[0].param = ML_PATH_LUT_INT32_ARRAY;
message[0].value.pInt32 = data;
message[0].length = 0;
message[0].maxLength = 10;
message[1].param = ML_END;

ML will return at most maxLength array elements and will set length to the number of elements returned.
In this same case, if the application sets maxLength to 0, ML will change maxLength to the minimal array
length needed to contain the array parameter. No data is transferred in this case.

Pointer Parameters
A pointer parameter is a special type of array parameter that is used to send and receive data buffers (as
arrays of bytes). The application sends a buffer by calling mlSendBuffer. mlSendBuffer places the con-
trols and buffer pointer in the data payload area and inserts a header on the send queue for the device.
After the device processes the buffer, it places the reply on the receive queue. Because a data buffer can
be arbitrarily large, ML does not copy the buffer contents to the payload area.
This method of enqueuing buffers imposes an additional restriction on pointer parameters: after giving a
pointer parameter to a device, the application may not touch the memory pointed to until the device has fin-
ished processing it.
The following code fragment shows how a pointer parameter might be initialized to send a buffer to a video
input path for receiving data:

MLpv message[2];

message[0].param = ML_IMAGE_BUFFER_POINTER;
message[0].value.pByte = someBuffer;
message[0].length = 0;
message[0].maxLength = sizeof(someBuffer);
message[1].param = ML_END;

Similarly, the following code fragment shows how a pointer parameter might be initialized to send an image
buffer to a video output path:

MLpv message[2];

message[0].param = ML_IMAGE_BUFFER_POINTER;
message[0].value.pByte = someBuffer;
message[0].length = sizeof(someBuffer);
message[1].param = ML_END;
3 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

User Parameters
The user parameter is a facility to allow the definition of unique user parameters. These parameters may be
useful for example in communicating information in a message from one thread to another. A user parame-
ter might also be used by an application to mark a location in a sequence of messages submitted to some
send queue. The parameter ML_VIDEO_ASC_INT64 is an example of a pre-defined user parameter. The
ML_USERDATA_DEFINED macro is provided to construct a parameter name from the type specification
and an index value. The following code fragment shows how unique user parameters might be defined for
a special set of module controls:

enum UniqueControls {
UNIQUE_CONTROL_1 = ML_USERDATA_DEFINED(ML_TYPE_INT32, 1);
UNIQUE_CONTROL_2 = ML_USERDATA_DEFINED(ML_TYPE_INT64, 2);

};

The ML_USERDATA_DEFINED macro defines the parameter with the type and index value supplied (“1”
and “2” in the above example), but it adds a “base value” to prevent conflicts with internally defined USER
parameters.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 3 5

3 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

6
ML CAPABILITIES

This chapter describes the ML capabilities tree, the repository of information on all installed ML devices.
The capabilities tree forms a hierarchy that describes the installed ML devices in the following order from
top to bottom:
 1. physical system
 2. physical devices
 3. logical devices
 4. supported parameters on the logical devices

Figure 6.1 The Capabilities Tree
All ML objects and parameter types have identification numbers (IDs). There are three types of ID numbers
in ML.
Constant IDs have defined names and may be hard-coded in an application. They are system-indepen-
dent. Examples of constant IDs are ML_SYSTEM_LOCALHOST, and ML_IMAGE_WIDTH_INT32.

Physical
Device

Paths Jacks Xcodes

PVs
SFreq

PVs
Nchans

PVs
Cspace

PVs
Comp

Physical
System
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 3 7

Static IDs are allocated by the ML system as new hardware is added. They are machine-dependent and
may change after reboot.The static ID of a device may change if it is removed from the system and then
reconnected
Examples of static IDs are the physical and logical device IDs returned in calls to mlGetCapabilities. If an
application needs to share such information between machines, the application should use the text names
(system-independent) that correspond to the static IDs.
Open IDs are allocated when logical devices are opened. They are machine-dependent, and have a lim-
ited lifetime -- from when mlOpen is called until mlClose is called.

Accessing Capabilities
Each ML object has an associated set of capabilities. These capabilities are represented as a list of param/
value pairs. The set of capabilities is object dependent and device dependent. The order of param/value
pairs within a list of capabilities is undefined, but a list is always terminated by an ML_END entry.
Access to ML capabilities is via several functions:

All objects in ML are referred to via 64-bit identifying numbers. For example, the 64-bit ID number for the
system on which the application is running is ML_SYSTEM_LOCALHOST.
The capabilities of all ML objects are obtained using:

MLstatus mlGetCapabilities(MLint64 objectId, MLpv** capabilities);

objectId is the 64-bit identifier for the object whose capabilities are being queried. The status ML_
STATUS_INVALID_ID is returned if objectId is invalid. On return, capabilities is the pointer to the head of
the resulting capabilities list. This list should be treated as read-only by the application. The status ML_
STATUS_INVALID_ARGUMENT is returned if the capabilities pointer capabilities is invalid. If the call was
successful, then ML_STATUS_NO_ERROR is returned.
Capabilities are queried in a hierarchical fashion. The capabilities of a physical system are queried using
an ID to identify the system. The resulting capabilities list will include ID numbers for all physical devices on
the system. mlGetCapabilities is called with a physical device ID to obtain the ID's for all its logical
devices. Logical devices include paths, jacks and transcoders. mlGetCapabilities is called with a logical
device ID to obtain its capabilities.
mlGetCapabilities may be called with either a static object identifier, obtained from a previous call to
mlGetCapabilities, or an open ID, obtained from a call to mlOpen. Querying the capabilities of an opened
object is identical to querying the capabilities of the corresponding static object.
The following sections describe the capabilities of each type of ML object. The capabilities are not neces-
sarily in the order shown. In these tables, the string in the Parameter column is a shortened form of the full
parameter name. The full parameter name is of the form ML_parameter_type, where parameter and type
are the strings listed in the Parameter and Type columns respectively. For example, the full name of ID is
ML_ID_INT64.

Function Call Description
mlGetCapabilities returns the capabilities for an ML object
mlPvFind finds a parameter in a capabilities list
mlPvGetCapabilities returns the capabilities for a parameter on a given device
mlFreeCapabilities releases a set of capability descriptions
3 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

System Capabilities
Currently, the only defined physical system ID is ML_SYSTEM_LOCALHOST. When a system ID is que-
ried, the resulting capabilities list contains the following parameters:

Physical Device Capabilities
The capabilities list for a physical device contains the following parameters:

Parameter Type Description
ID INT64 Resource ID for this system
NAME BYTE_ARRAY NULL-terminated ASCII string containing the

hostname for this system.
SYSTEM_DEVICE_IDS INT64_ARRAY Array of physical device IDs (these need not

be sorted or sequential). For more details on a
particular device ID call mlGetCapabilities.
This array could be of length zero.

Table 6.1 System Capabilities

Parameter Type Description
ID INT64 Resource ID for this physical device.
NAME BYTE_ARRAY NULL-terminated ASCII description of this

physical device (e.g. “HD Video I/O” or "AVC/
1394").

PARENT_ID INT64 Resource ID for the system to which this phys-
ical device is attached.

DEVICE_VERSION INT32 Version number for this particular physical
device.

DEVICE_INDEX BYTE_ARRAY Index string for this physical device. This is
used to distinguish multiple identical physical
devices - indexes are generated with a consis-
tent algorithm - identical machine configura-
tions will have identical indexes - e.g. plugging
a particular card into the first 64-bit, 66MHz
PCI slot in any system will give the same index
number. Uniquely identifying a device in a sys-
tem-independent way requires using both the
name and index.

DEVICE_LOCATION BYTE_ARRAY Physical hardware location of this physical
device (on most platforms this is the hardware
graph entry). Makes it possible to distinguish
between two devices on the same i/o bus, and
two devices each with its own i/o bus.

DEVICE_JACK_IDS INT64_ARRAY Array of jack IDs. For more details on a partic-
ular jack ID call mlGetCapabilities. This array
could be of length zero.

DEVICE_PATH_IDS INT64_ARRAY Array of path IDs. For more details on a partic-
ular path ID call mlGetCapabilities. This array
could be of length zero.

Table 6.2 Physical Device Capabilities
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 3 9

Jack Logical Device Capabilities
The capabilities list for a jack logical device contains the following parameters:

DEVICE_XCODE_IDS INT64_ARRAY Array of transcoder device IDs. For more
details on a particular transcoder ID call
mlGetCapabilities. This array could be of
length zero.

Parameter Type Description
ID INT64 Resource ID for this jack
NAME BYTE_ARRAY NULL-terminated ASCII description of this jack

(e.g. “Purple S-video").
PARENT_ID INT64 Resource ID for the physical device to which

this jack is attached.
JACK_TYPE INT32 Type of logical jack. Possible values are:

ML_JACK_TYPE_AUDIO
ML_JACK_TYPE_VIDEO
ML_JACK_TYPE_COMPOSITE
ML_JACK_TYPE_SVIDEO
ML_JACK_TYPE_SDI
ML_JACK_TYPE_DUALLINK
ML_JACK_TYPE_GENLOCK
ML_JACK_TYPE_GPI
ML_JACK_TYPE_SERIAL
ML_JACK_TYPE_ANALOG_AUDIO
ML_JACK_TYPE_AES
ML_JACK_TYPE_GFX
ML_JACK_TYPE_AUX
ML_JACK_TYPE_ADAT
Where:
AUDIO is a generic audio jack,
VIDEO is a generic video jack,
COMPOSITE is a composite video jack,
SVIDEO is an S-video jack,
SDI is a Serial Digital Interface jack,
DUALLINK is an SDI dual link jack,
GENLOCK is a genlock jack,
GPI is a General Purpose Interface jack,
SERIAL is a generic serial control jack,
ANALOG_AUDIO is an analog audio jack,
AES is a digital AES standard jack,
GFX is a digital graphics jack,
AUX is a generic auxiliary jack, and
ADAT is a digital ADAT standard jack.

Table 6.3 Jack Logical Device Capabilities

Parameter Type Description

Table 6.2 Physical Device Capabilities
4 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Path Logical Device Capabilities
The capabilities list for a path logical device contains the following parameters:

JACK_DIRECTION INT32 Direction of data flow through this jack. May
be:
ML_JACK_DIRECTION_IN
ML_JACK_DIRECTION_OUT
Where:
IN is an input jack with data for memory and
OUT is an output jack with data from memory.

JACK_COMPONENT_SIZE INT32 Maximum number of bits of resolution per
component for the signal through this jack.
Stored as an integer, so 8 means 8 bits of res-
olution.

JACK_PATH_IDS INT64_ARRAY Array of path IDs which may use this jack. For
more details on a particular path ID call mlGet-
Capabilities. This array could be of length
zero.

PARAM_IDS INT64_ARRAY List of resource IDs for parameters which may
be set and/or queried on this jack.

OPEN_OPTION_IDS INT64_ARRAY List of resource IDs for option parameters
which may be used when this jack is opened.

JACK_FEATURES BYTE_ARRAY Double-NULL terminated list of ASCII feature
strings. Each string represents a specific fea-
ture supported by this jack. Entries are sepa-
rated by NULL characters (there are 2 NULLs
after the last string).

Parameter Type Description
ID INT64 Resource ID for this path.
NAME BYTE_ARRAY NULL-terminated ASCII description of this path

(e.g., "Memory to S-video Out").
PARENT_ID INT64 Resource ID for the physical device on which

this path resides.
PARAM_IDS INT64_ARRAY List of resource IDs for parameters which may

be set and/or queried on this path.
OPEN_OPTION_IDS INT64_ARRAY List of resource IDs for option parameters

which may be used when this path is opened.
PRESET MSG_ARRAY Each entry in the array is a message pointer (a

pointer to the head of an MLpv list, where the
last entry in the list is ML_END). Each mes-
sage provides a single valid combination of all
setable parameters on this path. In particular, it
should be possible to call mlSetControls
using any of the entries in this array as the
control’s message. Each path is required to
provide at least one preset.

Table 6.4 Path Logical Device Capabilities

Parameter Type Description

Table 6.3 Jack Logical Device Capabilities
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 4 1

Transcoder Logical Device Capabilities
The capabilities list for a transcoder logical device contains the following parameters:

PATH_TYPE INT32 Type of this path:
ML_PATH_TYPE_MEM_TO_DEV
ML_PATH_TYPE_DEV_TO_MEM
ML_PATH_TYPE_DEV_TO_DEV
Where:
MEM_TO_DEV is a path from memory to a
device, DEV_TO_MEM is a path from device
to memory and DEV_TO_DEV is a path from
device to another device.

PATH_COMPONENT_ALIGNMENT INT32 The location in memory of the first byte of a
component (either an audio sample or a video
line), must meet this alignment. Stored as an
integer in units of bytes.

PATH_BUFFER_ALIGNMENT INT32 The location in memory of the first byte of an
audio or video buffer must meet this alignment.
Stored as an integer in units of bytes.

PATH_SRC_JACK_ID INT64 Resource ID for the jack which is the source of
data for this path (unused if path is of type ML_
PATH_TYPE_MEM_TO_DEV). For details on
the jack ID call mlGetCapabilities.

PATH_DST_JACK_ID INT64 Resource ID for the jack which is the destina-
tion for data from this path (unused if path is of
type ML_PATH_TYPE_DEV_TO_MEM). For
details on the jack ID call mlGetCapabilities.

PATH_FEATURES BYTE_ARRAY Double-NULL terminated list of ASCII features
strings. Each string represents a specific fea-
ture supported by this path. Entries are sepa-
rated by NULL characters (there are 2 NULLs
after the last string).

Parameter Type Description
ID INT64 Resource ID for this transcoder.
NAME BYTE_ARRAY NULL-terminated ASCII description of this

transcoder (e.g. "Software DV and DV25").
PARENT_ID INT64 Resource ID for the physical device on which

this transcoder resides.
PARAM_IDS INT64_ARRAY List of resource IDs for parameters which may

be set and/or queried on this transcoder (May
be of length 0).

OPEN_OPTION_IDS INT64_ARRAY List of resource IDs for option parameters
which may be used when this transcoder is
opened.

Table 6.5 Transcoder Logical Device Capabilities

Parameter Type Description

Table 6.4 Path Logical Device Capabilities
4 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

PRESET MSG_ARRAY Each entry in the array is a message pointer (a
pointer to the head of a MLpv list, where the
last entry in the list is ML_END). Each mes-
sage provides a single valid combination of all
setable parameters on a transcoder. In particu-
lar, it should be possible to call mlSetControls
using any of the entries in this array as the
controls message. Each transcoder is required
to provide at least one preset for each
transcoder.

XCODE_ENGINE_TYPE INT32 Type of the engine in this transcoder. At this
time the only defined engine type is: ML_
XCODE_ENGINE_TYPE_NULL.

XCODE_IMPLEMENTATION_TYPE INT32 How this transcoder is implemented:
ML_XCODE_IMPLEMENTATION_TYPE_SW
ML_XCODE_IMPLEMENTATION_TYPE_HW
The implementation of the transcoder could be
in either software (SW) or hardware (HW).

XCODE_COMPONENT_ALIGNMENT INT32 The location in memory of the first byte of a
component (either an audio sample or a video
line), must meet this alignment. Stored as an
integer in units of bytes.

XCODE_BUFFER_ALIGNMENT INT32 The location in memory of the first byte of an
audio or video buffer must meet this alignment.
Stored as an integer in units of bytes.

XCODE_FEATURES BYTE_ARRAY Double-NULL terminated list of ASCII features
strings. Each string represents a specific fea-
ture supported by this transcoder. Entries are
separated by NULL characters (there are 2
NULLs after the last string).

XCODE_SRC_PIPE_IDS INT64_ARRAY List of pipe IDs from which the transcode
engine may obtain buffers to be processed.

XCODE_DEST_PIPE_IDS INT64_ARRAY List of pipe IDs from which the transcode
engine may obtain buffers to be filled with the
result of its processing.

Parameter Type Description

Table 6.5 Transcoder Logical Device Capabilities
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 4 3

Pipe Logical Device Capabilities
The capabilities list for a pipe logical device contains the following parameters:

Finding a Parameter in a Capabilities List
A parameter within a message or capabilities list may be found using:

MLpv* mlPvFind(MLpv* msg, MLint64 param);

msg points to the first parameter in an ML_END terminated array of parameters and param is the 64-bit
unique identifier of the parameter to be found. mlPvFind returns the address of the parameter if success-
ful; otherwise it returns NULL.

Obtaining Parameter Capabilities
Details on the interpretation of a particular device dependent parameter are obtained using:

MLstatus mlPvGetCapabilities(MLint64 objectId, MLint64 parameterId, MLpv** capabilities);

objectId is the 64-bit unique identifier for the object whose parameter is being queried. An example is the
openId returned from a call to mlOpen. The status ML_STATUS_INVALID_ID is returned if the specified
object ID was invalid. parameterId is the 64-bit unique identifier for the parameter whose capabilities are
being queried. The status ML_STATUS_INVALID_ARGUMENT is returned if the capabilities pointer is
invalid. capabilities is a pointer to the head of the resulting capabilities list. This list should be treated as
read-only by the application. If the call was successful, then the status ML_STATUS_NO_ERROR is
returned.
objectid may be either a static ID (obtained from a previous call to mlGetCapabilities) or an open ID
(obtained by calling mlOpen). Querying the capabilities of an opened object is identical to querying the
capabilities of the corresponding static object.
It is also possible to get the capabilities of the capabilities parameters themselves. Those parameters are
not tied to any particular object and so the objectId should be 0.

Parameter Type Description
ID INT64 Resource ID for this path.
NAME BYTE_ARRAY NULL-terminated ASCII description of this

pipe (“DV Codec Input Pipe”).
PARENT_ID INT64 Resource ID for the transcoder on which this

pipe resides.
PARAM_IDS INT64_ARRAY List of resource IDs for parameters which

may be set and/or queried on this transcoder
(May be of length 0).

PIPE_TYPE INT32 Type of this pipe:
ML_PIPE_TYPE_MEM_TO_ENGINE
ML_PIPE_TYPE_ENGINE_TO_MEM

MEM_TO_ENGINE is the trancoder input
pipe with data flow from memory to engine.
ENGINE_TO_MEM is the trancoder output
pipe with data flow from engine to memory.

Table 6.6 Pipe Logical Device Capabilities
4 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

The list returned in capabilities contains the following parameters, though not necessarily in this order. The
string in the Parameter column is a shortened form of the full parameter name. The full parameter name is
of the form ML_parameter_type, where parameter and type are the strings listed in the Parameter and
Type columns respectively. For example, the full name of ID is ML_ID_INT64.

Parameter Type Description
ID INT64 Resource ID for this parameter.
NAME BYTE_ARRAY NULL-terminated ASCII name of this parame-

ter. This is identical to the enumerated value.
For example, if the value is ML_XXX, then the
name is "ML_XXX".

PARENT_ID INT64 Resource ID for the logical device (video path
or transcoder pipe) on which this parameter is
used.

PARAM_TYPE INT32 Type of this parameter:
ML_TYPE_INT32
ML_TYPE_INT32_POINTER
ML_TYPE_INT32_ARRAY
ML_TYPE_INT64
ML_TYPE_INT64_POINTER
ML_TYPE_INT64_ARRAY
ML_TYPE_REAL32
ML_TYPE_REAL32_POINTER
ML_TYPE_REAL32_ARRAY
ML_TYPE_REAL64
ML_TYPE_REAL64_POINTER
ML_TYPE_REAL64_ARRAY
ML_TYPE_BYTE_POINTER
ML_TYPE_BYTE_ARRAY

PARAM_ACCESS INT32 Access control flags that describe when and
how this parameter can be used. Bitwise "or"
of the following flags:
ML_ACCESS_READ
ML_ACCESS_WRITE
ML_ACCESS_PASS_THROUGH
ML_ACCESS_OPEN_OPTION
ML_ACCESS_IMMEDIATE
ML_ACCESS_QUEUED
ML_ACCESS_SEND_BUFFER
ML_ACCESS_DURING_TRANSFER
Refer to Chapter 10,”ML Processing” for
details.

PARAM_DEFAULT same type as
param

Default value for this parameter, of type indi-
cated by ML_PARAM_TYPE. (If the length
component of this parameter is 0, there is no
default).

Table 6.7 Parameters returned by mlPvGetCapabilities
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 4 5

Freeing Capabilities Lists
A capabilities list capabilities obtained from either mlGetCapabilities or mlPvGetCapabilities is returned
to the system using

MLstatus mlFreeCapabilities(MLpv* capabilities);

The status ML_STATUS_INVALID_ARGUMENT is returned if the capabilities pointer is invalid. The ML_
STATUS_NO_ERROR is returned if the call was successful.

PARAM_MINS array of same type
as param

Array of minimum values for this parameter
(may be missing if there are no specified mini-
mum values). Each set of min/max values
defines one allowable range of values. If min
equals max then the allowable range is a sin-
gle value. If the length component is one,
there is only one legal range of values. The
length component will be 0 if there are no
specified minimum values.

PARAM_MAXS array of same type
as param

Array of maximum values for this parameter .
There must be one entry in this array for each
entry in the PARAM_MINS array.

PARAM_INCREMENT same type as
param

Legal param values go from min to max in
steps of increment. The length will be 0 if
there are no specified minimum values. Other-
wise, length will be non-zero.

PARAM_ENUM_VALUES array of same type
as param

Array of enumerated values for this parameter.
The length component will be 0 if there are no
enumeration values.

PARAM_ENUM_NAMES BYTE_ARRAY Array of enumeration names for this parameter
(must have the same length as the PARAM_
ENUM_VALUES array). The array is a double-
NULL terminated list of ASCII strings. Each
string represents a specific enumeration name
corresponding to the enumerated value in the
same position in the PARAM_ENUM_
VALUES array. Entries are separated by
NULL characters (there are 2 NULLs after the
last string).

Parameter Type Description

Table 6.7 Parameters returned by mlPvGetCapabilities
4 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

7
ML VIDEO PARAMETERS

This chapter covers parameters for describing the source of a video input path, or the destination of a video
output path.
The complete processing of a video path is described by three sets of parameters. For input or output
paths: video parameters on jacks are generally used to adjust external hardware processing of the video
signal, video parameters on paths describe how to interpret or generate the signal as it arrives or leaves,
and image parameters describe how to write or read the resulting bits to or from memory. 1

Each of the subsections in this chapter is devoted to a single video parameter. The subsection describes
which aspect of the video jack or input or output path the parameter controls, as well as the accepted val-
ues of the parameter.
Not all parameters may be supported on a particular video jack or path. Note that some parameters may be
adjusted on both a path and a jack, or may be adjustable on just one or the other. Use mlGetCapabilities
to obtain a list of parameters supported by a jack or path. In addition, not all values may be supported on a
particular parameter. Use mlPvGetCapabilities to obtain a list of the values supported by the parameter.
For information on image parameters see the chapter “ML Image Parameters”.

Video Jack and Path Control Parameters
The jack and path control parameters are set immediately in a call to mlSetControls, queried immediately
using mlGetControls, or sent on a path (only) in a call to mlSendControls. Once set, video controls for a
jack are persistent while those controls on a path that describe data transfer persist for at least the life of
the path. Typically, an application will set several controls in a single message before beginning to process
any buffers.

ML_VIDEO_TIMING_INT32
Sets or queries the timing on an input or output video path. Not all timings may be supported on all devices.
On devices which can auto-detect, the timing may be read-only on input. In this case ML_PARAM_
ACCESS is ML_ACCESS_READ. (Details of supported timings may be obtained by calling mlPvGetCa-
pabilites on this parameter).

1.This chapter, as well as the chapter “ML Image Parameters” assumes a working knowledge of digital video concepts. For a more
thorough explanation, readers may wish to consult a text devoted to this subject. A good resource is A Technical Introduction to Digital
Video, by Charles Poynton, published by John Wiley & Sons, 1996 (ISBN 0-471-12253-X, hardcover).
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 4 7

Standard definition (SD) timings are:
ML_TIMING_525 (NTSC)

ML_TIMING_525_SQ_PIX

ML_TIMING_625 (PAL)

ML_TIMING_625_SQ_PIX

High definition (HD) timings are:
ML_TIMING_1125_1920x1080_60p

ML_TIMING_1125_1920x1080_5994p

ML_TIMING_1125_1920x1080_50p

ML_TIMING_1125_1920x1080_60i

ML_TIMING_1125_1920x1080_5994i

ML_TIMING_1125_1920x1080_50i

ML_TIMING_1125_1920x1080_30p

ML_TIMING_1125_1920x1080_2997p

ML_TIMING_1125_1920x1080_25p

ML_TIMING_1125_1920x1080_24p

ML_TIMING_1125_1920x1080_2398p

ML_TIMING_1250_1920x1080_50p

ML_TIMING_1250_1920x1080_50i

ML_TIMING_1125_1920x1035_60i

ML_TIMING_1125_1920x1035_5994i

ML_TIMING_750_1280x720_60p

ML_TIMING_750_1280x720_5994p

ML_TIMING_525_720x483_5994p

ML_TIMING_1125_1920x1080_24PsF

ML_TIMING_1125_1920x1080_2398PsF

ML_TIMING_1125_1920x1080_30PsF

ML_TIMING_1125_1920x1080_2997PsF

ML_TIMING_1125_1920x1080_25PsF

Details of the 601 standard timings are illustrated in Figure 7.1 and Figure 7.2. Details of high definition
standard timings are illustrated in Figure 7.3 and Figure 7.4.
Note, all HD timing values follow the naming convention:

ML_TIMING_TotalRasterLines_ActivePixelsWidthxActiveLinesHeight_FieldorFrameRate{i | p | PsF}
where:

i = interlaced frames
p = progressive frames
PsF = Progressive Segmented Frames
4 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Figure 7.1 525/60 Timing (NTSC)
For more information on 525 and 625 timing systems, see SMPTE 259M Television - 10-Bit 4:2:2 Compo-
nent and 4fsc Composite Digital Signals - Serial Digital Interface specification.

1
2

9
10

19
20

263
264

273
274

282
283

525

Blanking

Optional
Blanking

Field F1
active video
244 lines

Blanking

Optional
Blanking

Field F2
active video
243 lines

Horizontal
blanking

720 active pixels
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 4 9

Figure 7.2 625/50 Timing (PAL)

1
2

22
23

310
311

335
336

623

Blanking

Field F1
active video
288 lines

Blanking

Field F2
active video
288 lines

Horizontal
blanking

720 active pixels

Blanking624
625
5 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Figure 7.3 1080i Timing (High Definition)

For more information on 1080i timing systems, see SMPTE 274M Television - 1920 x 1080 Scanning and
Interface specification.

1
2

20
21

560
561

583
584

1123

Blanking

Field F1
active video
540 lines

Blanking

Field F2
active video
540 lines

Horizontal
blanking

1920 active pixels

Blanking1124
1125
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 5 1

Figure 7.4 720p Timing (High Definition)
For more information on 720p systems, see SMPTE 296M Television - 1280 x 720 Scanning, Analog and
Digital Representation and Analog Interface specification.

1
2

25
26

748

Blanking

Horizontal
blanking

1280 active pixels

749
750

747
746
745

Field F1
active video
720 lines

Blanking
5 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

ML_VIDEO_SAMPLING_INT32
Sets the sampling at the video jack for RGB and CbYCr colorspaces.
For all RGB colorspaces, the legal samplings are:
• ML_SAMPLING_444 indicates that the R, G and B components are each sampled once per pixel, and

only the first 3 channels are used. If used with an image packing that provides space for a 4th channel,
those bits should have value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_4444 indicates that the R, G, B and A components are sampled once per pixel.
For all CbYCr colorspaces, the legal samplings are:
• ML_SAMPLING_444 indicates that the Cb, Y, and Cr components are each sampled once per pixel and

only the first 3 channels are used. If used with an image packing that provides space for a 4th channel,
those bits should have value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_4444 indicates that the Cb, Y, Cr and Alpha components are each sampled once per
pixel.

• ML_SAMPLING_422 indicates that the Y component is sampled once per pixel and the Cb and Cr
components are sampled once per pair of pixels. In this case, Cb and Cr are interleaved on the 1st
channel (Cb is first, Cr is second), and the Y component occupies the 2nd channel. If used with an
image packing that provides space for a 3rd or 4th channel, those bits should have value 0 on an input
path and will be ignored on an output path.

• ML_SAMPLING_4224 indicates that the Y and Alpha components are sampled once per pixel and the
Cb and Cr components are sampled once per pair of pixels. In this case, Cb and Cr are interleaved on
the 1st channel (Cb is first, Cr is second), Y is on the second channel, and Alpha is on the 3rd channel.
If used with an image packing that provides space for a 4th channel, those bits should have value 0 on
an input path and will be ignored on an output path.

ML_VIDEO_COLORSPACE_INT32
Sets the colorspace at the video jack. For input paths, this is the expected colorspace of the input jack. For
output paths, it is the desired colorspace at the output jack. Commonly supported values include:

ML_COLORSPACE_RGB_601_FULL,

 ML_COLORSPACE_RGB_601_HEAD,

 ML_COLORSPACE_CbYCr_601_FULL,

 ML_COLORSPACE_CbYCr_601_HEAD,

 ML_COLORSPACE_RGB_240M_FULL,

 ML_COLORSPACE_RGB_240M_HEAD,

 ML_COLORSPACE_CbYCr_240M_FULL,

 ML_COLORSPACE_CbYCr_240M_HEAD,

 ML_COLORSPACE_RGB_709_FULL,

 ML_COLORSPACE_RGB_709_HEAD,

 ML_COLORSPACE_CbYCr_709_FULL,

 ML_COLORSPACE_CbYCr_709_HEAD.

For more information on the colorspace parameter see ML_IMAGE_COLORSPACE_INT32 in the “ML
Image Parameters” chapter.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 5 3

ML_VIDEO_PRECISION_INT32
Sets the precision (number of bits of resolution) of the signal at the jack. A precision value of 10, means a
10-bit signal. A value of 8 means an 8-bit signal.

ML_VIDEO_SIGNAL_PRESENT_INT32
Used to query the incoming signal on an input path. Not all devices may be able to sense timing, but those
which do will support this parameter. Common values match those for ML_VIDEO_TIMING, with two addi-
tions: ML_TIMING_NONE (there is no signal present) ML_TIMING_UNKNOWN (the timing of the input
signal cannot be determined)

ML_VIDEO_GENLOCK_SOURCE_TIMING_INT32
Describes the genlock source timing. Only accepted on output paths. Each genlock source is specified as
an output timing on the path and corresponds to the same timings as available with ML_VIDEO_TIMING_
INT32.

ML_VIDEO_GENLOCK_TYPE _INT32
Describes the genlock signal type. Only accepted on output paths. Each genlock type is specified as either
a 32-bit resource ID or ML_VIDEO_GENLOCK_TYPE_INTERNAL.

ML_VIDEO_GENLOCK_SIGNAL_PRESENT_INT32
Used to query the incoming genlock signal for an output path. Not all devices may be able to sense genlock
timing, but those that do will support this parameter. Common values match those for ML_VIDEO_TIMING,
with two additions: ML_TIMING_NONE (there is no signal present) and ML_TIMING_UNKNOWN (the tim-
ing of the genlock signal cannot be determined).

ML_VIDEO_BRIGHTNESS_INT32
Set or get the video signal brightness.

ML_VIDEO_CONTRAST_INT32
Set or get the video signal contrast.

ML_VIDEO_HUE_INT32
Set or get the video signal HUE.

ML_VIDEO_SATURATION_INT32
Set or get the video signal color saturation.
5 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

ML_VIDEO_RED_SETUP_INT32
Set or get the video signal RED channel setup.

ML_VIDEO_GREEN_SETUP_INT32
Set or get the video signal GREEN channel setup.

ML_VIDEO_BLUE_SETUP_INT32
Set or get the video signal BLUE channel setup.

ML_VIDEO_ALPHA_SETUP_INT32
Set or get the video signal ALPHA channel setup.

ML_VIDEO_H_PHASE_INT32
Set or get the video signal horizontal phase genlock offset.

ML_VIDEO_V_PHASE_INT32
Set or get the video signal vertical phase genlock offset.

ML_VIDEO_FLICKER_FILTER_INT32
Set or get the video signal flicker filter.

ML_VIDEO_DITHER_FILTER_INT32
Set or get the video signal dither filter.

ML_VIDEO_NOTCH_FILTER_INT32
Set or get the video signal notch filter.

ML_VIDEO_OUTPUT_DEFAULT_SIGNAL_INT64
Sets the default signal at the video jack when there is no active output. The only allowable values are:
• ML_SIGNAL_NOTHING indicates that output signal shall cease without generation of sync.
• ML_SIGNAL_BLACK indicates that output shall generate a black picture complete with legal sync

values.
• ML_SIGNAL_COLORBARS indicates that output should use an internal colorbar generator.
• ML_SIGNAL_INPUT_VIDEO indicates that output should use the default input signal as a pass

through.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 5 5

Video Path Control Parameters
The following video path controls specify the clipping region (the region of the video signal to capture on
input, or fill on output). For standard definition video, these numbers are in Rec601 coordinates. For inter-
laced signals, the two fields may have different heights. For progressive signals, only the values for field 1
are used.

ML_VIDEO_START_X_INT32
Sets the start horizontal location on each line of the video signal.

ML_VIDEO_START_Y_F1_INT32
Sets the start vertical location on F1 fields of the video signal. For progressive signals it specifies the start
of every frame.

ML_VIDEO_START_Y_F2_INT32
Sets the start vertical location on F2 fields of the video signal. Ignored for progressive timing signals.

ML_VIDEO_WIDTH_INT32
Sets the horizontal width of the clipping region on each line of the video signal.

ML_VIDEO_HEIGHT_F1_INT32
Sets the vertical height for each F1 field of the video signal. For progressive signals it specifies the height of
every frame.

ML_VIDEO_HEIGHT_F2_INT32
Sets the vertical height for each F2 field of the video signal. Ignored for progressive timing signals.

ML_VIDEO_OUTPUT_REPEAT_INT32
If the application is doing output and fails to provide buffers fast enough (the queue to the device under-
flows), this control determines the device behavior. Allowable options are:
• ML_VIDEO_REPEAT_NONE the device does nothing, usually resulting in black output.
• ML_VIDEO_REPEAT_FIELD the device repeats the last field. For progressive signals or interleaved

formats, this is the same as ML_VIDEO_REPEAT_FRAME.
• ML_VIDEO_REPEAT_FRAME the device repeats the last two fields.
This output capability is device dependent and the allowable settings should be queried via the get capabil-
ities of the ML_VIDEO_OUTPUT_REPEAT_INT32 parameter.

On input, any signal outside the clipping region is simply ignored. On output, the following parameters con-
trol the generated signal:
5 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

ML_VIDEO_FILL_Y_REAL32
The luminance value for any pixel outside the clipping region. This is a real number: a value of 0.0 is the
minimum legal value (black), 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_Cr_REAL32
The Cr value for any pixel outside the clipping region. This is a real number: a value of 0.0 is the minimum
legal value, 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_Cb_REAL32
The Cb value for any pixel outside the clipping region. This is a real number: a value of 0.0 is the minimum
legal value, 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_RED_REAL32
The red value for any pixel outside the clipping region. This is a real number: a value of 0.0 is the minimum
legal value (black), 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_GREEN_REAL32
The green value for any pixel outside the clipping region. This is a real number: a value of 0.0 is the mini-
mum legal value, 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_BLUE_REAL32
The blue value for any pixel outside the clipping region. This is a real number: a value of 0.0 is the minimum
legal value, 1.0 is the maximum legal value. Default is 0.

ML_VIDEO_FILL_ALPHA_REAL32
The alpha value for any pixel outside the clipping region. This is a real number: a value of 0.0 is the mini-
mum (fully transparent), 1.0 is the maximum (fully opaque). Default is 1.0.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 5 7

Examples
Here is an example that sets the video timing and colorspace for an HDTV signal:

MLpv message[3];

message[0].param = ML_VIDEO_TIMING_INT32;
message[0].value.int32 = ML_TIMING_1125_1920x1080_5994i;
message[1].param = ML_VIDEO_COLORSPACE_INT32;
message[1].value.int32 = ML_COLORSPACE_CbYCr_709_HEAD;
message[2].param = ML_END;

mlSetControls(device, message);
5 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

8
ML IMAGE PARAMETERS

This chapter describes in detail the ML image parameters and gives examples of the resulting in-memory
pixel formats.

Introduction
An image buffer is required for a frame or field of pixels. The memory for image buffers is allocated and
managed by the application. Once a buffer has been created, a pointer to the buffer is passed to ML via
the parameter ML_IMAGE_BUFFER_POINTER. The way ML maps memory bits into colored pixels is
uniquely determined by the colorspace, packing, sampling and swap-bytes parameters. The colorspace
describes what each component represents, the packing describes how the components are laid out in
memory, and the sampling describes how often each component is stored.
Figure 8.1 illustrates a general image buffer layout with its associated image parameters. Figure 8.2
shows the more common simple image buffer layout.
.

Figure 8.1 General Image Buffer Layout

Height

Width

SKIP_ROWS

SKIP_PIXELS

ROW_BYTES

Image Buffer

Pixels

Image

0
0

O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 5 9

Figure 8.2 A Simple Image Buffer Layout

Image Buffer Parameters

ML_IMAGE_BUFFER_POINTER
Pointer to the first byte of an image buffer in memory. The buffer address must comply with the alignment
constraints for buffers on the particular path or transcoder to which it is being sent. See mlGetCapabilities
for details on determining alignment requirements with ML_PATH_BUFFER_ALIGNMENT_INT32. For
example if ML_PATH_BUFFER_ALIGNMENT_INT32 is 8, this means that the value of the buffer pointer
must be a multiple of 8 bytes. The same applies to ML_PATH_COMPONENT_ALIGNMENT_INT32 where
the beginning of each line (the first pixel of each line) must be a multiple of the value of the ML_PATH_
COMPONENT_ALIGNMENT_INT32 parameter.

ML_IMAGE_WIDTH_INT32
The width of the image in pixels.

ML_IMAGE_HEIGHT_1_INT32
For progressive or interleaved buffers (depending on parameter ML_IMAGE_INTERLEAVE_MODE_
INT32), this represents the height of each frame. For interlaced and non-interleaved signals, this repre-
sents the height of each F1 field. Measured in pixels.

ML_IMAGE_HEIGHT_2_INT32
The height of each F2 field in an interlaced non-interleaved signal. Otherwise it has value 0.

Height

Width

Pixels
Image buffer = image

SKIP_PIXELS=0

SKIP_ROWS=0

ROW_BYTES=0

0

0

6 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

ML_IMAGE_DOMINANCE_INT32
Sets the dominance of the video signal. Allowable values are ML_DOMINANCE_F1 and ML_
DOMINANCE_F2. The default dominance is ML_DOMINANCE_F1. Ignored for progressive signals.

Figure 8.3 Field Dominance
Field dominance defines the order of fields in a frame and can be either F1-dominant or F2-dominant. F1-
dominant specifies a frame as an F1 field followed by an F2 field. F2-dominant specifies a frame as an F2
field followed by an F1 field.

ML_IMAGE_ROW_BYTES_INT32
Only used for the general image buffer layout. The number of bytes along one row of the image buffer. If
this value is 0, each row is exactly ML_IMAGE_WIDTH_INT32 pixels wide. Default is 0.
Note that in physical memory there is no notion of two dimensions, the end of the first row continues
directly at the beginning of the second row. For interlaced image data the two fields can be stored in two
separate image buffers or they can be stored in interleaved form in one image buffer.

ML_IMAGE_SKIP_PIXELS_INT32
Only used for the general image buffer layout. The number of pixels to skip at the start of each row in the
image buffer. Default is 0. Must be 0 if ML_IMAGE_ROW_BYTES_INT32 is 0. Default is 0.

ML_IMAGE_SKIP_ROWS_INT32
Only used for the general image buffer layout. The number of rows to skip at the start of each image buffer.
Default is 0.

ML_IMAGE_TEMPORAL_SAMPLING_INT32
Specifies whether the image temporal sampling is progressive or interlaced. May be one of:
• ML_TEMPORAL_SAMPLING_FIELD_BASED
• ML_TEMPORAL_SAMPLING_PROGRESSIVE

Time

F1 F2 F1 F2 F1 F2 F1 F2
F1 dominant:

F2 dominant:
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 6 1

ML_IMAGE_INTERLEAVE_MODE_INT32
Only used for interlaced images. This parameter specifies whether the two fields have been interleaved
into a single image (and reside in a single buffer) or are stored in two separate fields (hence in two sepa-
rate buffers). This is ignored for signals with progressive timing.
• ML_INTERLEAVED_MODE_INTERLEAVED the two fields are interleaved into a single image (and

reside in a single buffer).
• ML_INTERLEAVED_MODE_SINGLE_FIELD the two fields are stored separately and the ML_IMAGE_

HEIGHT_1_INT32 and ML_IMAGE_HEIGHT_2_INT32 parameters specify the height of the two image
buffers (F1 and F2).

ML_IMAGE_ORIENTATION_INT32
The orientation of the image.
• ML_ORIENTATION_TOP_TO_BOTTOM “natural video order” pixel [0,0] is at the top left of the image.
• ML_ORIENTATION_BOTTOM_TO_TOP “natural graphics order” pixel [0,0] is at the bottom left of the

image.

ML_IMAGE_COMPRESSION_INT32
An image can be stored in a buffer in a compressed form, as in the case of the output of a codec. For an
image being transferred into a buffer, this parameter controls the type of compression to be applied. For an
image being transferred out of a buffer, this parameter describes the compression format of the stored
image. Common compression formats are:

ML_COMPRESSION_UNCOMPRESSED
ML_COMPRESSION_BASELINE_JPEG
ML_COMPRESSION_LOSSLESS_JPEG
ML_COMPRESSION_DV_625
ML_COMPRESSION_DV_525
ML_COMPRESSION_DVCPRO_625
ML_COMPRESSION_DVCPRO_525
ML_COMPRESSION_DVCPRO50_625
ML_COMPRESSION_DVCPRO50_525
ML_COMPRESSION_MPEG2
ML_COMPRESSION_UNKNOWN

If the image data is in uncompressed format, the value of this parameter is ML_COMPRESSION_
UNCOMPRESSED. If a transcoder is unable to determine the type of compression ML_COMPRESION_
UNKNOWN is returned for ML_IMAGE_COMRESSION_INT32.
When an image is compressed, some of the parameters that normally describe the image data (that is,
height, width, color space, etc.) may not be meaningful or known. The only parameters that are always
known are the compression type, ML_IMAGE_COMPRESSION_INT32, and the size of the compressed
image, ML_IMAGE_SIZE_INT32. Thus the image buffer layout parameters (ML_IMAGE_SKIP_ROWS,
ML_IMAGE_SKIP_PIXELS, and ML_IMAGE_ROW_BYTES) typically do not apply to compressed
images.
For more information on JPEG compression, refer to W. B. Pennebaker and J. L. Mitchell, JPEG: Still
Image Data Compression Standard, New York, NY: Van Nostrand Reinhold, 1993.
For more information on DV compression, refer to Specification of Consumer-Use Digital VCRs using
6.3mm magnetic tape, HD Digitial VCR Conference, December 1990.
6 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

For more information on DVCPRO and DVCPRO50 compression, refer to SMPTE 314M, Television - Data
Structure for DV-Based Audio, Data and Compressed Video - 25 and 50 Mb/s.
For more information on MPEG2, refer to ISO/IEC 13818-2, Generic Coding of Moving Pictures and Asso-
ciated Audio Systems.

ML_IMAGE_BUFFER_SIZE_INT32
Size of the image buffer in bytes. This is a read-only parameter and is computed in the device using the
current path control settings. This value represents the worst-case buffer size.

ML_IMAGE_COMPRESSION_FACTOR_REAL32
For compressed images only, this parameter describes the desired compression factor. A value of 1 indi-
cates no compression, a value of x indicates that approximately x compressed buffers require the same
space as 1 uncompressed buffer. The size of the uncompressed buffer depends on image width, height,
packing and sampling.
The default value is implementation-dependent, but should represent a reasonable trade-off between com-
pression time, quality and bandwidth. The specified compression factor should be a number larger than 1.

ML_IMAGE_PACKING_INT32
The image packing parameter describes, in detail, how a single pixel or group of pixels is stored in mem-
ory. In the following discussion, fields in corner brackets <> are optional. Fields in square brackets [] are
required.
ML_PACKING_<type>[bitPacking]
• type is the base type of each component. Leave blank for an unsigned integer, use S for a signed, 2’s

complement integer.
• bitPacking defines the number of bits per component. bitPacking may refer to simple, padded, or

complex packings.
• For the simplest formats, every component is the same size and there is no additional space

between components. Here, where a single numeric value specifies the number of bits per
component, bitPacking takes the form: [size]<_order>. The first component consumes the first size
bits, the next consumes the next size bits, and so on. Space is only allocated for components which
are in use (that depends on the sampling mode, see later). For these formats the data must always
be interpreted as a sequence of bytes. For example, ML_PACKING_8 describes a packing in which
each component is an unsigned 8-bit quantity. ML_PACKING_S8 describes the same packing
except that each component is a signed, 2’s complement, 8-bit quantity.

order is the order of the components in memory. Leave blank for natural ordering (1,2,3,4), use R for
reversed ordering (4,3,2,1). For all other orderings, specify the component order explicitly. For
example, 4123 indicates that the fourth component is stored first in memory, followed by the
remaining three components. Here, we compare a normal, a reversed, and a 4123 packing:

31 int 0
Packing +------------------------------+
8 11111111222222223333333344444444
8_R 44444444333333332222222211111111
8_4123 44444444111111112222222233333333

where 1 is the first component, 2 is the second component, and so on.
• For padded formats, each component is padded to a wider total size. In this case, bitPacking takes

the form: [bits]in[space][alignment] where:

bits is the number of bits of information per component
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 6 3

space is the total size of each component

alignment values L, L0, or R indicate, respectively, whether the information is left justified and
padded, left justified and 0-filled, or right justified in that space

In this case, each component in use consumes space bits and those bits must be interpreted as a
short integer. (Unused components consume no space). For example, here are some common
packings (note that the signed-ness of the component values does matter):

15 int short 0
Packing +--------------+
12in16R 0000iiiiiiiiiiii
S12in16R eeeesiiiiiiiiiii
12in16L iiiiiiiiiiiipppp
S12in16L siiiiiiiiiiipppp
S12in16L0 siiiiiiiiiii0000

where s indicates the sign bit, e indicates sign-extension bits, i indicates the actual component
information, 0 indicates 0-fill bits, and p indicates padding (replicated from the most significant bits of
information).

Note: These bit locations refer to the locations when the 16-bit component has been loaded into a
register as a 16-bit integer quantity.

• For the most complex formats, the size of every component is specified explicitly, and the entire pixel
must be treated as a single 4-byte integer. bitPacking takes the form size1_size2_size3_size4,
where size1 is the size of component 1, size2 is the size of component 2, and so on. In this case, the
entire pixel is a single 4-byte integer of length equal to the sum of the component sizes. Any space
allocated to unused components must be zero-filled. The most common complex packing occurs
when 4 components are packed within a 4-byte integer. For example, ML_PACKING_10_10_10_2
is:

31 int 0
Packing +------------------------------+
10_10_10_2 11111111112222222222333333333344

where 1 is the first component, 2 is the second component, and so on. The bit locations refer to the
locations when this 32-bit pixel is loaded into a register as a 32-bit integer quantity. If only three
components were in use (determined from the sampling), then the space for the fourth component
would be zero-filled.

order is the order of the components in memory. Leave blank for natural ordering (1,2,3,4), use R for
reversed ordering (4,3,2,1). For all other orderings, specify the component order explicitly. For
example, 4123 indicates that the fourth component is stored first in memory, followed by the
remaining three components. Here, we compare a normal, a reversed, and a 4123 packing:

31 int 0
Packing +------------------------------+
10_10_10_2_R 44333333333322222222221111111111
10_10_10_2_4123 44111111111122222222223333333333

where 1 is the first component, 2 is the second component, and so on. Since this is a complex
packing, the bit locations refer to the locations when this entire pixel is loaded into a register as a
single integer.

For recommendations on packing and component ordering see Appendix B: “Recommended
Practices”.
6 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

ML_IMAGE_COLORSPACE_INT32
The colorspace parameters describe how to interpret each component. The full colorspace parameter is:
ML_COLORSPACE_representation_standard_range
where:
• representation is either RGB or CbYCr.

This controls how to interpret each component. The following table shows this mapping (assuming for
now that every component is sampled once per pixel):

The packing dictates the size and order of the components in memory, while the colorspace describes
what each component represents. For example, here we show the effect of colorspace and packing
combined; assuming a 4444 sampling.

Color 31 0
Space Packing +------------------------------+
RGB 8 RRRRRRRRGGGGGGGGBBBBBBBBAAAAAAAA
RGB 8_R AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR
RGB 10_10_10_2 RRRRRRRRRRGGGGGGGGGGBBBBBBBBBBAA
RGB 10_10_10_2_R AABBBBBBBBBBGGGGGGGGGGRRRRRRRRRR
CbYCr 10_10_10_2 bbbbbbbbbbYYYYYYYYYYrrrrrrrrrrAA
CbYCr 10_10_10_2_R AArrrrrrrrrrYYYYYYYYYYbbbbbbbbbb

• standard indicates how to interpret particular values as actual colors. Choosing a different standard
alters the way the system converts between different color representations. Defined values of standard
are 601, 709, and 240 which designate the Rec. 601, Rec. 709 and SMPTE 240M standards
respectively.

• range is either FULL, where the smallest and largest values are limited only by the available packing
size, or HEAD, where the smallest and largest values are somewhat less than the theoretical min/max
values to allow some "headroom". Full range is common in computer graphics. Headroom range is
common in video, particularly when sending video signals over a wire (for example, values outside the
legal component range may be used to mark the beginning or end of a video frame). When constructing
a colorspace, an application must specify a representation, a standard and a range.

For example, ML_COLORSPACE_CbYCr_601_HEAD indicates a Rec. 601 standard CbYCr colorspace
with headroom range.

ML_IMAGE_SAMPLING_INT32
The sampling parameters take their names from common terminology in the video industry. They describe
how often each component is sampled for each pixel. In computer graphics, its normal for every compo-
nent to be sampled once per pixel, but in video that need not be the case.
For all RGB colorspaces, the legal samplings are:
• ML_SAMPLING_444 indicates that the R, G and B components are each sampled once per pixel, and

only the first 3 channels are used. If used with an image packing that provides space for a 4th channel,
those bits should have value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_4444 indicates that the R, G, B and A components are sampled once per pixel.

Colorspace Rep-
resentation

Component 1 Component 2 Component 3 Component 4

RGB Red Green Blue Alpha
CbYCr Cb Y Cr Alpha

Figure 8.4 Mapping Colorspace representation Parameters
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 6 5

For all CbYCr colorspaces, the legal samplings are:
• ML_SAMPLING_444 indicates that the Cb, Y, and Cr components are each sampled once per pixel and

only the first 3 channels are used. If used with an image packing that provides space for a 4th channel,
those bits should have value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_4444 indicates that the Cb, Y, Cr and Alpha components are each sampled once per
pixel.

• ML_SAMPLING_422 indicates that the Y component is sampled once per pixel and the Cb and Cr
components are sampled once per pair of pixels. In this case, Cb and Cr are interleaved on the 1st
channel (Cb is first, Cr is second), and Y occupies the 2nd channel. If used with an image packing that
provides space for a 3rd or 4th channel, those bits should have value 0 on an input path and will be
ignored on an output path.

• ML_SAMPLING_4224 indicates that the Y and Alpha components are sampled once per pixel and the
Cb and Cr components are sampled once per pair of pixels. In this case, Cb and Cr are interleaved on
the 1st channel, Y is on the 2nd channel, and Alpha is on the 3rd channel. If used with an image packing
that provides space for a 4th channel, those bits should have value 0 on an input path and will be
ignored on an output path.

• ML_SAMPLING_411 indicates that the Y component is sampled once per pixel and the Cb and Cr
components are sampled once per 4 pixels. In this case, Cb is component 1, Cr is component 2 and Y
occupies component 3. If used with an image packing that provides space for a 4th component then
those bits should have value 0 on an input path and will be ignored on an output path.

• ML_SAMPLING_420 indicates that the Y component is sampled once per pixel and the Cb or Cr
component is sampled once per pair of pixels on alternate lines. In this case, Cb or Cr is interleaved on
the 1st channel, and Y occupies the 2nd channel. If used with an image packing that provides space for
a 3rd or 4th channel, those bits should have value 0 on an input path and will be ignored on an output
path.

• ML_SAMPLING_400 indicates that only the Y component is sampled per pixel (a greyscale image). If
used with an image packing that provides space for additional channels, those bits should have value 0
on an input path and will be ignored on an output path.

• ML_SAMPLING_0004 indicates that only the Alpha component is sampled per pixel. If used with an
image packing that provides space for additional channels, those bits should have value 0 on an input
path and will be ignored on an output path.

The following table shows the combined effect of sampling and colorspace on the component definition:

*: Cb and Cr components are multiplexed with Y on alternate lines (not pixels).

Sampling Colorspace
Representation

Comp 1 Comp 2 Comp 3 Comp 4

4444 RGB Red Green Blue Alpha
444 RGB Red Green Blue
0004 RGB Alpha
4444 CbYCr Cb Y Cr Alpha
444 CbYCr Cb Y Cr
4224 CbYCr Cb/Cr Y Alpha
422 CbYCr Cb/Cr Y
400 CbYCr Y
420 CbYCr Cb/Cr* Y
411 CbYCr Cb Cr Y
0004 CbYCr Alpha

Table 8.1 Effect of Sampling and Colorspace on Component Definitions
6 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

ML_IMAGE_SWAP_BYTES_INT32
Parameter ML_IMAGE_SWAP_BYTES_INT32 may be available on some devices. When set to 0 (the
default) this has no effect. When set to 1, the device reorders bytes as a first step when reading data from
memory, and as a final step when writing data to memory. The exact reordering depends on the packing
element size. For simple and padded packing formats, the element size is the size of each component. For
complex packing formats, the element size is the sum of the four component sizes.
The ML_IMAGE_SWAP_BYTES_INT32 parameter reorders bits as follows:

Element Size Default ordering Modified ordering
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]
other [n..0] [n..0] (no change)

Table 8.2 Effect of ML_IMAGE_SWAP_BYTES_INT32 on Image Bit Reordering
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 6 7

6 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

9
ML AUDIO PARAMETERS

Audio Buffer Layout
The digital representation of an audio signal is generated by periodically sampling the amplitude (voltage)
of the signal. The samples represent periodic "snapshots" of the signal amplitude. The sampling rate spec-
ifies the number of samples per second. The audio buffer pointer points to the source or destination data in
an audio buffer for processing a fragment of a media stream. For audio signals, a fragment typically corre-
sponds to between 10 milliseconds and 1 second of audio data. An audio buffer is a collection of sample
frames. A sample frame is a set of audio samples that are coincident in time. A sample frame for mono
data is a single sample. A sample frame for stereo data consists of a left-right sample pair.
Stereo samples are interleaved; left-channel samples alternate with right-channel samples. 4-channel sam-
ples are also interleaved, with each frame usually having two left/right sample pairs, but there can be other
arrangements.

Figure 9.1 Different Audio Sample Frames

This illustration shows the relationship between the number of channels and the frame size of audio sam-
ple data.

1-channel data

2-channel data

4-channel data

n-channel data

Frame

Frame

Frame

Frame

L R L R

1 2 3 4

1 2 3 n...
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 6 9

Figure 9.2 Layout of an Audio Buffer With 4 Channels
This illustration shows the layout of an audio buffer in memory.

Audio Parameters
The following parameters are defined for audio data:

ML_AUDIO_BUFFER_POINTER
A pointer to the first byte of an in-memory audio buffer. The buffer address must comply with the alignment
constraints for buffers on the particular path to which it is being sent. (See mlGetCapabilities for details of
determining alignment requirements).

ML_AUDIO_FRAME_SIZE_INT32
The size of an audio sample frame in bytes. This is a read-only parameter and is computed in the device
using the current path control settings.

ML_AUDIO_SAMPLE_RATE_REAL64
The sample rate of the audio data in Hz. The sample rate is the frequency at which samples are taken from
the analog signal on input or pass out of the audio jack on output. Sample rates are measured in hertz (Hz).
A sample rate of 1 Hz is equal to one sample per second. For example, when a mono analog audio signal
is digitized at a 44.1 kilohertz (kHz) sample rate, 44100 digital samples are generated for every second of

1 432

4 Audio Channels

Audio Frame

Audio Sample

Audio Buffer

Time Period T
7 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

the signal. Sample rates are dependent on the hardware, but are usually between 8000 and 96000. The
default is hardware-specific. Common sample rates are 8000, 16000, 32000, 44100, 48000 and 96000.

ML_AUDIO_PRECISION_INT32
The maximum width in bits for an audio sample at the input or output jack. For example, a value of 16 indi-
cates a 16-bit audio signal. ML_AUDIO_PRECISION_INT32 specifies the precision at the Audio I/O jack,
whereas ML_AUDIO_FORMAT_INT32 specifies the packing of the audio samples in the audio buffer. If
ML_AUDIO_FORMAT_INT32 is different than ML_AUDIO_PRECISION_INT32, the system will convert
between the two formats. Such a conversion might include padding and/or truncation.

ML_AUDIO_FORMAT_INT32
Specifies the format in which audio samples are stored in memory. The interpretation of format values is:
ML_AUDIO_FORMAT_[type][bits]
• [type] is U for unsigned integer samples, S for signed (2's compliment) integer samples, R for real

(floating point) samples
• [bits] is the number of significant bits per sample.
For sample formats in which the number of significant bits is less than the number of bits in which the sam-
ple is stored, the format of the values is:
ML_AUDIO_FORMAT_[type][bits]in[size][alignment]
• [size] is the total size used for the sample in memory, in bits.
• [alignment] is either R or L depending on whether the significant bits are right- or left-shifted within the

sample. For example, here are three of the most common audio buffer formats:

ML_AUDIO_FORMAT_U8 7 char 0
+------+
iiiiiiii

ML_AUDIO_FORMAT_S16 15 short int 0
+--------------+
iiiiiiiiiiiiiiii

ML_AUDIO_FORMAT_S24in32R 31 int 0
+------------------------------+
ssssssssiiiiiiiiiiiiiiiiiiiiiiii

where s indicates sign-extension, and i indicates the actual component information. The bit locations
refer to the locations when the 8-, 16-, or 32-bit sample has been loaded into a register as an integer
quantity. If the audio data compression parameter ML_AUDIO_COMPRESSION_INT32 indicates that
the audio data is in compressed form, the ML_AUDIO_FORMAT_INT32 indicates the data type of the
samples after decoding. Common formats are:

ML_FORMAT_U8
ML_FORMAT_S16
ML_FORMAT_S24in32R
ML_FORMAT_R32

Default is hardware-specific.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 7 1

ML_AUDIO_GAINS_REAL64_ARRAY
The gain factor in decibels (dB) on the given path. There will be a value for each audio channel. Negative
values represent attenuation. Zero represents no change of the signal. Positive values amplify the signal. A
gain of negative infinity indicates infinite attenuation (mute).

ML_AUDIO_CHANNELS_INT32
The number of channels of audio data in the buffer. Multi-channel audio data is always stored interleaved,
with the samples for each consecutive audio channel following one another in sequence. For example, a 4-
channel audio stream will have the form:

123412341234...
where 1 is the sample for the first audio channel, 2 is the sample for the second audio channel, and so on.
Common values include the following:

ML_CHANNELS_MONO
ML_CHANNELS_STEREO
ML_CHANNELS_4
ML_CHANNELS_8

ML_AUDIO_COMPRESSION_INT32
This parameter specifies the compression format of the data. The compression format may be an industry
standard such as MPEG-1 audio or a device dependent format.
Common values include the following:

ML_COMPRESSION_MU_LAW
ML_COMPRESSION_A_LAW
ML_COMPRESSION_IMA_ADPCM
ML_COMPRESSION_MPEG1
ML_COMPRESSION_MPEG2
ML_COMPRESSION_AC3

When the data is uncompressed, the value of this parameter is ML_COMPRESSION_UNCOMPRESSED.
7 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Uncompressed Audio Buffer Size Computation
The following equation shows how to calculate the number of bytes for an uncompressed audio buffer
given the sample frame size, sampling rate and the time period that the audio buffer represents:

where:

Example 8-1 Buffer Size Computation
If:
• is 4 bytes (if format is S16 and there are two channels)
• (sampling rate) is 44,100 Hz
• = 40 ms = 0.04 s.
then the resulting buffer size is 7056 bytes.

audio buffer size in bytes

the number of bytes per audio sample frame (ML_AUDIO_
FRAMESIZE_INT32)

the sampling rate in Hz (ML_AUDIO_SAMPLE_RATE_
REAL64)

the time period the audio buffer represents in seconds

N F R T⋅ ⋅=

N

F

R

T

F
R
T

N

O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 7 3

7 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

10
ML PROCESSING

ML is concerned with two types of interfaces: paths for digital media through jacks into and out of the
machine, and pipes for digital media to and from transcoders. Both share common control, buffer, and
queueing mechanisms. These mechanisms are first described in the context of a complete program exam-
ple. Subsequently, the individual functions are presented.

ML Program Structure
ML programs are composed of the following structure. Each of the functions are described later in this
chapter (except where noted).

// get list of available media devices
// (See Chapter 6: “ML Capabilities” for function description)
mlGetCapabilities(systemid, &capabilities);

// search the devices to find the desired jack, path, or transcoder to open
// (See Chapter 6: “ML Capabilities” for function description)
mlGetCapabilities(deviceid, &capabilities);

// query the jack, path, or transcoder to discover allowable open options and parameters
// (See Chapter 6: “ML Capabilities” for function description)
mlGetCapabilities(objectid, &capabilities);

// query for individual parameter characteristics
// (See Chapter 6: “ML Capabilities” for function description)
mlPvGetCapabilities(deviceid, &capabilities);

// free memory associated with any of the above get capabilities:
// (See Chapter 6: “ML Capabilities” for function description)
mlFreeCapabilities(capabilities);
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 7 5

// open a logical connection to the desired object
mlOpen(objectId, options, &openid);

// get and set any necessary immediate controls
mlGetControls(openid, controls);
mlSetControls(openid, controls);

// send any synchronous controls
mlSendControls(openid, controls);

// pre-roll buffers
mlSendBuffers(openid, buffers);

// prepare for asynchronous processing by getting a wait handle
mlGetWaitHandle(openid, &WaitHandle);

// start the path or transcoder transferring
mlBeginTransfer(openid);

// perform synchronous work
mlXcodeWork(openid);

// check on the status of the queues
mlGetSendMessageCount(openid, &messageCount);
mlGetReceiveMessageCount(openid, &messageCount);

// process return messages
mlReceiveMessage(openid, &messageType, &receiveMessage);

// find specific returned parameters
mlPvFind(msg, param);

// repeat mlSendControls, mlSendBuffers, mlXcodeWork, etc. as required

// stop the transfer
mlEndTransfer(openid);

// close the logical connection
mlClose(openid);

// other useful functions:
mlGetVersion(&majorVersion, &minorVersion);
mlGetSystemUST(systemId, &returnedUST);
mlStatusName(status);
mlMessageName(messageType);
7 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Parameter Access Controls
Parameter access control flags describe when and how each parameter can be used. The set of parameter
access control flags associated with a parameter is returned by mlPvGetCapabilities as ML_PARAM_
ACCESS_INT32. This value is a bitwise “or” of one or more such flags.
These values are an intrinsic aspect of each parameter and cannot be changed by the application. They
are available to help the application use each parameter correctly. If a parameter is used in a manner that
is not consistent with its access control flags, then an error will be reported.
The parameter access control flags are described in the following table where the string in the Access Con-
trol column is a shortened form of the full name. The full name is of the form ML_ACCESS_access, where
access is the string listed in the Access Control column. For example, the full name of READ is ML_
ACCESS_READ.

Note that buffer pointer parameters such as ML_IMAGE_BUFFER_POINTER and ML_AUDIO_BUFFER_
POINTER do not have the ML_ACCESS_SEND_BUFFER flag. For these kinds of parameters, this access
is implicit.

Access Control Description
READ The parameter can be used in an mlGetControls or mlQuery-

Controls message to retrieve a device control value.
WRITE The parameter can be used in an mlSendControls, mlSetCon-

trols, or mlSendBuffers message to set a device control value.
PASS_THROUGH The value of the param/value pair will not be changed by the

device, nor will any device controls be changed as a result of this
parameter. This flag is typically applied to parameters that are
enqueued; such parameters may be used by an application as
markers in the queue of messages. User parameters created with
the ML_USERDATA_DEFINED macro (refer to Chapter 5: “ML
Parameters”) are given PASS_THROUGH access so that they
can be used for this purpose.

OPEN_OPTION The parameter can be set when the corresponding device is
opened by mlOpen. All parameters in the mlOpen options mes-
sage must have this access.

IMMEDIATE The parameter can be used to set or retrieve a device control
value “out of band”. If the parameter has READ access, then the
parameter can be included in a message passed to mlGetCon-
trols. If the parameter has WRITE access, then the parameter
can be included in a message passed to mlSetControls.

QUEUED The parameter can be used to set or retrieve a device control
value “in band”. If the parameter has READ access, then the
parameter can be included in a message enqueued by mlQuery-
Controls. If the parameter has WRITE access, then the parame-
ter can be included in a message enqueued by mlSendControls.

SEND_BUFFER The parameter can be included in an “in band” message
enqueued by mlSendBuffers. If the parameter also has WRITE
access then it can be used to set a device control.

DURING_TRANSFER The parameter can be used to set or retrieve a control value dur-
ing buffer transfers...after the application has called mlBegin-
Transfer. A device control that takes a long time to set (and
therefore could compromise real time buffer transfers) might not
have this access control.

Table 10.1 Parameter Access Control Values
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 7 7

Opening a Jack, Path, or Transcoder
In order to communicate with a Jack, Path, or Transcoder, a connection must be opened. A physical device
(e.g. a PCI card) may simultaneously support several such connections. These connections are made by
calling mlOpen:

MLstatus mlOpen (const MLint64 objectId, MLpv* options, MLopenid* openid);

objectId is the 64-bit unique identifier for the object (jack, path or transcoder) to be opened. options is an
ML_END terminated list of param/value pairs that specify the initial configuration of the device to be
opened. These parameters are described in Tables 10.2, 10.3, and 10.4.
On successful completion, the handle of the open instance of the object is returned in openid and ML_
STATUS_NO_ERROR is returned. The status value ML_STATUS_INVALID_ID is returned if the objectid
is invalid.
The mlOpen operation can fail because of an incorrectly structured options list. ML_STATUS_INVALID_
PARAMETER is returned if one of the param values in the options list is invalid. ML_STATUS_INVALID_
VALUE is returned if one of the value components in the options list is invalid. If the options list specifies
an open access mode that is not available on the device, then ML_STATUS_ACCESS_DENIED is
returned. In addition, ML_STATUS_INVALID_ARGUMENT is returned if one of the arguments to mlOpen
is otherwise invalid.
Resources are allocated or reserved as a side effect of mlOpen. ML_STATUS_OUT_OF_MEMORY is
returned if there is insufficient memory available to perform the operation, such as the space needed to
allocate the queues for messages between the application and the device. ML_STATUS_INSUFFICIENT_
RESOURCES is returned if some other required resource is not available, possibly by being already in use
by this or another application.
A device may not be available, perhaps from being powered off, or removed from the system. In such a
case, ML_STATUS_DEVICE_UNAVAILABLE is returned. Finally, ML_STATUS_INTERNAL_ERROR is
returned if the operation fails due to a system or device I/O error.
The following tables lists the mlOpen options defined for jacks, paths, and transcoders. For a particular
device, only some of the options might be available. The set of available open options is returned in the
ML_OPEN_OPTIONS_IDS param/value pair returned by mlGetCapabilities. The allowable values associ-
ated with one of these options can then be determined using mlPvGetCapabilities.
In these tables, the string in the Parameter column is a shortened form of the full parameter name, which is
of the form ML_parameter_type, where the parameter and type are the strings listed in the Parameter and
Type columns respectively. For example, the full parameter name of OPEN_MODE is ML_OPEN_MODE_
INT32.
Following are the mlOpen options parameters for jacks:

Parameter Type Description
OPEN_MODE INT32 Application’s intended use for the device.

Defined values are:
• ML_MODE_RO for read only access
• ML_MODE_RWS for shared read/write

access
• ML_MODE_RWE for exclusive access
The default is defined by the device’s capa-
bilities.

Table 10.2 mlOpen Options for Jacks
7 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

l
Following are the mlOpen options parameters for paths:

OPEN_RECEIVE_QUEUE_COUNT INT32 Application’s preferred size (number of mes-
sages) for the receive queue. This influ-
ences the amount of memory allocated for
this queue when the device is opened.
Default is device-dependent. A null value
indicates that the application does not
expect to receive any events from the jack.

OPEN_EVENT_PAYLOAD_COUNT INT32 Application's preferred size (number of mes-
sages) for the queue event payload area.
This payload area holds the contents of
event messages on the receive queue.
Default is device-dependent. A null value
indicates that the application does not
expect to receive any events from the jack.

Parameter Type Description
OPEN_MODE INT32 Application’s intended use for the device.

Defined values are:
• ML_MODE_RO for read only access
• ML_MODE_RWS for shared read/write

access
• ML_MODE_RWE for exclusive access
The default is defined by the device’s capa-
bilities.

OPEN_SEND_QUEUE_COUNT INT32 Application's preferred size (number of mes-
sages) for the send header queue. This
influences the amount of memory allocated
for this queue when the device is opened.
Default is device-dependent.

OPEN_RECEIVE_QUEUE_COUNT INT32 Applications' preferred size (number of mes-
sages) for the receive header queue. This
influences the amount of memory allocated
for this queue when the device is opened.
Default is device-dependent

OPEN_MESSAGE_PAYLOAD_SIZE INT32 Application's preferred size (in bytes) for the
queue message payload area. The payload
area holds messages on both the send and
receive queues. Default is device-depen-
dent.

OPEN_EVENT_PAYLOAD_COUNT INT32 Application's preferred size (number of mes-
sages) for the queue event payload area.
This payload area holds the contents of
event messages on the receive queue.
Default is device-dependent.

Table 10.3 mlOpen Options for Paths

Parameter Type Description

Table 10.2 mlOpen Options for Jacks
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 7 9

Following are the mlOpen options parameters for transcoders:

OPEN_SEND_SIGNAL_COUNT INT32 Application's preferred low-water level
(number of empty message slots) in the
send queue. When the device dequeues a
message and causes the number of empty
slots to exceed this level, then the device
will signal the send queue event. Default is
device-dependent.

Parameter Type Description
OPEN_MODE INT32 Application’s intended use for the device.

Defined values are:
• ML_MODE_RO for read only access
• ML_MODE_RWS for shared read/write

access
• ML_MODE_RWE for exclusive access
The default is defined by the device’s capa-
bilities.

OPEN_SEND_QUEUE_COUNT INT32 Application's preferred size (number of mes-
sages) for the send queue. This influences
the amount of memory allocated for this
queue when the device is opened. Default is
device-dependent.

OPEN_RECEIVE_QUEUE_COUNT INT32 Applications' preferred size (number of mes-
sages) for the receive queue. This influ-
ences the amount of memory allocated for
this queue when the device is opened.
Default is device-dependent

OPEN_MESSAGE_PAYLOAD_SIZE INT32 Application's preferred size (in bytes) for the
queue message payload area. The payload
area holds messages on both the send and
receive queues. Default is device-depen-
dent.

OPEN_EVENT_PAYLOAD_COUNT INT32 Application's preferred size (number of mes-
sages) for the queue event payload area.
This payload area holds the contents of
event messages on the receive queue.
Default is device-dependent.

OPEN_SEND_SIGNAL_COUNT INT32 Application's preferred low-water level
(number of empty message slots) in the
send queue. When the device dequeues a
message and causes the number of empty
slots to exceed this level, then the device
will signal the send queue event. Default is
device-dependent.

Table 10.4 mlOpen Options for Transcoders

Parameter Type Description

Table 10.3 mlOpen Options for Paths
8 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Transcoder Component Selection
To set or retrieve the controls of a pipe, a message is sent to the transcoder which owns the pipe. A
transcoder has at least two pipes, a source pipe and a destination pipe. A message to a transcoder can
include parameters for the source pipe, for the destination pipe and for the transcode itself. The ML_
SELECT_ID_INT64 parameter sets a device control in the transcoder which determines to which compo-
nent of the transcoder subsequent parameters are applied.
If ML_SELECT_ID_INT64 has value 0, then subsequent parameters are applied to the transcoder itself.
Values of ML_XCODE_SRC_PIPE and ML_XCODE_DST_PIPE cause subsequent parameters to be
applied to the source and destination pipes respectively.
By default, parameters in a message to a transcoder are applied to the transcoder itself. That is, the value
of the SELECT_ID device control is effectively set to 0 at the start of each message to a transcoder.
If a transcoder does not recognize an ML_SELECT_ID_INT64 value, it will ignore subsequent parameters
until the next valid ML_SELECT_ID_INT64 value or until the end of the message.

OPEN_XCODE_MODE INT32 Application's preferred mode for controlling
a software transcoder. This parameter does
not apply to paths. Defined values are:
• ML_XCODE_MODE_SYNCHRONOUS

when processing by a software
transcoder is to be initiated by the
application.

• ML_XCODE_MODE_AYNCHRONOUS
when processing by a software
transcoder is to be initiated by ML

Default is ML_XCODE_MODE_ASYN-
CHRONOUS

OPEN_XCODE_STREAM INT32 Selects between single and multi-stream
transcoders. In single stream mode, source
and destination buffers are processed at the
same rate. In multi-stream mode, the source
and destination pipes each have their own
queue of buffers and may run at different
rates (this is more complicated to program,
but may be more efficient for some intra-
frame codecs). Defined values are:
• ML_XCODE_STREAM_SINGLE
• ML_XCODE_STREAM_MULTI
Default is ML_XCODE_STREAM_SINGLE
Only ML_XCODE_STREAM_SINGLE is
currently supported. It is expected that ML_
XCODE_STREAM_MULTI will be sup-
ported in a future release of OpenML.

Parameter Type Description

Table 10.4 mlOpen Options for Transcoders
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 8 1

Set Controls
Controls on a logical connection that do not affect the buffer size needed for a media I/O operation may be
performed asynchronously to an ongoing data transfer. For example, changing the packing of a video
image (ML_IMAGE_PACKING_IN32) can affect the buffer size needed to contain an image, while chang-
ing the video brightness (ML_VIDEO_BRIGHTNESS_INT32) does not. These controls may be set in an
“out of band” message using the mlSetControls operation:

MLstatus mlSetControls(MLopenid openid, MLpv* controls);

openid is the identifier, returned by mlOpen, of the jack, path or transcoder whose parameters are to be
set. The status value ML_STATUS_INVALID_ID is returned if the openid is invalid.
The controls parameter is a message consisting of parameter values to be set. The mlSetControls opera-
tion can fail because of an incorrectly structured controls message. ML_STATUS_INVALID_PARAME-
TER is returned if one of the param values in the controls message is not recognized. ML_STATUS_
INVALID_VALUE is returned if one of the value components in the controls message is invalid. ML_
STATUS_INVALID_CONFIGURATION is returned if the resulting set of parameter values would be incon-
sistent if the operation were performed. For all of these failure cases, the length component of the first
invalid param/value pair is set to -1.
The mlSetControls operation sends a message containing a list of control parameters directly to a previ-
ously-opened digital media device. The controls message is not enqueued on the send queue but instead
is sent directly to the device. The device will attempt to process the message "as soon as possible".
This call blocks until the device has processed the controls message. This means that, on return, the
parameters have been validated and sent to the device (i.e. in most cases this means that they reside in
registers)
Other than to identify an invalid param/value pair by setting its length to -1, the controls message will not
be altered in any way and may be reused.
All the control changes within a single controls message are considered to occur atomically. If any one con-
trol change in the message fails, then the entire message has no effect
On successful completion, ML_STATUS_NO_ERROR is returned.

Get Controls
Controls on a logical connection may be queried asynchronously to an ongoing data transfer:

MLstatus mlGetControls(MLopenid openid, MLpv* controls);

openid is the identifier, returned by mlOpen, of the jack, path or transcoder whose parameters are to be
queried. The status value ML_STATUS_INVALID_ID is returned if the openid is invalid.
The controls parameter is a message consisting of parameters to be queried. The mlGetControls opera-
tion can fail because of an incorrectly structured controls message. ML_STATUS_INVALID_PARAME-
TER is returned if one of the param values in the controls message is not recognized. In this case, the
length component corresponding to the first invalid param value is set to -1. In this case all returned val-
ues must be considered invalid.
The mlGetControls operation sends a message containing a list of control parameters to be queried
directly to a previously-opened digital media device. The controls message is not enqueued on the send
queue but instead is sent directly to the device. The device will attempt to process the message "as soon
as possible".
This call blocks until the device has processed the controls message. This means that, on return, the
parameters have been validated and the controls message contains the values obtained.
On successful completion, ML_STATUS_NO_ERROR is returned.
8 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Send Controls
Other controls on a logical connection must be applied “synchronously” because they affect the buffer size
that is needed in a data transfer. Changes to these controls should be set in an “in band” message using
the mlSendControls operation. Note that controls that can be sent using mlSetControls can also be set
using mlSendControls.

MLstatus mlSendControls(MLopenid openid, MLpv* controls);

openid is the identifier, returned by mlOpen, of the path or transcoder whose parameters are to be set.The
status value ML_STATUS_INVALID_ID is returned if the openid is invalid.
The controls argument is a message containing various parameters as described in the preceding chap-
ters. The mlSendControls operation can fail because of an incorrectly structured controls message. ML_
STATUS_INVALID_PARAMETER is returned if one of the param values in the controls message is not
recognized. ML_STATUS_INVALID_VALUE is returned if one of the value components in the controls
message is invalid. ML_STATUS_INVALID_CONFIGURATION is returned if the resulting set of parame-
ter values would be inconsistent if the operation were performed. For all of these failure cases, the length
component of the first invalid param/value pair is set to -1.
The mlSendControls operation sends a message containing a list of control parameters to a previously-
opened digital media device. This message is enqueued on the send queue in sequence with any other
messages to that device. Any control changes are thus guaranteed not to have any effect until all previ-
ously enqueued messages have been processed. ML_STATUS_SEND_QUEUE_OVERFLOW is returned
if there is not enough space on the send queue for this message and ML_STATUS_RECEIVE_QUEUE_
OVERFLOW is returned if there is not enough room on the receive queue for a reply to this message.
mlSendControls returns as soon as the controls message has been enqueued to the send queue. It does
not wait until the message has actually taken effect.
All the control changes within a single message are considered to occur atomically. If any one control
change in the message fails, then the entire message has no effect
Enqueueing entails a copy operation, so the application is free to delete/alter the message array as soon
as the call returns. Any error return value indicates the control change has not been enqueued and will thus
have no effect.
On successful completion, ML_STATUS_NO_ERROR is returned. A successful return does not guarantee
that resources will be available to support the requested control change at the time it is processed by the
device.
When the device has completed processing the enqueued controls message, it enqueus a reply message
for return to the application. By examining that reply, the application may obtain the result of processing the
requested controls. Note that a device may take an arbitrarily long time to generate a reply (it may, for
example, wait for several messages before replying to the first).

Send Buffers
mlSendBuffers enqueues buffers for subsequent processing by a previously opened path or transcoder:

MLstatus mlSendBuffers(MLopenid openid, MLpv* buffers);

openid is the identifier, returned by mlOpen, of the path or transcoder to which buffers are being sent. The
status value ML_STATUS_INVALID_ID is returned if the openid is invalid.
buffers is a message consisting of a list of buffer parameters. It can include only a single buffer of any given
type (audio or image) but can include a buffer of each different type.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 8 3

buffers is enqueued on the send queue in sequence with other messages to that device. All the buffers
within a single message are considered to apply to the same point in time. For example, a single message
could contain image and audio buffers, each specified with its own buffer parameter in the buffers mes-
sage. ML_STATUS_SEND_QUEUE_OVERFLOW is returned if there is not enough space on the send
queue for this message and ML_STATUS_RECEIVE_QUEUE_OVERFLOW is returned if there is not
enough room on the receive queue for a reply to this message.
The mlSendBuffers operation can fail because of an incorrectly structured buffers message. ML_
STATUS_INVALID_PARAMETER is returned if one of the param values in the buffers message is not
recognized. ML_STATUS_INVALID_VALUE is returned if one of the value components in the buffers
message is invalid or if the resulting set of parameter values would be inconsistent if the operation were
performed. For both of these failure cases, the length component of the first invalid param/value pair is set
to -1 and the entire message is ignored.
mlSendBuffers returns as soon as the buffers message has been enqueued to the send queue. It does
not wait until the message has been processed by the device. Any error return value indicates the message
has not been enqueued and will thus have no effect. Processing of messages enqueued by mlSend-
Buffers is deferred if buffer transfers are not enabled (cf. mlBeginTransfer).
Enqueueing entails a copy operation, so the application is free to delete/alter the message array as soon
as the call returns. Any error return value indicates the control change has not been enqueued and will thus
have no effect.
The memory for the buffers is designated by the ML_IMAGE_BUFFER_POINTER or ML_AUDIO_
BUFFER_POINTER value, and is always owned by the application. However, after a buffer has been sent,
it is “on loan” to the system and must not be touched by the application. After the buffer has been returned
via mlReceiveMessage or if mlSendBuffers fails, the application is again free to modify or delete it.
When sending a buffer to be output, the application must set the buffer length to indicate the number of
valid bytes in the buffer. In this case maxLength is ignored by the device (it doesn’t matter how much
larger the buffer may be, since the device won’t read past the last valid byte).
When sending a buffer to be filled (on input), the application must set the buffer maxLength to indicate the
maximum number of bytes which may be written by the device to the buffer. As the device processes the
buffer, it will write no more than the maxLength bytes and then set the returned length to indicate the last
byte written. The maxLength is returned without change.
It is acceptable to send the same buffer multiple times to an output device. If the device is unable to get a
buffer while transferring, the device will generate and send a SEQUENCE_LOST exception event to the
application.
On successful completion, ML_STATUS_NO_ERROR is returned. A successful return value from the
mlSendBuffers guarantees only that the message has been enqueued. A successful return does not guar-
antee that processing of the message by the device will succeed.
When the device has completed processing the enqueued buffers message, it enqueus a reply message
for return to the application. By examining that reply, the application may obtain the result of processing the
buffers.

Query Controls
To obtain the control values on a logical connection that are synchronous with other commands, an “in
band” operation, mlQueryControls, is used:

MLstatus mlQueryControls(MLopenid openid, MLpv* controls);

openid is the identifier, returned by mlOpen, of the device whose parameters are to be set. The status
value ML_STATUS_INVALID_ID is returned if the openid is invalid.
The controls argument is a message containing various parameters as described in the preceding chap-
ters. The mlQueryControls operation can fail because of an incorrectly structured controls message. ML_
8 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

STATUS_INVALID_PARAMETER is returned if one of the param values in the controls message is not
recognized. In this case, the length component of the first invalid param/value pair is set to -1.
The mlQueryControls operation sends a message containing a list of control parameters to a previously-
opened digital media device. This message is enqueued on the send queue in sequence with any other
messages to that device.The control values return are thus guaranteed to reflect the effects of all previ-
ously enqueued messages. ML_STATUS_SEND_QUEUE_OVERFLOW is returned if there is not enough
space on the send queue for this message and ML_STATUS_RECEIVE_QUEUE_OVERFLOW is
returned if there is not enough room on the receive queue for a reply to this message.
mlQueryControls returns as soon as the controls message has been enqueued to the send queue. It does
not wait until the message has actually taken effect.
Enqueueing entails a copy operation, so the application is free to delete/alter the message array as soon
as the call returns. Any error return value indicates the message has not been enqueued and will thus have
no effect.
On successful completion, ML_STATUS_NO_ERROR is returned. A successful return does not guarantee
that processing of the message by the device will succeed.
When the device has completed processing the enqueued controls message, it enqueus a reply message
for return to the application. By examining that reply, the application may obtain the result of processing the
queried controls. Note that a device may take an arbitrarily long time to generate a reply (it may, for exam-
ple, wait for several messages before replying to the first).

Get Wait Handle
When processing a number of digital media streams asynchronously, there exists a need for the applica-
tion to know when processing is required on each individual stream. The mlGetSendWaitHandle and
mlGetReceiveWaitHandle functions are provided to facilitate this processing:

MLstatus mlGetSendWaitHandle(MLopenid openid, MLwaitable* waitHandle);

MLstatus mlGetReceiveWaitHandle(MLopenid openid, MLwaitable* waitHandle);

openid is the identifier, returned by mlOpen, of a path or transcoder. The status value ML_STATUS_
INVALID_ID is returned if the openid is invalid.
The requested wait handle, on which an application may wait, is returned in waitHandle. On IRIX, UNIX
and Linux, MLwaitable is a file descriptor for use in select(). On Windows, MLwaitable is a HANDLE
which may be used in the win32 functions WaitForSingleObject or WaitForMultipleObjects.
The send queue handle is signaled whenever the device dequeues a message and the number of empty
message slots exceeds a preset level (set by the parameter ML_OPEN_SEND_SIGNAL_COUNT_INT32
specified when the object was opened). Thus, if the send queue is full, an application may wait on this han-
dle for notification until space is available for additional messages.
The receive queue handle is signaled whenever the device enqueues a reply message. Thus, if the receive
queue is empty, the application may wait on this handle for notification that additional reply messages are
ready.
The returned handles were created when the device was opened and are automatically destroyed when
the path is closed.
On successful completion, ML_STATUS_NO_ERROR is returned.

Begin Transfer
mlBeginTransfer enables the transferring of buffers to the logical media connection:
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 8 5

MLstatus mlBeginTransfer(MLopenid openid);

openid is the identifier, returned by mlOpen, of the path or transcoder. The status value ML_STATUS_
INVALID_ID is returned if the openid is invalid.
mlBeginTransfer enables the processing of buffer messages, that is, messages enqueued on the send
queue by mlSendBuffers.
Processing of buffer messages, messages enqueued by mlSendBuffers, can be enabled or disabled.
When processing of buffer messages is disabled, a message enqueued by mlSendControls or mlQuery-
Controls can be processed when it reaches the head of the queue. However, a buffer message that
reaches the head of the send queue will stall processing until such processing is enabled again. mlBegin-
Transfer enables the processing of buffer messages.
When a path or transcoder logical device is opened, processing of buffer messages is disabled. Typically
applications will open a device, send several buffers (“pre-rolling” the queue) and then call mlBeginTrans-
fer.
This call returns as soon as the device has begun processing transfers. It does not block until the first
buffer has been processed. The status ML_STATUS_NO_OPERATION is returned if processing of buffer
messages was already enabled, otherwise ML_STATUS_NO_ERROR is returned.
The delay between a call to mlBeginTransfer and the transfer of the first buffer is implementation depen-
dent. To begin sending data at a particular time, an application should start the transfer early (enqueueing
blank buffers) and use the UST/MSC mechanism to synchronize the start of real data.

Transcoder Work
An application can control exactly when and in which thread the processing for a software transcoder is
performed using:

MLstatus mlXcodeWork(MLopenid openid);

openid is the identifier, returned by mlOpen, of a previously opened transcoder. The status value ML_
STATUS_INVALID_ID is returned if the openid is invalid.
The default behavior of transcoders is for processing of buffer messages to occur automatically as a side
effect of enqueueing messages to the device. mlXcodeWork only applies to software transcoders that are
opened with the ML_XCODE_MODE_SYNCHRONOUS open option.
This function performs one unit of processing for the specified codec. The processing is done in the thread
of the calling process and the call does not return until the processing is complete.
For most codecs a "unit of work" is the processing of a single buffer from the source queue and the writing
of a single resulting buffer on the destination queue. If there were no buffers to be processed, ML_
STATUS_NO_OPERATION is returned.
On completion of a unit of work ML_STATUS_NO_ERROR is returned. This does not mean that the unit of
work completed successfully. The application must examine the reply message to determine whether such
processing was successful.

Get Message Count
During the processing of messages it is sometimes necessary to inquire as to the “fullness” of the message
queues. These functions provide that capability:

MLstatus mlGetSendMessageCount (MLopenid openid, MLint32* messageCount);
MLstatus mlGetReceiveMessageCount (MLopenid openid, MLint32* messageCount);
8 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

openid is the identifier, returned by mlOpen, of a path or pipe. The status value ML_STATUS_INVALID_ID
is returned if the openid is invalid.
The count of the number of messages in the send or receive queues of a device is returned in message-
Count. The send queue contains messages queued by the application for processing by the device while
the receive queue holds messages which have been processed and are waiting to be read by the applica-
tion. A message is considered to reside in the send queue from the moment it is enqueued by the applica-
tion until the moment the device begins processing it. A message resides in the receive queue from the
moment the device enqueues it, until the moment the application dequeues the corresponding reply mes-
sage. The message counts are intended to aid load-balancing in sophisticated applications. They are not a
reliable method for predicting UST/MSC pairs.
Some devices can begin processing one or more subsequent messages before the processing of a previ-
ous message has completed. Thus, the sum of the send and receive queue counts may be less than the
difference between the number of messages which have been enqueued and dequeued by the application.
Note also that the time lag between a message being removed from the send queue, and the time at which
it affects data passing through a physical jack, is implementation dependent. The message counts are not
a reliable method for timing or synchronizing media streams.
On successful completion, ML_STATUS_NO_ERROR is returned.

Receive Message
In order for applications to obtain the results of previous digital media requests, the mlReceiveMessage
function is used.

MLstatus mlReceiveMessage(MLopenid openid, MLint32* messageType, MLpv *message);

openid is the identifier, returned by mlOpen, of a path or transcoder. The status value ML_STATUS_
INVALID_ID is returned if the openid is invalid.
A message on the receive queue can be the result of processing a message sent by mlSendControls,
mlSendBuffers, or mlQueryControls; we call such messages reply messages. For each message placed
on the send queue, a single reply message will be placed on the receive queue. Alternatively, a message
on the receive queue can have been generated spontaneously by the device to advise the application of
some exceptional event; we call such messages event messages. mlReceiveMessage returns the oldest
message on the receive queue regardless of whether it is a reply message or an exception message.
For reply messages, the value returned in messageType indicates not only the initiating function, mlSend-
Controls, mlSendBuffers, or mlQueryControls, but also whether processing of the sent message was
successful. The message returned by message has the same list of params as the sent message. The
value, length, and maxLength components may have been changed as described for each of the initiat-
ing functions.
For exception messages, the value returned in messageType indicates the event that is being reported.
The message returned in message is event and device specific. It is the application’s responsibility to parse
and decode the message.
The contents of a message returned by message are guaranteed to remain valid until the next call to mlRe-
ceiveMessage. Thus an application may modify the reply message and then send it to the same device or
to another device by calling mlSendControls, mlSendBuffers, or mlQueryBuffers.
ML_STATUS_RECEIVE_QUEUE_EMPTY is returned if the receive queue is empty. On some devices,
triggering of the receive wait handle does not guarantee that a message is waiting on the receive queue.
Thus applications should always check for the ML_STATUS_RECEIVE_QUEUE_EMPTY return status.
On successful completion, ML_STATUS_NO_ERROR is returned.
The following tables describe the values that are returned in messageType for replies to mlSendControls,
mlSendBuffers, and mlQueryBuffers:
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 8 7

Following are the message types for replies to mlSendControls:

Following are the message types for replies to mlSendBuffers:

Message type Description
ML_CONTROLS_COMPLETE The controls were processed without error.
ML_CONTROLS_ABORTED Processing of the controls was aborted due

to some asynchronous event such as exe-
cution of mlEndTransfer on this device.

ML_CONTROLS_FAILED Processing of controls failed because the
values were not accepted at the time of pro-
cessing. This can occur both because
parameters in the buffers message were
invalid or because, due to the current control
settings at the time of processing (because
of previous mlSendControls messages),
the processing of buffers would be invalid.
Since preceding control messages may be
incomplete, but each of the individual set or
send controls may be valid, there still exists
a point in time where the processing of buff-
ers must be accomplished using those
aggregate controls. If for some reason, the
“combination of controls” is invalid, the pro-
cessing is aborted and the event ML_
BUFFERS_FAILED is returned. The length
component of the first invalid param/value
pair is set to -1

Table 10.5 mlSendControls Reply Message Types

Message type Description
ML_BUFFERS_COMPLETE The buffers were processed without error.
ML_BUFFERS_ABORTED Processing of the buffers was aborted due

to some asynchronous event such as exe-
cution of mlEndTransfer on this device.

ML_BUFFERS_FAILED Processing of buffers failed because the val-
ues were not accepted at the time of pro-
cessing. This can occur both because
parameters in the buffers message were
invalid or because, due to the current control
settings at the time of processing (because
of previous mlSendControls messages),
the processing of buffers would be invalid.
Since preceding control messages may be
incomplete, but each of the individual set or
send controls may be valid, there still exists
a point in time where the processing of buff-
ers must be accomplished using those
aggregate controls. If for some reason, the
“combination of controls” is invalid, the pro-
cessing is aborted and the event ML_
BUFFERS_FAILED is returned. The length
component of the first invalid param/value
pair is set to -1
8 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Table 10.6 mlSendBuffers Reply Message Types

Following are the message types for replies to mlQueryControls:

Table 10.7 mlQueryControls Reply Message Types

Following are the message types for exception messages

Table 10.8 Exception Message Types

End Transfer
For an application to invoke an orderly shutdown of a digital media stream, the mlEndTransfer function
should be issued.

MLstatus* mlEndTransfer(MLopenid openid);

openid is the identifier, returned by mlOpen, of a path or transcoder. The status value ML_STATUS_
INVALID_ID is returned if the openid is invalid.
mlEndTransfer disables the transferring of buffers on the specified path or transcoder. This call advises
the device to stop processing buffers and aborts any remaining messages on its input queue. This is a
blocking call. It does not return until transfers have stopped and any messages remaining on the device
input queue have been aborted and reply messages placed on the receive queue. Calling mlEndTransfer
on a device on which transfers are already disabled will cause the send queue to be flushed. Any mes-

Message type Description
ML_QUERY_CONTROLS_COMPLETE The query controls were processed without

error.
ML_QUERY_CONTROLS_ABORTED Processing of the query controls was

aborted due to some asynchronous event
such as execution of mlEndTransfer on this
device.

Message type Description
ML_EVENT_DEVICE_ERROR Device encountered an error and is unable

to recover.
ML_EVENT_DEVICE_UNAVAILABLE The device is not available for use.
ML_EVENT_VIDEO_SEQUENCE_LOST A video buffer was not available for an I/O

transfer.
ML_EVENT_VIDEO_SYNC_LOST Device lost output genlock sync signal.
ML_EVENT_VIDEO_SYNC_GAINED Device detected valid output genlock.
ML_EVENT_VIDEO_SIGNAL_LOST Device lost input video signal.
ML_EVENT_VIDEO_SIGNAL_GAINED Device detected valid input video signal.
ML_EVENT_VIDEO_VERTICAL_RETRACE A video vertical retrace occurred.
ML_EVENT_AUDIO_SEQUENCE_LOST An audio buffer was not available for an I/O

transfer.
ML_EVENT_AUDIO_SAMPLE_RATE_CHANGED The audio input sampling frequency

changed.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 8 9

sages which are flushed will be marked to indicate they were aborted. Buffer messages are marked ML_
BUFFERS_ABORTED, while control messages are marked ML_CONTROLS_ABORTED.
On successful completion, ML_STATUS_NO_ERROR is returned.

Close Processing
After an application is finished with a digital media connection, it should terminate that connection. The
mlClose function is provided for that use. Note that an mlClose call is implied if an application terminates
(for any reason) before an mlClose function is explicitly called.

MLstatus mlClose(MLopenid openid);

openid is the identifier, returned by mlOpen, of the device to be closed. The status value ML_STATUS_
INVALID_ID is returned if the openid is invalid.
When a digital media object is closed, all messages in the message queues of the device are discarded.
The device handle openid becomes invalid; any subsequent attempt to use it to refer to the closed object
will result in an error.
The pipes opened as a side-effect of opening a transcoder are also closed as a side-effect of closing a
transcoder. Pipes should not be closed explicitly.
mlClose is a blocking call that returns only after the device has been closed and associated resources
have been freed.
On successful completion, ML_STATUS_NO_ERROR is returned.

Utility Functions
There are a number of other useful functions available in the ML API. They are described here.

Get Version
MLstatus mlGetVersion(MLint32 *majorVersion, MLint32 *minorVersion);

mlGetVersion returns the ML version number. The major version number is returned in majorVersion
while the minor version number is returned in minorVersion. ML_STATUS_INVALID_ARGUMENT is
returned if either majorVersion or minorVersion is a NULL pointer. The version number is of the form
majorVersion.minorVersion, for example 1.0. Changes in major numbers indicate a potential incompatibil-
ity, while changes in minor numbers indicate small backward-compatible enhancements. Major version
numbers start at 1 and increase monotonically. Within a particular major version, the minor version num-
bers will start at 0 and increase monotonically.
Note that this is the version number of the ML core library; the version numbers for device-dependent mod-
ules are available in the capabilities list for each physical device.
On successful completion, ML_STATUS_NO_ERROR is returned.

Status Name
const char *mlStatusName(MLstatus status);

Intended mainly as an aid in debugging, mlStatusName accepts an ML status value and returns the corre-
sponding string. For example, the value ML_STATUS_NO_ERROR, is converted to the string “ML_
STATUS_NO_ERROR”. NULL is returned if status is an invalid status value.
9 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Message Name
const char *mlMessageName(MLint32 messageType);

Intended mainly as an aid in debugging, mlMessageName accepts an ML message type and returns the
corresponding string. For example, the value ML_CONTROLS_FAILED, is converted to the string "ML_
CONTROLS_FAILED". NULL is returned if status is an invalid status value.

MLpv String Conversion routines
These routines convert between MLpv param/value pairs and strings. They are of benefit to applications
writing lists of parameters to or from files, but are most commonly used as an aid to debugging.

MLstatus mlPvValueToString(MLint64 objectId, MLpv* pv,
char* buffer, MLint32* bufferSize);

MLstatus mlPvParamToString(MLint64 objectId, MLpv* pv,
char* buffer, MLint32* bufferSize);

MLstatus mlPvToString(MLint64 objectId, MLpv* pv,
char* buffer, MLint32* bufferSize);

MLstatus mlPvValueFromString(MLint64 objectId, const char* buffer,
MLint32* bufferSize, MLpv* pv,
MLbyte* arrayData, MLint32 arraySize);

MLstatus mlPvParamFromString(MLint64 objectId, const char* buffer,
MLint32* bufferSize, MLpv* pv);

MLstatus mlPvFromString(MLint64 objectId, const char* buffer,
MLint32* bufferSize, MLpv* pv,
MLbyte* arrayData, MLint32 arraySize);

These routines make use of parameter capability data (see mlPvGetCapabilities) to generate and inter-
pret human-readable ASCII strings. The interpretation of a param/value pair depends on the parameter, its
value, and the device on which it will be used. Thus, all these functions require a 64-bit device identifier,
supplied in objectid.
objectid may be a static id (obtained from a call to mlGetCapabilities), the open id of a jack, path or
transcoder (obtained from a call to mlOpen), or it may be the id of an open pipe (obtained by calling
mlGetCapabilities on a transcoder). The status value ML_STATUS_INVALID_ID is returned if the openid
is invalid.
mlPvParamToString converts pv->param to a string representation.
mlPvValueToString converts pv->value to a string representation.
mlPvToString converts pv into a string representation composed of the parameter name and value sepa-
rated by ’=’.
In the preceding routines, the resulting string is returned in *buffer. On input, bufferSize specifies the size of
the buffer in bytes. On return, bufferSize is the length of the resulting string (excluding the terminating ’\0’).
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 9 1

ML_STATUS_INVALID_PARAMETER is returned if pv->param is invalid, and ML_STATUS_INVALID_
VALUE is returned if pv->value is invalid.
In all the following routines, the string to be converted is given in buffer and its length (in bytes and
excluding the terminating ‘\0’) is given in bufferSize. pv points to a structure to receive the conversion
results.
mlPvParamFromString interprets a string as a param ID and writes the result in pv->param. It expects
the string to be as created by mlPvParamToString.
In the following routines, arrayData points to buffer owned by the application whose length (in bytes) is
given in arraySize.
mlPvValueFromString interprets a string as the value of a param/value pair. For scalar values, the result
is written to pv->value; *arrayData and arraySize are unchanged. For array values, the string is converted
to an array of data values and the results are returned in *arrayData; arraySize is set to the number of
bytes written. It expects the string was created by mlPvValueToString.
mlPvFromString interprets a string as a param/value pair and writes the resulting param value to pv-
>param. For scalar values, the result is written to pv->value; *arrayData and arraySize are unchanged. For
array values, the string is converted to an array of data values and the results are returned in *arrayData;
arraySize is set to indicate the number of bytes written.
It expects the string was created by mlPvToString.
Each of the mlxxxFromString routines expects the string to be interpreted to have a format as if generated
by the corresponding mlxxxToString routine. ML_STATUS_INVALID_PARAMETER is returned if the
string does not convert to a valid parameter ID, and ML_STATUS_INVALID_VALUE is returned if the
string does not convert to a valid value.
ML_STATUS_INVALID_ARGUMENT is returned if an arguments could not be interpreted correctly, per-
haps because the bufferSize or arraySize are too small to hold the result of the operation. On successful
completion, ML_STATUS_NO_ERROR is returned.
This example prints the interpretation of a video timing parameter by a previously-opened video path. Note
that the calls could fail if that path did not accept the particular timing value we have chosen here. Note also
that, since the interpretation is coming from the device, this will work for device-specific parameters.

char buffer[200];
MLpv control;

control.param = ML_VIDEO_TIMING_INT32;
control.value = ML_TIMING_1125_1920x1080_5994i;

mlPvParamToString(someOpenPath, &control, buffer, sizeof(buffer));
printf("control.param is %s\n", buffer);
mlPvValueToString(someOpenPath, &control, buffer, sizeof(buffer));
printf("control.value is %s\n", buffer);
mlPvToString(someOpenPath, &control, buffer, sizeof(buffer));
printf("control is %s\n", buffer);

The output created by this example would be:

 control.param is ML_VIDEO_TIMING_INT32
 control.value is ML_TIMING_1125_1920x1080_5994i
 control is ML_VIDEO_TIMING_INT32 = ML_TIMING_1125_1920x1080_5994i
9 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

11
SYNCHRONIZATION IN ML

This chapter describes ML support for synchronizing digital media streams. The described techniques are
designed to enable accurate synchronization even when there are large (and possibly unpredictable) pro-
cessing delays.

UST
To timestamp each media stream, some convenient representation for time is needed. In ML, time is repre-
sented by the Unadjusted System Time (UST) counter. The UST counter increases approximately linearly
with respect to time during periods that OpenML is actively being used. It is guaranteed to never be set
back to a smaller value, even when system clocks are set back. It is also guaranteed to not wrap back to
zero during an ML session of any conceivable duration (likely taking hundreds of years to wrap). Its initial
value at boot will be close enough to zero to ensure this last constraint.
The accuracy of the UST depends on how frequently it is updated and is in general system dependent. The
units will always be nanoseconds, but how frequently it is updated will vary from system to system, and can
vary within a system. Because applications will depend on it for measuring drift between media streams,
the average frequency at which the UST counter is updated must be at least 5 (five) times faster than the
highest media device slot count (MSC) frequency the system intends to support. It is possible that consec-
utive reads of the UST observe the same value.
While the UST counter is well defined as guaranteed above, observing such well-defined behavior is more
difficult. This is due to inherent varying latencies involved in querying the UST counter, especially on non-
real-time systems. ML and ML drivers will provide "views" of the UST counter, which are recent copies of
its value. These views may compensate for known latencies, but cannot always be guaranteed correct.
Most commonly, views of the UST counter must differ from the UST counter, and from each other, by less
than the highest frequency MSC rate the system supports. However, context switches and long interrupts
prevent guarantees for all cases.
It is expected that the UST time-stamp for a slot corresponds to the value of the UST counter when the slot
started. However, it is device dependent precisely what is meant by "when the slot started". Note that while
there is one global UST, the multiple device views of the UST differ not due just to random error, but also
because of different slot lengths and positions.
ML UST timestamps are signed 64-bit integers with units of nanoseconds, representing a view of the UST
counter. A recent view of the system UST is obtained by using the mlGetSystemUST function call:
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 9 3

MLstatus mlGetSystemUST(MLint64 systemId, MLint64* ust);

Currently systemId must be ML_SYSTEM_LOCALHOST, otherwise the status ML_STATUS_INVALID_ID
is returned. The resulting UST value is placed at the address ust. The status ML_STATUS_INVALID_
ARGUMENT is returned if ust is invalid. The status ML_STATUS_NO_ERROR is returned on a successful
execution.

MSC
Each logical media device capable of time-stamping must partition time into a sequence of slots. Slots are
spans of time used to partition the data stream coming through a jack. For video, a slot typically corre-
sponds to a field or a frame. For audio, a slot typically corresponds to a single audio sample. These slots
exist whether or not data is being transferred.
Devices keep a Media Stream Counter (MSC). MSCs are incremented once per slot. This is true even
when the application is not currently transferring data to or from the device. Hence, MSC values for partic-
ular slots can be used to detect underflow or to schedule data to go through a jack at a particular slot in the
future. Just how to do this will be described later in this chapter.

UST/MSC/ASC Parameters
Basic support for synchronization requires that the application know when video or audio buffers passed
through a jack. In ML this is achieved with the UST/MSC buffer parameters:

ML_AUDIO_UST_INT64, ML_VIDEO_UST_INT64
The unadjusted system time (UST) is used as the timestamp for the most recently processed slot in the
audio or video stream. For video devices, the UST time corresponds to the time at which the field/frame
started to pass through the jack. For audio devices, the UST time corresponds to the time at which the first
sample in the buffer passed through the jack.
Typically, an application will pass mlSendBuffers a video message containing an ML_IMAGE_BUFFER_
POINTER, an ML_VIDEO_MSC and an ML_VIDEO_UST (and possibly an ML_VIDEO_ASC - see below),
or an audio message containing an ML_AUDIO_IMAGE_POINTER, an ML_AUDIO_UST and an ML_
AUDIO_MSC. In some cases, a message may contain both audio and video parameters.
Each message is processed as a single unit, and a reply is returned to the application via mlReceiveMes-
sage. That reply will contain the completed buffers and the UST/MSC(/ASC) corresponding to the time at
which the data in the buffers passed in or out of the jack. Note that, due to hardware buffering on some
cards, it is possible to receive a reply message before the data has finished flowing through an output jack,
but never before it has started.

ML_AUDIO_MSC_INT64, ML_VIDEO_MSC_INT64
The media stream count (MSC) is the most recently processed slot in the audio or video stream. This is
snapped at the same instant as the UST time described above. Note that MSC increases by one for each
potential slot in the media stream through the jack. For interlaced video timings, each slot contains one
video field, for progressive timings, each slot contains one video frame. This means that when 2 fields are
interlaced into one frame and sent as one buffer, then the MSC will increment by 2 (once for each field).
9 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Furthermore, the system guarantees that the least significant bit of the MSC will reflect the state of the
Field Bit; 0 for Field 1 and 1 for Field 2. For audio, each slot contains one audio frame.

ML_AUDIO_ASC_INT64, ML_VIDEO_ASC_INT64
The application stream count (ASC) is provided to aid the developer in predicting when the audio or video
data will pass through an output jack. See the “UST/MSC for Output” section below for further information
on the use of the ASC parameter.

UST/MSC Example
For example, here we send an audio buffer and video buffer to an I/O path and request both UST and MSC
stamps:

MLpv message[7];

message[0].param = ML_IMAGE_BUFFER_POINTER;
message[0].value.pByte = someImageBuffer;
message[0].length = sizeof(someImageBuffer);
message[0].maxLength = sizeof(someImageBuffer);
message[1].param = ML_VIDEO_UST_INT64;
message[2].param = ML_VIDEO_MSC_INT64;
message[3].param = ML_AUDIO_BUFFER_POINTER;
message[3].value.pByte = someAudioBuffer;
message[3].length = sizeof(someAudioBuffer);
message[3].maxLength = sizeof(someAudioBuffer);
message[4].param = ML_AUDIO_UST_INT64;
message[5].param = ML_AUDIO_MSC_INT64;
message[6].param = ML_END;

mlSendBuffers(device, message);

After the device has processed the buffers, it will enqueue a reply message back to the application. That
reply will be an exact copy of the message sent in, with the exception that the MSC and UST values will be
filled in. (For input, the buffer parameter length will also be set to the number of bytes written into it).

UST/MSC For Input
On input the application can detect if any data is missing by examining the MSC value of frames that it
receives. If MSC has incremented by one for each frame received, then no data is missing. Data will be lost
if an application does not provide buffers fast enough to capture all of the signal which arrived at the jack.
(An alternative to detecting breaks in the MSC sequence of frames, is to turn on the events ML_AUDIO_
SEQUENCE_LOST or ML_VIDEO_SEQUENCE_LOST. Those will fire whenever the send queue under-
flows.)
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 9 5

Given the UST/MSC stamps for two different buffers (UST1,MSC1) and (UST2,MSC2), the input sample
rate in samples per nanosecond can be computed as:

One common technique for synchronizing different input streams is to start recording early, stop recording
late, and then use the UST/MSC stamps in the recorded data to find exact points for trimming the input
data.
An alternative way to start recording several streams simultaneously is to use predicate controls (see later).

UST/MSC For Output
On output, the actual output sample rate can be computed in exactly the same way as the input sample
rate:

Some applications must determine exactly when the next buffer sent to the device actually goes out the
jack. Doing this requires two steps. First, the application must maintain its own field/frame count. This
parameter is called the ASC. The ASC may start at any desired value and should increase by one for every
audio frame or video field enqueued. (For convenience, the application may wish to associate the ASC with
the buffer by embedding it in the same message. The parameters ML_AUDIO_ASC_INT64 and ML_
VIDEO_ASC_INT64 are provided for this use.)
Now, assume the application knows the (UST,MSC,ASC) for two previously-output buffers, then the appli-
cation can detect if there was any underflow by comparing the number of slots the application thought it
had output, with the number of slots which the system actually output. If (ASC2 - ASC1) == (MSC2 - MSC1)
then underflow has not occurred.
Assuming all is well, and that the application knows the current ASC, then the next data the application
enqueues may be predicted to have a system sequence count of:

and may be predicted to hit the output jack at time:

Note that the application should periodically recompute the actual sample rate based on measured MSC/
UST values. It is not sufficient to rely on a nominal sample rate since the actual rate may drift over time.
So, in summary: given the above mechanism, the application knows the UST/MSC pair for every pro-
cessed buffer. Using the UST/MSC's for several processed buffers it can compute the frame rate. Given a
UST/MSC pair in the past, a prediction of the current MSC, and the frame rate, the application can predict
the UST at which the next buffer to be enqueued will hit the jack.

sampleRate MSC2 MSC1–()
UST2 UST1–()------------------------=

sampleRate MSC2 MSC1–()
UST2 UST1–()------------------------=

currentMSC currentASC MSC2 ASC2–()+=

currentUST UST2 currentASC ASC2–()
sampleRate

--------------------------------+=
9 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Predicate Controls
Predicate controls allow an application to insert conditional commands into the queue to the device. Using
these controls, the application can pre-program actions, allowing the device to respond immediately, with-
out needing to wait for a round-trip through the application.
Unlike the UST/MSC timestamps, predicate controls are not required to be supported on all audio and
video devices. To see if they are supported on any particular device, the application can look for the
desired parameter in the list of supported parameters on each path. (see mlGetCapabilities).
The simplest predicate controls are:

ML_WAIT_FOR_AUDIO_MSC_INT64, ML_WAIT_FOR_VIDEO_MSC_INT64
When a message containing this control reaches the head of the queue it causes the queue to stall until the
specified MSC value has passed. Then that message, and subsequent messages, are processed as nor-
mal.
For example, here is code which uses WAIT_FOR_AUDIO_MSC to send a particular buffer out after a
specified stream count:

MLpv message[3];

message[0].param = ML_WAIT_FOR_AUDIO_MSC_INT64;
message[0].value.int64 = someMSCInTheFuture;
message[1].param = ML_AUDIO_BUFFER_POINTER;
message[1].value.pByte = someBuffer;
message[1].value.length = sizeof(someBuffer);
message[2].param = ML_END;

mlSendBuffers(someOpenPath, message);

This places a message on the queue to the path and then immediately returns control to the application. As
the device processes that message, it will pause until the specified media MSC value has passed before
allowing the buffer to flow through the jack.
Note, if both ML_IMAGE_DOMINANCE and ML_WAIT_FOR_VIDEO_MSC controls are set and do not
correspond to the same starting output field order, the ML_WAIT_FOR_VIDEO_MSC_INT64 control will
override ML_IMAGE_DOMINANCE_INT32 control settings.
Another set of synchronization predicate controls are:

ML_WAIT_FOR_AUDIO_UST_INT64, ML_WAIT_FOR_VIDEO_UST_INT64
When the message containing this control reaches the head of the queue it causes the queue to stall until
the specified UST value has passed. Then that message, and subsequent messages, are processed as
normal. Note that the accuracy with which the system is able to implement the WAIT_FOR_UST command
is device-dependent - see device-specific documentation for limitations.
For example, here is code which uses WAIT_FOR_AUDIO_UST to send a particular buffer out after a
specified time:
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 9 7

MLpv message[3];

message[0].param = ML_WAIT_FOR_AUDIO_UST_INT64;
message[0].value.int64 = someUSTtimeInTheFuture;
message[1].param = ML_AUDIO_BUFFER_POINTER;
message[1].value.pByte = someBuffer;
message[1].value.length = sizeof(someBuffer);
message[2].param = ML_END;

mlSendBuffers(someOpenPath, message);

This places a message on the queue to the path and then immediately returns control to the application. As
the device processes that message, it will pause until the specified video UST time has passed before
allowing the buffer to flow through the jack.
Using this technique an application can program several media streams to start in-sync by simply choosing
some UST time in the future and program each to start at that time.

ML_IF_VIDEO_UST_LT, ML_IF_AUDIO_UST_LT
When included in a message, this control will cause the following logical test: If the UST is less than the
specified time then the entire message is processed as normal. Otherwise, the entire message is skipped.
Regardless of the outcome, any following messages are processed as normal. Skipping over a message
takes time, and so there is a limit to how many messages a device can skip before the delay starts to
become noticeable.
9 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

S E C T I O N

III
OPENGL REQUIREMENTS AND EXTENSIONS

OpenGL is not a part of OpenML per se, but is a key component of the OpenML Programming Environ-
ment. OpenML compliance requires an OpenGL implementation that also supports certain OpenGL exten-
sions. Some of these extensions are defined by external sources such as the OpenGL Architecture Review
Board (ARB) or individual vendors, and some are defined in the OpenML specification itself.
The revision of OpenGL required for OpenML compliance and the set of required extensions are enumer-
ated in Appendix A, “OpenML Programming Environment Requirements”.
A high level overview of the required OpenGL extensions is provided in the following chapter. The exten-
sions fall into three broad categories:
• Extensions that facilitate integration of OpenGL with components of OpenML, principally with its media

input/output facilities.
• Extensions that provide improved rendering quality.
• Extensions that provide enhanced control of OpenGL facilities.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 9 9

1 0 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

12
INTEGRATION OF OPENGL AND ML

Video Image Formats
The OpenGL extensions described here provide mechanisms for upsampling and deinterlacing external
pixel data, converting them into OpenGL’s internal representation, and for the inverse downsampling and
interlacing operations when reading pixel data back from the OpenGL pipeline. These mechanisms ease
interchange of pixel data between ML and OpenGL.

Color Space Conversion
OpenML does not mandate mechanisms for converting between color spaces in the OpenGL pixel pipe-
line. However, using the OpenGL color matrix and other features of the OpenGL 1.2 imaging subset, arbi-
trary conversions can be programmed by applications. Refer to the “Color Space Conversion with OpenGL
Extensions” section in Appendix B for further details.

Upsampled and Downsampled Images
The GL_OML_subsample and GL_OML_resample extensions add support for 4:2:2 and 4:2:2:4 pixel
data in host memory. This is commonly used for YCrCb and YCrCbA video data.
To draw pixels or download texels in subsampled formats, use a pixel format corresponding to the actual
format of data in application memory. Possible values are:

To read pixels or texels in subsampled formats, use a pixel format corresponding to the desired format of
data in host memory after readback. The same subsampled formats may be used on readback.

Pixel Format Host memory
data format

Comments

GL_FORMAT_SUBSAMPLE_24_24_OML CbY / CrY 4:2:2 subsampling
GL_FORMAT_SUBSAMPLE_244_244_OML CbYA / CrYA 4:2:2:4 subsampling

Table 12.1 Subsampled Pixel Formats and Corresponding Host Memory Data Formats
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 0 1

When using a subsampled pixel format, not all possible pixel types are supported; using a packed pixel
type other than GL_UNSIGNED_INT_10_10_10_2 will cause an INVALID_OPERATION error.
Subsampled pixel formats are only supported by glDrawPixels, glReadPixels, glTexImage, glTexSub-
Image, and glGetTexImage.
When upsampling data, component values must be generated for lower frequency components on pixels
where they are not given. Three of the many possible means of generating these values may be specified
by setting the glPixelStore parameter GL_UNPACK_RESAMPLE_OML. Possible values are:
GL_RESAMPLE_REPLICATE_OML - Generated components are replicated from supplied components of
the previous pixel in a scanline.
GL_RESAMPLE_ZERO_FILL_OML - Generated components are set to 0.
GL_RESAMPLE_AVERAGE_OML - Components are generated using a simple hat filter.
More flexible filtering algorithms for generating upsampled component values may be implemented by
using GL_RESAMPLE_ZERO_FILL_OML followed by convolution in the imaging pipeline using an applica-
tion-defined filter kernel.
The full OpenGL extension specifications for GL_OML_subsample and GL_OML_resample are included
in Appendix A.

Interlaced Images
The GL_OML_interlace extension adds support for scanline interlaced data in host memory.
To draw pixels or download texels in interlaced format, enable the parameter GL_INTERLACE_OML using
glEnable. When enabled, each row m of an image is treated as if it belongs to row 2m, effectively doubling
the specified height of the image. When drawing pixels, only these rows are converted to fragments; when
uploading textures, only these rows are written to texture memory. GL_INTERLACE_OML only affects the
operation of glDrawPixels, glCopyPixels, glTexImage, glTexSubImage, glCopyTexImage, and
glCopyTexSubImage.
To read pixels in interlaced format, enable the parameter GL_INTERLACE_READ_OML using glEnable. When
enabled, each row m of the destination image in host memory is obtained from row 2m of the source image
in the frame buffer. GL_INTERLACE_READ_OML only affects the operation of glReadPixels, glCopyPixels,
glCopyTexImage, glCopyTexSubImage, and glCopyConvolutionFilter; it does not affect glGetTexIm-
age.
The full OpenGL extension specification for GL_OML_interlace is included in Appendix A.

Synchronization
The WGL, GLX, and OpenGL extensions described here provide mechanisms for synchronizing OpenGL
operations with ML operations, as well as for initiating asynchronous OpenGL operations.

Stream / Buffer Swap Synchronization
In addition to the UST and MSC counters described previously in the ML specification, a new counter, the
Swap Buffer Counter or SBC, is defined by OpenGL. The SBC is a per-window quantity initialized to zero
and incremented when a buffer swap is initiated by the graphics driver.
The MSC is incremented by the graphics driver at the time the first scan line of the display begins passing
through the video output port. For a non-interlaced display, this means that the MSC value is incremented
at the beginning of each frame. For an interlaced display, it means that the MSC value is incremented at
the beginning of each field.
Mechanisms are provided for querying the UST, MSC, and SBC counters; scheduling buffer swaps when a
specified MSC value is reached (e.g. synchronizing buffer swaps to vertical retrace); and blocking execu-
1 0 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

tion until a specified MSC value is reached. These functions are implemented via the WGL_OML_sync_
control extension for OpenML implementations running under Microsoft Windows, and via the GLX_OML_
sync_control extension for OpenML implementations running under the X Window System.

Querying UST, MSC, and SBC
To query the current UST / MSC / SBC triple under Windows, call

BOOL wglGetSyncValuesOML(HDC hdc, INT64 *ust, INT64 *msc, INT64 *sbc)

Under X, call

Bool glXGetSyncValuesOML(Display *dpy, GLXDrawable drawable, int64_t *ust, int64_t *msc,
int64_t *sbc)

Getting the MSC Rate
To query the MSC rate for the OpenGL display device under Windows, call

BOOL wglGetMscRateOML(HDC hdc, INT32 *numerator, INT32 *denominator)

Under X, call

Bool glXGetMscRateOML(Display *dpy, GLXDrawable drawable, int32_t *numerator, int32_t
*denominator)

These functions return the rate at which the MSC will be incremented for the OpenGL display device.. The
rate is expressed in Hertz as numerator / denominator. If the MSC rate in Hertz is an integer, then denomi-
nator will be 1 and numerator will be the MSC rate.

Scheduling Buffer Swaps
To schedule buffer swaps at a specified MSC value under Windows, call

INT64 wglSwapBuffersMscOML(HDC hdc, INT64 target_msc, INT64 divisor, INT64 remainder)

Under X, call

int64_t glXSwapBuffersMscOML(Display *dpy, GLXDrawable drawable, int64_t target_msc,
int64_t divisor, int64_t remainder)

These swap buffer functions do not perform an implicit glFlush. Instead, the indicated swap will not occur
until all prior rendering commands affecting the buffer have been completed. Then, if the current MSC is
less than target_msc, the buffer swap will occur when the MSC value becomes equal to target_msc. Alter-
natively, if the current MSC is greater than or equal to target_msc, the buffer swap will occur the next time
the MSC value is incremented to a value such that MSC mod divisor = remainder. If divisor = 0, the swap
will occur when MSC becomes greater than or equal to target_msc.
Under Windows (but not X), an additional scheduling function is defined

INT64 wglSwapLayerBuffersMscOML(HDC hdc, INT fuPlanes, INT64 target_msc, INT64 divisor,
INT64 remainder)

The behavior of wglSwapLayerBuffersMscOML is identical to wglSwapBuffersMscOML, except that
only the layers of the window specified by fuPlanes are swapped. fuPlanes has the same meaning as the
corresponding parameter of wglSwapLayerBuffers.

Blocking on MSC
To block execution until a specified MSC value under Windows, call
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 0 3

 BOOL wglWaitForMscOML(HDC hdc, INT64 target_msc, INT64 divisor, INT64 remainder, INT64
*ust, INT64 *msc, INT64 *sbc)

Under X, call

 Bool glXWaitForMscOML(Display *dpy, GLXDrawable drawable, int64_t target_msc, int64_t
divisor, int64_t remainder, int64_t *ust, int64_t *msc, int64_t *sbc)

target_msc, divisor, and remainder have the same meaning as when scheduling buffer swaps. However,
instead of swapping buffers, these functions simply wait until the specified MSC value has been reached
and then return the current values of UST, MSC, and SBC.

Blocking on SBC
To block execution until a specified SBC value under Windows, call

BOOL wglWaitForSbcOML(HDC hdc, INT64 target_sbc, INT64 *ust, INT64 *msc, INT64 *sbc)

Under X, call

Bool glXWaitForSbcOML(Display* dpy, GLXDrawable drawable, int64_t target_sbc, int64_t *ust,
int64_t *msc, int64_t *sbc)

These functions wait until the target_sbc value for the specified window has been reached and then return
the current values of UST, MSC, and SBC. If the current SBC is already greater than or equal to target_
sbc, they return immediately. If target_sbc is 0, they wait until all previous swaps requested with wglSwap-
BuffersMscOML or glXSwapBuffersMscOML for the specified window have completed, then return.
The full WGL and GLX extension specifications for WGL_OML_sync_control and GLX_OML_sync_con-
trol are included in Appendix A.

Rasterization and Texturing
The OpenGL functionality described here provides extended control over the pixel transfer pipeline, as well
as control over certain aspects of texturing behavior.

Imaging Functions
The optional GL_ARB_imaging functionality of OpenGL 1.2, referred to as the imaging subset, adds oper-
ations enabling simple image processing operations in the pixel transfer pipeline. These functions include:
• RGBA color table lookup near the start of pixel transfer operations.
• Convolutions using either one-dimensional, separable, or two-dimensional filter kernels. Convolution

border modes controlling filtering behavior at image borders.
• RGBA color table lookup following convolution.
• Arbitrary 4x4 color matrix transformation of pixel color components, useful for reassigning and

duplicating components, as well as performing simple color space conversions.
• RGBA color table lookup following color matrix transformation.
• Histogram and min/max statistics gathering following all other pixel transfer operations.
The imaging subset also adds new fragment blending functions including a constant blend color input
parameter specified by the application, min/max functions, and functions to subtract one blend color from
another.
The imaging subset specification is included in the OpenGL 1.2 Specification.
1 0 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Texture Border Clamping
The GL_ARB_texture_border_clamp extension enables additional control of texture filtering behavior at
texture borders.
To change filtering behavior, call

void glTexParameteri(GLenum target, GLenum pname, GL_CLAMP_TO_BORDER_ARB)

Where target specifies the texture target and pname specifies the texture coordinate to affect (GL_
TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T, or GL_TEXTURE_WRAP_R). Afterwards, texture coordinates will be
clamped such that the texture filter always samples border texels for fragments whose corresponding tex-
ture coordinate is sufficiently far outside the range [0,1]. The color returned when clamping is derived only
from the border texels of the texture image, or from the constant border color if the texture image does not
have a border.
The full OpenGL extension specification for GL_ARB_texture_border_clamp is referenced in Appendix
A.

Texture Color Mask
The GL_SGIS_texture_color_mask extension allows applications to update a subset of components in an
existing texture during texture downloads, just as glColorMask allows applications to update only a subset
of components in the frame buffer during rendering.
To change the texture color mask, call:

GLvoid glTextureColorMaskSGIS(GLboolean r, GLboolean g, GLboolean b, GLboolean a)

The r, g, b, and a parameters indicate whether R, G, B, and A texture components, respectively, are writ-
ten. A value of GL_TRUE means the component is written; a value of GL_FALSE means it is not. Initially each
mask value is GL_TRUE. If the base internal format of the texture has a luminance component instead of
RGB components, then the r parameter controls whether the luminance component is written.
The full OpenGL extension specification for GL_SGIS_texture_color_mask is referenced in appendix A.

Texture Level of Detail Bias
The GL_EXT_texture_lod_bias extension affects texturing by adding an additional, user specified offset
to the calculated level of detail prior to selecting the mipmap level(s) to be used for texture filtering.
To change the bias, call

glTexEnvf(TEXTURE_FILTER_CONTROL_EXT, TEXTURE_LOD_BIAS_EXT, GLfloat bias)

bias specifies the offset (positive or negative) to be added to the calculated level of detail.
The full OpenGL extension specification for GL_EXT_texture_lod_bias is referenced in Appendix A.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 0 5

1 0 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

S E C T I O N

IV
MLDC VIDEO DISPLAY INQUIRY AND CONTROL

Description
MLdc stands for “ML Display Control”. MLdc is an application programming interface meant to control the
display of video streams in a system. It is a key component of the OpenML interface standard and provides
application developers a portable and powerful control API over video output devices, some of which may
not be available through the native windowing environment. The display may be a desktop screen or
another device such as a special studio monitor. The control of such devices includes setting the refresh
rate, setting the pixel resolution, setting the external synchronization (genlock), and setting gamma correc-
tion lookup tables.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 0 7

1 0 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

13
OVERVIEW OF MLDC

The OpenML Display Control API (MLdc) provides an interface to initialize, set and change parameters to
control video output devices (see Figure 13.1). A video output device generates and controls the video
streams coming out its video output ports. Such a video stream is usually meant for immediate display, typ-
ically on a physical monitor. The video output device controlled by MLdc may or may not be known about
by the native windowing system. MLdc also facilitates communication to and from monitors capable of
sending and receiving commands.

Figure 13.1 MLdc and Video Output Devices

Application

MLdc library

video driver 1 video driver 2

video output

device
video output

device device
video output

monitor monitormonitor monitor

channelchannels
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 0 9

Components of the MLdc
The MLdc is based on the following components:

• A mechanism to query the presence of MLdc controlled video output devices in a system, and
initialize them.

• A mechanism to set and query controls of the video output device.
• Messages, passed from the video device to the application.
• A queuing system for buffering messages received from the video output device.
• A mechanism to communicate with a monitor that has the capability to send and receive commands.
• An extension mechanism that enables vendors to write their own API extensions to MLdc.
• A remote protocol that allows applications to connect to a video output device on a different system

than the one the application is running on.

Terminology
Various MLdc concepts and terminology used in later chapters are explained in this section.

MLdc organizes a system’s video topology into two levels, video output devices and channels. There are
one or more channels per video output device (see Figure 13.1).

Video Output Device
A video output device generates and controls video streams. Each video output device controls one or
more channels (see Figure 13.2). What MLdc enumerates as a single video output device does not neces-
sarily correlate to an OS or native windowing system view of the same hardware, especially in multi-moni-
tor configurations.

Display area
A display area is associated with each video output device. It is the source for all the video streams that a
single video output device generates and controls (see Figure 13.2). A display area is addressable using a
single rectangular coordinate system.

Channels
MLdc associates one channel with each output of a video output device. A channel carries a rectangular
subregion of the display area for its video device, called a channel input rectangle (see Figure 13.2). Multi-
ple channels can exist within the display area, each potentially running with independent video formats,
gamma ramps, and synchronization sources. Channel input rectangles can overlap, either partially or
entirely, in display area space. Currently, MLdc only supports one monitor per channel.

Gamma Correction
Many video output devices have color lookup tables associated with them that allow the application to pro-
grammatically adjust for differences in monitor color phosphor response (see Figure 13.2). These color
1 1 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

tables are commonly referred to as gamma correction tables because the color ramp that is loaded into
them follows a mathematical gamma function curve that is adjusted to fit the monitor. A given MLdc-con-
trolled monitor may or may not have gamma-correction tables available for it. MLdc provides functions for
setting and querying the contents of such tables.

Genlock
The term genlock is used to describe the act of synchronizing the refresh of a computer video monitor with
some outside time pulse (see Figure 13.2). MLdc allows the application to turn genlock on/off and to spec-
ify one of several possible sources for the synchronization signal. The application can also adjust the reac-
tion time to the genlock signal, a delay or advance of the video refresh by some small amount so that
dissimilar devices can appear to run in sync. On some devices, genlock capabilities may be channel spe-
cific, while on other devices, genlock may be a global setting affecting all channels.

Figure 13.2 A Video Output Device with a Display Area, Channels, Genlock and Gamma
Correction

Initialization
MLdc is capable of running over a protocol. Therefore, an application that uses MLdc will first have to
establish a connection to the system with the video output device that is going to be controlled (see Figure
13.3). This is done through mldcConnect. After a connection is established to a system, a list of MLdc
compatible devices on that system can be obtained by calling mldcQueryAvailableDevices. The capabili-
ties of each device can then be queried using mldcQueryVideoDeviceInfo. Once a suitable device is
found, it needs to be opened using mldcOpen, which returns a handle hOutDev to the device. The device
is now ready for use by the application. This handle is used in most other MLdc calls. The capabilities of the
monitor connected to a channel on hOutDev can be queried using mldcQueryMonitorCapabilities. See
Chapter 14, "Initialization", for more details on the initialization steps.

2 way monitor
communication

Channel

display area

Gamma
correction

V
id

eo
 o

ut
pu

t d
ev

ic
e

Monitor

Gamma
correctionChannel

Monitor

2 way monitor
communication

device specific
communication

genlock signal

input
input

channel output

rectangle
rectangle
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 1 1

Communication
Set calls are used to change video display parameters of the video output device. These calls are not
queued. However, the device’s completion of the set call is asynchronous, and may take a few seconds to
complete. For example, changing the screen resolution. For this reason, the set functions initiate the
parameter change, and then return, potentially before the change actually happens. All of the video display
parameters that can be set can also be queried (see Figure 13.3). Querying is done synchronously and the
query information is returned in one or more arguments of the query function. Most of the query functions
allocate the memory in which information is to be returned. The application is responsible for freeing the
memory, by calling mldcFree¸ once the information is no longer needed.

Events and Messages
When the application asks MLdc to set video display parameters, the system will eventually complete the
request, and asynchronously send a completion message (or event or event message) back to the applica-
tion (see Figure 13.3). The message is usually one of success or failure. Event messages are queued up in
a receive queue by the video output device. The application can select which event messages, if any, it
wants to receive, by calling mldcSetEventMask. It reads the event message from the queue using mld-
cReceiveMessage. OS and windowing specific mechanisms are used to indicate if the receive queue has
any event messages in it. In addition, the system may also send special "genlock acquired" or "genlock
lost" messages to the application. These are not necessarily the direct result of an MLdc function call, but
are the result of activities on the system outside of the control of the application.

Errors
MLdc functions return an immediate MLDCstatus value. If the function returns without encountering an
error the function will return MLDC_STATUS_NO_ERROR. In the event that a function encounters an
error before returning, then the return code will indicate an error.
Several error status values are implicit for many or all MLdc routines: MLDC_STATUS_INVALID_
ARGUMENT is returned if any arguments are invalid pointers. MLDC_STATUS_INVALID_SYSTEM_
HANDLE is returned if a system handle is invalid. MLDC_STATUS_INVALID_DEVICE is returned if a
device handle is invalid. MLDC_STATUS_INVALID_CHANNEL is returned if a channel number is invalid.
Some MLdc functions set in motion changes to the hardware state that will occur after the function returns.
If an error occurs as part of this asynchronous processing then an error event message will be returned to
the application via the event messaging mechanism. Error events may not be masked off by the applica-
tion. Therefore, the application will always have to monitor the receive queue. The various possible error
event messages are also described with each individual function in later chapters.
1 1 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Figure 13.3 Communication Between the Application and MLdc

Monitor Communication
MLdc facilitates communication between the application and a physical monitor (see Figure 13.3). Applica-
tions are responsible for assembling the commands, and parsing the result from the monitor. MLdc acts as
a transport layer only. Commands are sent using mldcSendMonitorCommand. If a response is expected,
applications should use mldcSendMonitorQuery, which sends a command and waits for an answer.

For more information, see Chapter 15, "Setting and Querying Video Parameters", Chapter 16, "Receiving
MLdc Event Messages" and Chapter 24, "Monitor Commands".

Extensions to MLdc
MLdc can be extended by vendor specific API entry points. This allows vendors to expose unique function-
ality through the MLdc API in a consistent way. The naming of extensions and querying of the existence of
a particular extension is analogous to the OpenGL model. mldcQueryExtensionNames returns a space-
seperated list of extension names. mldcQueryExtensionPtr returns the address of the extension. Addi-
tionally, MLdc provides a convenience function, mldcIsExtensionSupported¸ which can be used to deter-
mine if a particular extension is supported on the specified video out device.

query
controls events

set
controls Init

Application

MLdc library MLdc library
remote

protocol

System A System B

query
controls events

set
controls Init

Video driver

video output device

monitor

monitor
communication

video signal

device specific
communication

monitor
communication

monitor
comm
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 1 3

1 1 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

14
INITIALIZATION

Initializing MLdc
All applications that use the MLdc library to control a video output device on a specified host system must
first initialize the library for that system by calling mldcConnect. This function performs any internal setup
necessary, and must be called first before calling any other MLdc function. mldcConnect must be called
once for each host system that has video output devices that the application wishes to control.

mldcConnect
MLDCstatus mldcConnect(MLDCchar *hostID,

MLDChandle *systemHandle)

hostID
The hostID argument is a character string that has the format host:display.screen. On Unix
systems, host:display specifies the X Server to connect to. The additional screen field specifies a
particular screen of the desired X Server. If the host name is omitted, i.e hostID is NULL, the
default display on the local host is initialized. Examples of valid hostID strings on Unix systems are
“myhost:1”, “foo:0.1”, “:2”, and “:0.0”. On Windows systems, hostID must be the local host, i.e.
NULL.

systemHandle
This is a return argument. If MLdc can be successfully initialized for the target system defined by the
hostID argument then a valid system handle is returned in systemHandle.

When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If the function fails it may
mean that the versions of internal software do not match and the function will return one of the following. If
the version of the device independent library is not compatible with the device dependent library or with the
device driver, the function will return MLDC_STATUS_INVALID_LIBRARY_VERSION. If the version of
the device dependent library is not compatible with the device driver, then the function will return MLDC_
STATUS_INVALID_DRIVER_VS_DDLIB_VERSION. If the function was not able to establish a connection
to the device specified by hostID, then the function will return MLDC_STATUS_CONNECTION_FAIL-
URE.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 1 5

The function mldcConnect must be the first MLdc function that is called by the application. If any other
MLdc function call is made first, the results will be undefined.
On X Windows systems running multiple MLdc-compliant X servers, an application can use mldcConnect
to connect with any MLdc-compliant X server. The resulting systemHandle can then be passed to mldc-
QueryAvailableDevices, which will return a list of all MLdc devices on the system. The set of devices in
the list will be the same, regardless of which MLdc-compliant X server the connection is made through. The
order of the devices may be different for different X server connections, but the first entry in the array
returned by mldcQueryAvailableDevices will always match the string used in the call to mldcConnect.

Freeing Memory Allocated by MLdc
Several MLdc functions and operations generate messages or information, the memory for which is allo-
cated by MLdc. The application is responsible for freeing the allocated memory by using the following func-
tion:

mldcFree
MLDCstatus mldcFree(void *memPtr);

The memPtr argument is a pointer to the memory to be freed. If the function is successful, it will return
MLDC_STATUS_NO_ERROR. If the memPtr argument is not a valid pointer the function will return
MLDC_STATUS_INVALID_ARGUMENT.

Finding MLdc Video Output Devices
In order to obtain a list of the devices that are available and controlled by MLdc on a given system, the
function mldcQueryAvailableDevices is called.

mldcQueryAvailableDevices
MLDCstatus mldcQueryAvailableDevices(MLDChandle systemHandle,

MLDCint32 *numOutDevs,
MLDCchar ***outDevNames)

systemHandle
This argument is a system handle obtained from a call to mldcConnect.

numOutDevs
Returns the number of available video output devices on the system that are controllable via MLdc.

outDevNames
Returns an array of character strings giving a name to each video output device. The first entry in the
array will always match the string that is used in the call to mldcConnect. Subsequent names on
the list will follow the following convention. If the device is known about by the windowing system,
then the device name will be the same name used to initialize the device in the call to mldcConnect
by following the “hostname:display” convention. If the device is not known about by the windowing
system, then the name is vendor-specific and may be any descriptive string.

The memory allocated for outDevNames is allocated by the function and should be freed by the applica-
tion by calling mldcFree when the information is no longer needed.
1 1 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If the systemHandle
argument if not a valid system handle, the function will return MLDC_STATUS_INVALID_SYSTEM_HAN-
DLE. If any of the other arguments are invalid pointers, the function will return MLDC_STATUS_INVALID_
ARGUMENT.
If no errors are encountered, but there are no MLdc devices on the system, numOutDevs will be 0 and
*outDevNames will be NULL, and the function will return MLDC_STATUS_NO_ERROR.
Note that on any given system there may be several video output devices that are controllable via MLdc.
These video output devices may be from different vendors. It is possible that not all of these video output
devices are known about by the windowing system.

Opening and Closing an MLdc Video Output Device
In order to set or query any video parameters for a given video output device, the application must first
open the device for communication with it. This is accomplished by calling the function mldcOpen.

mldcOpen
MLDCstatus mldcOpen(MLDCchar *outDevName,

MLDChandle *hOutDev)

outDevName
Points to a string containing the name of the video output device to open. The name is one of the
strings returned from the mldcQueryAvailableDevices function, and may be vendor-specific.

hOutDev
A pointer to a handle for the video output device that was named in outDevName.

This function opens the named device and returns a handle to be used in all further MLdc function calls to
access the device. When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If
outDevName is not a valid name for an available device, the function will return MLDC_INVALID_
DEVICE_NAME. If hOutDev is not a valid pointer, the function will return MLDC_STATUS_INVALID_
ARGUMENT. The function may also fail with MLDC_STATUS_INVALID_LIBRARY_VERSION if the DI
and DD library versions are not compatible, or with MLDC_STATUS_INVALID_DRIVER_VS_LIB_VER-
SION if either library version is not compatible with the device driver version.

mldcClose
When the application is finished with a given video output device, the device should be closed using the fol-
lowing function:

MLDCstatus mldcClose(MLDChandle hOutDev)

hOutDev
A handle to the video output device to be closed.

The function mldcClose closes the specified device.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. When the function fails,
the return value will be MLDC_STATUS_INVALID_DEVICE.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 1 7

Checking the MLdc Version
After initializing MLdc, all applications should verify that each video output device of interest has MLdc
properly installed at the correct version level. The function mldcQueryVersion will return the major and
minor library revision for MLdc. This specification defines version 1.0 of MLdc, major version 1, minor ver-
sion 0.

mldcQueryVersion
MLDCstatus mldcQueryVersion(MLDChandle hOutDev,

MLDCint32 *di_major,
MLDCint32 *di_minor,
MLDCint32 *dd_major,
MLDCint32 *dd_minor,
MLDCint32 *driver_major,
MLDCint32 *driver_minor)

hOutDev
Gives the handle to the video output device in question.

di_major
Returns the MLdc major version number of the device independent library.

di_minor
Returns the minor number of the device independent library.

dd_major
Returns the MLdc major version number of the device dependent library.

dd_minor
Returns the minor number of the device dependent library.

driver_major
Returns the MLdc major version number of the device driver.

driver_minor
Returns the minor number of the device driver.

If this function succeeds, MLDC_STATUS_NO_ERROR will be returned. If hOutDev is not a valid device
handle, this function will return MLDC_STATUS_INVALID_DEVICE. If any of the other arguments are
invalid pointers, the function will return MLDC_STATUS_INVALID_ARGUMENT.

Acquiring Information About the Video Output Device
Before doing any control of the video display, the application will need to query the video display hardware
for its abilities. There are two functions that supply video hardware display information at the video output
device level:

mldcQueryVideoDeviceInfo returns the number of supported channels, external sync ports, and
genlock capabilities.
mldcQueryMonitorCapabilities returns the VESA standard E-EDID string from the physical
monitor.
1 1 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

mldcQueryVideoDeviceInfo
This function returns a structure containing information about the video output device and its capabilities.

MLDCstatus mldcQueryVideoDeviceInfo(MLDChandle hOutDev,
MLDCvideoDeviceInfo *sinfo_return)

hOutDev
Handle of an MLdc video output device.

sinfo_return
A pointer to the MLDCvideoDeviceInfo structure that is to receive the corresponding information.

Description
mldcQueryVideoDeviceInfo returns in *sinfo_return an MLDCvideoDeviceInfo structure contain-
ing video device information for a specified video output device, shown below:

typedef struct {
MLDCint32 numChannels; /* Number of output channels */
MLDCboolean lockOp; /* mldcSetInputSyncSource usable */
MLDCchar graphicsType[MLDC_NAME_SIZE]; /* Name of gfx hw */
MLDCint32 numExternalSync; /* Num of external sync ports */

} MLDCvideoDeviceInfo;

In the above structure, the fields are defined as follows:
numChannels

Specifies the number of output channels on this video output device. The caller may use set or query
operations on channels numbering 0 to numChannels - 1.

lockOp
Describes whether the video output device has the capability to lock to external sync sources via the
mldcSetInputSyncSource function.

graphicsType
Contains a null-terminated ASCII string containing the name of the graphics hardware type. The
name is unique for each type of graphics hardware.

numExternalSync
Contains the number of external sync sources.

This function returns MLDC_STATUS_NO_ERROR if successful. If hOutDev is an invalid device handle,
this function will return MLDC_STATUS_INVALID_DEVICE. If sinfo_return is not a valid pointer, this
function will return MLDC_STATUS_INVALID_ARGUMENT.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 1 9

mldcQueryMonitorCapabilities
This function returns information about the physical monitor and its capabilities.

MLDCstatus mldcQueryMonitorCapabilities(MLDChandle hOutDev,
MLDCint32 channel,
void **monitorCaps)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

monitorCaps
Returned address of a structure that gives the capabilities of the physical monitor in question. The
information is in the format specified by the document “VESA Enhanced Extended Display
Identification Data Standard” available from the VESA standards body. The specification is also
referred to as the “E-EDID Standard”. A description of the standard and the data in the structure can
be obtained from VESA (the Video Electronics Standards Association).

Description
This function will allocate and return to the client application a structure giving the capabilities of the spe-
cific physical monitor in question. The video output device is specified by passing the MLdc video output
device handle and channel number that the physical monitor is connected to. Once the information has
been received, the application should free the memory by calling mldcFree.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number this function will return MLDC_STATUS_INVALID_CHANNEL. If monitorCaps is not a
valid pointer this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 2 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

15
SETTING AND QUERYING VIDEO PARAMETERS

Setting Parameters
Video display parameters are changed via one of the several Set functions supplied by MLdc. Most of the
parameters map to actual hardware characteristics of the display device. The parameters are most often
set asynchronously because some changes may take a relatively long time to occur. For example, chang-
ing the screen resolution will often take a few seconds to accomplish. For this reason, the Set functions ini-
tiate the parameter change and return, perhaps before the event actually happens. Later, the application is
notified that the change has occurred via the MLdc event-messaging queue.
The following table of functions set video parameters and will be discussed in detail later in this document.
Along with each function is listed the event message that will eventually be returned to the application.

Set Functions Event Message Type
mldcEnableChannel MLDC_VIDEO_FORMAT_NOTIFY
mldcLoadVideoFormat MLDC_VIDEO_FORMAT_NOTIFY
mldcLoadVideoFormatByName MLDC_VIDEO_FORMAT_NOTIFY
mldcSendMonitorCommand (none)
mldcSetChannelGammaMap MLDC_GAMMA_MAP_NOTIFY
mldcSetChannelInputRectangle MLDC_CHANNEL_INPUT_RECTANGLE_NOTIFY
mldcSetExternalSyncSource MLDC_INPUT_SYNCSOURCE_NOTIFY
mldcSetInputSyncSource MLDC_INPUT_SYNCSOURCE_NOTIFY

MLDC_LOCK_STATUS_CHANGE_NOTIFY
mldcSetOutputBlanking MLDC_OUPUT_BLANKING_NOTIFY
mldcSetOutputGain MLDC_OUTPUT_GAIN_NOTIFY
mldcSetOutputPedestal MLDC_OUTPUT_PEDESTAL_NOTIFY
mldcSetOutputPhaseH MLDC_OUTPUT_PHASE_H_NOTIFY
mldcSetOutputPhaseSCH MLDC_OUTPUT_PHASE_SCH_NOTIFY
mldcSetOutputPhaseV MLDC_OUTPUT_PHASE_V_NOTIFY

Table 15.1 MLdc Event Message Types
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 2 1

Querying Video Parameters
All of the video display parameters that can be Set can also be Queried. Unlike the Set process, the Query
process is done synchronously and the query information is returned in one or more arguments of the
Query function.

Freeing Query Return Buffers
Most of the Query functions allocate memory in which to return information. The application is responsible
for freeing the memory once the information has been copied or is no longer needed by calling the function
mldcFree.

mldcSetOutputSync MLDC_OUTPUT_SYNC_NOTIFY
mldcStoreGammaColors16 MLDC_GAMMA_MAP_NOTIFY
mldcStoreGammaColors8 MLDC_GAMMA_MAP_NOTIFY

Set Functions Event Message Type

Table 15.1 MLdc Event Message Types
1 2 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

16
RECEIVING MLDC EVENT MESSAGES

Selecting the Event Messages to Receive
The application may not be interested in receiving each of the event messages that are possible when set-
ting video parameters. The default is that none of the event messages will be sent back to the application.
The application must choose the events that it is interested in via a call to mldcSetEventMask:

mldcSetEventMask
 MLDCstatus mldcSetEventMask(MLDChandle hOutDev,

MLDCbitfield message_mask)

hOutDev
Specifies the handle of the MLdc video output device.

message_mask
Specifies a mask of values OR’d together to produce a value giving the events of interest to the
application.

In this function the application indicates the messages that it is interested in receiving for a given video out-
put device. The video output device of interest is specified by the hOutDev argument. The message_
mask argument is a mask of bits OR’d together from the following constants:

MLDC_NONE_MASK
MLDC_VIDEO_FORMAT_NOTIFY_MASK
MLDC_CHANNEL_INPUT_RECTANGLE_NOTIFY_MASK
MLDC_INPUT_SYNCSOURCE_NOTIFY_MASK
MLDC_LOCK_STATUS_CHANGE_NOTIFY_MASK
MLDC_OUPUT_BLANKING_NOTIFY_MASK
MLDC_OUTPUT_GAIN_NOTIFY_MASK
MLDC_OUTPUT_PEDESTAL_NOTIFY_MASK
MLDC_OUTPUT_PHASE_H_NOTIFY_MASK
MLDC_OUTPUT_PHASE_SCH_NOTIFY_MASK
MLDC_OUTPUT_PHASE_V_NOTIFY_MASK
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 2 3

MLDC_OUTPUT_SYNC_NOTIFY_MASK
MLDC_GAMMA_MAP_NOTIFY_MASK

Each call to mldcSetEventMask replaces the previous settings for the specified video output device. That
is, the results of calling this function multiple times are not cumulative.
If the function is successful, it will return MLDC_STATUS_NO_ERROR. Otherwise, the function will return
MLDC_STATUS_INVALID_DEVICE.

mldcQueryEventMask
 MLDCstatus mldcQueryEventMask(MLDChandle hOutDev,

MLDCbitfield *messageMask)

hOutDev
Specifies the handle for the MLdc video output device.

messageMask
Specifies a pointer to a variable that will receive the current event mask as an output of this function.

If the function is successful, it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device
handle, this function will return MLDC_STATUS_INVALID_DEVICE. If messageMask is not a valid
pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

Receiving an Event Message
There are two available methods of receiving MLdc events within an application. First, the application may
receive the events via the native windowing system event handling mechanism. In this method, MLdc
events are integrated with the native windowing system events, and native windowing system functions are
used to wait for and retrieve the events. In the second method, the application may receive MLdc events
via the MLdc event queue using window system independent MLdc functions. The application can choose
which method to use by calling the mldcSetEventModel function. Application writers concerned with max-
imizing application portability should use the window system independent MLdc functions.

mldcSetEventModel
MLDCstatus mldcSetEventModel(MLDCeventModel eventModel)

eventModel
This argument sets the event model to either MLDC_NATIVE_EVENTS or MLDC_MLDC_EVENTS:
1 2 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Note that this function call sets the MLdc event-handling method for the application for all devices and sys-
tems that it is interacting with. It therefore takes no system handle argument or device handle argument.
The default setting for the method is MLDC_NATIVE_EVENTS.
If the function is successful, it will return MLDC_STATUS_NO_ERROR. Otherwise, the function will return
MLDC_STATUS_INVALID_EVENT_MODEL.

Receiving MLdc Events Through Native Windowing
Systems
If the application desires to handle MLdc events via the native windowing system event message mecha-
nism there are some differences in MLdc setup functions between Windows and the X Window System.
However, both of these windowing systems return MLdc event messages using a single MLdc event mes-
sage type with the MLdc specific events seen as sub-types of the MLdc event. To get the MLdc event type
an application will need to call the following function:

mldcQueryEventId
This function will return the native windowing system’s event ID that will be the message type for all MLdc
events that are returned to the application. When the application reads messages from the windowing
system’s message queue it will need to look for this ID as the message type for all MLdc events. Each
MLdc event message will additionally contain the MLdc message structure described below which includes
the MLdc message type.

MLDCstatus mldcQueryEventId(MLDCeventId *eventId)

eventId
This argument will return the native windowing system’s message ID for all MLdc events that are
returned to the application.

Event Model Description
MLDC_NATIVE_EVENTS The events generated by MLdc are integrated with the

native windowing system. The user must use the native
windowing toolkit to wait for and retrieve the events. Note
that mldcSetEventMask() must still be used to select
which events will be sent by MLdc. Applications using the
Windows native messaging queues for MLdc events will
need to call one or more special MLdc functions to set up
messaging parameters, described below. Applications
that use the native X Window System event mechanism will
need no additional MLdc function calls to setup the X Win-
dow System event mechanism.

MLDC_MLDC_EVENTS MLdc will create its own event loop to capture events and
return them to the application in a windowing system inde-
pendent fashion.

Table 16.1 Event Model Types
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 2 5

This function is only viable when MLDC_NATIVE_EVENTS has been previously chosen in a call to mldc-
SetEventModel. Otherwise, this function call will have no effect and will always return MLDC_STATUS_
INVALID_EVENT_MODEL. If this function is successful in returning a valid event Id, it will return MLDC_
STATUS_NO_ERROR.

Receiving MLdc Events Via the X Window System
The X client will need to first make the MLdc function calls mldcSetEventModel and mldcQueryEventId
described above. Following those calls, the X Window System mechanism can be used without any extra
function support from MLdc. MLdc event types given above in Table 15.1 (the table of MLdc Set functions
and the events that they return) are treated as subtypes and found in the event-specific fields that are part
of the X event structure. Specifically, the MLdc type is found in the mldcType field of each MLdc event
structure. MLdc event structures are defined and appended to the XEvent structure for each particular
event. The individual structures are described in the specific description of MLdc events given below.

Receiving an Event Message Via Windows Messages
Windows applications will need to first make the MLdc function calls mldcSetEventModel and mldcQue-
ryEventId described above. When an MLdc event is received on the Windows message queue, the MLdc
event message structure will be pointed at by the “lparam” pointer in the Windows MSG message structure.
To use the Windows native messaging mechanism an extra function is required:

mldcSetWindowsMessageQueue
When using the Windows messaging queue to receive MLdc events on Windows systems, the following
function is necessary to provide a way for the application to give MLdc the window handle of the window
message queue that the application wants MLdc events delivered to.

MLDCstatus mldcSetWindowsMessageQueue(HWND hwnd)

hwnd
The handle of the window whose message queue MLdc events will be returned to on Windows
systems.

If the application never makes this function call then all MLdc messages will be sent to the thread message
queue of the thread that called mldcConnect.
This function is only viable on a Windows system. On a system using another windowing system this func-
tion call will have no effect and will always return MLDC_INVALID_EVENT_MODEL.
If this function is successful in returning a valid event ID, it will return MLDC_STATUS_NO_ERROR. If
hwnd is not a valid window handle, it will return MLDC_INVALID_WINDOW.
1 2 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Receiving An Event Message Via MLdc Messaging

mldcGetReceiveQueueWaitHandle
In order to receive an event message on the MLdc event queue the application must first obtain an event
handle upon which it can wait to receive a message from the message queue. This event handle is
obtained by calling mldcGetReceiveQueueWaitHandle:

MLDCstatus mldcGetReceiveQueueWaitHandle(MLDChandle *hEvent)

hEvent
Specifies a pointer to a handle where the function can return an event handle that can be used to
wait for an event message.

The hEvent argument will return the handle of an event that can be used in a call to WaitForMultipleOb-
jects on Windows systems or select on Unix systems.
When an event message is waiting to be read on a given video output device’s message queue, the video
output device will signal the event. The application will then return from the call to WaitForMultipleObjects
or select.
This function should only be called when receiving MLdc event messages via the MLdc event message
queue. If this function is called when the application has declared that it desires to use the windowing sys-
tem native event handling mechanism, then this function will have no effect and will return MLDC_
STATUS_INVALID_EVENT_MODEL. If the function succeeds, it will return MLDC_STATUS_NO_
ERROR.

After an application has been notified that an event message has arrived in the MLdc event message
queue the application can then obtain the event message by calling mldcReceiveMessage:

mldcReceiveMessage
MLDCstatus mldcReceiveMessage(MLDCgenericEvent **ppMsg)

ppMSG
Specifies the address of a pointer to an MLDCgenericEvent message structure.

The memory needed for the message itself is allocated by MLdc and should be freed by the application by
calling mldcFree. The structure MLDCgenericEvent is defined below.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 2 7

MLdc Event Message Structures

/* The MLDCGenericEvent event structure is used to examine
** the mldcType field so that the event's real type can be
** determined.
*/
typedef struct _MLDCgenericEvent
{
MLDCint32 mldcType; /* Event type */

 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
} MLDCgenericEvent

mldcType is one of the event types in Table 15.1. An application can obtain additional information about
the event by casting to one of the following event message data types according to the event type returned
in mldcType. As such, mldcGenericEvent is used as a proxy structure whose fields are identical with
the first few fields of all other event message structures.
The other message structures that are available are as follows:

typedef struct
{
 MLDCint32 mldcType; /* MLDC_VIDEOFORMAT_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
} MLDCvideoFormatEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_CHANNEL_INPUTRECTANGLE_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCrectangle rct; /* set rectangle */
} MLDCchannelInputRectangleEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_INPUT_SYNCSOURCE_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 voltage; /* nominal video voltage or TTL-level sync */
 MLDCint32 source; /* internal or external genlock source */
} MLDCinputSyncSourceEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_BLANKING_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCboolean enable; /* TRUE if blanking enabled */
} MLDCblankingEvent;
1 2 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

/* In the following event, the graphics device may not be able to
** report intervening instances of rapidly changing lock state
** and therefore may report two consecutive instances of the same
** state; client programs must check the value of the status
** variable to determine the state of the lock.
*/

typedef struct
{
 MLDCint32 mldcType; /* MLDC_LOCK_STATUS_CHANGED_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 status; /* achieved or lost genlock */
} MLDClockStatusChangedEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_OUTPUT_GAIN_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 component; /* RGBA component */
 MLDCint32 value; /* new gain value */
} MLDCoutputGainEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_PEDESTAL_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCboolean enable; /* TRUE if pedestal is enabled */
} MLDCpedestalEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_PHASE_H_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 value; /* horizontal phase new value */
} MLDCphaseHEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_PHASE_SCH_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 value; /* subcarrier horizontal phase new value */
} MLDCphaseSCHEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_PHASE_V_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 value; /* subcarrier vertical phase new value */
} MLDCphaseVEvent;
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 2 9

typedef struct
{
 MLDCint32 mldcType; /* MLDC_OUTPUT_SYNC_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 syncPortIndex; /* port index */
 MLDCint32 syncType; /* sync type */
} MLDCoutputSyncEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_PLATFORM_PARAM_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 parameterId; /* Id of the device specif parameter */
} MLDCplatformParamEvent;

typedef struct
{
 MLDCint32 mldcType; /* MLDC_GAMMA_MAP_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event */
 MLDCint32 mapId; /* gamma map Id number */
} MLDCgammaMapEvent;

Receiving Error Events
Error event messages are a special case of event message and require some explanation. Error events
are generated asynchronously as MLdc commands are processed by the video output device or its attend-
ing device-specific software. While an MLdc function to set a video parameter may have been called and
then successfully executed, the actual setting of the parameter in hardware may occur much later. During
this delayed processing, an error may occur. The error event message provides a vehicle to report the error
back to the application. While other event messages may be masked off by setting the event mask, error
messages may not be masked off and will always be sent to the application.
Each event message has within it two fields for reporting a device channel and a device gamma map for
which the error occurred. Not all errors will involve one of these objects. If an error has no associated chan-
nel or gamma map, then these fields will be set to MLDC_NOT_APPLICABLE.
Each event message also includes an errorCode field that returns an error code for the given error.
Specific error codes are documented with the functions that can cause them.
Finally, each event message includes the name of the function that generated the original command that
eventually experienced the error if this name is available to the implementation. The name is given as a
null-terminated string in the funcName field of the error event message. If the name is not available then
the field will be returned as a null string.

typedef struct
{
 MLDCint32 mldcType; /* MLDC_ERROR_NOTIFY */
 MLDChandle hOutDev; /* video output device of the event */
 MLDCint32 channel; /* channel of the event, if applicable */
 MLDCint32 gammaMap; /* gamma map of the event, if applicable */
 MLDCint32 errorCode; /* error code of the error. */
 MLDCchar *funcName[MLDC_NAME_SIZE]; /* function name */
} MLDCerrorEvent;
1 3 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

17
CHANNELS

Channel Structures
The following structures are used when querying and setting channel parameters and channel video for-
mats.

MLDCrectangle

The fields of the MLDCrectangle structure are defined as follows:
x, y

The location of the upper-left corner of the rectangle in video memory.
height, width

The width and height of the rectangle in pixels.

typedef struct
{
 MLDCreal32 x, y;
 MLDCreal32 height, width;
} MLDCrectangle;

Figure 17.1 The MLDCrectangle Structure
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 3 1

MLDCchannelSyncInfo

The fields of the MLDCchannelSyncInfo structure are defined as follows:
syncPort

Identifies the sync port. This can be one of the following:

syncTypeList
This is a pointer to an array of sync types. Each item represents one of the different sync output
modes to which this sync port can be set, and contains one of the following:

syncTypeListCount
The number of items in the syncTypeList array

typedef struct
{
 MLDCint32 syncPort; /* Identifies the sync port */
 MLDCint32 *syncTypeList; /* Identifies the sync type */
 MLDCint32 syncTypeListCount; /* Cnt of items in syncTypeList */
} MLDCchannelSyncInfo;

Figure 17.2The MLDCchannelSyncInfo Structure

MLDC_SP_RED Enable sync on the red channel output connector
MLDC_SP_GREEN Enable sync on the green channel output connector
MLDC_SP_BLUE Enable sync on the blue channel output connector
MLDC_SP_ALPHA Enable sync on the alpha channel output connector
MLDC_SP_AUX0 Enable sync on the auxiliary channel 0 connector
MLDC_SP_AUX1 Enable sync on the auxiliary channel 1 connector
MLDC_SP_AUX2 Enable sync on the auxiliary channel 2 connector

Table 17.1 Sync Port Selection Constants

MLDC_SF_NONE No sync
MLDC_SF_HORIZONTAL_VIDEO Horizontal sync video level
MLDC_SF_VERTICAL_VIDEO Vertical sync video level
MLDC_SF_COMPOSITE_VIDEO Composite sync video level
MLDC_SF_HORIZONTAL_TTL Horizontal sync, TTL level
MLDC_SF_VERTICAL_TTL Vertical sync, TTL level
MLDC_SF_COMPOSITE_TTL Composite sync, TTL level
MLDC_SF_HORIZONTAL_TRILEVEL Horizontal sync, tri-level
MLDC_SF_VERTICAL_TRILEVEL Vertical sync, tri-level
MLDC_SF_COMPOSITE_TRILEVEL Composite sync, tri-level

Table 17.2 Sync Type Selection Constants
1 3 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

MLDCfieldInfo

The fields of the MLDCfieldInfo structure are defined as follows:
offset

Line where this field starts.
stride

y-increment to next line.
backPorch

Duration in pixels of the vertical back porch.
sync

Duration in pixels of vertical sync.
syncPulse

Duration in pixels of vertical sync pulse.
frontPorch

Duration in pixels of the vertical frontPorch.
active

Duration in pixels of the vertical active region.
colorActive

The color channels that are active in this field. This is a bit field that may have one or more of the
following bits set: MLDC_FI_COLOR_ACTIVE_RED, MLDC_FI_COLOR_ACTIVE_GREEN,
MLDC_FI_COLOR_ACTIVE_BLUE, or MLDC_FI_COLOR_ACTIVE_ALPHA.

eyeActive
For stereo video formats, this field will indicate which eye is active for a given field. This is a bit field
that may have one of the following bits set: MLDC_FI_EYE_ACTIVE_LEFT or MLDC_FI_EYE_
ACTIVE_RIGHT.

typedef struct
{
MLDCint32 offset; /* Line where this field starts */

 MLDCint32 stride; /* y-increment to next line */
 struct
 {
 MLDCint32 backPorch; /* Duration in pixels */
 MLDCint32 sync; /* Duration in pixels */
 MLDCint32 syncPulse; /* Duration in pixels */
 MLDCint32 frontPorch; /* Duration in pixels */
 MLDCint32 active; /* Duration in pixels */
 } vertical;
MLDCbitfield colorActive; /* Colors this field; MLDC_FI..*/

 MLDCbitfield eyeActive; /* Eye this field; MLDC_FI... */
} MLDCfieldInfo;

Figure 17.3 The MLDCfieldInfo Structure
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 3 3

MLDCvideoFormatInfo

The fields of the MLDCvideoFormatInfo structure are defined as follows:
name

The name of the video format.
height, width

The height and width of the active pixels.
totalHeight, totalWidth

The total height and width in pixels of the video format, including non-viewable data.
verticalRetraceRate

The field or frame rate, in hertz, of the video format.
swapBufferRate

The rate at which multi-buffered viewing rectangles are swapped. This can be different from the
frame rate.

pixelClock
The duration in pixels of the pixel clock.

backPorch
The duration of the horizontal back porch of the format.

sync
The duration in pixels of the horizontal sync.

frontPorch
The duration in pixels of the horizontal front porch.

active
The size in pixels of the active horizontal pixel region.

fieldCount
The number of fields in the format.

fieldInfo
A pointer at an array of MLDCfieldInfo structures with information regarding each field. The size of
the array is equal to fieldCount.

typedef struct
{
 MLDCchar name[MLDC_FORMATNAME_MAX]; /* Video format name */
 MLDCint32 height, width; /* Active pixels */
 MLDCint32 totalHeight; /* Includes blanking */
 MLDCint32 totalWidth; /* Includes blanking */
 MLDCreal32 verticalRetraceRate;/* field or frame rate, in Hz */
 MLDCreal32 swapBufferRate; /* Can be diff from frame rate */
 MLDCint32 pixelClock; /* Pixels/second */
 struct
 {
 MLDCint32 backPorch; /* Duration in pixels */
 MLDCint32 sync; /* Duration in pixels */
 MLDCint32 frontPorch; /* Duration in pixels */
 MLDCint32 active; /* Duration in pixels */
 } horizontal;
 MLDCint32 fieldCount;
 MLDCfieldInfo *fieldInfo; /* Array, size=fieldCount */
 MLDCbitfield formatFlags; /* See MLDC_VFI... fields */
} MLDCvideoFormatInfo;

Figure 17.4 The MLDCvideoFormatInfo Structure
1 3 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

formatFlags
A set of flags defined as follows:

MLDCvideoFormat
Before documenting the MLDCvideoFormat structure, the concept of video combination formats must be
explained.

Video Format Combinations

On some video output devices it is possible that output channels may only be loaded with video formats
that are compatible with each other. For example, the device may require that all channels be loaded with
formats that have the same refresh rate. These allowable compatible video formats are referred to as com-
bination formats. Combination formats consist of multiple MLDCvideoFormatInfo structures. They have a
combination format name. The following MLDCvideoFormat structure provides a container that can
describe either a combination format capable of being loaded into multiple channels, or a single format for
loading into a single channel.

The fields of the MLDCvideoFormat structure are defined as follows:
name

The name of this format. If this structure is being used to define a combination format, then this field
will be the name of the combination, but each member format of the combination will have its own
name found in the name field of the single MLDCvideoFormatInfo structure. If this structure is being
used to define a single format, then this name will match the name that is given in the name field of
the single MLDCvideoFormatInfo structure.

formats
A pointer to an array of MLDCvideoFormatInfo structures. In the case where this is a combination
format, this array will hold two or more MLDCvideoFormatInfo structures detailing formats that are
compatible. Otherwise, this array will hold a single MLDCvideoFormatInfo structure.

Flag Description
MLDC_VFI_STEREO This is a stereo video format.
MLDC_VFI_FIELD_SEQUENTIAL_COLOR The color for this format differs from field to

field.
MLDC_VFI_FULL_SCREEN_STEREO The stereo format is full screen (this is an old

SGI stereo format.)

Table 17.5 Possible Format Flags for Video Formats

typedef struct
{

MLDCchar name[MLDC_FORMATNAME_MAX];/* Name of format */
MLDCvideoFormatInfo *formats; /* Array of formats */
MLDCint32 numFormats; /* Elements in formats

 array */
MLDCint32 height, width; /* Display surface

size */
} MLDCvideoFormat;

Figure 17.6 The MLDCvideoFormat Structure
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 3 5

numFormats
Gives the number of elements in the formats array. If this number is one, then this is a single video
format. If this number is greater than one, then this field is a combination video format.

height, width
The total height and width, in pixels, of the display surface that will be output to the video format
channels.

MLDCchannelInfo
The MLDCchannelInfo structure defines attributes unique to a single channel, including a pointer to the
MLDCvideoFormatInfo structure that describes the video format for the channel:

The fields of the MLDCchannelInfo structure are defined as follows:
active

Field is TRUE if the queried channel is operational. Graphics devices with multiple channels may be
programmed to run only some of the output channels. If the value of this field is FALSE, the
remaining fields in the structure are undefined.

source
Is an MLDCrectangle structure that contains the portion of the display area that this channel
displays. The MLDCrectangle structure describes a rectangle whose origin is at x,y and whose size
is described by height and width. On graphics hardware platforms with only one channel, this source
rectangle is frequently the entire managed area of the video output device. However, on graphics
hardware platforms that have more than one channel for output, each channel may display a different
portion of the display area.

typedef struct
{
MLDCboolean active; /* channel is operating */
MLDCrectangle source; /* Position on display surface */
MLDCrectangle outputRegion; /* Rectangular output region*/
MLDCvideoFormatInfo vfinfo; /* Video format details */
MLDCbitfield channelFlags; /* See MLDC_CIF... masks */
MLDCint32 *gammaMaps; /* Assignable gamma maps

 (ptr to array) */
MLDCint32 gammaCount; /* Returned count of gammaMaps */
MLDCboolean blankingOp; /* mldcSetOutputBlanking usable */
MLDCboolean gainOp; /* mldcSetOutputGain usable */
MLDCboolean pedestalOp; /* mldcSetOutputPedestal usable */
MLDCboolean phaseHOp; /* mldcSetOutputPhaseH usable */
MLDCint32 phaseHMin; /* Range of OutputPhaseH */
MLDCint32 phaseHMax;
MLDCboolean phaseVOp; /* mldcSetOutputPhaseV usable */
MLDCint32 phaseVMin; /* Range of OutputPhaseV */
MLDCint32 phaseVMax;
MLDCboolean phaseSCHOp; /* mldcSetOutputPhaseSCH usable */
MLDCint32 phaseSCHMin; /* Range of OutputPhaseSCH */
MLDCint32 phaseSCHMax;
MLDCboolean syncOp; /* mldcSetOutputSync usable */
MLDCint32 syncPortCount; /* Number of sync ports */
MLDCchannelSyncInfo *syncInfo; /* Info on all sync ports */
MLDCint32 physicalID; /* Physical port */

} MLDCchannelInfo;

Figure 17.7 The MLDCchannelInfo Structure
1 3 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

outputRegion
The rectangular region within the output channel that will be used for output. The dimensions of the
outputRegion generally match the output video format height and width. It is possible for an
output video device to introduce a scaler which may change the offset or size of the
outputRegion.

vfinfo
Contains the detailed information that describes the video format. This information is valid only if
active is TRUE.

channelFlags
Is a set of flags that indicates information about the channel.

gammaMaps
Is a pointer to an array of indexes; each index identifies a gamma map that may be assigned to this
channel. The number of items is returned in gammaCount.

gammaCount
The number of elements in the gammaMaps array.

blankingOp
Is TRUE if the operations of the function mldcSetOutputBlanking are supported on this channel.

gainOp
Is TRUE if the operations of the function mldcSetOutputGain are supported on this channel.

phaseHMinReturn
Returns the minimum value to which horizontal phase may be set.

phaseHMaxReturn
Returns the maximum value to which horizontal phase may be set.

phaseVMinReturn
Returns the minimum value to which vertical phase may be set.

phaseVMaxReturn
Returns the maximum value to which vertical phase may be set.

phaseSCHMinReturn
Returns the minimum value to which SCH phase may be set.

phaseSCHMaxReturn
Returns the maximum value to which SCH phase may be set.

syncOp
TRUE if operations to set output sync are permitted on this channel. See the function
mldcSetOutputSync.

syncPortCount
Is the number of sync ports available for this channel. This count includes the standard sync ports of
MLDC_SP_RED, MLDC_SP_GREEN, MLDC_SP_BLUE, and MLDC_SP_ALPHA (if the ports are
present and their output can be altered) as well as the auxiliary ports.

syncInfo
This is a pointer to an array of MLDCchannelSyncInfo structures. Each channel may have zero,
one, or more sync ports for which the sync may be altered; each mutable sync port is represented by
one MLDCchannelSyncInfo structure in the array. There are syncPortCount items in the array.
All ports that can have their sync characteristics altered are included.

Flag Name Description
MLDC_CIF_COMPOSITE_VIDEO This channel uses composite video output.
MLDC_CIF_PER_COMPONENT_GAIN Channel is capable of independent gain adjust-

ment.

Table 17.8 Channel Flag Descriptions
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 3 7

physicalID
This identifies the physical port number of this channel. This is the number as labeled on the chassis
or cable of the video output. Graphics devices may take liberties in numbering output ports that are
not strictly numbered (e.g., an encoder channel) such as using negative numbers or impossibly high
numbers. This value is to be used only as a correlation to chassis number. Applications should use
the other values in this structure to determine channel characteristics instead of relying on a special
decoding of physical channel number.

Querying Channel Parameters

mldcQueryChannelInfo
The current parameters for a given video output device and channel can be queried via a call to this func-
tion.

MLDCstatus mldcQueryChannelInfo(MLDChandle hOutDev,
MLDCint32 channel,
MLDCchannelInfo **cinfo_return)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number. Channels are assigned numbers starting at zero. Subsequent
channel numbers increase monotonically by one; thus, each channel number is unique for a given
video output device. Because of this ordering constraint, the channel number may not correspond to
physical channel numbers as labeled on the hardware chassis. The physicalID field of the
MLDCchannelInfo structure contains the number of the physical channel.

cinfo_return
Returns a pointer to an MLDCchannelInfo structure that is allocated by MLdc.

The mldcGetChannelInfo function returns MLDC_STATUS_NO_ERROR upon success. If hOutDev is
an invalid device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a
valid channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If cinfo_return
is not a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 3 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Enabling and Disabling Channels
A Channel is either enabled or disabled. The active flag of the MLDCchannelInfo structure returned from
mldcQueryChannelInfo can be used to determine the current state of a channel. A channel that is
enabled will output a video signal on its physical jack. A disabled channel will not output a video signal.

mldcEnableChannel
This function enables a specific channel.

MLDCstatus mldcEnableChannel(MLDChandle hOutDev,
MLDCint32 channel,
MLDCboolean enable)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

enable
If TRUE, enables the channel’s video output. If FALSE, disables a channel’s video output. This may
have the effect of reducing overall demand on the video device while terminating output. It is not
necessary to disable a channel before loading a new video format.

The function mldcEnableChannel returns MLDC_STATUS_NO_ERROR if successful. If hOutDev is an
invalid device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a
valid channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If enable is not a
valid boolean, this function will return MLDC_STATUS_INVALID_ARGUMENT.

Events
When the channel’s output condition has been changed from enabled to disabled, or from disabled to
enabled, MLdc generates an MLDC_VIDEO_FORMAT_NOTIFY event.

Channel Input Rectangles
Each channel has a rectangular region in the display area, that it uses as its source for display, called the
channel input rectangle. Rectangles are defined in terms of horizontal and vertical pixel coordinates. The
channel input rectangle can be set using the following functions:
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 3 9

mldcSetChannelInputRectangle
This function allows the application to set the channel’s input rectangle location and size.

MLDCstatus mldcSetChannelInputRectangle(MLDChandle hOutDev,
MLDCint32 channel,
MLDCrectangle *rectangle)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

rectangle
Defines the rectangle in the display area that the channel will display from. Refer to Figure 17.1, “The
MLDCrectangle Structure”

The pixel location of the rectangle is given in display area coordinates and assumes that the “upper left”
corner of the display area is (0,0).
If a video device permits changes to the input rectangle, the video device may impose restrictions on the
values of both size and origin. That is, the final size of the rectangle may not be exactly as requested, but
will be the “closest” size and location that the device is capable of supporting.
If this function can successfully set the input rectangle to the requested size and location, it will return a
MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device handle, this function will return MLDC_
STATUS_INVALID_DEVICE. If channel is not a valid channel number, this function will return MLDC_
STATUS_INVALID_CHANNEL. If rectangle is not a valid pointer, this function will return MLDC_
STATUS_INVALID_ARGUMENT.

Events
When the channel’s input rectangle has been changed MLdc generates an MLDC_CHANNEL_INPUT_
RECTANGLE_NOTIFY event.

mldcQueryBestChannelRectangle
The mldcQueryBestChannelRectangle function provides a means to determine the nearest valid rectan-
gle to the size and origin desired by the application. Determination of the best rectangle is device-depen-
dent, and different situations may yield different results.

MLDCstatus mldcQueryBestChannelRectangle(MLDChandle hOutDev,
MLDCint32 channel,
MLDCrectangle *rct,
MLDCrectangle *rrct)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

rct
An input argument that specifies a rectangle that the application would like to use.
1 4 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

rrct
An output argument pointing to an MLDCrectangle structure allocated by the application. Returns
the best rectangle that is supported that approximates the input rectangle, rct.

mldcQueryBestChannelRectangle returns MLDC_STATUS_NO_ERROR if a rectangle is found of a
valid supported size and origin (the size of which is found in the returned variables). This function returns
MLDC_STATUS_NO_VALID_RECTANGLE when no valid rectangle was found (among which is the case
when the video device does not support change of size or origin). If hOutDev is an invalid device handle,
this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel number,
this function will return MLDC_STATUS_INVALID_CHANNEL. If rct or rrct are not valid pointers, this
function will return MLDC_STATUS_INVALID_ARGUMENT.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 4 1

1 4 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

18
VIDEO FORMATS

Video Format Names
The video industry has adopted a standard naming convention for video formats even though the names
can be ambiguous: the name itself is not always descriptive enough to distinguish between two different
formats. The convention for standard video format names is:

WidthxHeight_FrameRate

where Height and Width specify the active portion of the format (i.e., the visible portion of the frame dis-
playing pixels exclusive of the blanking regions). FrameRate specifies the field or frame rate in hertz,
rounded to the nearest integer.

The name of the format may be appended by a single-character identifier. This suffix is a hint to the
intended use of the format; detailed information can be derived from the MLDCvideoFormatInfo structure.
Some suffix characters are:

Thus, for example, 1920x1080_60i, describes an interlaced high-definition video format.
Note that such a video format name is a general convention. For detailed information regarding the timing
specifications of a format, consult the returned structure.
Note that some graphics devices may alter the structure of the video format to conform to hardware restric-
tions. Also, not all graphics devices may have the capability to display all formats. Some graphics devices
may list the same format under both a conventional name and an alias.

f The format is a variant of the standard format that can lock to a dissimilar
format.

i The format is interlaced.

k Special alternative format.

p The format is progressive

q The format has its colors displayed in serial fields (color field sequential).

s The format is a stereo format.

Table 18.1 Industry Standard Video Format Name Suffixes
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 4 3

Querying Video Formats
The current video format for a given video output device and channel can be queried by calling the function
mldcQueryChannelInfo previously described.

Listing Available Video Formats
A list of available video formats is returned by calling mldcListVideoFormats.

mldcListVideoFormats
mldcListVideoFormats returns a list of available video formats that match a specified pattern.

MLDCstatus *mldcListVideoFormats(MLDChandle hOutDev,
MLDCint32 *channelArray,
const MLDCvideoFormat *pattern,
MLDCbitfield *querymaskArray,
MLDCboolean matchMonitor,
MLDCboolean nonvolatile,
MLDCint32 maxformats,
MLDCint32 *actual_count_return,
MLDCvideoFormat **retFormatArray)

hOutDev
Specifies the handle of the MLdc video output device.

channelArray
Specifies an array of channel numbers. The array must have the number of elements that are
specified in the numFormats field of the pattern argument. If the number of channels is greater
than one, this function will return a list of combination formats that could be used for the multiple
channels listed in channelArray. By convention, the channel numbers in the array must appear
in the array in ascending order. However, channel numbers may skipped. For example, the array
could hold the channel numbers 1,3,4.

pattern
Specifies an MLDCvideoFormat structure that provides attributes to match when listing the video
formats. The numFormats field in the structure gives the number of formats in the pattern. If
numFormats is equal to one, this is a search for single formats to be applied to a single channel. If
searching for a combination format, the value of numFormats will be greater than one. The number
of formats given in numFormats also determines the number of channels in the channelArray
argument and the number of query masks in the querymaskArray argument. All video formats
that match the query will be returned (up to maxformats).

querymaskArray
An array of masks that specify, as the bitwise inclusive OR of any of the manifest constants that have
a prefix of MLDC_QVF (see Table 18.2), which fields in pattern are to be used for the query. If the
querymaskArray is NULL, all video formats will be returned. The querymaskArray must
have the number of elements specified in the numFormats field of the pattern argument. If
searching for combination formats, the i th element of the querymaskArray is applied to the i th

format in the formats array of the pattern argument when doing the search for a suitable format
for the i th channel given in channelArray.
1 4 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

matchMonitor
If TRUE, restricts queries to those formats which are within the operating range of the monitor for
each channel. If FALSE, no constraint check is made.

nonvolatile
If TRUE, restricts queries to those formats which can only be changed through a nonvolatile load. If
FALSE, only formats that can be changed dynamically are returned.

maxformats
Specifies the maximum number of MLDCvideoFormat structures to be returned.

actual_count_return
Returns the actual number of MLDCvideoFormat structures that are returned.

retFormatArray
Returns the list of formats that have been found. The array of MLDCvideoFormatInfo structures that
are returned in the MLDCvideoFormat structure are in a particular order to match the channel
numbers given in the channelArray argument. The first format in the first element of the format
array corresponds to the first channel given in the channelArray.

The mldcListVideoFormats function returns in retFormatArray an array of available MLDCvideo-
Format video format descriptions that match a pattern specification.
When listing the video formats that are available for a single channel, the caller gives only one MLD-
CvideoFormatInfo structure in the formats array of the pattern argument and only one element of
the querymaskArray argument. The query mask is applied to the given format to find all available for-
mats that meet the requirements for a single channel.
When listing the combination video formats that are available for a group of n channels the caller gives n
channels in the channelArray argument, n MLDCvideoFormatInfo structures in the formats array
of the pattern argument, and n elements of the querymaskArray argument. Available matching
combination formats are found by using the i th format in the formats array of the pattern argument in
conjunction with the i th element of the querymaskArray to search for a suitable format for the channel
found in the i th element in the channelArray argument.
If no video formats match the query specification, the value 0 (zero) is returned in actual_count_
return.
Fields that are not represented in the querymaskArray are not used to constrain the search (i.e.,
unconstrained fields are "don't care"). All query-constrained fields must be an exact match. For example, if
fieldCount is specified as 2 and the querymaskArray element has the MLDC_QVF_FIELD_
COUNT bit set, this function will return only those video formats that have two fields.
To return every video format available, specify the value NULL for querymaskArray. Queries may be
specified using combinations of the following bits in each element of the querymaskArray:

Mask Bit Purpose
MLDC_QVF_HEIGHT Match the height in lines of the active region of the for-

mat.

MLDC_QVF_WIDTH Match the width in pixels of the active region of the for-
mat.

MLDC_QVF_TOTAL_HEIGHT Match the total number of lines of the format, including
blanking lines.

MLDC_QVF_TOTAL_WIDTH Match the total number of pixels in each line of the for-
mat, including blanking pixels.

Table 18.2 Video Format Query Mask Bits
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 4 5

Note that the pixelClock and horizontal components of MLDCvideoFormatInfo are ignored when querying
and setting video format, as are other components. There may not be corresponding bits for all fields.

Match Monitor Query
The field matchMonitor is a special constraint that specifies that MLdc should return only those video
formats whose timing requirements fall within the range supported by the monitors connected to the chan-
nels listed in channelArray (see the function mldcQueryMonitorName).
While this constraint gives some assurance that a returned format will operate successfully on the monitor
connected to the channel, it cannot be guaranteed. Nor can one be certain that the connected monitor can
display all formats returned. The specification of the range of operation of a monitor and the description of
the parameters of a video format are not sufficiently exact to reliably predict a proper match. Instead, con-
sider this constraint to provide a high likelihood that the returned formats are the best matches for reliable
operation.
The matchMonitor constraint further restricts the query specified in querymask.
The mldcListVideoFormats function returns a list of MLDCvideoFormat structures.
The client should call mldcFree when finished with the result to free the memory that was allocated and
returned in retFormatArray.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other arguments
are not valid values or valid pointers, this function will return MLDC_STATUS_INVALID_ARGUMENT. If
no match is found, the function will return MLDC_STATUS_NO_FORMAT_MATCH.

Loading Video Formats
Video formats can be loaded by specifying a pattern, a video format name, or the name of a file which con-
tains a video format specification.

MLDC_QVF_RETRACE_RATE Match the retrace rate of the format. Note this value is
specified as a floating-point number; however, all com-
parisons are integer-based. For this comparison, the val-
ues are rounded to int by adding 0.5 and truncating. For
example, 59.94Hz will be rounded to 60 before compar-
ing.

MLDC_QVF_SWAP_BUFFER_RATE Match the swapbuffer rate of the format. This can be dif-
ferent from the retrace rate in some video formats. Note
this value is specified as a floating-point number; how-
ever, all comparisons are integer-based. For this com-
parison, the values are rounded to int by adding 0.5 and
truncating. For example, 29.97Hz will be rounded to 30
before comparing.

MLDC_QVF_FIELD_COUNT Match the number of interlaced or stereo fields in the for-
mat.

MLDC_QVF_FLAGS Match the formatFlags field of the format.

Table 18.2 Video Format Query Mask Bits
1 4 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Video formats can be loaded dynamically (which means that the new format will take place as soon as
possible) or in a nonvolatile fashion (which means that the new format will take effect only after the graph-
ics subsystem has been restarted). On Windows systems, restarting the graphics subsystem may require
rebooting the system. On X Window Systems, restarting the graphics subsystem means that the X Server
must be restarted.

mldcLoadVideoFormat
This function will load a video format that matches a pattern given as an argument. If more than one video
format matches the pattern the first one that matches will be loaded. This function is equivalent to mld-
cListVideoFormats, except that it will load the first format that matches the query instead of returning the
full list of formats.

MLDCstatus mldcLoadVideoFormat(MLDChandle hOutDev,
MLDCint32 *channelArray,
const MLDCvideoFormat *pattern,
MLDCbitfield *querymaskArray,
MLDCboolean matchMonitor,
MLDCboolean nonvolatile)

hOutDev
The handle of the MLdc video output device.

channelArray
Specifies an array of channel numbers. The array must have the number of elements that are
specified in the numFormats field of the pattern argument. If the number of channels is greater
than one, then this function will load the first combination format that could be used for the multiple
channels listed in channelArray. By convention, the channel numbers in the array must appear
in the array in ascending order. However, channel numbers may skipped. For example, the array
could hold the channel numbers 1,3,4.

pattern
Specifies an MLDCvideoFormat structure that provides attributes to match when loading the video
format. The numFormats field in the structure gives the number of formats in the pattern. If
numFormats is equal to one, this function will match a single format and load it into a single
channel. If matching a combination format, the value of numFormats will be greater than one. The
number of formats given in numFormats also determines the number of channels in the
channelArray argument and the number of query masks in the querymaskArray argument.

querymaskArray
An array of masks that specify, as the bitwise inclusive OR of any of the manifest constants that have
a prefix of MLDC_QVF (see Table 18.2), which fields in pattern are to be used for the query. If the
querymaskArray is NULL, the first video format found will be loaded. The querymaskArray
must have the number of elements specified in the numFormats field of the pattern argument. If
matching a combination format, the i th element of the querymaskArray is applied to the i th

format in the formats array of the pattern argument, when doing the search for a suitable
format for the i th channel given in channelArray.

matchMonitor
If TRUE, restricts loads to those formats which are within the operating range of the monitor. If
FALSE, no constraint check is made.

nonvolatile
If the requested format is capable of being loaded dynamically, it will be loaded dynamically,
regardless of the value of this argument. However, if the requested format is not capable of being
loaded dynamically, and if this argument is set to TRUE, then the requested format will be scheduled
to be loaded in a nonvolatile fashion after the graphics system has been restarted.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 4 7

Description
The mldcLoadVideoFormat function loads a video format into the specified channel, or a combination for-
mat into the specified channels. The newly loaded formats completely replace the channels’ current video
format.

The method by which the video format is specified is similar to the query performed in the function mldc-
ListVideoFormats. The desired video format is described by populating the pattern structure, specify-
ing the meaningful fields (query constraints) via the querymaskArray parameter. When more than one
video format meets the query requirements, the first format is loaded. To unambiguously specify a video
format, use mldcLoadVideFormatsByName. See mldcListVideoFormats for more information on speci-
fying the arguments to this function.

Restrictions When Loading
On some systems certain video formats may require that the graphics system be restarted after loading.

Note: On some platforms, the user cannot request a nonvolatile load without root or administrator permis-
sions. On other systems, loading any format may need root or administrator authorization.

Events
When the format changes, MLdc generates an MLDC_VIDEO_FORMAT_NOTIFY event. If no format can
be found by device-dependent software that matches the criteria, an MLDC_ERROR_NOTIFY event is
generated and the error code given in the event is MLDC_STATUS_NO_FORMAT_MATCH.

When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcLoadVideoFormatByName
When the format name of the desired video format is known, either apriori through external means or by
choosing a format from an mldcListVideoFormats query, then mldcLoadVideoFormatByName may be
used to load that video format:

MLDCstatus mldcLoadVideoFormatByName(MLDChandle hOutDev,
MLDCint32 numChannels,
MLDCint32 *channelArray,
const MLDCchar *name,
MLDCboolean nonvolatile)

hOutDev
The handle of the MLdc video output device.

numchannels
The number of channels in the channelArray argument. If the number is one, then the format to
be loaded is a single format loading into a single channel. If the number is greater than one, then the
format to be loaded is a combination format.

channelArray
Specifies an array of channel numbers to load a named format into. If the array holds only one
channel, then the format is a single format. If the array has more than one channel, then the format
name must be the name of a combination format. By convention, the channel numbers must appear
in the array in ascending order, though the channel numbers need not be sequential.
1 4 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

name
The name of the format to load; a null-terminated string.

nonvolatile
If the requested format is capable of being loaded dynamically, then it will be loaded dynamically,
regardless of the value of this argument. However, if the requested format is not capable of being
loaded dynamically, and if this argument is set to TRUE, then the requested format will be scheduled
to be loaded in a nonvolatile fashion after the graphics system has been restarted.

Description
The mldcLoadVideoFormatByName function loads a new video format into the specified channel, or a
combination format into the specified channels. The newly loaded formats completely replace the channels’
current video format.

The name of the format to load is normally taken as an internal implementation-dependent name. If a fully-
qualified absolute path is supplied instead of a format name, that path will be used as the location of a
video format file instead of as a format name. It is up to the caller to ensure that the path points to a valid
video format file. The format files are implementation-dependent and beyond the scope of this document.

Restrictions When Loading
On some systems certain video formats may require that the graphics system be restarted after loading.

Note: On some platforms, the user cannot request a nonvolatile load without root or administrator permis-
sions. On other systems, loading any format may need root or administrator authorization.

Events
When the format changes, MLdc generates an MLDC_VIDEO_FORMAT_NOTIFY event. If no format can
be found by device-dependent software that matches the criteria, an MLDC_ERROR_NOTIFY event is
generated and the error code given in the event is MLDC_STATUS_NO_FORMAT_MATCH.

When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 4 9

1 5 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

19
BLANKING

When a channel is blanked the active video portion of the signal is disabled. However, normal video syn-
chronization signals persist so that the video output device can remain locked. When blanking is disabled,
the active video is restored and the video output device once again displays pictures.

mldcSetOutputBlanking
This function will enable or disable blanking on a channel.

MLDCstatus mldcSetOutputBlanking(MLDChandle hOutDev,
MLDCint32 channel,
MLDCboolean enable)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

enable
Specifies whether blanking should be enabled.

Description
mldcSetOutputBlanking enables and disables blanking on a channel. The value may be TRUE or
FALSE.

Interaction with Screen Saver
Some screen saver programs will simply blank the screen as part or all of their function. The function of
mldcSetOutputBlanking may be independent of that supplied by the screen saver, and may use a differ-
ent mechanism to enable and disable output. The interaction between the screen saver and the mecha-
nism used by this function is system-dependent and is not specified.

Events
When this control is altered, the MLdc library generates an MLDC_OUTPUT_BLANKING_NOTIFY event.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 5 1

When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryOutputBlanking
This function will query the current state of blanking for a channel.

MLDCstatus mldcQueryOutputBlanking(MLDChandle hOutDev,
MLDCint32 channel,
MLDCboolean *enableReturn)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

enableReturn
Returns whether blanking is enabled.

Description
mldcQueryOutputBlanking returns in the enableReturn argument the current settings for blanking on
a channel. The value may be TRUE or FALSE.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 5 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

20
GAMMA CORRECTION TABLES AND OUTPUT GAIN

Gamma Correction
Many computer video display devices have color lookup tables associated with them that allow the applica-
tion to programmatically adjust for differences in monitor color phosphor response. These color tables are
commonly referred to as gamma correction tables because the color ramp that is loaded into them typically
follows a mathematical gamma function curve that is adjusted to fit the monitor. A given MLdc-controlled
video output device may or may not have gamma-correction tables available to it.
Cathode ray tubes (CRT’s) have the characteristic that their display is non-linear: the intensity of light dis-
played at a pixel is not strictly proportional to the voltage supplied to the CRT at that pixel. Gamma correc-
tion is used to compensate for that non-linearity so the monitor does produce the proper intensity.
A video device may contain one or more gamma maps, each of which may perform an independent correc-
tion by serving as a color look-up.

Terminology
A gamma map has the following distinguishing features:
• A set of tables. There is one table for each color component that is handled by the map. There may be

up to four tables, one each for red, green, blue, and alpha.
• A size for each table. The table for each component has a size, or a number of entries.
• A width for each table. The entries in each table have a certain width in bits or precision.

Graphics devices may assign a permanent gamma map to a channel, restrict channels to a subset of all
maps, permit a channel to use one of all shared maps, or some combination thereof, depending on hard-
ware configuration. If two channels share the same gamma map, changing the colors in that gamma map
will affect both channels.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 5 3

mldcQueryGammaMaps
This function returns the number of gamma maps that are available on a video output device.

MLDCstatus mldcQueryGammaMaps(MLDChandle hOutDev,
MLDCint32 *gammaMapsReturn)

hOutDev
Specifies the handle for the MLdc video output device.

gammaMapsReturn
The address of a variable to receive the number of gamma maps available on the video device.

Description
mldcQueryGammaMaps returns the number of separate gamma maps supported. Video output devices
with no writable gamma map return zero (0).
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If gammaMapsReturn is not
a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryGammaMap
This function will return the sizes of a given gamma map’s tables and their precision and attributes.

MLDCstatus mldcQueryGammaMap(MLDChandle hOutDev,
MLDCint32 gammaMap,
MLDCint32 *gammaSizeReturn,
MLDCint32 *gammaPrecisionReturn,
MLDCint32 *gammaMapAttributes)

hOutDev
Specifies the handle for the MLdc video output device.

gammaMap
Specifies the gamma map to be queried. Gamma map IDs are numbered implicitly, starting with 0.

gammaSizeReturn
Specifies the location of a four-element array that is to receive the number of entries or size of each
component table in the gamma map. The order of component tables represented in the array is red,
green, blue, and alpha.

gammaPrecisionReturn
Specifies the location of a four-element array that is to receive the precision in bits of each table in
the gamma map. For example, if each entry in a table is 10 bits long, the call returns 10 for that
component. The order of component tables represented in the array is red, green, blue, and alpha.

gammaMapAttributes
Specifies the location of a variable to receive a bitmask describing attributes of the gamma map. The
bitmask may contain zero or more of the following attributes described below:
1 5 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Description
mldcQueryGammaMap returns information regarding a specified gamma map's configuration.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If gammaMap is not a valid
gamma map number, this function will return MLDC_STATUS_INVALID_GAMMA_MAP. If any other
argument is not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGU-
MENT.

mldcQueryGammaColors
Occasionally an application may want to inquire the contents of a given gamma map. The query can be
accomplished with the following function. Note: Some devices will report bigger tables than they really have
and then interpolate values as the tables are loaded. If an application loads a table and then reads it back,
the table being returned may not be exactly what was loaded. Also, see the MLDC_GM_HARDWARE_
APPROXIMATION flag that can come back from mldcQueryGammaMap.

MLDCstatus mldcQueryGammaColors(MLDChandle hOutDev,
MLDCint32 gammaMap,
MLDCint32 requestedComponent,
MLDCint32 *itemCountReturn,
MLDCuint16 **gammaValueReturn)

hOutDev
Specifies the handle for the MLdc video output device.

MLDC_GM_ALPHA_PRESENT The gamma map has an alpha component in addi-
tion to the red, green, and blue components.

MLDC_GM_HARDWARE_APPROXIMATION The video device hardware may use private tech-
niques to approximate the stated size and precision
of the gamma map, substituting a less thorough rep-
resentation. In most cases when a gamma-shaped
curve is loaded, the visual result will closely approxi-
mate the specified curve. Queries of the value of the
colors of this gamma map will return the values as
previously stored, not of the internal approximation.
The techniques used to approximate the gamma
map are implementation dependent.

MLDC_GM_WRITE_LOCK The gamma map cannot be modified programmati-
cally. The video device hardware may have a fixed
gamma map or the video device does not implement
alteration of this map.

MLDC_GM_READ_LOCK The gamma map cannot be queried programmati-
cally. The video device hardware may not permit
readback or the video device does not implement
readback of this map.

Table 20.1 Gamma Map Attribute Bits
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 5 5

gammaMap
Specifies the gamma map whose color table is to be returned. Gamma map ID’s are numbered
implicitly, starting with 0.

requestedComponent
Specifies the tables or color components that should be returned. The constants MLDC_
COMPONENT_RED, MLDC_COMPONENT_GREEN, MLDC_COMPONENT_BLUE, and MLDC_
COMPONENT_ALPHA may be Or-ed together to select the table(s) to be returned. The video
device may ignore MLDC_COMPONENT_ALPHA if the gamma map does not have an alpha table;
see mldcQueryGammaMap.

itemCountReturn
Specifies a pointer to an array of four integers where MLdc returns the number of elements in each of
the tables. The order of the array is red, green, blue, and alpha. If a table is not selected, its count is
set to zero.

gammaValueReturn
Specifies a pointer to an array where MLdc returns pointers to the arrays containing the table
elements. The order of the array is red, green, blue, and alpha. If a table is not selected, its pointer is
set to NULL.

Description
mldcQueryGammaColors returns the values for the specified component table. The number of items in
the requested color component is returned in itemCountReturn. Use mldcFree to free the memory
allocated in gammaValueReturn.

Operations on Colors During Query
The mldcQueryGammaColors function implicitly returns 16-bit quantities, irrespective of the precision of
the underlying hardware. If the table's precision is less than 16 bits, the video device will return the signifi-
cant bits of the precision in the uppermost bits of the returned 16-bit quantity; the least significant bits of the
returned quantity will contain replicated copies of the table's MSB’s.
This operation is similar and complementary to the actions taken during store operations. For example, if
the hardware table has 11 significant bits, the 16-bit value returned to the client will contain the hardware's
value in the upper 11 bits. The most significant five bits of the hardware's value will be replicated in the
lower five bits of the returned value.
In general, the significant bits of the returned value may be determined via the following C-language state-
ment (given precision as the width of the entry and gammaValueReturn as the returned value):

unsigned short sigBits;
...
sigBits = (gammaValueReturn >> (16 - precision));

Applications can use the function mldcStoreGammaColors16 as a complementary store operation; that
function expects a value with the significant bits similarly shifted into the MSB’s.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If gammaMap is not a valid
gamma map number, this function will return MLDC_STATUS_INVALID_GAMMA_MAP. If any other
argument is not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGU-
MENT.
1 5 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

mldcStoreGammaColors16, mldcStoreGammaColors8
The following functions are used to set the values in a gamma correction lookup table:

MLDCstatus mldcStoreGammaColors8(MLDChandle hOutDev,
MLDCint32 gammaMap,
MLDCbitfield loadTables,
MLDCint32 *itemCount,
MLDCuint8 **gammaValue)

MLDCstatus mldcStoreGammaColors16(MLDChandle hOutDev,
MLDCint32 gammaMap,
MLDCbitfield loadTables,
MLDCint32 *itemCount,
MLDCuint16 **gammaValue)

hOutDev
Specifies the handle for the MLdc video output device.

gammaMap
Specifies the gamma map whose color table (or tables) is to be loaded. Gamma map ID’s are
numbered implicitly, starting with 0.

loadTables
Specifies the tables or color components that should be returned. The constants MLDC_
COMPONENT_RED, MLDC_COMPONENT_GREEN, MLDC_COMPONENT_BLUE, and MLDC_
COMPONENT_ALPHA may be Or-ed together to select the table(s) to be loaded

itemCount
A 4-element array that contains the number of elements in each table to be loaded. The order of the
array is red, green, blue, and alpha. Note that the count of the number of entries to be loaded in each
table must exactly equal the length of the table (returned via the parameter gammaSizeReturn in the
function mldcQueryGammaMap).

gammaValue
A 4-element array containing pointers to each of the tables to be loaded. The order of the pointers in
the array is red, green, blue, and alpha.

Description
The mldcStoreGammaColors8 and mldcStoreGammaColors16 functions change the gamma map table
entries for the specified tables to the specified values, the former function loading 8-bit entries and the latter
loading 16-bit entries. To load a gamma map, pass an array of table pointers via gammaValue and an
array of table lengths via itemCount. The value of loadTables indicates which tables of the gamma
map that will be changed.
Note: The hardware of some video devices may require the video device to load all components simulta-
neously in an encoded (packed) manner, so choosing a single color component may require the video
device to query the gamma table to encode the component before writing it; thus, the most efficient use of
this function may be to store all color components simultaneously.
The function mldcStoreGammaColors8 is provided as an economy to the function
mldcStoreGammaColors16 because it minimizes traffic between the client and the video device. Use the
operation that best suits the need: for rapid animations, an application may prefer the 8-bit function; for
greater accuracy, the 16-bit function.

Operations on Colors During Store
If a gamma map's colors are stored using a function whose width is different than the width of the gamma
map, the video device will alter the values when loading the gamma hardware. This alteration occurs for
each color value specified.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 5 7

If a function is used whose width is larger than that of the table, the video device will truncate, using only
the most-significant bits (MSB’s) of the values; for example, if the mldcStoreGammaColors8 function is
used to store values into a table that contains only five bits, the video device will use only the upper five
MSB’s of the color values, discarding the lower three bits.
If a function is used whose width is narrower than the table, the video device will use the stored values for
the most-significant bits (MSB’s), and store into the not-supplied least-significant bits (LSB’s) a copy of the
most significant bits; for example, if the mldcStoreGammaColors8 function is used to store values into a
table that contains 12 bits, the video device will store the values into the eight MSB’s, copying the upper
four bits of each of the values into each entry's LSB’s.
When this control is altered, the video device generates a MLDC_GAMMA_MAP_NOTIFY event.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle this function will return MLDC_STATUS_INVALID_DEVICE. If gammaMap is not a valid
gamma map number this function will return MLDC_STATUS_INVALID_GAMMA_MAP. If any other argu-
ment is not a valid value or a valid pointer this function will return MLDC_STATUS_INVALID_ARGU-
MENT.

mldcSetChannelGammaMap
This function will choose which of the available gamma maps to apply to the given channel.

MLDCstatus mldcSetChannelGammaMap(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 gammaMap)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

gammaMapReturn
Specifies which of the gamma maps within the video device should be affected. Gamma map ID’s
are numbered implicitly, starting with 0.

Description
mldcSetChannelGammaMap selects which gamma map to use for the specified channel. Some video
devices do not have multiple gamma maps available, and one gamma map is applied to all channels. Other
video output devices have gamma maps that are only available for a specific channel. In these cases, the
gamma map assignments cannot be altered via this function. The assignment of gamma maps to channels
at video device startup is not defined, and is vendor-specific.

When this control is altered, the video device generates a MLDC_GAMMA_MAP_NOTIFY event.

mldcQueryChannelGammaMap returns the gamma map ID associated with the specified channel.

When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If gammaMap is not a
valid gamma map number, this function will return MLDC_STATUS_INVALID_GAMMA_MAP.
1 5 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

mldcQueryChannelGammaMap
This function will return the gamma map ID of the gamma map that is associated with the given video out-
put device and channel.

MLDCstatus mldcQueryChannelGammaMap(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 *gammaMapReturn)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

gammaMapReturn
Specifies which of the gamma maps within the video device is being used for the given channel.

Description
mldcQueryChannelGammaMap returns the current gamma map ID associated with the specified chan-
nel.

When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If gammaMapReturn is
not a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

Output Gain
An application can control the modulation of colors by setting the output gain, which applies a modulation to
all colors as they are displayed. Some video devices support the specification of a separate gain value for
each color component. On other devices, a single gain value is applied to all color components. The
MLDC_CIF_PER_COMPONTENT_GAIN in the channelFlag value returned by mldecQueryChan-
nelInfo indicates the capability of the device. This value is TRUE when the video device supports indepen-
dent gain adjustment of each color component.

mldcSetOutputGain
This function allows alteration of video gain values and is intended for use by color correction and gamma
management tools. Arbitrary use of this control may conflict with these tools.

MLDCstatus mldcSetOutputGain(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 componentID,
MLDCreal32 *gain)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 5 9

componentID
The constants MLDC_COMPONENT_RED, MLDC_COMPONENT_GREEN, MLDC_
COMPONENT_BLUE, and MLDC_COMPONENT_ALPHA may be OR-ed together to select which
color components are to be set.

gain
A 4-element array of gain values. The order of the array is red, green, blue, and alpha.

Description
mldcSetOutputGain sets the video output gain of the components of a channel.
The gain values are specified in arbitrary units, where the following are points of interest:

0.0 Lowest useful value
1.0 Nominal value
10.0 Highest possible value

Precision depends upon the video device implementation, and although it is monotonically increasing, it is
not guaranteed to be uniform across the full range. Applications should use mldcQueryOutputGain to
retrieve the current settings from the video device after a set operation to determine the values to which the
video device is set. For video devices that permit independent adjustment, any combination of MLDC_
COMPONENT_RED, MLDC_COMPONENT_GREEN, MLDC_COMPONENT_BLUE, or MLDC_
COMPONENT_ALPHA may be specified. For other video devices that have a single, common gain con-
trol, use MLDC_COMPONENT_RED.
When this control is altered, the MLdc library generates an MLDC_OUTPUT_GAIN_NOTIFY event.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryOutputGain
This function will return the color gains being used for a given channel.

MLDCstatus mldcQueryOutputGain(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 componentID,
MLDCreal32 *gainReturn)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

componentID
The constants MLDC_COMPONENT_RED, MLDC_COMPONENT_GREEN, MLDC_
COMPONENT_BLUE, and MLDC_COMPONENT_ALPHA may be OR-ed together to select which
color components are to be returned.
1 6 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

gainReturn
A 4-element array that is to receive the returned gain values. The order of the array elements is red,
green, blue, and alpha. Elements which are not selected by the componentID parameter are set
to 0.0.

Description
mldcQueryOutputGain returns the current settings for each of the selected components of a channel. The
gain values returned are specified in arbitrary units, where the following are points of interest:

0.0 Lowest useful value
1.0 Nominal value
10.0 Highest possible value

Precision depends upon video device implementation and although it is monotonically increasing it is not
guaranteed to be uniform across the full range. Applications should use mldcQueryOutputGain to retrieve
the current settings from the video device after a set operation to determine the values to which the video
device is set.
For video devices that permit independent adjustment, any combination of MLDC_COMPONENT_RED,
MLDC_COMPONENT_GREEN, MLDC_COMPONENT_BLUE, or MLDC_COMPONENT_ALPHA may be
specified. For video devices that support only a single, common gain value, use MLDC_COMPONENT_
RED.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 6 1

1 6 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

21
EXTERNAL SYNCHRONIZATION (LOCK AND

GENLOCK)

Terminology and Operation
The concept of locking refers to the ability of a video system to evaluate the synchronization portion of a
video signal of an external source and produce a signal that is at the same rate as that external signal.
Locking the video device to an external source is needed in environments where the video device's video
output must be synchronized with other video or film sources in order to be mixed externally.
The term genlock describes a particular type of lock: one in which both horizontal and vertical synchroni-
zation signals are locked. It is often used as a general term for locking in environments where all video
devices generate and use the same video formats; in this circumstance, the term genlock is correct. See
the discussion of Lock Quality below.
A video device may operate in a stand-alone environment in the absence of a stable external locking sig-
nal. By using this internal lock, the video device locks to a clock generated within the video device hard-
ware. With external lock, the video device locks to a signal supplied externally, either on an external sync
connector or other means, such as internally connected special video hardware.
When the video device is instructed to use external sync (external lock), the video device examines the
synchronization signal provided on the external input sync port. If the video device hardware recognizes
the signal's pattern, the video device locks the rate to that of the signal. After the video device's rates have
been set successfully, the video device is said to be locked to the external signal.
When the application specifies that the video device should use internal lock, the video device will disre-
gard any external signal. Because internal lock allows the video device to produce video at a rate indepen-
dent of any external source, it is often described as being "not locked" or has disabled lock.

Usage
If the video device is used in a stand-alone environment, it is not necessary to set the sync source to any-
thing but the internal source; the video device will produce its output locked to its own reference. However,
in applications where the video output must be synchronized to an external source, the application can
direct the video device to use the external source as lock reference.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 6 3

Lock Quality
Different video devices have different capabilities when locking to an external source, and the quality of
synchronization may vary depending on the input source and the generated output format.
Under some circumstances, the video device may be able to lock to both horizontal and vertical rates of the
external signal: the most stable lock, commonly known as genlock. Some circumstances may permit the
video device to lock to only the vertical rate of the incoming signal. In other cases, the video device may be
able to provide a reference at multiple instances within a frame, a quality between those two extremes.
Finally, some combination of input and output format or some video devices may not permit any lock. Refer
to your video device's documentation to determine the qualities of lock available.

External Sync Sources
Some video devices have more than one external sync source. For example, a video device may have
more than one connector on which sync can be provided; or, a video device's hardware might have an
option board that can also provide a sync source. Because of the nature of locking (see Terminology and
Operation above), only one sync source may be selected at a time. The application must choose whether
the sync source is internal or external, and if it is external, then the application must choose which of the
possible external sync sources to use.

External Sync Functions

mldcSetInputSyncSource
This function controls whether a video device channel uses an internal or an external sync source. If the
channel is set to use an external source, then external locking or genlock is enabled.

MLDCstatus mldcSetInputSyncSource(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 syncVoltage,
MLDCint32 syncSource)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

syncVoltage
Specifies the voltage. Should be specified as one of MLDC_SYNC_VOLTAGE_VIDEO (for nominal
video voltage level) or MLDC_SYNC_VOLTAGE_TTL (for TTL-level sync). Not all video devices
have the capability to accept both voltage levels; check documentation for the specific hardware
being used.

syncSource
Use MLDC_SYNC_SOURCE_EXTERNAL to specify the external sync source, MLDC_SYNC_
SOURCE_INTERNAL to specify the internal sync source.
1 6 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Description
This function controls the source of input sync to the video subsystem. The input sync is used as a refer-
ence to which the video device can genlock. The information returned from the function mldcQueryVid-
eoDeviceInfo can help determine whether the video device currently has the capability to lock to an
external source.

Events
The sync source state change event reports dynamic input sync source state changes. The video device
generates an MLDC_LOCK_STATUS_CHANGED_NOTIFY event when the video device achieves or
loses lock. This allows an application to determine when a video device achieves lock. The video device
may not be able to report intervening instances of rapidly changing lock state and therefore may report two
consecutive instances of the same state; client programs must check the value of the status variable
reported in the event to determine the state of the lock.
When this control is altered, the video device generates an MLDC_INPUT_SYNC_SOURCE_NOTIFY
event.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryInputSyncSource
This function returns the current settings of the sync source for the video output device. This function also
returns the current state of the lock.

MLDCstatus mldcQueryInputSyncSource(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 *syncVoltageReturn,
MLDCint32 *syncSourceReturn,
MLDCboolean *lockAchievedReturn)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

syncVoltageReturn
Returns the current sync voltage.

syncSourceReturn
Returns the current sync source.

lockAchievedReturn
Returns the state of lock (TRUE if lock achieved, FALSE if lock not achieved). See terminology,
below, for explanation.

Description
This function queries the source of input sync to the video subsystem. The input sync is used as a refer-
ence to which the video device can genlock. The information returned from the function mldcQueryVid-
eoDeviceInfo can help determine whether the video device currently has the capability to lock to an
external source.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 6 5

mldcQueryInputSyncSource returns the current settings of the sync source for the video output device.
This function also returns the current state of the lock.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcSetExternalSyncSource
This function selects which external source is to be used for locking for video devices with more than one
external sync source.

MLDCstatus mldcSetExternalSyncSource(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 externalSyncSource)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

externalSyncSource
Specifies the external sync source. The values range from 0 to one less than the value returned in
the syncPortCount field of the MLDCchannelInfo structure that is returned from
mldcQueryChannelInfo.

Description
This function controls the source of external input sync to the video subsystem. The input sync is used as a
reference to which the video device can genlock.
See the description in the section External Synchronization above for a detailed description of genlock
functionality.

External Sync Sources
Some video devices have more than one external sync source. For example, a video device may have
more than one connector on which sync can be provided; or, a video device's hardware might have an
option board that can also provide a sync source. Because of the nature of locking, only one sync source
may be selected at a time.
For video devices with more than one external sync source, mldcSetExternalSyncSource selects which
external source is to be used for locking. Selecting an external sync source with mldcSetExternalSync-
Source does not switch from the internal to the external sync source; it is still necessary to use the function
mldcSetInputSyncSource to switch from internal to external sync source.

Events
When this control is altered, the video device generates an MLDC_INPUT_SYNC_SOURCE_NOTIFY
event.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If externalSync-
Source is not a valid value, this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 6 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

mldcQueryExternalSyncSource
This function returns the currently selected external sync source.

MLDCstatus mldcQueryExternalSyncSource(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 *externalSyncSourceReturn)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

externalSyncSourceReturn
Returns the current external sync source.

Description
This function queries the source of external input sync to the video subsystem.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If externalSync-
SourceReturn is not a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryExternalSyncSourceName
This function returns the textual name associated with the sync source for convenience in presenting infor-
mation to a user.

MLDCstatus mldcQueryExternalSyncSourceName(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 externalSyncSource,
MLDCchar **retSyncSourceName)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

externalSyncSource
Specifies the external sync source. The values range from 0 to one less than the value returned in
the syncPortCount field of the MLDCchannelInfo structure that is returned from
mldcQueryChannelInfo.

retSyncSourceName
Returns the name of the sync source as a null-terminated string.

Description
For convenience in presenting information to a user, mldcQueryExternalSyncSourceName queries the
name of the external source of input sync to the video subsystem. The input sync is used as a reference to
which the video device can genlock. The application should free the returned string with mldcFree.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 6 7

channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is
not a valid value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcSetOutputPhaseH
Sets a value to use as a horizontal sync delay.

MLDCstatus mldcSetOutputPhaseH(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 phaseH)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

phaseH
The value to which the horizontal phase should be set.

Description
This function allows alteration of the horizontal phase relationship to genlock input (also known as genlock
delay). This control is only active when the graphics device is locked to an external source. The units are
specified in terms of pixels, such that:

1 unit = 0.01 pixels
Accuracy is not guaranteed because of variations in hardware, but will be close to the value specified. Pre-
cision depends upon graphics device implementation and is not guaranteed to be uniform across the full
range. Applications should get the current setting from the video device after a set operation to determine
the value to which the video device is set.
The function mldcQueryChannelInfo returns the range of values that are valid for this channel.
Note that this function is valid only when the video device is genlocked to an external source; it is not valid
when the video device is framelocked or is in frame reset mode.

Events
When this control is altered, the MLdc library generates an MLDC_OUTPUT_PHASE_H_NOTIFY event.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If phaseH is not a valid
value, this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 6 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

mldcQueryOutputPhaseH
This function returns the value currently used as a horizontal sync delay.

MLDCstatus mldcQueryOutputPhaseH(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 *phaseHReturn)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

phaseHReturn
Returns the value to which the horizontal phase is set.

Description
This function allows querying of the horizontal phase relationship to genlock input (also known as genlock
delay). The units are specified in terms of pixels, such that:

1 unit = 0.01 pixels
The function mldcQueryChannelInfo returns the range of values that are valid on this channel.
Note that this function is valid only when the video device is genlocked to an external source; it is not valid
when the video device is framelocked or is in frame reset mode.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If phaseHReturn is
not a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcSetOutputPhaseV
This function sets a value to use as a vertical sync delay.

MLDCstatus mldcSetOutputPhaseV(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 phaseV)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

phaseV
The value to which the vertical phase should be set.

Description
This function allows alteration of the vertical phase relationship to genlock input (also known as genlock
delay). This control is only active when the video device refresh is locked to an external source. The units
are specified in terms of lines, such that:

1 unit = 1 line
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 6 9

Accuracy is not guaranteed because of variations in hardware, but will be close to the value specified. Pre-
cision depends upon video device implementation and is not guaranteed to be uniform across the full
range. Applications should get the current setting from the physical monitor device after a set operation to
determine the value to which the video device is set.
The function mldcQueryChannelInfo returns the range of values that are valid on this channel.

Events
When this control is altered, the video output device generates an MLDC_OUTPUT_PHASE_V_NOTIFY
event.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If phaseV is not a valid
value, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryOutputPhaseV
This function returns the value currently used as a vertical sync delay.

MLDCstatus mldcQueryOutputPhaseV(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 *phaseVReturn)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

phaseVReturn
Returns the value to which the vertical phase is set.

Description
This function allows query of the vertical phase relationship to genlock input (also known as genlock delay).
This control is only active when the video device refresh is locked to an external source. The units are
specified in terms of lines, such that:

1 unit = 1 line
The function mldcQueryChannelInfo returns the range of values that are valid on this channel.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If phaseVReturn is
not a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 7 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

mldcSetOutputPhaseSCH
This function sets a value to use as a subcarrier horizontal phase delay for composite video.

MLDCstatus mldcSetOutputPhaseSCH(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 phaseSCH)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

phaseSCH
The value to which the SCH phase should be set.

Description
This function sets a value to use as the subcarrier horizontal phase delay for composite video. The value is
specified in degrees:

1 unit = 0.1 degrees
Accuracy is not guaranteed because of variations in hardware, but will be close to the value specified. Pre-
cision depends upon physical monitor device implementation and is not guaranteed to be uniform across
the full range. Applications should get the current setting from the video output device after a set operation
to determine the value to which the video output device is set.
The function mldcQueryChannelInfo returns the range of values that are valid on this channel.

Events
When this control is altered MLdc generates an MLDC_OUTPUT_PHASE_SCH_NOTIFY event.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If phaseSCH is not a
valid value, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryOutputPhaseSCH
This function returns the value currently used as a subcarrier horizontal phase delay.

MLDCstatus mldcQueryOutputPhaseSCH(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 *phaseSCHReturn)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

phaseSCHReturn
Returns the value to which the SCH phase is set.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 7 1

Description
This function allows query of subcarrier to horizontal phase. This function is used on composite video chan-
nels. The value returned is in degrees:

1 unit = 0.1 degrees
The function mldcQueryChannelInfo returns the range of values that are valid on this channel.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If phaseSCHReturn is
not a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 7 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

22
OUTPUT SYNC

Terminology
The synchronization signal (or sync signal) is a series of pulses that communicate raster geometry to a dis-
play device. The horizontal sync (or H-sync) pulse typically indicates the termination of one scan line and
the start of another, visually lower, line. The vertical sync (or V-sync) pulse typically indicates that the dis-
play device should reset its downward drawing of lines and start the next horizontal line at the top of the
screen. When horizontal and vertical sync are combined in the same signal, the result is called composite
sync (sometimes referred to as H + V-sync).
A synchronization pulse is a variation from one level to another. The output voltage can be generated at dif-
ferent voltages: nominal video level or TTL levels. In some video formats (e.g., some HDTV formats) a third
level of excursion is required during some sync pulse sequences; this third level is employed in tri-level
sync.

Configurations
These functions deal with the synchronization signal's presence on one of the channel's sync output ports.
Different video devices may have different hardware available for sync output: some ports may be separate
connectors (auxiliary sync outputs) on which sync is delivered; the red, green, and blue color component
signals may contain sync; some video devices provide an alpha channel output connector, and sync may
also be available on that port. Sync output may be unique to a channel - and video devices may not provide
sync outputs uniformly, so each channel's ports must be considered separately.
Sync is available in different forms, depending on video device hardware. Video devices may permit a spe-
cific port to generate none, one, or both of horizontal and vertical sync; capabilities of the ports may not be
uniform among channels, or even among ports for a single channel.
Especially for sync on the color components, a video device may support independent adjustment of each
component's sync, or may support only a global change such that sync is enabled or disabled for all color
components simultaneously. Refer to hardware documentation for information on video device support.
Applications written for use on more than one type of hardware should query all color component values
after setting one to determine whether the sync change was independently adjusted.
The entire set of all sync ports and sync types available for that port may be determined from the structure
returned from the function mldcQueryChannelInfo.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 7 3

mldcSetOutputSync
This function enables and disables sync on one of the sync output ports.

MLDCstatus mldcSetOutputSync(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 syncPortIndex,
MLDCint32 syncType)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.

syncPortIndex
Specifies which sync port. Use one of the following constants for the color components sync outputs:
MLDC_SP_RED, MLDC_SP_GREEN, MLDC_SP_BLUE, and MLDC_SP_ALPHA. For the auxiliary
sync ports, use one of the following constants: MLDC_SP_AUX0, MLDC_SP_AUX1, and MLDC_
SP_AUX2. Alternatively, for the auxiliary sync ports, applications may use one of the constants
defined in an include file that may be supplied that is specific to a particular hardware platform. Not
all sync ports have uniform characteristics; use the function mldcQueryChannelInfo to determine
characteristics for each sync port. The sync ports are summarized in Table 17.1

syncType
The sync type to enable on this port. The possible values are listed in Table 17.2

Description
This function enables and disables sync on one of the sync output ports for the given video output device
and channel.

Events
When this control is altered, the video device generates an MLDC_OUTPUT_SYNC_NOTIFY event.
If this function succeeds it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device han-
dle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel num-
ber, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is not a valid
value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryOutputSync
Returns the current settings for sync on one of the output ports.

MLDCstatus mldcQueryOutputSync(MLDChandle hOutDev,
MLDCint32 channel,
MLDCint32 syncPortIndex,
MLDCint32 *syncTypeReturn)

hOutDev
Specifies the handle for the MLdc video output device.

channel
Specifies the channel number.
1 7 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

syncPortIndex
Specifies which sync port. Use one of the following constants for the color components sync outputs:
MLDC_SP_RED, MLDC_SP_GREEN, MLDC_SP_BLUE, and MLDC_SP_ALPHA. For the auxiliary
sync ports, use one of the following constants: MLDC_SP_AUX0, MLDC_SP_AUX1, and MLDC_
SP_AUX2. The defined sync port types are summarized in Table 17.1. Alternatively, for the auxiliary
sync ports, applications may use one of the constants defined in an include file that may be supplied
that is specific to a particular hardware platform. Not all sync ports have uniform characteristics; use
the function mldcQueryChannelInfo to determine characteristics for each sync port.

syncTypeReturn
The sync type enabled on this port. Returns one of the values summarized in Table 17.2

Description
mldcQueryOutputSync returns the current settings for sync on one of the output ports.
If this function succeeds it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device han-
dle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel num-
ber, this function will return MLDC_STATUS_INVALID_CHANNEL. If syncPortIndex is not a valid
port number, this function will return MLDC_STATUS_INVALID_PORT. If syncTypeReturn is not a
valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 7 5

1 7 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

23
OUTPUT PEDESTAL

Introduction
Video systems that use analog voltage signals may have a 7.5-percent setup, also called a pedestal.
Included in this category are composite 525/59.94 systems such as NTSC, and computer video systems
that conform to the levels of the EIA RS-343-A standard. The setup level of 7.5 refers to the percentage of
the voltage range that is used to designate reference black. If connecting to one of these types of monitors
the application will want to enable the use of the setup or pedestal. Newer analog video standards such as
HDTV have zero setup and will not need this parameter. Setup has also been abolished from component
digital video. Also, many 525/59.94 component analog systems have adopted zero setup.
There are two functions that deal with setup or pedestal:

mldcSetOutputPedestal
This function will enable or disable the output pedestal for composite video.

MLDCstatus mldcSetOutputPedestal(MLDChandle hOutDev,
MLDCint32 channel,
MLDCboolean enable)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

enable
Specifies whether pedestal should be enabled.

Description
Thus function deals with video pedestal, also known as setup. This operation is typically available only on
composite NTSC channels. mldcSetOutputPedestal enables and disables pedestal on a channel. The
value may be TRUE (enable) or FALSE (disable).
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 7 7

Events
When this control is altered, the graphics device generates an MLDC_OUTPUT_PEDESTAL_NOTIFY
event.
If this function succeeds it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device han-
dle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel num-
ber, this function will return MLDC_STATUS_INVALID_CHANNEL. If enable is not a valid boolean, this
function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryOutputPedestal
This function will query the current state (on or off) of the composite video pedestal.

MLDCstatus mldcQueryOutputPedestal(MLDChandle hOutDev,
MLDCint32 channel,
MLDCboolean *enableReturn)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

enableReturn
Returns whether pedestal is enabled.

Description
This function returns the current settings for pedestal on a channel. The value may be TRUE or FALSE.
Video pedestal, also known as setup, is typically available only on composite NTSC channels.
If this function succeeds it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device han-
dle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel num-
ber, this function will return MLDC_STATUS_INVALID_CHANNEL. If enableReturn is not a valid
pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 7 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

24
MONITOR COMMANDS

Introduction
These functions allow an application to communicate with a physical monitor that has the capability to send
and receive commands. Applications are responsible for composing monitor commands and for parsing the
results; the video device simply transports strings between the application and the monitor.
The following functions provide inquiry and control of physical monitors.

mldcInitMonitorBaseProtocol
This function initializes the protocol the video device is going to use to communicate with the physical mon-
itor before any commands or queries are sent to the physical monitor.

MLDCstatus mldcInitMonitorBaseProtocol(MLDChandle hOutDev,
MLDCint32 channel)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

Description
The mldcInitMonitorBaseProtocol function must be called to initialize the protocol the video device is
going to use to communicate with the physical monitor before any commands or queries are sent to the
physical monitor. This function reinitializes the physical monitor protocol each time it is called, and may be
called at any time.
If this function succeeds it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device han-
dle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel num-
ber, this function will return MLDC_STATUS_INVALID_CHANNEL.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 7 9

mldcQueryMonitorBaseProtocol
This function may be called to find out if the protocol has already been initialized.

MLDCstatus mldcQueryMonitorBaseProtocol(MLDChandle hOutDev,
MLDCint32 channel)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

Description
mldcQueryMonitorBaseProtocol may be called to find out if the protocol has already been initialized.
When the base protocol has been initialized successfully, MLDC_STATUS_NO_ERROR is returned. If the
base protocol has not been initialized, MLDC_STATUS_BASE_PROTOCOL_NOT_INITIALIZED is
returned. MLDC_STATUS_INVALID_DEVICE is returned if hOutDev is an invalid device handle. MLDC_
STATUS_INVALID_CHANNEL is returned if channel is not a valid channel number.

mldcQueryMonitorName
This function returns the name of the physical monitor connected to an output video channel.

MLDCstatus mldcQueryMonitorName(MLDChandle hOutDev,
MLDCint32 channel,
MLDCchar **mname_return)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

mname_return
A pointer to variable that is to receive the NULL-terminated character string. Use mldcFree to free
the memory for the string when it is no longer needed.

Description
mldcQueryMonitorName returns the name of the monitor connected to the specified channel.
When the function succeeds, the return value is MLDC_STATUS_NO_ERROR. If hOutDev is an invalid
device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid
channel number, this function will return MLDC_STATUS_INVALID_CHANNEL. If no monitor is con-
nected to the channel or the monitor does not support this function, the function will return MLDC_
STATUS_NO_MONITOR_NAME, and mname_return will be set to NULL.
1 8 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

mldcSendMonitorCommand
This function sends a command to the physical monitor of the specified MLdc video output device and
channel.

MLDCstatus mldcSendMonitorCommand(MLDChandle hOutDev,
MLDCint32 channel,
const MLDCchar *monitorCommand,
MLDCint32 commandLength)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

monitorCommand
The command to be sent to the monitor. The command string will be sent to the monitor exactly as
specified.

commandLength
The length, in bytes, of monitorCommand.

Description
This function allows an application to communicate with a physical monitor that has the capability to send
and receive commands. Applications are responsible for composing monitor commands and for parsing the
results; the video device simply transports strings between the application and monitor.
mldcSendMonitorCommand sends a command -- for which no response is expected -- to the physical
monitor of the specified MLdc video output device and channel.
If this function succeeds, it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device han-
dle, this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel num-
ber, this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is not a valid
value or a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcSendMonitorQuery
This function sends a command to the physical monitor of the specified channel and waits for a response
before continuing.

MLDCstatus mldcSendMonitorQuery(MLDChandle hOutDev,
MLDCint32 channel,
const MLDCchar *monitorCommand,
MLDCint32 commandLength,
MLDCchar **monitorResponse,
MLDCint32 *responseLength)

hOutDev
Specifies the handle of the MLdc video output device.

channel
Specifies the channel number.

monitorCommand
The command to be sent to the monitor. The command sequence must be a valid command packet
that will be sent unprocessed to the monitor connected to channel.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 8 1

commandLength
The length, in bytes, of monitorCommand.

monitorResponse
Returns a pointer to a buffer containing the response returned from the monitor. This response will
be returned unprocessed.

responseLength
The length, in bytes, of monitorResponse.

Description
This function sends a command to the physical monitor of the specified channel and waits for a response
before continuing. The response is placed in a buffer whose address is returned in monitorResponse.
The client is responsible for calling mldcFree on the memory allocated by the library for monitorRe-
sponse.
If this function succeeds it will return MLDC_STATUS_NO_ERROR. If hOutDev is an invalid device han-
dle this function will return MLDC_STATUS_INVALID_DEVICE. If channel is not a valid channel num-
ber this function will return MLDC_STATUS_INVALID_CHANNEL. If any other argument is not a valid
value or a valid pointer this function will return MLDC_STATUS_INVALID_ARGUMENT.
1 8 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

C H A P T E R

25
EXTENDING MLDC

Introduction
An implementation of MLdc can extend the MLdc interface to provide special customized functionality. The
mechanism for extending the API is patterned after the OpenGL extension mechanism under Windows.
The goal of this mechanism is to allow the interface to be flexible, expandable and to provide for new fea-
tures in a standardized way.
Extensions are identified by character string names provided by vendors and should follow the following
naming convention. MLdc extension names should be null-terminated character strings. The name should
not contain any blanks. Each extension name should begin with a prefix denoting the vendor that devel-
oped the extension, followed by an underscore. Like OpenGL extension names, if more than one company
supports a given extension, the prefix can be promoted to "EXT". If the extension becomes generally sup-
ported and is endorsed by the Khronos SIG then the prefix can be promoted to "OML". Function entry
points that are part of an extension use the same prefix characters as a suffix. For example, if “XYZ” is to
be use as the extension identifier, then each extension name should be of the form "XYZ_some_
extensions_name". Similarly a function name should be of the form "mldcSomeFunctionNameXYZ.”
The application can query the API for a list of extension names that are supported for a given device.
Extensions may introduce new functions or new video attributes or video abilities. Extension functions are
called through function pointers that are obtained from the API by passing it a string holding the function
name. For extensions that add additional structures or named constants to the API, an implementation will
need to supply developers with header files with structure and constant definitions. However, once a given
extension has been accepted by multiple vendors or by the Khronos SIG, the new structures and constants
can be added by Khronos to header files that are delivered with the device-independent portion of MLdc.
When multiple MLdc-controlled devices are present on a system, not all of the devices will necessarily sup-
port the same extensions. Therefore applications must be careful not to assume that an extension for one
video output device will also work for another.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 8 3

Functions
There are three functions that deal with supporting MLdc extensions.

mldcQueryExtensionNames
This function returns an array of character strings that name the available MLdc extensions for a given
video output device.

MLDCstatus mldcQueryExtensionNames(MLDChandle hOutDev,
MLDCchar **extNames)

hOutDev
Specifies the handle of the MLdc video output device.

extNames
Returns a space-separated list of character strings that contain the names of all of the extensions
that are supported for the given video output device. The memory needed for the character strings is
allocated internally by MLdc. When the application no longer needs the extension name strings, it
should free the memory by calling mldcFree.

Description
This function will return in extNames a string that names all of the extensions that are supported by MLdc
on this video output device.
If the function can find extension names to return in extNames, then the function will return the names in
extNames, otherwise it will return a NULL in extNames.
The function will return MLDC_STATUS_NO_ERROR whether there are any extension strings to report or
not. If hOutDev is an invalid device handle, this function will return MLDC_STATUS_INVALID_DEVICE.
If extNames is not a valid pointer, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcIsExtensionSupported
This function returns a MLDC_STATUS_NO_ERROR or MLDC_STATUS_INVALID_DEVICE indicating
whether a named extension is supported for a given video output device.

MLDCstatus mldcIsExtensionSupported(MLDChandle hOutDev,
MLDCchar *extName)

hOutDev
Specifies the handle of the MLdc video output device.

extName
Specifies a null-terminated character string that contains the name of an extension. The name must
match an MLdc extension name exactly, including case.

Description
This function returns a MLDC_STATUS_NO_ERROR if an extension named by extName is supported for
the video output device specified by hOutDev. The extension name must be exactly given in a null-termi-
nated string pointed at by extName. Upper and lower case characters must also match.
1 8 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

If hOutDev is an invalid device handle, this function will return MLDC_STATUS_INVALID_DEVICE. If
extName is not a valid extension name, this function will return MLDC_STATUS_INVALID_ARGUMENT.

mldcQueryExtensionFuncPtr
This function returns a pointer to a named function for a given video output device.

MLDCstatus mldcQueryExtensionFuncPtr(MLDChandle hOutDev,
MLDCchar *functionName,
MLDCproc *functionPtr)

hOutDev
Specifies the handle of the MLdc video output device.

functionName
Specifies the name of the function for which a function pointer will be returned in functionPtr.

functionPtr
The address of a function pointer where the function pointer will be returned.

Description
This function will return to the application a pointer to a function whose name is passed in a null-terminated
character string pointed to by functionName. The name of the function and the extension must be
exactly given and are case-sensitive.
If more than one device supports a given MLdc extension, mldcQueryExtensionFuncPtr will return
a pointer to a device-independent function. That is, the function pointer will point to the same function for all
devices supporting the extension. Applications will therefore not need to keep track of different pointers for
the same extension function on different devices.
If this function succeeds, it will return MLDC_STATUS_NO_ERROR and the address of the extension
function will be returned in functionPtr. If hOutDev is an invalid device handle, this function will
return MLDC_STATUS_INVALID_DEVICE. If any other argument is not a valid value or a valid pointer,
this function will return MLDC_STATUS_INVALID_ARGUMENT.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 8 5

1 8 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

S E C T I O N

V
APPENDICES
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 8 7

1 8 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

A P P E N D I X

A
OPENML PROGRAMMING ENVIRONMENT

REQUIREMENTS

Window System Independent OpenGL Requirements
OpenML requires a large number of OpenGL extensions in addition to core OpenGL 1.2. The complete set
of OpenGL features required for OpenML is documented in the following table.
Where existing extensions have been adopted for OpenML, they are defined by reference to the OpenGL
Extension Registry. The registry contains specification of extensions in the form of changes to the core
OpenGL Specification, and is maintained by SGI on the Web at URL

http://oss.sgi.com/projects/ogl-sample/registry/

OpenGL extension specifications that were created by the Khronos SIG are included in their entirety follow-
ing the list of features.

Requirement Where Documented Comments

OpenGL 1.2 OpenGL 1.2.1 Specification

http://www.opengl.org

Baseline features

GL_ARB_imaging OpenGL 1.2.1 Specification Imaging pipeline functionality is an
optional part of OpenGL 1.2

GL_ARB_texture_border_clamp Registry Additional texture border filtering
mode

GL_EXT_texture_lod_bias Registry Texture LOD bias control

GL_OML_subsample,

GL_OML_resample

OpenML Specification 4:2:2 and 4:2:2:4 image formats

GL_OML_interlace OpenML Specification Interlaced image formats

GL_SGIS_texture_color_mask Registry Selective texture color component
updates

Table 25.1 OpenGL Feature Requirements
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 8 9

Identifying OpenML OpenGL Extensions
In addition to identifying all required OpenGL extensions individually in the OpenGL extension string, an
OpenML implementation must also include the symbol GL_OML_openml1_0 in the extension string returned
by glGetString(GL_EXTENSIONS). This symbol does not correspond to a specific OpenGL extension, but
rather identifies the presence of all required OpenML 1.0 OpenGL functionality as a group.

GL_OML_subsample Extension Specification
Name

OML_subsample

Name Strings

GL_OML_subsample

Contact

Jon Leech, Silicon Graphics (ljp 'at' sgi.com)

Status

Complete. Approved by the Khronos SIG on July 19, 2001.

Version

Last Modified Date: 07/23/2001
Author Revision: $Header: //depot/main/doc/registry/extensions/OML/subsam-

ple.spec#10 $

Number

240

Dependencies

This extension is written against the OpenGL 1.2.1 Specification,

Overview

Many video image formats and compression techniques utilize various
component subsamplings, so it is necessary to provide a mechanism to
specify the up- and down-sampling of components as pixel data is
drawn from and read back to the client. Though subsampled components
are normally associated with the video color space, YCrCb, use of
subsampling in OpenGL does not imply a specific color space. Color
space conversion may be performed using other extensions or core
capabilities such as the color matrix.
1 9 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

This extension defines two new pixel storage formats representing
subsampled data on the client. It is loosely based on the
SGIX_subsample extension, but specifies subsampling with the data
format parameter rather than pixel packing parameters. It also
adds support for CYA subsampled data.

When pixel data is received from the client and an unpacking
upsampling mode other than PIXEL_SUBSAMPLE_NONE_OML is specified,
upsampling is performed via replication, unless otherwise specified
by UNPACK_RESAMPLE_OML.

Similarly, when pixel data is read back to the client and a packing
downsampling mode other than PIXEL_SUBSAMPLE_NONE_OML is specified,
downsampling is performed via simple component decimation (point
sampling), unless otherwise specified by PACK_RESAMPLE_OML.

Issues

* Which subsampled component orderings should be supported?

Only CY and CYA component ordering, since this matches contemporary
video hardware. YC and YCA ordering will require a separate
extension defining new formats.

* The new enumerant naming scheme gives the component frequencies in
the same order as the components themselves; that is,
FORMAT_SUBSAMPLE_24_24_OML corresponds to CY 4:2:2, and
FORMAT_SUBSAMPLE_244_244_OML corresponds to CYA 4:2:2:4. This makes
naming YC and YCA orderings easier.

* Should subsampling be specified with new pixel storage parameters,
like the SGIX_subsample extension, or with new formats, like the
EXT_422 extension?

With new formats. There are many invalid format/type combinations
when specifying subsampling with a pixel storage parameter. Also,
there's an ambiguity when doing this because the <format> parameter
represents the after-upsampling data format, not the host format.

* Because subsampled data is inherently pixel / texture oriented, this
extension only supports the new formats for pixel and texture
operations; it does not support them for convolution filters,
histograms, minmax, or color tables.

* The only packed pixel type supported is 10_10_10_2, since this is
needed for video data interoperability. It would be possible to
support many other packed pixel formats, but most are unused in
practice.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 9 1

Is support for other packed pixels types, particularly
2_10_10_10_REV, required?

* Should readbacks of non-even widths be allowed when downsampling?

No. This is not consistent with draw operations, where this
constraint already exists. It also makes OML_resample more complex
when using an AVERAGE filter, since the edge cases may also apply to
even pixel coordinates. The spec may need to be more explicit about
this restriction.

IP Status

No known issues.

New Procedures and Functions

None.

New Tokens

Accepted by the <format> parameter of DrawPixels, ReadPixels,
TexImage1D, TexImage2D, TexImage3D, TexSubImage1D, TexSubImage2D,
TexSubImage3D, and GetTexImage

FORMAT_SUBSAMPLE_24_24_OML 0x8982
FORMAT_SUBSAMPLE_244_244_OML 0x8983

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

- (3.6.4, p. 88 "Rasterization of Pixel Rectangles")

Add prior to the "Unpacking" subsection on page 90:

If <format> is FORMAT_SUBSAMPLE_24_24_OML or
FORMAT_SUBSAMPLE_244_244_OML, and <type> is one of the packed pixel
formats in table 3.8 other than UNSIGNED_INT_10_10_10_2, then the
error INVALID_OPERATION occurs; if <width> is not a multiple of 2
pixels, or if the value of the UNPACK_SKIP_PIXELS or
UNPACK_ROW_LENGTH parameters is not a multiple of 2 pixels, then the
error INVALID_OPERATION occurs.

- Add new entries to table 3.6:
1 9 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Format Name Element Meaning and Order Target Buffer
----------- ------------------------- -------------
FORMAT_SUBSAMPLE_24_24_OML CbY / CrY Color
FORMAT_SUBSAMPLE_244_244_OML CbYA / CrYA Color

- Append to the caption of table 3.6:

Subsampled formats yield components that are further modified during
conversion to uniform sampling. The subsampled components are
denoted as Cb, Y, Cr, and A, although subsampled data is not defined
to be in any specific color space.

- Modify table 3.8:

<type> Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
----------------------- ------- ---------- -------------
UNSIGNED_INT_10_10_10_2 uint 2, 3, 4 RGBA, BGRA,

FORMAT_SUBSAMPLE_24_24_OML,
FORMAT_SUBSAMPLE_244_244_OML

- Append to the caption of table 3.8:

Subsampled formats may pack components from multiple groups into a
single uint.

- Modify table 3.11's UNSIGNED_INT_10_10_10_2 entry:

UNSIGNED_INT_10_10_10_2, <format>s RGBA and BGRA:

(use existing 4-component diagram)

UNSIGNED_INT_10_10_10_2, <format> SUBSAMPLE_24_24_OML:

31 22 21 12 11 2 1 0
| pixel 0/comp. 0 | pixel 0/comp. 1 | pixel 1/comp. 0 | xx |
| pixel 1/comp. 1 | pixel 2/comp. 0 | pixel 2/comp. 1 | xx |

UNSIGNED_INT_10_10_10_2, <format> SUBSAMPLE_244_244_OML:

31 22 21 12 11 2 1 0
| 1st comp. | 2nd comp. | 3rd comp. | xx |

- Change caption of table 3.11:

Table 3.11: UNSIGNED_INT formats. Subsampled formats are packed into
words, so components from a group may lie in different words. ``xx''
fields are unused.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 9 3

- Add new subsection before "Conversion to RGB" on page 99:

Conversion to Uniform Sampling

This step is applied only to subsampled data. If <format> is
FORMAT_SUBSAMPLE_24_24_OML, then the number of components per pixel
is increased from two to three. If <format> is
FORMAT_SUBSAMPLE_244_244_OML. then the number of components per
pixel is increased from three to four.

After conversion to uniform sampling (see figure 3.9). pixels are
thereafter treated as though they were RGB (three component) or RGBA
(four component) format.

In the remainder of this section, the j'th component of the i'th
pixel in a row is denoted by S_i,j (for source pixels in client
memory) and D_i,j (for destination pixels in the color buffer).

Destination component values are defined as:

For even pixels ((i mod 2) == 0):

D_i,0 = S_i,0
D_i,1 = S_i,1
D_i,2 = S_i+1,0
D_i,3 = S_i,2

For odd pixels ((i mod 2) == 1):

D_i,0 = S_i-1,0
D_i,1 = S_i,1
D_i,2 = S_i,0
D_i,3 = S_i,2

- Add new figure 3.9 (renumber following figures):

FORMAT_SUBSAMPLE_24_24_OML:
<Cb0,Y0> <Cr0,Y1> <Cb2,Y2> <Cr2, Y3>

| | | | | | | |
| | ____/ __|__ | | ____/ __|__
| | / | \ | | / | \
|_|__|_____ | | |__|__|_____ | |
| | | \ | | | | | \ | |
V V V V V V V V V V V V

<Cb0,Y0,Cr0> <Cb0,Y1,Cr0> <Cb2,Y2,Cr2> <Cb2,Y3,Cr2>
< R0,G0,B1 > < R0,G1,B1 > < R2,G2,B3 > < R2,G3,B3 >

FORMAT_SUBSAMPLE_244_244_OML:
<Cb0,Y0,A0> <Cr0,Y1,A1> <Cb2,Y2,A2> <Cr2,Y3,A3>
1 9 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

| | \ | | \ | | \ | | \
| | ______/ __|__ \ | | ______/ __|__ \
| | / \ | \ \ | | / \ | \ \
|_|__|_______ | | \ |__|__|_______ | | \
| | | | \ | | | | | | | \ | | |
V V V V V V V V V V V V V V V V

<Cb0,Y0,Cr0,A0> <Cb0,Y1,Cr0,A1> <Cb2,Y2,Cr2,A2> <Cb2,Y3,Cr2,A3>
< R0,G0,B1,A0 > < R0,G1,B1,A1 > < R2,G2,B3,A2 > < R2,G3,B3,A3 >

Figure 3.9: Upsampling with component replication of subsampled data
from client memory to form RGB or RGBA pixels.

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

4.3.2 Reading Pixels

- Add new subsection before "Final Conversion" on page 160:

Conversion to Subsampled Form

This step is applied only if <format> is FORMAT_SUBSAMPLE_24_24_OML
or FORMAT_SUBSAMPLE_244_244_OML.

In the remainder of this section, the j'th component of the i'th
pixel in a row is denoted by S_i,j (for source pixels in the color
buffer) and D_i,j (for destination pixels in client memory).

If <format> is FORMAT_SUBSAMPLE_24_24_OML, then the resulting pixels
have 2 components; if <format> is FORMAT_SUBSAMPLE_244_244_OML, then
the resulting pixels have 3 components (see figure 4.3). Destination
component values are defined as:

For even pixels ((i mod 2) == 0):

D_i,0 = S_i,0
D_i,1 = S_i,1
D_i,2 = S_i,3 (only for FORMAT_SUBSAMPLE_244_244_OML)

For odd pixels ((i mod 2) == 1):

D_i,0 = S_i-1,2
D_i,1 = S_i,1
D_i,2 = S_i,3 (only for FORMAT_SUBSAMPLE_244_244_OML)

- Add new figure 4.3 (renumber following figures):

FORMAT_SUBSAMPLE_24_24_OML:
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 9 5

<R0,G0,B0,A0> <R1,G1,B1,A1> <R2,G2,B2,A2> <R3,G3,B3,A3>
| | | | | | | | | | | | | | | |
| | \ * * | * * | | \ * * | * *
| | | | | | | |
V V V V V V V V

<Cb0,Y0><Cr0, Y1> <Cb2,Y2><Cr2, Y3>
<--- pixel pair ----> <--- pixel pair ---->

FORMAT_SUBSAMPLE_244_244_OML:
<R0,G0,B0,A0> <R1,G1,B1,A1> <R2,G2,B2,A2> <R3,G3,B3,A3>

	__	__ *	*			__	__ *	*						
		\					\							
	/		/		/		/							
V V V V V V V V V V V V

<Cb0,Y0,A0> <Cr0,Y1,A1> <Cb2,Y2,A2> <Cr2,Y3,A3>
<--- pixel pair ----> <--- pixel pair ---->

Figure 4.3: Downsampling of RGB or RGBA pixels to form subsampled
data in host memory.

- Add prior to the last sentence of subsection "Placement in Client
Memory" on page 162:

If <format> is FORMAT_SUBSAMPLE_24_24_OML, then only the
corresponding two elements (first two components of each group) are
written. If <format> is FORMAT_SUBSAMPLE_244_244_OML, then only the
corresponding three elements (first three components of each group)
are written.

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and State
Requests)

None.

Additions to the GLX 1.3 Specification

TBD. Discussion of image formats in the GLX Protocol Specification
may need to be expanded.

Errors

See above.
1 9 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

New State

None.

New Implementation Dependent State

None.

Revision History

* Revision 10, 07/23/2001 - Finalized Status for OpenML 1.0.
* Revision 9, 07/16/2001 - Fix label in 24_24 packed pixel diagram.
* Revisions 7-8, 07/11/2001 - Assign enum values and extension number

for the registry.
 * Revision 6 - Correct errors in the equations describing subsampling.
* Revision 5 - Formatting changes for OpenML Specification.
* Revision 4 - Rewrite to use the <format> parameter, rather than a

pixel storage mode, to specify subsampled data. Specify which
format/type combinations are allowed for subsampled data, and define
the representation of 10-bit component subsampled packed pixel data.

* Revision 3 - Removed support for YC component orders. Renamed CY and
CYA enumerants more sensibly. Changed text descriptions of sampling
to equations. Made enum values undefined until we've determined if
this extension is backwards compatible with SGIX_subsample.

* Revision 2 - Corrected 4224 upsampling and downsampling figures.
Moved discussion of errors for non-even image widths from the
OML_resample specification.

* Revision 1 - Derived from SGIX_subsample.

GL_OML_resample Extension Specification
Name

OML_resample

Name Strings

GL_OML_resample

Contact

Jon Leech, Silicon Graphics (ljp 'at' sgi.com)

Status

Complete. Approved by the Khronos SIG on July 19, 2001.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 9 7

Version

Last Modified Date: 07/23/2001
Author Revision: $Header: //depot/main/doc/registry/extensions/OML/resam-

ple.spec#10 $

Number

241

Dependencies

OML_subsample is required.
This extension is written against the OpenGL 1.2.1 Specification,

Overview

This extension enhances the resampling capabilities of the
OML_subsample extension. It is loosely based on the SGIX_resample
extension.

When converting data from subsampled to uniform sampling, upsampling
may be performed by one of three methods: component replication,
zero fill, or adjacent neighbor averaging.

When converting data from uniform sampling to subsampled form,
downsampling may be performed only by component decimation (point
sampling) or averaging.

Upsampling and downsampling filters other than those defined by this
extension may be performed by appropriate use of convolution and
other pixel transfer operations. The zero fill unpacking mode is
included to assist applications wanting to define their own filters.

Issues

* Should RESAMPLE_xxx enums be renamed to PIXEL_RESAMPLE_xxx?

IP Status

No known issues.

New Procedures and Functions

None.

New Tokens
1 9 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Accepted by the <pname> parameter of PixelStoref, PixelStorei,
GetBooleanv, GetIntegerv, GetFloatv and GetDoublev:

PACK_RESAMPLE_OML 0x8984
UNPACK_RESAMPLE_OML 0x8985

Accepted by the <param> parameter of PixelStoref and PixelStorei
when the <pname> parameter is UNPACK_RESAMPLE_OML:

RESAMPLE_REPLICATE_OML 0x8986
RESAMPLE_ZERO_FILL_OML 0x8987
RESAMPLE_AVERAGE_OML 0x8988

Accepted by the <param> parameter of PixelStoref and PixelStorei
when the <pname> parameter is PACK_RESAMPLE_OML:

RESAMPLE_DECIMATE_OML 0x8989
RESAMPLE_AVERAGE_OML 0x8988

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

- (3.6.1, p. 75 "Pixel Storage Modes")

Add to table 3.1 (p. 76):

Parameter Name Type Initial Value Valid Range
-------------- ---- ------------- -----------
UNPACK_RESAMPLE_OML integer RESAMPLE_REPLICATE_OML RESAMPLE_REPLICATE_OML

RESAMPLE_ZERO_FILL_OML
RESAMPLE_AVERAGE_OML

PACK_RESAMPLE_OML integer RESAMPLE_DECIMATE_OML RESAMPLE_DECIMATE_OML
RESAMPLE_AVERAGE_OML

- (3.6.4, p. 88 "Rasterization of Pixel Rectangles")

- Modify the new subsection "Conversion to Uniform Sampling"
(introduced by OML_subsample) to read:

Conversion to Uniform Sampling

This step is applied only to subsampled data. If <format> is
FORMAT_SUBSAMPLE_24_24_OML, then the number of components per pixel
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 1 9 9

is increased from two to three. If <format> is
FORMAT_SUBSAMPLE_244_244_OML. then the number of components per
pixel is increased from three to four. The upsampling method used is
determined by the value of the PixelStore parameter
UNPACK_RESAMPLE_OML.

After conversion to uniform sampling (see figure 3.9). pixels are
thereafter treated as though they were RGB (three component) or RGBA
(four component) format.

In the remainder of this section, the j'th component of the i'th
pixel in a row is denoted by S_i,j (for source pixels in client
memory) and D_i,j (for destination pixels in the color buffer).

Replication

If the value of UNPACK_RESAMPLE_OML is RESAMPLE_REPLICATE_OML (see
figure 3.9), destination component values are defined as:

For even pixels ((i mod 2) == 0):

D_i,0 = S_i,0
D_i,1 = S_i,1
D_i,2 = S_i+1,0
D_i,3 = S_i,2

For odd pixels ((i mod 2) == 1):

D_i,0 = S_i-1,0
D_i,1 = S_i,1
D_i,2 = S_i,0
D_i,3 = S_i,2

- (figure 3.9, introduced by OML_subsample, is unchanged)

Zero Fill

If the value of UNPACK_RESAMPLE_OML is RESAMPLE_ZERO_FILL_OML (see
figure 3.10), destination component values are defined as:

For even pixels ((i mod 2) == 0):

D_i,0 = S_i,0
D_i,1 = S_i,1
D_i,2 = S_i+1,0
D_i,3 = S_i,2

For odd pixels ((i mod 2) == 1):
2 0 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

D_i,0 = 0
D_i,1 = S_i,1
D_i,2 = 0
D_i,3 = S_i,2

- Add new figure 3.10, following the new figure 3.9 defined in the
OML_subsample extension:

FORMAT_SUBSAMPLE_24_24_OML:
<Cb0,Y0> <Cr0,Y1> <Cb2,Y2> <Cr2, Y3>

	____/			____/		
	/			/		
		0.0	0.0			0.0
V V V V V V V V V V V V

<Cb0,Y0,Cr0> <Cb0,Y1,Cr0> <Cb2,Y2,Cr2> <Cb2,Y3,Cr2>
< R0,G0,B1 > < R0,G1,B1 > < R2,G2,B3 > < R2,G3,B3 >

FORMAT_SUBSAMPLE_244_244_OML:
<Cb0,Y0,A0> <Cr0,Y1,A1> <Cb2,Y2,A2> <Cr2,Y3,A3>

| | \ | | \ | | \ | | \
| | ______/ | \ | | ______/ | \
| | / \ | \ | | / \ | \
| | | \ 0.0 | 0.0 \ | | | \ 0.0 | 0.0 \
| | | | | | | | | | | | | | | |
V V V V V V V V V V V V V V V V

<Cb0,Y0,Cr0,A0> <Cb0,Y1,Cr0,A1> <Cb2,Y2,Cr2,A2> <Cb2,Y3,Cr2,A3>
< R0,G0,B1,A0 > < R0,G1,B1,A1 > < R2,G2,B3,A2 > < R2,G3,B3,A3 >

Figure 3.10: Upsampling with zero fill of subsampled data from host
memory to form RGB or RGBA pixels.

Averaging

If the value of UNPACK_RESAMPLE_OML is RESAMPLE_AVERAGE_OML (see
figure 3.11), destination component values are defined as:

For even pixels:

D_i,0 = S_i,0
D_i,1 = S_i,1
D_i,2 = S_i+1,0
D_i,3 = S_i,2

(No special case for D_i,2 can arise when i is the last pixel,
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 0 1

because of the restriction to even image widths).

For odd pixels:

D_i,0 = S_i,0 i == <width>-1 (last pixel)
= 1/2 S_i-1,0 + 1/2 S_i+1,0 otherwise

D_i,1 = S_i,1
D_i,2 = S_i,0 i == <width>-1 (last pixel)

= 1/2 S_i,0 + 1/2 S_i+2,0 otherwise
D_i,3 = S_i,2

- Add new figure 3.11, following the new figure 3.10:

FORMAT_SUBSAMPLE_24_24_OML:
<Cb0,Y0> <Cr0,Y1> <Cb2,Y2> <Cr2, Y3>

| | | | | | | |
| | ____/ __|__ ____|___|_______/ __|__ _
| | / | \/ | | / | \/
|_|__|_____ __|__|___ /|__|__|_____ __|__|__
| | | \/ | | | | | \/ | |
V V V V V V V V V V V V

<Cb0,Y0,Cr0> <Cb0,Y1,Cr0> <Cb2,Y2,Cr2> <Cb2,Y3,Cr2>
< R0,G0,B1 > < R0,G1,B1 > < R2,G2,B3 > < R2,G3,B3 >

FORMAT_SUBSAMPLE_244_244_OML:
<Cb0,Y0,A0> <Cr0,Y1,A1> <Cb2,Y2,A2> <Cr2,Y3,A3>

| | \ | | \ | | \ | | \
| | ______/ __|__ ______|___|__________/ __|__ ___
| | / \ | \/ \ | | / \ | \/ \
|_|__|_______ __|__|______/|__|__|________ __|__|____
| | | | \/ | | | | | | | \/ | | |
V V V V V V V V V V V V V V V V

<Cb0,Y0,Cr0,A0> <Cb0,Y1,Cr0,A1> <Cb2,Y2,Cr2,A2> <Cb2,Y3,Cr2,A3>
< R0,G0,B1,A0 > < R0,G1,B1,A1 > < R2,G2,B3,A2 > < R2,G3,B3,A3 >

Figure 3.11: Upsampling with averaging of subsampled data from host
memory to form RGB or RGBA pixels.

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

- Modify the new section "Conversion to Subsampled Form" (introduced
by OML_subsample) to read:

Conversion to Subsampled Form

This step is applied only if <format> is FORMAT_SUBSAMPLE_24_24_OML
or FORMAT_SUBSAMPLE_244_244_OML. A filter operation specified by the
2 0 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

value of PACK_RESAMPLE_OML is applied prior to the subsampling step.

In the remainder of this section, the j'th component of the i'th
pixel in a row is denoted by S_i,j (for source pixels in the color
buffer) and D_i,j (for destination pixels in client memory).

If <format> is FORMAT_SUBSAMPLE_24_24_OML, then the resulting pixels
have 2 components (see figure 4.3); if <format> is
FORMAT_SUBSAMPLE_244_244_OML, then the resulting pixels have 3
components (see figure 4.4).

Decimation

If the value of PACK_RESAMPLE_OML is RESAMPLE_DECIMATE_OML, then
destination component values are defined as:

For even pixels ((i mod 2) == 0):

D_i,0 = S_i,0
D_i,1 = S_i,1
D_i,2 = S_i,3 (only for FORMAT_SUBSAMPLE_244_244_OML)

For odd pixels ((i mod 2) == 1):

D_i,0 = S_i-1,2
D_i,1 = S_i,1
D_i,2 = S_i,3 (only for FORMAT_SUBSAMPLE_244_244_OML)

- Add new figure 4.3 (renumber following figures):

FORMAT_SUBSAMPLE_24_24_OML:
<R0,G0,B0,A0> <R1,G1,B1,A1> <R2,G2,B2,A2> <R3,G3,B3,A3>

| | | | | | | | | | | | | | | |
| | \ * * | * * | | \ * * | * *
| | | | | | | |
V V V V V V V V

<Cb0,Y0><Cr0, Y1> <Cb2,Y2><Cr2, Y3>
<--- pixel pair ----> <--- pixel pair ---->

FORMAT_SUBSAMPLE_244_244_OML:
<R0,G0,B0,A0> <R1,G1,B1,A1> <R2,G2,B2,A2> <R3,G3,B3,A3>

	__	__ *	*			__	__ *	*						
		\					\							
	/		/		/		/							
V V V V V V V V V V V V

<Cb0,Y0,A0> <Cr0,Y1,A1> <Cb2,Y2,A2> <Cr2,Y3,A3>
<--- pixel pair ----> <--- pixel pair ---->
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 0 3

Figure 4.3: Downsampling with decimation of RGB or RGBA pixels to
form subsampled data in host memory.

Averaging

If the value of PACK_RESAMPLE_OML is RESAMPLE_AVERAGE_OML, then
destination component values are defined as:

For even pixels:

D_i,0 = 3/4 S_i,0 + 1/4 S_i+1,0 i == 0 (first pixel)
= 1/4 S_i-1,0 + 3/4 S_i,0 i == <width>-1 (last pixel)
= 1/4 S_i-1,0 + otherwise

1/2 S_i,0 +
1/4 S_i+1,0

D_i,1 = S_i,1
D_i,2 = S_i,3

For odd pixels:

D_i,0 = 3/4 S_i-1,2 + 1/4 S_i,2 i == <width>-1 (last pixel)
= 1/4 S_i-1,2 + otherwise

1/2 S_i,2 +
1/4 S_i+1,2

D_i,1 = S_i,1
D_i,2 = S_i,3

XXX Note that the "last pixel" case is only needed for readbacks where
XXX <width> is not even, so may be removable.

- Add new figure 4.4 (renumber following figures):

FORMAT_SUBSAMPLE_24_24_OML:
<R0,G0,B0,A0> <R1,G1,B1,A1> <R2,G2,B2,A2> <R3,G3,B3,A3>

| _|_|_______/_|__|______ | _|__|_______/_|__|_______
|/ | | | | \|/ | _______ | |
| | ______ _|_/ ______|__|_________ \ _|_/ ______
| | \/ | | | \|/ |
V V V V V V V V

<Cb0,Y0> <Cr0,Y1> <Cb2,Y2> <Cr2,Y3>

FORMAT_SUBSAMPLE_244_244_OML:
<R0,G0,B0,A0> <R1,G1,B1,A1> <R2,G2,B2,A2> <R3,G3,B3,A3>

| _|_|___|___/_|__|___|__ | _|__|___|___/_|__|___|___
|/ | | | | | | \|/ | ___|___ | | |
| | __|___ _|_/ __|___|__|______|__ \ _|_/ __|___
| | | \/ | | | | | \|/ | |
V V V V V V V V V V V V
2 0 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

<Cb0,Y0, A0><Cr0,Y1, A1><Cb2,Y2, A2><Cr2,Y3, A3>

Figure 4.4: Downsampling with averaging of RGB or RGBA pixels to
form subsampled data in host memory.

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and State
Requests)

None.

Additions to the GLX 1.3 Specification

None.

Errors

See above.

New State

(table 6.17, p. 207)
Get Value Type Get Command Initial Value
--------- ---- ----------- -------------
UNPACK_RESAMPLE_OML Z3 GetIntegerv RESAMPLE_REPLICATE_OML
PACK_RESAMPLE_OML Z2 GetIntegerv RESAMPLE_DECIMATE_OML

(continued columns)
Get Value Description Sec Attribute
--------- ----------- --- ---------
UNPACK_RESAMPLE_OML Pixel upsampling mode 3.6 pixel-store
PACK_RESAMPLE_OML Pixel downsampling mode 4.3 pixel-store

New Implementation Dependent State

None.

Revision History

* Revision 10, 07/23/2001 - Finalized Status for OpenML 1.0.
* Revision 9, 07/16/2001 - Remove erroneous redefinition of

RESAMPLE_AVERAGE enumerant value.
* Revisions 7-8, 07,11,2001 - Assign enum values and extension number

for the registry.
* Revision 6 - Correct errors in the equations describing subsampling.
* Revision 5 - Formatting changes for OpenML Specification.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 0 5

* Revision 4, 03/27/2001 - Rewrite to use the <format> parameter,
rather than a pixel storage mode, to specify subsampled data.

* Revision 3 - Removed support for YC component orders. Renamed CY and
CYA enumerants more sensibly. Added Discreet's RESAMPLE_AVERAGE
resampling mode. Changed text descriptions of sampling to equations.
Made enum values undefined until we've determined if this extension
is backwards compatible with SGIX_resample.

* Revision 2 - Corrected 4224 upsampling and downsampling figures.
Moved discussion of errors for non-even image widths to the
OML_subsample specification.

* Revision 1 - Derived from SGIX_resample.

GL_OML_interlace Extension Specification
Name

OML_interlace

Name Strings

GL_OML_interlace

Contact

Jon Leech, Silicon Graphics (ljp 'at' sgi.com)

Status

Complete. Approved by the Khronos SIG on July 19, 2001.

Version

Last Modified Date: 07/23/2001
Author Revision: $Header: //depot/main/doc/registry/extensions/OML/inter-

lace.spec#5 $

Number

239

Dependencies

None.

Overview

This extension provides a way to interlace rows of pixels when
drawing, reading, or copying pixel rectangles or texture images. In
this context, interlacing means skiping over rows of pixels or
texels in the destination. This is useful for dealing with video
data since a single frame of video is typically composed from two
images or fields: one image specifying the data for even rows of the
frame and the other image specifying the data for odd rows of the
2 0 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

frame.

The functionality provided by this extension is a combination
of the older SGIX_interlace and INGR_interlace_read extensions,
with changes applying interlacing to texture image queries.

Issues

* Should there be a single enumerant controlling both draw and read
operations? For the moment, we continue using separate enums, for
backwards compatibility with SGIX_interlace and INGR_interlace_read.

* Can we use the same enum values as the older extensions? Possibly,
depending on the resolution of issues of exactly which operations
interlacing is applied to. For the moment we assume the same
values cannot be used.

* Are there any GLX protocol issues relating to the actual vs.
specified size of the image being transferred? Probably not, since
unlike the effects of convolution, the image being transferred over
the wire is always the specified size; all that changes is where the
pixels are positioned in the frame buffer.

* Discreet requested that INTERLACE_READ_OML apply to GetTexImage. The
extension does not support this because there's no easy way to
support it with any generality: with only the binary
INTERLACE_READ_OML setting available, the implementation could
return only the even rows, but would have no way of indicating that
only the odd rows should be returned. This is non-orthogonal
probably more frustrating than useful; a generic solution would
require creation of a GetTexSubImage call.

* We may need to be more precise about exactly which operations
interlacing is and is not applied to. Currently it must be inferred
from other parts of the OpenGL Specification, and different
implementations are likely to disagree on this. Some language has
been added to section 6.1.4 to deal explicitly with GetTexImage, but
may be needed elsewhere as well.

IP Status

No known issues.

New Procedures and Functions

None.

New Tokens

Accepted by the <cap> parameter of Enable, Disable, and IsEnabled,
and by the <pname> parameter of GetBooleanv, GetIntegerv, GetFloatv,
and GetDoublev:

INTERLACE_OML 0x8980
INTERLACE_READ_OML 0x8981

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 0 7

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

- (3.6.4, p. 99) Insert the following subsection between "Pixel
Transfer Operations" and "Final Conversion"

Interlacing

This step applies only if INTERLACE_OML is enabled. All of the
groups which belong to a row m in the source image are treated as if
they belonged to the row 2 * m. If the source image has a height of
h rows, this effectively expands the height of the image to 2 * h -
1 rows. After interlacing, only every other row of the image is
defined. If the interlaced pixel rectangle is rasterized to the
framebuffer, then only these rows are converted to fragments. If the
interlaced pixel rectangle is a texture image, then only these rows
are written to texure memory.

In cases where errors can result from the specification of invalid
image dimensions, it is the resulting dimensions that are tested,
not the dimensions of the source image. (A specific example is
TexImage2D, which specifies constraints for image dimensions. Even
if TexImage2D is called with a null pixel pointer, the dimensions of
the resulting texture image are those that would result from the
effective expansion of the specified image due to interlacing.)

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Frame Buffer)

- (4.3.2, p. 157) Modify the 5th paragraph of "Obtaining Pixels from
the Framebuffer" to read

If INTERLACE_READ_OML is disabled, then ReadPixels obtains values
from the selected buffer for each pixel with lower left hand corner
at (x+i, y+j) for 0 <= i < width and 0 <= j < height; this pixel is
said to be the ith pixel in the jth row.

If INTERLACE_READ_OML is enabled, then ReadPixels obtains values
from the selected buffer for each pixel with lower left hand corner
at (x+i, y+(j*2)) for 0 <= i < width and 0 <= j < height; this pixel
is said to be the ith pixel in the jth row.

If any of these pixels lies outside of the window...

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None.

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and State
Requests)

- (6.1.4, p. 184) Insert in the second paragraph, following "... and
from the first image to the last for three-dimensional textures."

The value of INTERLACE_READ_OML has no effect on the operation of
GetTexImage.

Additions to the GLX 1.3 Specification

None.
2 0 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Errors

See above.

New State

Get Value Type Get Command Initial Value Attribute
--------- ---- ----------- ------------- ---------
INTERLACE_OML B IsEnabled False pixel/enable
INTERLACE_READ_OML B IsEnabled False pixel/enable

New Implementation Dependent State

None.

Revision History

* Revision 5, 07/23/2001 - Finalized Status for OpenML 1.0.
* Revision 4, 07/11/2001 - Assign enum values and extension number

for the registry.
* Revision 3 - Formatting changes for OpenML Specification.
* Revision 2 - Expanded description of why GetTexImage doesn't support

interlaced readbacks.
* Revision 1 - Derived from SGIX_interlace and INGR_interlace_read.

X Window System Requirements

GLX Requirements
GLX binds OpenGL to the X Window System. OpenML requires several GLX extensions in addition to core
GLX 1.3. The complete set of GLX features required for OpenML is documented in the following table.
Where existing extensions have been adopted for OpenML, they are defined by reference to the OpenGL
Extension Registry.
GLX extension specifications that were created by the Khronos SIG are included in their entirety following
the list of features.

Requirement Where Documented Comments

GLX 1.3 GLX 1.3 Specification

http://www.opengl.org

Baseline features. In addition, GLX
protocol support is required for all
core OpenGL extensions used in
OpenML.

GLX_OML_swap_method OpenML Specification Buffer swap method control

GLX_OML_sync_control OpenML Specification UST/MSC/SBC synchronization

Table 25.2 GLX feature requirements
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 0 9

Identifying OpenML GLX Extensions
In addition to identifying all required GLX extensions individually in the GLX extension strings, an OpenML
implementation must also include the symbol GLX_OML_openml1_0 in the extension strings returned by
glXQueryExtensionsString, glXGetClientString, and glXQueryServerString. This symbol does not cor-
respond to a specific GLX extension, but rather identifies the presence of all required OpenML 1.0 GLX
functionality as a group.

GLX_OML_swap_method Extension Specification
Name

GLX_OML_swap_method

Name Strings

GLX_OML_swap_method

Contact

Jon Leech, SGI (ljp 'at' sgi.com)

Status

Complete. Approved by the Khronos SIG on July 19, 2001.

Version

Last Modified Date: 07/23/2001
Revision: $Header: //depot/main/doc/registry/extensions/OML/glx_swap_

method.spec#4 $

Number

237

Dependencies

GLX 1.3 is required.

Overview

This extension adds a new attribute, GLX_SWAP_METHOD, for a
GLXFBConfig. The GLX_SWAP_METHOD indicates how front and back
buffers are swapped when the GLXFBConfig is double-buffered.

IP Status

No known issues.
2 1 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Issues and Notes

* Some hardware supports different swap methods in full screen mode
vs. windowed mode. How should this be handled? This is not handled
by this extension. GLX does not support the notion of fullscreen vs.
windowed mode. A separate extension is required to properly support
fullscreen mode.

New Procedures and Functions

None.

New Tokens

Accepted in the <attrib_list> parameter array of glXChooseFBConfig
and as the <attribute> parameter for glXGetFBConfigAttrib:

GLX_SWAP_METHOD_OML 0x8060

Accepted as a value in the <attrib_list> parameter of glXChooseFBConfig
and returned in the <value> parameter of glXGetFBConfig:

GLX_SWAP_EXCHANGE_OML 0x8061
GLX_SWAP_COPY_OML 0x8062
GLX_SWAP_UNDEFINED_OML 0x8063

Additions to the OpenGL 1.2.1 Specification

None

Additions to the GLX 1.3 Specification

- (3.3.3, p. ?? "Configuration Management")

Add to table 3.1:

Attribute Type Notes
--------- ---- -----
GLX_SWAP_METHOD_OML enum method used to swap front and back color buffers

The GLX_SWAP_METHOD_OML attribute may be set to one of the following
values: GLX_SWAP_EXCHANGE_OML, GLX_SWAP_COPY_OML or
GLX_SWAP_UNDEFINED_OML. If this attribute is set to
GLX_SWAP_EXCHANGE_OML then swapping exchanges the front and back
buffer contents; if the attribute is set to GLX_SWAP_COPY_OML then
swapping copies the back buffer contents to the front buffer,
preserving the back buffer contents; if it is set to
GLX_SWAP_UNDEFINED_OML then the back buffer contents are copied to
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 1 1

the front buffer but the back buffer contents are undefined after
the operation. If the GLXFBConfig does not support a back buffer,
then the value of GLX_SWAP_METHOD_OML is set to
GLX_SWAP_UNDEFINED_OML.

Add to table 3.4:

Attribute Default Selection and Sorting Sort Priority
Criteria

--------- ------- --------------------- -------------
GLX_SWAP_METHOD_OML GLX_DONT_CARE Exact ???

New State

None

New Implementation Dependent State

None

Revision History

* Revision 4, 07/23/2001 - Finalized Status for OpenML 1.0.
* Revision 3, 07/11/2001 - Assign enum values.
* Revision 2, 07/11/2001 - Assign extension numbers for the registry.
* Revision 1 - Change Paula's draft to use OML affix.

GLX_OML_sync_control Extension Specification
Name

OML_sync_control

Name Strings

GLX_OML_sync_control

Contact

Randi Rost, 3Dlabs (rost 'at' 3dlabs.com)

Status

Complete. Approved by the Khronos SIG on July 19, 2001.

Version

Last Modified Date: 07/23/2001 Revision: 6.0

Based on WGL_OML_sync_control Revision 17.0

Number
2 1 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

238

Dependencies

The extension is written against the OpenGL 1.2.1 Specification
and the GLX 1.3 Specification, although it should work on previous
versions of these specifications.

Overview

This extension provides the control necessary to ensure
synchronization between events on the graphics card (such as
vertical retrace) and other parts of the system. It provides support
for applications with real-time rendering requirements by providing
precise synchronization between graphics and streaming video or
audio.

This extension incorporates the use of three counters that provide
the necessary synchronization. The Unadjusted System Time (or UST)
is a 64-bit monotonically increasing counter that is available
throughout the system. UST is not a resource that is controlled
by OpenGL, so it is not defined further as part of this extension.
The graphics Media Stream Counter (or graphics MSC) is a counter
that is unique to the graphics subsystem and increments for each
vertical retrace that occurs. The Swap Buffer Counter (SBC) is an
attribute of a GLXDrawable and is incremented each time a swap
buffer action is performed on the associated drawable.

The use of these three counters allows the application to
synchronize graphics rendering to vertical retraces and/or swap
buffer actions, and to synchronize other activities in the system
(such as streaming video or audio) to vertical retraces and/or
swap buffer actions.

Functions are provided to allow an application to detect when an
MSC or SBC has reached a certain value. This function will block
until the specified value has been reached. Applications that want
to continue other processing while waiting are expected to call
these blocking functions from a thread that is separate from the
main processing thread(s) of the application.

This extension carefully defines the observable order in which
things occur in order to allow implementations to perform
optimizations and avoid artifacts such as tearing, while at the
same time providing a framework for consistent behavior from the
point of view of an application.

Issues

None.

IP Status

No known issues.

New Procedures and Functions

Bool glXGetSyncValuesOML(Display* dpy,
GLXDrawable drawable,
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 1 3

int64_t* ust,
int64_t* msc,
int64_t* sbc)

Bool glXGetMscRateOML(Display* dpy,
GLXDrawable drawable,
int32_t* numerator,
int32_t* denominator)

int64_t glXSwapBuffersMscOML(Display* dpy,
GLXDrawable drawable,
int64_t target_msc,
int64_t divisor,
int64_t remainder)

Bool glXWaitForMscOML(Display* dpy,
GLXDrawable drawable,
int64_t target_msc,
int64_t divisor,
int64_t remainder,
int64_t* ust,
int64_t* msc,
int64_t* sbc)

Bool glXWaitForSbcOML(Display* dpy,
GLXDrawable drawable,
int64_t target_sbc,
int64_t* ust,
int64_t* msc,
int64_t* sbc)

New Tokens

None

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Framebuffer)

None

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
State Requests)

None

Additions to the GLX 1.3 Specification

glXGetSyncValuesOML returns the current UST/MSC/SBC triple. A UST
2 1 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

timestamp is obtained each time the graphics MSC is incremented.
If this value does not reflect the value of the UST at the time the
first scan line of the display begins passing through the video
output port, it will be adjusted by the graphics driver to do so
prior to being returned by any of the functions defined by this
extension.

This UST timestamp, together with the current graphics MSC and the
current SBC, comprise the current UST/MSC/SBC triple. The UST,
graphics MSC, and SBC values are not part of the render context
state. These values cannot be pushed or popped. The graphics MSC
value is initialized to 0 when the graphics device is initialized.
The SBC is per-window state and is initialized to 0 when the
GLXDrawable data structure is initialized.

The SBC value is incremented by the graphics driver at the completion
of each buffer swap (e.g., the pixel copy has been completed or the
hardware register that swaps memory banks has been written). For pixel
formats that do not contain a back buffer, the SBC will always be
returned as 0.

The graphics MSC value is incremented once for each screen refresh.
For a non-interlaced display, this means that the graphics MSC value
is incremented for each frame. For an interlaced display, it means
that it will be incremented for each field. For a multi-monitor
system, the monitor used to determine MSC is screen 0 of <display>.

glXGetMscRateOML returns the rate at which the MSC will be incremented
for the display associated with <hdc>. The rate is expressed in Hertz
as <numerator> / <denominator>. If the MSC rate in Hertz is an
integer, then <denominator> will be 1 and <numerator> will be
the MSC rate.

glXSwapBuffersMscOML has the same functionality as glXSwapBuffers,
except for the following. The swap indicated by a call to
glXSwapBuffersMscOML does not perform an implicit glFlush. The
indicated swap will not occur until all prior rendering commands
affecting the buffer have been completed. Once prior rendering
commands have been completed, if the current MSC is less than
<target_msc>, the buffer swap will occur when the MSC value becomes
equal to <target_msc>. Once prior rendering commands have completed,
if the current MSC is greater than or equal to <target_msc>, the
buffer swap will occur the next time the MSC value is incremented
to a value such that MSC % <divisor> = <remainder>. If <divisor> = 0,
the swap will occur when MSC becomes greater than or equal to
<target_msc>.

Once glXSwapBuffersMscOML has been called, subsequent OpenGL commands
can be issued immediately. If the thread's current context is made
current to another drawable, or if the thread makes another context
current on another drawable, rendering can proceed immediately.

If there are multiple outstanding swaps for the same window, at most
one such swap can be satisfied per increment of MSC. The order of
satisfying outstanding swaps of a window must be the order they were
issued. Each window that has an outstanding swap satisfied by the same
current MSC should have one swap done.

If a thread issues a glXSwapBuffersMscOML call on a window, then
issues OpenGL commands while still current to this window (which now
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 1 5

has a pending glXSwapBuffersMscOML call), the commands will be executed
in the order they were received, subject to implementation resource
constraints. Furthermore, subsequent commands that would affect
the back buffer will only affect the new back buffer (that is, the
back buffer after the swap completes). Such commands do not affect
the current front buffer.

If the graphics driver utilizes an extra thread to perform the wait,
it is expected that this thread will have a high priority so that
the swap will occur at the earliest possible moment once all the
conditions for swapping have been satisfied.

glXSwapBuffersMscOML will return the value that will correspond to
the value of the SBC when the buffer swap actually occurs (in other
words, the return value will be the current value of the SBC + the
number of pending buffer swaps + 1). It will return a value of -1
if the function failed because of errors detected in the input
parameters. glXSwapBuffersMscOML is a no-op and will always return
0 if the specified drawable was created with a non-double-buffered
GLXFBConfig or if the specified drawable is a GLXPixmap.

glXWaitForMscOML can be used to cause the calling thread to wait
until a specific graphics MSC value has been reached. If the current
MSC is less than the <target_msc> parameter for glXWaitForMscOML,
glXWaitForMscOML will block until the MSC value becomes equal to
<target_msc> and then will return the current values for UST, MSC,
and SBC. Otherwise, the function will block until the MSC value is
incremented to a value such that MSC % <divisor> = <remainder> and
then will return the current values for UST, MSC, and SBC. If
<divisor> = 0, then the wait will return as soon as MSC >= <target_msc>.

glXWaitForSbcOML can be used to cause the calling thread to wait
until a specific SBC value has been reached. This function will block
until the SBC value for <hdc> becomes equal to <target_sbc> and then
will return the current values for UST, MSC, and SBC. If the SBC
value is already greater than or equal to <target_sbc>, the function
will return immediately with the current values for UST, MSC, and
SBC. If <target_sbc> = 0, the function will block until all previous
swaps requested with glXSwapBuffersMscOML for that window have
completed. It will then return the current values for UST, MSC,
and SBC.

When glXSwapBuffersMscOML has been called to cause a swap at a
particular MSC, an application process would observe the following
order of execution for that MSC:

1. The window for which a glXSwapBuffersMscOML call has been
issued has been completely scanned out to the display for
the previous MSC

2. The swap buffer action for that window begins
3. All the swap buffer actions for all the windows for the

application process are completed
4. SBC and MSC values are atomically incremented
5. Any calls to glXWaitForMscOML or glXWaitForSbcOML that

are satisfied by the new values for SBC and graphics
MSC are released

The functions glXGetSyncValuesOML, glXGetMscRateOML, glXWaitForMscOML,
and glXWaitForSbcOML will each return TRUE if the function completed
successfully, FALSE otherwise.
2 1 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

The following Attribute/Type/Notes triple is added to Table 3.1,
GLXFBConfig attributes:

GLX_SBC integer Swap buffer count

Errors

Each of the functions defined by this extension will generate a
GLX_BAD_CONTEXT error if there is no current GLXContext.

glXWaitForMscOML and glXWaitForSbcOML will each generate a
GLX_BAD_CONTEXT error if the current context is not direct.

glXSwapBuffersMscOML and glXWaitForMscOML will each generate
a GLX_BAD_VALUE error if <divisor> is less than zero, or if
<remainder> is less than zero, or if <remainder> is greater
than or equal to a non-zero <divisor>, or if <target_msc> is
less than zero.

glXWaitForSbcOML will generate a GLX_BAD_VALUE error if
<target_sbc> is less than zero.

GLX Protocol

TBD

New State

Get Value Get Command Type Initial Value
--------- ----------- ---- -------------

[UST] glXGetSyncValuesOML Z unspecified
[MSC] glXGetSyncValuesOML Z 0
[SBC] glXGetSyncValuesOML Z 0

New Implementation Dependent State

None

Microsoft Windows Requirements

WGL Requirements
WGL binds OpenGL to Microsoft Windows. OpenML requires several WGL extensions in addition to core
WGL. The complete set of WGL features required for OpenML is documented in the following table.
Where existing extensions have been adopted for OpenML, they are defined by reference to the OpenGL
Extension Registry.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 1 7

WGL extension specifications that were created by the Khronos SIG are included in their entirety following
the list of features.

Identifying OpenML WGL Extensions
In addition to identifying all required WGL extensions individually in the WGL extension string, an OpenML
implementation must also include the symbol WGL_OML_openml1_0 in the extension string returned by
wglGetExtensionsStringARB. This symbol does not correspond to a specific WGL extension, but rather
identifies the presence of all required OpenML 1.0 WGL functionality as a group.

WGL_OML_sync_control Extension Specification
Name

OML_sync_control

Name Strings

WGL_OML_sync_control

Contact

Randi Rost, 3Dlabs (rost 'at' 3dlabs.com)

Status

Complete. Approved by the Khronos SIG on July 19, 2001.

Version

Last Modified Date: 07/23/2001 Revision: 17.0

Number

Requirement Where Documented Comments

WGL Microsoft Developer’s
Network Help Files

Baseline features. No formal WGL
Specification exists

WGL_ARB_extensions_string Registry WGL extension query mechanism

WGL_ARB_pixel_format Registry Extended pixel format attribute
specification

WGL_ARB_pbuffer Registry Accelerated rendering to offscreen
pixel buffers

WGL_ARB_make_current_read Registry Separate read and draw drawables

WGL_OML_sync_control OpenML Specification UST/MSC/SBC synchronization

Table 25.3 WGL Feature Requirements
2 1 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

242

Dependencies

The extension is written against the OpenGL 1.2.1 Specification
although it should work on any previous OpenGL specification.

WGL_ARB_extensions_string is required.

Overview

This extension provides the control necessary to ensure
synchronization between events on the graphics card (such as
vertical retrace) and other parts of the system. It provides support
for applications with real-time rendering requirements by providing
precise synchronization between graphics and streaming video or
audio.

This extension incorporates the use of three counters that provide
the necessary synchronization. The Unadjusted System Time (or UST)
is a 64-bit monotonically increasing counter that is available
throughout the system. UST is not a resource that is controlled
by OpenGL, so it is not defined further as part of this extension.
The graphics Media Stream Counter (or graphics MSC) is a counter
that is unique to the graphics subsystem and increments for each
vertical retrace that occurs. The Swap Buffer Counter (SBC) is a
per-window value that is incremented each time a swap buffer
action is performed on the window.

The use of these three counters allows the application to
synchronize graphics rendering to vertical retraces and/or swap
buffer actions, and to synchronize other activities in the system
(such as streaming video or audio) to vertical retraces and/or
swap buffer actions.

Functions are provided to allow an application to detect when an
MSC or SBC has reached a certain value. This function will block
until the specified value has been reached. Applications that want
to continue other processing while waiting are expected to call
these blocking functions from a thread that is separate from the
main processing thread(s) of the application.

This extension carefully defines the observable order in which
things occur in order to allow implementations to perform
optimizations and avoid artifacts such as tearing, while at the
same time providing a framework for consistent behavior from the
point of view of an application.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 1 9

Issues

None.

IP Status

No known issues.

New Procedures and Functions

BOOL wglGetSyncValuesOML(HDC hdc, INT64 *ust, INT64 *msc, INT64 *sbc)

BOOL wglGetMscRateOML(HDC hdc, INT32 *numerator, INT32 *denominator)

INT64 wglSwapBuffersMscOML(HDC hdc, INT64 target_msc, INT64 divisor,
INT64 remainder)

INT64 wglSwapLayerBuffersMscOML(HDC hdc, INT fuPlanes, INT64 target_msc,
INT64 divisor, INT64 remainder)

BOOL wglWaitForMscOML(HDC hdc, INT64 target_msc, INT64 divisor,
INT64 remainder, INT64 *ust, INT64 *msc,
INT64 *sbc)

BOOL wglWaitForSbcOML(HDC hdc, INT64 target_sbc, INT64 *ust, INT64 *msc,
INT64 *sbc)

New Tokens

None

Additions to Chapter 2 of the OpenGL 1.2.1 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.2.1 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.2.1 Specification (Per-Fragment
Operations and the Framebuffer)

None

Additions to Chapter 5 of the OpenGL 1.2.1 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.2.1 Specification (State and
2 2 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

State Requests)

None

Additions to the WGL Specification

wglGetSyncValuesOML returns the current UST/MSC/SBC triple. A UST
timestamp is obtained each time the graphics MSC is incremented.
If this value does not reflect the value of the UST at the time the
first scan line of the display begins passing through the video
output port, it will be adjusted by the graphics driver to do so
prior to being returned by any of the functions defined by this
extension.

This UST timestamp, together with the current graphics MSC and the
current SBC, comprise the current UST/MSC/SBC triple. The UST,
graphics MSC, and SBC values are not part of the render context
state. These values cannot be pushed or popped. The graphics MSC
value is initialized to 0 when the graphics device is initialized.
The SBC is per-window state and is initialized to 0 when the window
is initialized.

The SBC value is incremented by the graphics driver at the completion
of each buffer swap (e.g., the pixel copy has been completed or the
hardware register that swaps memory banks has been written). For pixel
formats that do not contain a back buffer, the SBC will always be
returned as 0.

The graphics MSC value is incremented once for each screen refresh.
For a non-interlaced display, this means that the graphics MSC value
is incremented for each frame. For an interlaced display, it means
that it will be incremented for each field. For a multi-monitor
system, the monitor used to determine MSC is the one Windows
associates with <hdc> (i.e., the primary monitor).

wglGetMscRateOML returns the rate at which the MSC will be incremented
for the display associated with <hdc>. The rate is expressed in Hertz
as <numerator> / <denominator>. If the MSC rate in Hertz is an
integer, then <denominator> will be 1 and <numerator> will be
the MSC rate.

wglSwapBuffersMscOML has the same functionality as SwapBuffers,
except for the following. The swap indicated by a call to
wglSwapBuffersMscOML does not perform an implicit glFlush. The
indicated swap will not occur until all prior rendering commands
affecting the buffer have been completed. Once prior rendering
commands have been completed, if the current MSC is less than
<target_msc>, the buffer swap will occur when the MSC value becomes
equal to <target_msc>. Once prior rendering commands have completed,
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 2 1

if the current MSC is greater than or equal to <target_msc>, the
buffer swap will occur the next time the MSC value is incremented
to a value such that MSC % <divisor> = <remainder>. If <divisor> = 0,
the swap will occur when MSC becomes greater than or equal to
<target_msc>.

Once wglSwapBuffersMscOML has been called, subsequent OpenGL commands
can be issued immediately. If the thread's current context is made
current to another drawable, or if the thread makes another context
current on another drawable, rendering can proceed immediately.

If there are multiple outstanding swaps for the same window, at most
one such swap can be satisfied per increment of MSC. The order of
satisfying outstanding swaps of a window must be the order they were
issued. Each window that has an outstanding swap satisfied by the same
current MSC should have one swap done.

If a thread issues a wglSwapBuffersMscOML call on a window, then
issues OpenGL commands while still current to this window (which now
has a pending wglSwapBuffersMscOML call), the commands will be executed
in the order they were received, subject to implementation resource
constraints. Furthermore, subsequent commands that would affect
the back buffer will only affect the new back buffer (that is, the
back buffer after the swap completes). Such commands do not affect
the current front buffer.

If the graphics driver utilizes an extra thread to perform the wait,
it is expected that this thread will have a high priority so that
the swap will occur at the earliest possible moment once all the
conditions for swapping have been satisfied.

wglSwapLayerBuffersMscOML works identically to wglSwapBuffersMscOML,
except that the specified layers of a window are swapped when the
buffer swap occurs, as defined in wglSwapLayerBuffers. The <planes>
parameter has the same definition as it has in the
wglSwapLayerBuffers function, and it indicates whether to swap
buffers for the overlay, underlay, or main planes of the window.

Both wglSwapBuffersMscOML and wglSwapLayerBuffersMscOML return the
value that will correspond to the value of the SBC when the buffer
swap actually occurs (in other words, the return value will be the
current value of the SBC + the number of pending buffer swaps + 1).
Both functions will return a value of -1 if the function failed
because of errors detected in the input parameters. Both functions
are no-ops if the current pixel format for <hdc> does not include
a back buffer.

wglWaitForMscOML can be used to cause the calling thread to wait
until a specific graphics MSC value has been reached. If the current
2 2 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

MSC is less than the <target_msc> parameter for wglWaitForMscOML,
wglWaitForMscOML will block until the MSC value becomes equal to
<target_msc> and then will return the current values for UST, MSC,
and SBC. Otherwise, the function will block until the MSC value is
incremented to a value such that MSC % <divisor> = <remainder> and
then will return the current values for UST, MSC, and SBC. If
<divisor> = 0, then the wait will return as soon as MSC >= <target_msc>.

wglWaitForSbcOML can be used to cause the calling thread to wait
until a specific SBC value has been reached. This function will block
until the SBC value for <hdc> becomes equal to <target_sbc> and then
will return the current values for UST, MSC, and SBC. If the SBC
value is already greater than or equal to <target_sbc>, the function
will return immediately with the current values for UST, MSC, and
SBC. If <target_sbc> = 0, the function will block until all previous
swaps requested with wglSwapBuffersMscOML or wglSwapLayerBuffersMscOML
for that window have completed. It will then return the current values
for UST, MSC, and SBC.

When wglSwapBuffersMscOML or wglSwapLayerBuffersMscOML has been
called to cause a swap at a particular MSC, an application process
would observe the following order of execution for that MSC:

1. The window for which a wglSwapBuffersMscOML call has been
issued has been completely scanned out to the display for
the previous MSC

2. The swap buffer action for that window begins
3. All the swap buffer actions for all the windows for the

application process are completed
4. SBC and MSC values are atomically incremented
5. Any calls to wglWaitForMscOML or wglWaitForSbcOML that

are satisfied by the new values for SBC and graphics
MSC are released

The functions wglGetSyncValuesOML, wglGetMscRateOML, wglWaitForMscOML,
and wglWaitForSbcOML will each return TRUE if the function completed
successfully, FALSE otherwise.

Dependencies on WGL_ARB_extensions_string

Because there is no way to extend wgl, these calls are defined in
the ICD and can be called by obtaining the address with
wglGetProcAddress. Because this is not a GL extension, it is not
included in the GL_EXTENSIONS string. If this extension is supported
by the implementation, its name will be returned in the extension
string returned by wglGetExtensionString.

Errors
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 2 3

To get extended error information, call GetLastError. Each of the
functions defined by this extension may generate the following error:

ERROR_DC_NOT_FOUND The <hDC> parameter was not valid.

The following error will be generated for the functions
wglSwapBuffersMscOML, wglSwapLayerBuffersMscOML, and
wglWaitForMscOML, if <divisor> is less than zero, or if <remainder>
is less than zero, or if <remainder> is greater than or equal to
a non-zero <divisor>, or if <target_msc> is less than zero; and
for the function wglWaitForSbcOML if <target_sbc> is less than zero:

ERROR_INVALID_DATA A parameter is incorrect.

New State

Get Value Get Command Type Initial Value
--------- ----------- ---- -------------

[UST] wglGetSyncValuesOML Z unspecified
[MSC] wglGetSyncValuesOML Z 0
[SBC] wglGetSyncValuesOML Z 0

New Implementation Dependent State

None
2 2 4 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

A P P E N D I X

B
RECOMMENDED PRACTICES

This section identifies functional areas where good performance is considered to be particularly important.

Pixel Array Color Formats
This section discusses some issues relating to pixel color formats and how these can affect the perfor-
mance of an OpenML compliant system, and in particular how pixels can be efficiently transferred between
ML video devices, transcoders and OpenGL graphics adapters.

Image Orientation
The natural scanline orientation for video devices is from top to bottom, left to right, which corresponds to
the order in which scanlines are displayed on a CRT display device. On the other hand, the default scanline
order in OpenGL is from bottom to top, left to right. By setting the ML_IMAGE_ORIENTATION_INT32
image buffer parameter to ML_ORIENTATION_BOTTOM_TO_TOP, it is possible to tell ML video devices
to accept/produce pixels in OpenGL-compatible orientation. Similarly, it is possible to get OpenGL to
accept images in top to bottom scanline orientation by specifying a negative value for the Y zoom factor of
glPixelZoom: for instance, a call to glPixelZoom(1.0,-1.0). But since glPixelZoom only applies to calls to
glDrawPixels and glCopyPixels, this approach can only be used when sending pixels from an ML device
to an OpenGL graphics device: if the application needs to read pixels from OpenGL using glReadPixels to
send to an ML video device, it would have to do an additional glCopyPixels to first flip the image.

Whether done by the ML video device or the OpenGL graphics device, this scanline flipping should be sup-
ported efficiently and not require host CPU copying of pixel scanlines. Also, if CPU-based processing of the
data stream between the video and graphics devices is required, this may impose scanline orientation
requirements, making it desirable for image flipping to be efficiently supported by both the video and graph-
ics devices.

Scan Line Alignment
ML specifies that there should be no alignment restrictions on scanlines of images stored in memory: the
end of a scanline should be adjacent to the beginning of the next scanline, without the need for
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 2 5

padding at the end of each scanline. On the other hand, the default values for the GL_PACK_ALIGN-
MENT and GL_UNPACK_ALIGNMENT parameters to the glPixelStorei function is 4, which means that
by default, OpenGL expects the beginning of pixel scanlines to be aligned on 4 byte boundaries. For some
combinations of pixel and scanline size, this might not be the case, so it might be necessary for the applica-
tion to call glPixelStorei to remove this restriction by setting these parameters to 1, allowing arbitrary align-
ment of pixel scanlines. Preferably, this should not affect performance of pixel transfers to and from the
OpenGL graphics device.

Correspondence Between ML and OpenGL Pixel Formats
In ML, the format of pixels in a memory buffer is specified by a combination of the ML_IMAGE_PACKING_
INT32, ML_IMAGE_COLORSPACE_INT32 and ML_IMAGE_SAMPLING_INT32 image buffer parame-
ters. When pixels are to be transferred between ML and OpenGL devices, it will be preferable for an appli-
cation to use ML image buffer formats which directly correspond to OpenGL pixel formats to avoid having
to reformat image buffers in software. Some of the more common pixel formats which have direct counter-
parts in ML and OpenGL are:

ML OpenGL
ML_IMAGE_PACKING_INT32,
ML_IMAGE_PACKING_RGB,
ML_IMAGE_COLORSPACE_INT32,
ML_REPRESENTATION_RGB |
ML_STANDARD_601 |
ML_RANGE_FULL,
ML_IMAGE_SAMPLING_INT32,
ML_SAMPLING_444

GL_RGB,
GL_UNSIGNED_BYTE

ML_IMAGE_PACKING_INT32,
ML_IMAGE_PACKING_RGB(A),
ML_IMAGE_COLORSPACE_INT32,
ML_REPRESENTATION_RGB |
ML_STANDARD_601 |
ML_RANGE_FULL,
ML_IMAGE_SAMPLING_INT32,
ML_SAMPLING_444

GL_RGBA,
GL_UNSIGNED_BYTE,
(alpha channel contains 0)

ML_IMAGE_PACKING_INT32,
ML_IMAGE_PACKING_RGBA,
ML_IMAGE_COLORSPACE_INT32,
ML_REPRESENTATION_RGB |
ML_STANDARD_601 |
ML_RANGE_FULL,
ML_IMAGE_SAMPLING_INT32,
ML_SAMPLING_4444

GL_RGBA,
GL_UNSIGNED_BYTE,
(alpha channel contains valid data)

Table 25.4 Correspondance Between ML and OpenGL Pixel Formats
2 2 6 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

RGB and RGBA Pixel Formats
ML and OpenGL specify both RGB and RGBA pixel formats. With 8 bits per component formats, RGBA
pixels will line up naturally with 4-byte or 32-bit boundaries, whereas RGB pixels will take up 3 bytes, which
can create alignment issues as discussed above. To simplify hardware design, it might be tempting to only
support RGBA formats in hardware and fallback to a slower software path when dealing with RGB formats.
For applications where there is no use for the alpha channel, this additional overhead can be unacceptable.
For instance, if video data is to be stored on hard drives, it will be difficult to justify storing an additional 33%
of useless data: instead of storing four hours of video, a storage subsystem might only be able to store
three hours. If the video has to be sent over a network, it will take 33% longer to send a clip of RGBA rather
than RGB pixels. And even internally to a system, a stream of 1920x1080 HDTV video at 30 frames per
second requires 180MB/sec of bandwidth with RGB pixels and 240MB/sec with RGBA pixels, which can
make the difference between realtime and non-realtime operation.

RGB vs BGR component ordering
ML and OpenGL specify both RGB/RGBA and BGR/ABGR/BGRA component orderings. When integrating
video and graphics devices from different vendors, it is important that color component orderings should be
compatible. As much as possible, devices should support these orderings without a performance penalty,
and be able to swizzle components on the fly during image transfers. This is especially important when
connecting multiple computer systems through networks or shared storage: a common storage format for
images will typically be required, and it would be problematic if some of the devices were penalized by
being unable to efficiently deal with this common component ordering.

Greater Than 8 Bits Per Component Pixel Formats
Digital media applications often have to deal with pixel formats which have more than 8 bits per color com-
ponent. For instance, digital video often uses 10 bits of luma and chroma components in YCrCb color
space, digital film applications often require 12 or 16 bits per RGB color coefficient to capture the dynamic
range of film. It is desirable for ML video devices and OpenGL graphics devices to support pixel formats

ML_IMAGE_PACKING_INT32,
ML_IMAGE_PACKING_RGB_10_10_10_2,
ML_IMAGE_COLORSPACE_INT32,
ML_REPRESENTATION_RGB |
ML_STANDARD_601 |
ML_RANGE_FULL,
ML_IMAGE_SAMPLING_INT32,
ML_SAMPLING_444

GL_RGBA,
GL_UNSIGNED_INT_10_10_10_2,
(alpha channel contains 0)

ML_IMAGE_PACKING_INT32,
ML_IMAGE_PACKING_RGB_12_in_16_L,
ML_IMAGE_COLORSPACE_INT32,
ML_REPRESENTATION_RGB |
ML_STANDARD_601 |
ML_RANGE_FULL,
ML_IMAGE_SAMPLING_INT32,
ML_SAMPLING_444

GL_RGB,
GL_UNSIGNED_SHORT

ML OpenGL

Table 25.4 Correspondance Between ML and OpenGL Pixel Formats
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 2 7

with more than 8 bits per color component for such applications. ML image buffer parameters can be used
to specify pixel formats with 10 or 12 bits per color component. OpenGL pixel types such as GL_
UNSIGNED_INT_10_10_10_2 or GL_UNSIGNED_SHORT can be used to transfer these pixels to and
from graphics devices. Even if the device does not support processing all of the bits of precision in these
formats, they should still be supported efficiently for pixel transfer operations in order to maintain compati-
bility with the other devices in the system.

Pixel Format/Visual Selection Criteria
An OpenML compliant system must support a baseline of OpenGL functionality, including a number of
OpenGL extensions. Yet the functionality offered by an OpenGL implementation greatly depends on the
supported visuals/pixel formats. This is especially true for a digital media application which expects to use
an OpenGL implementation to preview or even completely render result images. Such an application will
most likely need to query OpenGL for supported visuals/pixel formats, pick the ones which most closely
match its requirements, and perhaps have to fall back to software algorithms in the absence of required
functionality.
It is expected that most digital media applications will work with RGBA rather than color index visuals; inte-
grating true-color images with 2D and 3D geometry usually cannot be done in color index mode. An excep-
tion to this is hardware overlay bitplanes. It is usually sufficient to have only a few different colors in color
index mode to support things like grids, crosshair cursors, and masks.
To provide smooth animation, double-buffering is usually preferred. To avoid tearing artifacts, it is desirable
that buffer swaps occur during the vertical blanking interval. This also allows video applications to synchro-
nize buffer swaps and screen refreshes to an external synchronization signal (a process known as genlock-
ing or framelocking).
8 bits per color component is usually considered a minimum for rendering high quality images, with higher
bit depths (10, 12 or even 16 bits per component) being desirable for applications requiring a larger
dynamic range (for instance, more than 8 bits per component is required to capture the dynamic range of
print film in a linear color space). Blending and masking techniques can take advantage of destination
alpha bitplanes. So a double-buffered RGB or RGBA visual/pixel format with at least 8 bits per component
is likely to be a minimum requirement for digital media applications.
A Z buffer is often useful, but in many cases not required for 2D-only applications. If a hardware implemen-
tation places an upper limit on the memory size of a pixel, it might be useful to offer double-buffered visu-
als/pixel formats without a Z buffer which can be used in those cases where a Z buffer is not required, but
where the application can take advantage of the greater bit depth. The application might be able to manage
several different visuals/pixel formats depending on its current needs. Similarly, stencil bitplanes can be
useful, but the application might decide to use a visual/pixel format without stencil bitplanes, but with some
additional functionality depending on its priorities.
OpenGL implementations are required to support visuals/pixel formats with an accumulation buffer. The
accumulation buffer is useful for a number of digital media operations, including 2D operations such as
averaging and temporal filtering, and for 3D rendering techniques such as anti-aliasing, motion blur and
depth of field. Yet in many cases this functionality is implemented in software, and the application can often
get better performance by implementing this functionality on its own, either by providing a parallelized
implementation which takes advantage of multiple CPUs, or by using different rendering algorithms.
Although there is no generalized mechanism for determining whether specific OpenGL functionality is
implemented in hardware or software, the application will probably try to determine this based on the num-
ber of bits per component supported by the accumulation or by benchmarking the performance of accumu-
lation buffer operations.
Finally, if the OpenGL implementation supports it, hardware anti-aliasing mechanisms such as multi-sam-
pling require that the application select a visual/pixel format which supports this capability. Although multi-
sampling may not provide sufficient anti-aliasing quality for a final image render, it can be used to provide
fast interactive previews, and can be combined with other anti-aliasing techniques to shorten final render
times.
2 2 8 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

Color Space Conversion with OpenGL Extensions
The OpenGL pipeline usually deals with pixels in the RGB colorspace. Yet in most cases digital video
devices expect pixels to be in the Y’CrCb colorspace. Furthermore, although luma (the Y’ component) is
usually provided on a per-pixel basis, the chroma components (the Cr, Cb components) are usually sub-
sampled. 4:2:2 sampling is one of the most frequent sampling patterns found in professional video applica-
tions: each horizontal pair of adjacent pixels share a set of Cr, Cb components, which means that the
chroma signals have half the horizontal bandwidth of the luma signal.
Chroma subsampling is a form of data compression, and is based on the observation that the human eye
tends to be less sensitive to variations in color than to variations in intensity. Such an observation does not
apply to pixels in the RGB colorspace, so it makes no sense to attempt to decimate one of the R,G,B com-
ponents. Thus if a digital media application obtains 4:2:2 Y’CrCb images from a digital video source, it will
have to convert these to 4:4:4 RGB (where a 4:4:4 sampling pattern means that all of the color components
are provided for each pixel). This is a two-step process involving an upsampling of the chroma coefficients
to obtain a 4:4:4 Y’CrCb signal, followed by a color space conversion from Y’CrCb to RGB colorspace.

Chroma Upsampling
In an OpenML-compliant system, the OML_resample OpenGL extension can be used to implement the
chroma upsampling step. This extension defines three different ways in which this chroma resampling can
be performed.

glPixelStorei(GL_UNPACK_RESAMPLE_OML, GL_RESAMPLE_REPLICATE_OML)
specifies that the shared chroma values should simply be replicated for the two adjacent pixels. This is
equivalent to a zero order hold filter, which can generate reconstruction artefacts (it is equivalent to zoom-
ing up an image by a factor of two by simply replicating pixels). It may be sufficient for preview applications.
The second method is enabled with:

glPixelStorei(GL_UNPACK_RESAMPLE_OML, GL_RESAMPLE_AVERAGE_OML)
In this case, even pixels inherit the chroma values from the corresponding pixel pair, and odd pixels get
chroma values which are computed from a simple average of adjacent chroma values. This is equivalent to
applying a simple box filter, which yields a much better result than simple replication, but still falls far short
of the requirements for studio applications, as per the ITU-R BT.601-5 standard.
The third upsampling method specified by the OML_resample extension is enabled with:

glPixelStorei(GL_UNPACK_RESAMPLE_OML, GL_RESAMPLE_ZERO_FILL_OML)
With this method, the even pixels are assigned the corresponding chroma coefficients from the pixel pairs,
and the odd pixels get 0 as chroma coefficients. This is used in conjunction with the one-dimensional con-
volution filter capabilities of the OpenGL imaging extensions (also mandated by OpenML compliance). The
application specifies the desired FIR filter coefficients using glConvolutionFilter1D() and enables horizontal
convolution with glEnable(GL_CONVOLUTION_1D). The quality of the FIR interpolation filter will depend
upon the maximum 1D convolution size supported by the OpenGL implementation, as returned by:

glGetConvolutionParameteriv(GL_CONVOLUTION_1D, GL_MAX_CONVOLUTION_WIDTH,
&width)

Since only the chroma components need to be interpolated while leaving the luma component unchanged,
the application will need to provide a 3-component "RGB" convolution filter kernel which implements a dirac
filter for the luma component and the desired interpolation filter for the chroma components.

Color Space Conversion
Once the chroma coefficients have been upsampled using the OML_resample extension, the image pixels
are now in a 4:4:4 Y’CrCb colorspace, ready to be converted to 4:4:4 RGB using the color matrix section of
the OpenGL imaging pipeline. The first consideration is that Y’CrCb values usually do not use the full range
of values: digital video standards specify that headroom needs to be preserved at both ends of the range.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 2 9

For 8-bit values, Y’ coefficients are specified to range between 16 and 235, and Cr, Cb coefficients are
specified to range between 16 and 240 (actually, Cr,Cb coefficients are interpreted as ranging between -
112 and +112, with an offset of +128). When converting to RGB values, it is typically desirable to expand to
the full 0-255 range when dealing with 8-bit, GL_UNSIGNED_BYTE components. In the OpenGL imaging pipe-
line, values are normalized between 0 and 1, which has to be taken into consideration.
Pixels in Y’CrCb are typically encoded in one of three different colorspaces, which are defined by the equa-
tion which computes the Y’ luma value based on the R,G,B primaries. For standard-definition video, this
standard is defined in ITU-R BT.601-5 as:

Y’ = 0.299 R + 0.587 G + 0.114 B
from which the following transformation can be derived, where Y’CrCb and RGB are in the range 0 to 1:

R		1 0 1-0.299		255Y’ - 16
		--- -------		
		219 224*0.5		
G	=	1 -0.114*(1-0.114) -0.299*(1-0.299)	.	255Cb - 128
		--- --------------- ---------------		
		219 0.587*224*0.5 0.587*224*0.5		
B		1 1-0.114 0		255Cr - 128
		--- -------		
		219 224*0.5		

which can be rewritten as:

R		255 0 255*(1-0.299)		Y’
		--- -------------		
		219 224*0.5		
G	=	255 -255*0.114*(1-0.114) -255*0.299*(1-0.299)	*	Cb
		--- ------------------- -------------------		
		219 0.587*224*0.5 0.587*224*0.5		
B		255 255*(1-0.114) 0		Cr
		--- -------------		
		219 224*0.5		

|-16 0 -128*(1-0.299) |
| --- ------------- |
| 219 224*0.5 |
| |
|-16 -128*0.114*(1-0.114) -128*0.299*(1-0.299) |
| --- ------------------- ------------------- |
| 219 0.587*224*0.5 0.587*224*0.5 |
| |
|-16 -128*(1-0.114) 0 |
| --- ------------- |
| 219 224*0.5 |

which can be summarized as:

R		Y’		V0
G	= M	Cr	+	V1
B	33	Cb		V2
2 3 0 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

This equation can be implemented using the color matrix and post-color matrix bias functionality of the
OpenGL imaging pipeline in a straightforward manner:

load M33 into the upper 3x3 section of an OpenGL matrix
glMatrixMode(GL_COLOR);
glLoadMatrix(conversion_matrix);
glPixelTransferf(GL_POST_COLOR_MATRIX_RED_SCALE, V0);
glPixelTransferf(GL_POST_COLOR_MATRIX_GREEN_SCALE,V1);
glPixelTransferf(GL_POST_COLOR_MATRIX_BLUE_SCALE, V2);

The second colorspace which is often used in digital video is the SMPTE-240M colorspace, which defines
the luma equation as:

Y’ = 0.212 R + 0.701 G + 0.087 B
This colorspace is used for the SMPTE-240M 1920x1035 HDTV standard. By replacing the R, G and B
luma coefficients in the above equations, a similar transformation can be implemented.
The third colorspace which is used frequently in digital video applications is defined by ITU-R BT.709-4,
and is used by the more recent SMPTE-274M (1920x1080) and SMPTE-296M (1280x720) HDTV stan-
dards. This standard defines the luma equation as:

Y’ = 0.2126 R + 0.7152 G + 0.0722 B
Again, the required color space conversion can be derived by simply replacing the corresponding coeffi-
cients.
O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0 2 3 1

2 3 2 O p e n M L S p e c i f i c a t i o n R e v i s i o n 1 . 0

	OpenML V1.0 Specification
	Contents
	List of Figures
	List of Tables
	Introduction and Overview of OpenML™
	Introduction
	Background
	Architectural Overview

	Digital Media Input/Output Programming
	Overview of ML
	ML Parameters
	ML Capabilities
	ML Video Parameters
	ML Image Parameters
	ML Audio Parameters
	ML Processing
	Synchronization in ML

	OpenGL Requirements and Extensions
	Integration of OpenGL and ML

	MLdc Video Display Inquiry and Control
	Overview of MLdc
	Initialization
	Setting and Querying Video Parameters
	Receiving MLdc Event Messages
	Channels
	Video Formats
	Blanking
	Gamma Correction Tables and Output Gain
	External Synchronization (Lock and Genlock)
	Output Sync
	Output Pedestal
	Monitor Commands
	Extending MLdc

	Appendices
	OpenML Programming Environment Requirements
	Recommended Practices

