
Vulkan Game Development 
in Mobile
GDC 2017

Soowan Park 
Graphics Engineer
Samsung Electronics
(soft.park@samsung.com)



In the beginning…

All content is based on our development experience 
with Galaxy S7 spanning two chipset variants, using the ARM Mali and Qualcomm Adreno GPUs.



For whom?

✓ For Android Vulkan Developers.

✓ Developers on other platforms / markets considering to port to Android



Vulkan Partners

✓ We are currently working with many game studios and engine vendors to support Vulkan.



Developing Vulkan

✓ Our main goal is to enhance the gaming experience on mobile devices.

✓ OpenGL ES vs Vulkan

✓ Concept demo
✓ Snowball : 11 FPS -> 32 FPS

✓ Lego : 11 FPS -> 26 FPS

✓ Parge : 7 FPS -> 14 FPS

✓ Shipping Game Titles
✓ Vainglory : 51 FPS -> 59 FPS

✓ HIT : 48 FPS -> 49 FPS (with more effect)

✓ Upcoming Games
✓ Game A:  15 FPS -> 23 FPS

✓ Game B : 24 FPS -> 26 FPS

✓ Game C : 21 FPS -> 24 FPS

✓ …



Concept Demos Real Games>

Performance improvements

OpenGL ES vs Vulkan

Where does the performance gap between 

concept demos and real games come from?



The reason are as follows

✓ It’s not easy to collect all the information needed for Vulkan in an existing game engine’s “Render Interface”

✓ “Render interface” – the interface that is commonly found across game engines. (Just by my experience!)

✓ Let’s think about this very simple renderer logic below. 

SetShader

Draw

SetUniformData

Initialize

SetRenderState

glUseProgram

glEnable
glDisable
gl...

glBindTexture

glDraw…

To create pipeline need a lot of information.

VkGraphicsPipelineCreateInfo
VkPipelineVertexInputStateCreateInfo
VkPipelineInputAssemblyStateCreateInfo
VkPipelineRasterizationStateCreateInfo
VkPipelineColorBlendStateCreateInfo
VkPipelineDepthStencilStateCreateInfo
VkPipelineViewportStateCreateInfo
VkPipelineMultisampleStateCreateInfo
VkDynamicState
VkPipelineDynamicStateCreateInfo
VkPipelineShaderStageCreateInfo
…

vkCreateGraphicsPipelines
vkCmdDraw… 

SetTexture

glUniformXX

Compile Shader
Link Program

Need to store the current state somewhere.

And need to manage that information.

There is no 1 : 1 API matching!

Logic involve can be a 
significant overhead!



Optimization on Android devices

✓ We should optimize the renderer logic for the Vulkan API within that interface !

✓ Below is a list of optimization points that we have experienced during porting games and creating 
concept demos.

Managing 
VkPipeline

SetShader

Draw

SetUniformData

Initialize

SetRenderState

SetTexture

Managing 
VkRenderPass,
VkFramebuffer

Persistent 
PipelineCache

Clear 
screen cost

Geometry Sorting

Reducing duplicated 
API calls

Uniform buffer 
management logic.

I will cover this in 
detail in today's 

presentation.



Let's talk about the uniform buffer.

What is the best way 

to implement uniform buffer logic?



For that, I tested 6 cases.

Every test is based from my experience.

1st Test – Brute Force
2nd Test – Memory Manager
3rd Test – Dynamic Offsets
4th Test – Ideal Condition

5th Test – Memory property flags on Mobile
6th Test – PushConstants

Structural 
Experiments

Additional 
Experiments



Test Project : OceanBox

Developed sample specifically to test uniform buffer performance. Planning to upload source code 
(subject to approval!) to: https://github.com/itrainl4/OceanBox



Reflection Render Target

Color

For Rendering

Render Object

Core

BackBuffer

Swapchain

Depth

OceanBox overview

VkInstance

VkDevice VkSwapchainKHR

VkSurfaceKHR VkCommandPool

VkDescriptorPool

VkRenderPass

VkImageView

VkImage

VkImage VkImageView

VkImage VkImageView

VkFrameBuffer

VkCommandBuffer

VkPipelineLayout

VkPipeline

VkDescriptorSetLayout

VkShader - Vertex 

VkDescriptorSet

VkBuffer - Vertex 

VkBuffer Uniform 

VkBuffer - Normal 

VkBuffer - UV 

VkBuffer - Index 

Texture

VkSampler

VkImage

VkImageView

VkShader - Fragment 

Background

Cube

Surface

※ VkDeviceMemory is omitted.

Depth

VkImageView

VkImage



Test scenario

• Test Scene Information

• 1 Background

• 1250 Cubes, Update position

• 1 Surface, 150x150 Grid Simulation (2 iteration per frame)

• Profiling Environment

• Devices : G930F, G930V (MALI, Adreno)

• Duration : 10 mins 

• Assume that all of the logic (except the uniform buffer) is optimized and the texture 
information is unchanged for accurate testing in real time.

• The drawing function call sequence for 1250 cubes is like below.

setUniformData draw

1250 EA Cubes

setShader / 
setRenderState



It means that each cube has 
new VkBuffer and 

VkDeviceMemory per frame.

1st Test – Brute Force

• Let’s test worst case.

• Create VkBuffer and Allocate VkDeviceMemory every draw call.

After using the buffer

Delete Buffer

vkFreeMemory

vkDestroyBuffer

After few 
frames

Cube

VkBuffer

VkDeviceMemory

setUniformData draw

setUniformData

Update Buffer

Create Buffer

vkCreateBuffer

vkAllocateMemory

vkBindBufferMemory

vkMapMemory

vkUnmapMemory

memcpy

1250 EA Cubes

draw

Bind DescriptorSet

vkUpdateDescriptorSets

vkCmdBindDescriptorSets

Draw

setShader / 
setRenderState

setShader / 
setRenderState

Do something…



VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

VkBuffer

VkDeviceMemory

1st Test – Brute Force

N Frame

Cube

Cube

Cube

Cube

N + 1 Frame

Cube

Cube

Cube

Cube

N + 2 Frame

Cube

Cube

Cube

Cube



1st Test – Brute Force

1 FPS is OK because it’s worst case.



2nd Test – Memory Manager

• Let's make memory manager assign VkDeviceMemory to each object.

※ Should be take care with given alignment from physical device limits.
Please refer to “Vulkan Case Study” at 2016 Khronos DevU in Seoul.

vkMapMemory

vkUnmapMemory

Draw 
routine

M
em

o
ry M

an
age

r

Memory Manager (VkDeviceMemory)

Next memory offset

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

With the memory manager, 
you do not have to call vkMapMemory every time.



setUniformData

2nd Test – Memory Manager

• So functionality should be changed like this.

Memory Manager (VkDeviceMemory)

setUniformData

Update Buffer

Create Buffer

vkCreateBuffer

vkAllocateMemory

vkBindBufferMemory

vkMapMemory

vkUnmapMemory

memcpy

setUniformData

Update Buffer

memcpy

Next memory offset

GetMemoryOffset

Initialize

GetMemoryHandle

GetMemoryBase

1st Test function

GetBufferHandle

vkCreateBuffer

vkBindBufferMemoryvkAllocateMemory



setUniformData

setUniformData

Update Buffer

memcpy

GetMemoryOffset

Initialize

GetMemoryHandle

GetMemoryBase

GetBufferHandle

2nd Test – Memory Manager

• And you should update VkDescriptorSet using appropriate offsets.

typedef struct VkDescriptorBufferInfo {
VkBuffer buffer;
VkDeviceSize offset; // Memory offset
VkDeviceSize range; // Actual UB Size

} VkDescriptorBufferInfo;

draw

Bind DescriptorSets

vkUpdateDescriptorSets

vkCmdBindDescriptorSets

Draw

M
e

m
o

ry  M
an

age
r



setUniformData

setUniformData

Update Buffer

memcpy

GetMemoryOffset

Initialize

GetMemoryHandle

GetMemoryBase

GetBufferHandle

All cubes have individual 
VkBuffer, but use same 

VkDeviceMemory handle with 
different offset.

2nd Test – Memory Manager

• The overall logic is as follows.

Cube

VkBuffer

VkDeviceMemory + 
Memory offset

setUniformData draw

1250 EA Cubes

draw

Bind DescriptorSets

vkUpdateDescriptorSets

vkCmdBindDescriptorSets

Draw

setShader / 
setRenderState

setShader / 
setRenderState

Do something…

FirstTime?

True

False

vkMapMemory

vkUnmapMemory

Draw

M
e

m
o

ry  M
an

age
r

M
e

m
o

ry  M
an

age
r



Memory  Manager

2nd Test – Memory Manager

N  Frame N + 1 Frame N + 2 Frame

VkBuffer, 
VkDeviceMemory

Cube

Cube

Cube

Cube

Offset : 0

Offset : UB Size * 1

Offset : UB Size * 2

Offset : UB Size * 3

VkBuffer, 
VkDeviceMemory

Cube

Cube

Cube

Cube

Offset : UB Size * 4

Offset : UB Size * 5

Offset : UB Size * 6

Offset : UB Size * 7

VkBuffer, 
VkDeviceMemory

Cube

Cube

Cube

Cube

Offset : UB Size * 8

Offset : UB Size * 9

Offset : UB Size * 10

Offset : UB Size * 11

vkUpdateDescriptorSets
vkCmdBindDescriptorsets

“

“

“

vkUpdateDescriptorSets
vkCmdBindDescriptorsets

“

“

“

vkUpdateDescriptorSets
vkCmdBindDescriptorsets

“

“

“

※ SwapChain count related logic should be considered.



2nd Test – Memory Manager

37 FPS



3rd Test – Dynamic Offsets

• Let’s skip vkUpdateDescriptorSets API using dynamic offsets.

draw

Bind DescriptorSets

vkUpdateDescriptorSets

vkCmdBindDescriptorSets

Draw

typedef struct VkDescriptorBufferInfo {
VkBuffer buffer; 
VkDeviceSize offset; // Memory offset
VkDeviceSize range; // Actual UB size

} VkDescriptorBufferInfo;

2nd Test logic

typedef struct VkDescriptorBufferInfo {
VkBuffer buffer; 
VkDeviceSize offset; // 0, depend on logic

VkDeviceSize range; // VK_WHOLE_SIZE
} VkDescriptorBufferInfo;

3rd Test logic

By using dynamic offsets, 
we should be able to access 

the entire buffer.

draw

draw

Update DescriptorSets

vkUpdateDescriptorSets

Draw

Bind DescriptorSets

vkCmdBindDescriptorSets

void vkCmdBindDescriptorSets(
…
uint32_t                   dynamicOffsetCount,
const uint32_t*      pDynamicOffsets

);

Memory  Manager Memory  Manager



3rd Test – Dynamic Offsets

• Memory manager is almost the same, but there is a limitation on the VkDeviceMemory size.

Memory Manager (VkDeviceMemory)

Next memory offset

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

The limitation of VkDeviceMemory size depends on the memory 
manager’s logic.
But for this test, I will use the maximum size. 

q.v : https://www.khronos.org/registry/vulkan/specs/1.0/html/vkspec.html#VkDescriptorBufferInfo 

Size <= VkPhysicalDeviceLimits::maxUniformBufferRange

typedef struct VkDescriptorBufferInfo {
VkBuffer buffer; 
VkDeviceSize offset; // 0, depend on logic

VkDeviceSize range; // VK_WHOLE_SIZE
} VkDescriptorBufferInfo;



Logic is similar to the 2nd Test, 
but it helps to skip 

vkUpdateDescriptorSets API 
after initialization.

3rd Test – Dynamic Offsets

• The overall logic is as follows.

Cube

VkBuffer

VkDeviceMemory + 
Dynamic memory offset

setUniformData draw

1250 EA Cubes

setShader / 
setRenderState

setShader / 
setRenderState

Do something…

FirstTime?

True

False

vkMapMemory

vkUnmapMemory

Draw

M
e

m
o

ry  M
an

age
r

M
e

m
o

ry  M
an

age
r

draw

Update DescriptorSets

vkUpdateDescriptorSets

draw

Draw

Bind DescriptorSets

vkCmdBindDescriptorSets

FirstTime?

True

False

setUniformData

setUniformData

Update Buffer

memcpy

GetMemoryOffset

Initialize

GetMemoryHandle

GetMemoryBase

GetBufferHandle



Memory  Manager

3rd Test – Dynamic Offsets

N  Frame N + 1 Frame N + 2 Frame

VkBuffer, 
VkDeviceMemory

Cube

Cube

Cube

Cube

Dynamic Offset : 0
In vkCmdBindDescriptorses

Dynamic Offset :
UB Size * 1

Dynamic Offset :
UB Size * 2

Dynamic Offset :
UB Size * 3

VkBuffer, 
VkDeviceMemory

Cube

Cube

Cube

Cube

Dynamic Offset :
UB Size * 4

Dynamic Offset :
UB Size * 5

Dynamic Offset :
UB Size * 6

Dynamic Offset :
UB Size * 7

VkBuffer, 
VkDeviceMemory

Cube

Cube

Cube

Cube

Dynamic Offset :
UB Size * 8

Dynamic Offset :
UB Size * 9

Dynamic Offset :
UB Size * 10

Dynamic Offset :
UB Size * 11

vkUpdateDescriptorSets
vkCmdBindDescriptorsets

“

“

“

vkUpdateDescriptorSets
vkCmdBindDescriptorsets

“

“

“

vkUpdateDescriptorSets
vkCmdBindDescriptorsets

“

“

“

※ Swapchain count related logic should be considered.



3rd Test – Dynamic Offsets

40 FPS



4th Test - Ideal condition

• If everything is in a predictable situation.

• It is similar to the concept demo. In fact, it’s difficult to apply to real engines. 

• But just for testing! 

draw

1250 EA Cubes

setShader / 
setRenderState

Do something…

Initialize

vkCreateBuffer

vkBindBufferMemory

vkAllocateMemory

True

False

vkUpdateDescriptorSets

Draw Object

memcpy

Draw

vkCmdBindDescriptorSets

FirstTime?



4th Test - Ideal condition

43 FPS



5th Test – Memory property flags on Mobile

• Many people curious about impact of different memory flags on performance on mobile.

• This test is based on 3rd test.

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT
|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
|VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
|VK_MEMORY_PROPERTY_HOST_CACHED_BIT

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
|VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT



5th Test – Memory property flags on Mobile

3rd Test  Memory Manager (VkDeviceMemory)

Next memory offset

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• All logics are the same except memory flag. VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT is added.

5th Test  Memory Manager (VkDeviceMemory)

Next memory offset

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT



5th Test – Memory property flags on Mobile

40 FPS



5th Test – Memory property flags on Mobile

3rd Test  Memory Manager (VkDeviceMemory)

Next memory offset

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

5th Test  Memory Manager (VkDeviceMemory)

Next memory offset

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

Uniform Data

Without VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT 
We cannot directly copy data to memory.

Not recommended



5th Test – Memory property flags on Mobile

• VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT

Uniform Data

5th Test  Memory Manager (VkDeviceMemory)

Next memory offset

OBJECT 1

OBJECT 2

OBJECT 3

OBJECT 4

VK_MEMORY_PROPERTY_DEVICE_LOCAL_BITStaging VkBuffer
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |

VK_MEMORY_PROPERTY_HOST_COHERENT_BIT

vkCmdCopyBuffer



5th Test – Memory property flags on Mobile

18 FPS



6th Test - PushConstants

✓ “Push constants” are helpful to improve performance. (the effect is GPU dependent.)

✓ They are very easy to use. 

✓ However, VkPhysicalDeviceLimits::maxPushConstantsSize should be checked.

// VertexShader
…

layout(push_constant) uniform buf1{
mat4 _unif00;

} pc; // you cannot skip instancing, if uniform is push_constant.
void main()
{

gl_position = pc._unif00 * _in_vertex;
}

vkCmdPushConstants(commandBuffer, layout, stageFlags, offset, MVPMatrix.size(), MVPMatrix.data());

VkPipelineLayout



6th Test - PushConstants

✓ By the way, if PushConstants data is changed in every draw call, is it helpful for performance?

layout(set = 0, binding = 0, std140) uniform buf1 {
mat3 normalMatrix;    
vec3 lightPosition;
float timeStep;  

} ubuf1;

layout(push_constant) uniform buf2 {
mat4 mvp;
mat4 mv;    

} pc;

layout(set = 0, binding = 0, std140) uniform buf1 {        
mat4 mvp;        
mat4 mv;            
mat3 normalMatrix;            
vec3 lightPosition;
float timeStep;  

} ubuf1; 

vkCmdPushConstants(commandBuffer, layout, stageFlags, offset, 0, &mvp);
vkCmdPushConstants(commandBuffer, layout, stageFlags, offset, 64, &mv);

setUniformData draw

1250 EA Cubes

setShader / 
setRenderState

3rd Test Logic

Part of cube vertex shader



6th Test - PushConstants

36 FPS

1250 * 2 * vkCmdPushConstants() = 2500 vkCmdPushConstants per frame
Misuse can be poisonous.



Summary - Uniform Buffer Test

Remember : Structural selection depends on your renderer interface.
Please use these result for reference only.

4th Ideal condition3rd Dynamic Offsets2nd Memory Manager1st Brute Force

43 FPS
40 FPS

37 FPS

Structural Experiments

Additional Experiments

5th Test – Memory property flags on Mobile : There is no significant difference in the test results.
6th Test – PushConstants : Misuse can be poisonous.



Other topics



Persistent PipelineCache

✓ Calling vkCreateGraphicsPipelines without VkPipelineCache will be very costly.

It is recommended to use it as a storage saved persistent cache.

Without VkPipelineCache With VkPipelineCache (Persistent)

13.260  seconds 4.187 seconds

Loading cost comparison ( createGraphicPipeline 300 EA + @ ) 

onResume

onPause

size_t pDataSize = 0;
vkGetPipelineCacheData(device, pipelineCache, &pDataSize, VK_NULL_HANDLE);
// if is valid
vkGetPipelineCacheData(device, pipelineCache, &pDataSize, pipelineCacheData.data());
savePipelineCacheToSDcard(pipelineCacheData);

std::vector<unsigned char*>& pipelineCacheData = getPipelineCacheFromSDcard();
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pipelineCacheCreateInfo.initialDataSize = pipelineCacheData.size();
pipelineCacheCreateInfo.pInitialData = pipelineCacheData.data();
VkPipelineCache pipelineCache = VK_NULL_HANDLE;
vkCreatePipelineCache(device, &pipelineCacheCreateInfo, VK_NULL_HANDLE, &pipelineCache);

createGraphicPipeline vkCreateGraphicsPipelines(device, pipelineCache, 1, &createInfo, VK_NULL_HANDLE, &pipline);



Clear framebuffer cost

✓There are 3 ways to clear framebuffer. (color, depth, stencil)
• Renderpass Load Operation

• vkCmdClearAttachments

• vkCmdClearColorImage/vkCmdClearDepthStencilImage

✓ It’s important to use proper and clear approach to not waste additional clear cost 

( e.g. clear all, color only, depth only )

• 1 clear color & 30 clear depth

✓ It’s not recommended to clear framebuffer by loading empty Renderpass begin()/end() 

without actual draw calls, etc.

Renderpass begin/end using 
LoadOpClear

vkCmdClearAttachments

24 FPS 57 FPS



OpenGL ES vs. Vulkan: Geometry sorting

• Geometry sorting (vertex & index buffers)

• Improves cache read/write efficiency

• Can affect how work is submitted to the GPU

• Some OpenGL ES drivers do this automatically

Without Geometry Sorting

With Geometry Sorting



Reducing duplicated API calls

✓ It is important to call bind/set function once in a VkCommandBuffer to prevent duplication of vkCmdSetXXX
and vkCmdBindXXX call with same value / parameter.

Worst case

※ In our test case,  500 Calls vkCmdSetViewPort and vkCmdSetScissor take 1.412 ms.



Make structure 
to reuse VkPipeline

Managing VkPipeline

VertexShader FragmentShader

Ignore this block in current case

VertexAttribute #0
stride, location, binding

VertexAttribute #1
stride, location, binding

RenderState #0
depth enable, …

RenderState #1
depth disable, …

VkPipelineVertexInputStateCreateInfo, …

VkPipelineDepthStencilStateCreateInfo, …

vkCreateGraphicsPipelines

VkPipeline #0 VkPipeline #1

Worst case, Given RenderState & Attributes can be changed every single draw call.

Therefore, having efficiently designed pipeline management structure will be essential 

for your performance optimization.

setShader

draw

setTexture

setRenderState



VkFreambuffer

VkRenderpass

Managing VkRenderpass, VkFramebuffer

VkFramebufferCreateInfo {
…
VkRenderPass renderPass;
…

}

VkRenderPassCreateInfo {
…
uint32_t                                                attachmentCount;
const VkAttachmentDescription*    pAttachments;

…
}

VkAttachmentDescription {
…
VkAttachmentLoadOp loadOp;
VkAttachmentStoreOp storeOp;

…
} VkAttachmentDescription;

VK_ATTACHMENT_LOAD_OP_LOAD
VK_ATTACHMENT_LOAD_OP_CLEAR
VK_ATTACHMENT_LOAD_OP_DONT_CARE

vkCreateRenderPass

VkRenderPass #0 VkRenderPass #1

vkCreateFramebuffer

VkFramebuffer #0 VkFramebuffer #1

Reusing VkRenderpass & 
VkFramebuffer are also essential.



Wrap-Up

• Vulkan gives CPU off-load, predictable behavior by explicit control  and various 
ways to optimize games.

• No more driver magic, so you need to manage things by yourself.

Samsung will keep go on supporting game developers and players!

If you have any questions, offers or suggestions, please contact

gamedev@samsung.com  or soft.park@samsung.com



Thank you! ☺


