
UK Khronos Chapter meet, May 2016

Vulkan Subpasses
or

The Frame Buffer is Lava

Andrew Garrard
Samsung R&D Institute UK



Vulkan subpasses — Page 96UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of 

keeping the GPU busy

Vulkan: Making use of the GPU more efficient



Vulkan subpasses — Page 97UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of 

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

Vulkan: Making use of the GPU more efficient

Core 1

Core 2

Core 3

Core 4

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

CmdBuf

Submit Submit Submit

Command buffer 

recording



Vulkan subpasses — Page 98UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of 

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

Vulkan: Making use of the GPU more efficient

Record 2ry command buffer Record primary command buffer

2ry 2ry 2ry 2ry

In
v
o
k
e

In
v
o
k
e

In
v
o
k
e

In
v
o
k
e



Vulkan subpasses — Page 99UK Khronos Chapter meet, May 2016

Click to edit Master title style

CmdBuf

CmdBufCmdBuf

CmdBuf

•Vulkan aims to reduce the overheads of 

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

Vulkan: Making use of the GPU more efficient

Record command buffer

Record command buffer

vkQueueSubmit vkQueueSubmit vkQueueSubmit

Record command buffer

CmdBufCmdBuf



Vulkan subpasses — Page 100UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of 

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

-Potentially more efficient memory management

Vulkan: Making use of the GPU more efficient

Pool 1 Pool 2

Image 1 Image 2 Image 3

View 1 View 2

User-defined memory reuse

Explicit state transitions

Cost invoked at defined points

Heap 1 Heap 2



Vulkan subpasses — Page 101UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of 

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

-Potentially more efficient memory management

-Avoiding unpredictable shader compilation

Vulkan: Making use of the GPU more efficient

Compile to SPIR-V (slow)

Record command buffer (slow-ish)

Submit command buffer (fast)

Offline

2ry thread

Submitting thread



Vulkan subpasses — Page 102UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan aims to reduce the overheads of 

keeping the GPU busy
-Efficient generation of work on multiple CPU cores

-Reuse of command buffers to avoid CPU build time

-Potentially more efficient memory management

-Avoiding unpredictable shader compilation

•Mostly, the message has been that if you’re entirely 

limited by shader performance or bandwidth, Vulkan

can’t help you (there is no magic wand)

Vulkan: Making use of the GPU more efficient



Vulkan subpasses — Page 103UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Actually, that’s not entirely true...

•APIs like OpenGL were designed when the GPU 

looked very different (or was partly software)

•The way to design an efficient mobile GPU is 

not a perfect match for OpenGL

-Think a CPU’s command decode unit/microcode

•But the translation isn’t always perfectly 

efficient

Vulkan: Making use of the GPU more efficient



Vulkan subpasses — Page 104UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Most (not all) mobile GPUs use tiling
- It’s all about the bandwidth (size and power limits)

•On-chip tile memory is much faster than the 

main frame buffer

Tiled GPUs

Scene description Binning pass Shading pass



Vulkan subpasses — Page 105UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Rendering requires lots of per-pixel data
-Z, stencil

-Full multisample resolution

•We usually only care about the final image

-We can throw away Z and stencil

-We only need a downsampled (A)RGB

-Don’t need to load anything from a previous frame

Not everything reaches memory

Z Stencil RGB RGB



Vulkan subpasses — Page 106UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Output from one rendering job can be used by 

the next

•Z buffer for shadow maps

•Rendering for environment maps

•HDR bloom

•These can have low resolution and may not 

take much bandwidth

Sometimes we want the results of rendering



Vulkan subpasses — Page 107UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

Sometimes you do need framebuffer resolution

Z

Diffuse/ɑ

Specular/
Specularity

Normal

Render
full-screen 
quad and
perform 

fragment 
shading

Light 
weight
render 
storing 

per-
surface 
content 
at each 

fragment



Vulkan subpasses — Page 108UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

•Deferred lighting

Sometimes you do need framebuffer resolution

Z

Specularity

Normal

Diffuse

Specular

Light 
weight 
render 

for 
lighting 

input

Render
full-screen 
quad and 
calculate 
lighting 
output

Re-render 
scene with 

full 
fragment 
shading, 

using 
lighting 
inputs



Vulkan subpasses — Page 109UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

•Deferred lighting

•Order-independent transparency

Sometimes you do need framebuffer resolution



Vulkan subpasses — Page 110UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Deferred shading

•Deferred lighting

•Order-independent transparency

•HDR tone mapping

Sometimes you do need framebuffer resolution



Vulkan subpasses — Page 111UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Rendering to each surface separately is bad

•Geometry has a per-bin cost
-Sometimes the cost is low, but it’s there

-Vertices in multiple bins get processed repeatedly

-Rendering the scene repeatedly is painful

•Even immediate-mode renderers hate this!

Rendering outputs separately



Vulkan subpasses — Page 112UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Using MRTs means multiple buffers in one pass

•Reduces the geometry load (only process once)

•Still writing a lot of data off-chip
-Tilers are all about trying not to do this!

- Increases use of shader resources may slow some h/w

Multiple render targets don’t help much

Single scene traversal

This is a typical approach for 

immediate-mode renderers (e.g. 

desktop/console systems)



Vulkan subpasses — Page 113UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Tiler-friendly (at last)
-Store only the current tile values

-Read them later in the tile processing

•But not portable!
-Not practical on immediate renderers

-Debugging on desktop won’t work!

-Capabilities vary between devices

-Driver doesn’t have visibility

-Data access is restricted

Pixel Local Storage (OpenGL ES extension)



Vulkan subpasses — Page 114UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan has direct support for this type of 

rendering work load

•By telling the driver how you intend to use the 

rendered results, the driver can produce a 

better mapping to the hardware
-The extra information is a little verbose, but simpler 

than handling all possible cases yourself! 

Vulkan: Explicit dependencies



Vulkan subpasses — Page 115UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A render pass groups dependent operations
-All images written in a render pass are the same size

Single render pass

Vulkan render passes and subpasses

Geometry
Lighting Fragment



Vulkan subpasses — Page 116UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A render pass groups dependent operations
-All images written in a render pass are the same size

•A render pass contains a number of subpasses
-Subpasses describe access to attachments

-Dependencies can be defined between subpasses

Vulkan render passes and subpasses

Sub 

pass 

1:

Geo

Sub 

pass 2:

Light

Sub 

pass 3:

Frag



Vulkan subpasses — Page 117UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A render pass groups dependent operations
-All images written in a render pass are the same size

•A render pass contains a number of subpasses
-Subpasses describe access to attachments

-Dependencies can be defined between subpasses

•Each render pass instance has to be contained 

within a single command buffer (unit of work)
-Some tilers schedule by render pass

Vulkan render passes and subpasses



Vulkan subpasses — Page 118UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkRenderPassCreateInfo
-VkAttachmentDescription *pAttachments

- Just the descriptions, not the actual attachments!

-VkSubpassDescription *pSubpasses

-VkSubpassDependency *pDependencies

•vkCreateRenderPass(device, createInfo,.. pass)
-Gives you a VkRenderPass object

-This is a template that you can use repeatedly
- When we use it, we get a render pass instance

Defining a render pass



Vulkan subpasses — Page 119UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkAttachmentDescription
- format/samples

- loadOp
- VK_ATTACHMENT_LOAD_OP_LOAD to preserve

- VK_ATTACHMENT_LOAD_OP_DONT_CARE for overwrites

- VK_ATTACHMENT_LOAD_OP_CLEAR uniform clears (e.g. Z)

- storeOp
- VK_ATTACHMENT_STORE_OP_STORE to output it

- VK_ATTACHMENT_STORE_OP_DONT_CARE may discard after 

the render pass

Describing attachments for a render pass



Vulkan subpasses — Page 120UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkSubpassDescription
-pInputAttachments

- Which of the render pass’s attachments this subpass reads

-pColorAttachments
- Which ones this subpass writes (1:1 - optional)

-pResolveAttachments
- Which ones this subpass writes (resolving multisampling)

-pPreserveAttachments
- Which attachments need to persist across this subpass

-Subpasses are numbered and ordered

Defining a subpass



Vulkan subpasses — Page 121UK Khronos Chapter meet, May 2016

Click to edit Master title style

•VkSubpassDependency
- srcSubpass

-dstSubpass
- Where the dependency applies (can be external)

- srcStageMask

-dstStageMask
- Execution dependencies between subpasses

- srcAccessMask

-dstAccessMask
- Memory dependencies between subpasses

Defining subpass dependencies



Vulkan subpasses — Page 122UK Khronos Chapter meet, May 2016

Click to edit Master title style

•A VkFramebuffer defines the set of 

attachments used by a render pass instance

•VkFramebufferCreateInfo
- renderPass

-pAttachments
- These are actual VkImageViews this time!

-width

-height

- layers

Vulkan framebuffers



Vulkan subpasses — Page 123UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdBeginRenderPass/vkCmdEndRenderPass
-Starts a render pass instance in a command buffer

- You start in the first (maybe only) subpass implicitly

-pRenderPassBegin contains configuration

•VkRenderPassBeginInfo
-VkRenderPass renderPass

- The render pass “template”

-VkFrameBuffer framebuffer
- Specifies targets for rendering

Starting to use a render pass



Vulkan subpasses — Page 124UK Khronos Chapter meet, May 2016

Click to edit Master title stylePutting it all together…

VkRenderPassCreateInfo

VkAttachmentDescription

VkAttachmentDescription

VkAttachmentDescription

VkAttachmentDescription

VkSubpassDescription VkSubpassDependency

VkSubpassDependencyVkSubpassDescription

VkSubpassDescription

vkCreateRenderPass

VkRenderPass

VkImageView

VkImageView

VkImageView

VkImageView

VkFramebufferCreateInfo

vkCreateFramebuffer

VkFramebuffer

VkRenderPassBeginInfo VkCommandBuffer

vkCmdBeginRenderPass

Key:

• Objects are dark grey

• Functions are light grey

• Arrows between objects are 

references of some sort

• Arrows into functions are arguments

• Arrows out of functions are 

constructed objects



Vulkan subpasses — Page 125UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkAllocateCommandBuffers (VK_COMMAND_BUFFER_LEVEL_PRIMARY)

•vkBeginCommandBuffer

•vkCmdBeginRenderPass

•vkCmdDraw (etc.)

•vkCmdEndRenderPass

•vkEndCommandBuffer

•vkQueueSubmit

Simple rendering

Command buffer

Render pass

Draw Draw Draw Draw

Queue



Vulkan subpasses — Page 126UK Khronos Chapter meet, May 2016

Click to edit Master title style

•You can have more than one render pass in a 

command buffer
- Yes, Leeloo multipass,

we know…

-So a command buffer can render to many outputs
- E.g. you could render to the same shadow and environment 

maps every frame by reusing the same command buffer

-But it must be the same outputs each time you submit
- A specific render pass instance has fixed vkFrameBuffers!

Multiple render passes

Command buffer

Render pass Render pass

Draw Draw Draw Draw



Vulkan subpasses — Page 127UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Different render passes ֜ independent outputs

-Rendering goes off-chip, there’s no PLS-style on-chip 

reuse of pixel contents

•You can’t reuse the same command buffer with 

a different render target
-E.g. for double buffering or streamed content

-We’ll come back to this…

•Still sometimes all you need, though!

Two limitations…



Vulkan subpasses — Page 128UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdNextSubpass moves to the next subpass
- Implicitly start in the first subpass of the render pass

-Dependencies say what you’re accessing from 

previous subpasses

-Same render pass so

accesses stay on

chip (if possible)

More than one subpass

Command buffer

Render Pass

Draw Draw

N
e
w

 s
u
b
p
a
ss

Draw Draw Draw



Vulkan subpasses — Page 129UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdBeginCommandBuffer

•vkCmdBeginRenderPass

•vkCmdDraw (etc.)

•vkCmdNextSubpass

•vkCmdDraw (etc.)

•vkCmdEndRenderPass

•vkCmdEndCommandBuffer

Using multiple subpasses

Command buffer

Render Pass

Draw Draw

N
e
w

 s
u
b
p
a
ss

Draw Draw Draw



Vulkan subpasses — Page 130UK Khronos Chapter meet, May 2016

Click to edit Master title style

•In SPIR-V, previous subpass content is read 

with OpImageRead
-Coordinates are sample-relative, and need to be 0

-OpTypeImage Dim = SubpassData

•In GLSL (using GL_KHR_vulkan_glsl):
-Types for subpass access are [ui]subpassInput(MS)

- layout(input_attachment_index = i, …) uniform 

subpassInput t; to select a subpass

- subpassLoad() to access the pixel

Accessing subpass output in fragment shaders

C.f. __pixel_localEXT layouts in 

EXT_shader_pixel_local_storage

when using OpenGL ES



Vulkan subpasses — Page 131UK Khronos Chapter meet, May 2016

Click to edit Master title style

•If we’re using subpasses, we likely don’t need 

the images in memory
-A tiler may be able to process the subpasses entirely 

on-chip, without needing an allocation

-Still need to “do the allocation” in case the tiler can’t 

handle the request/on an immediate-mode renderer!
- Won’t commit resources unless it actually needs to

•vkCreateImage flags for “lazy committal”
-VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT 

Avoiding unnecessary allocations



Vulkan subpasses — Page 132UK Khronos Chapter meet, May 2016

Click to edit Master title style

•The driver knows what you’re doing
- It can reorder subpasses

- It can change the tile size

- It can balance resources between subpasses

- It will fall back to memory for you if it has to

-Under the hood, mechanism likely matches PLS

•Works on immediate mode renderers
-Probably MRTs and normal external writes

-Desktop debugging tools will work!

Vulkan subpasses: advantages

EXT_shader_pixel_local_storage is actually 

more explicit than Vulkan here (and may still 

be offered as an extension)



Vulkan subpasses — Page 133UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Vulkan has two levels of command buffers
-Determined by vkAllocateCommandBuffers

•VK_COMMAND_BUFFER_LEVEL_PRIMARY
-Main command buffer, as we’ve seen so far

•VK_COMMAND_BUFFER_LEVEL_SECONDARY
-Command buffer that can be invoked from the 

primary command buffer

There’s more: Secondary command buffers



Vulkan subpasses — Page 134UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkBeginCommandBuffer
-Takes a VkCommandBufferBeginInfo

•VkCommandBufferBeginInfo
- flags include:

- VK_COMMANDBUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

-pInheritanceInfo

•VkCommandBufferInheritanceInfo
- renderPass and subpass

- framebuffer (can be null, more efficient if known)

Use of secondary command buffers



Vulkan subpasses — Page 135UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Why do we need the “continue bit”?
-Render passes (and subpasses) can’t start in a 

secondary command buffer

-Non-render pass stuff can be in a secondary buffer
- You can run a compute shader outside a render pass

-Otherwise, the render pass is inherited from the 

primary command buffer

Secondary command buffers and passes



Vulkan subpasses — Page 136UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Why specify render pass/framebuffer?
-Command buffers needs to know this when recording

- Some operations depends on render pass info (e.g. format)

-Framebuffer is optional (can just inherit)
- If you can specify the actual framebuffer, the command 

buffer can be less generic and therefore may be faster

Secondary command buffers and passes



Vulkan subpasses — Page 137UK Khronos Chapter meet, May 2016

Click to edit Master title style

•You can’t submit a secondary command buffer

•You have to invoke it from a primary command 

buffer with vkCmdExecuteCommands

Invoking the secondary command buffer

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw

Primary command buffer

Render pass

N
e
w

 

su
b
p
a
ss Render pass

vkCEC vkCEC vkCEC



Vulkan subpasses — Page 138UK Khronos Chapter meet, May 2016

Click to edit Master title style

•vkCmdBeginCommandBuffer

•vkCmdBeginRenderPass

•vkCmdExecuteCommands

•vkCmdNextSubpass

•vkCmdExecuteCommands

•vkCmdEndRenderPass

•vkCmdEndCommandBuffer

Secondary command buffer code

Primary command buffer

Render pass

N
e
w

 

su
b
p
a
ss

vkCEC vkCEC

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw



Vulkan subpasses — Page 139UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Creating a command buffer can be slow
-Lots of state to check, may require compilation

- This happens in GLES as well, you just don’t control when!

•So create secondary command buffers on 

different threads
-Lots of 4- and 8-core CPUs in cell phones these days

•Invoking the secondary buffer is lightweight
-Primary command buffer generation is quick(er)

Performance and parallelism



Vulkan subpasses — Page 140UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Remember:
-Render passes exist within (primary) command buffers

- The command buffer sets up the GPU for the render pass

-On-chip rendering happens within a render pass
- If you want content to persist between render passes, it’ll 

reach memory (or at least cache), not stay in the tile buffer

-You can’t use multiple threads to build work for a 

primary command buffer in parallel
- You can build many secondary command buffers at once

What does this have to do with passes?



Vulkan subpasses — Page 141UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Within a subpass you can either (but not both):
-Execute rendering commands directly in the primary 

command buffer
- VK_SUBPASS_CONTENTS_INLINE

You can’t mix and match

Command buffer

Render pass

Draw Draw Draw Draw



Vulkan subpasses — Page 142UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Within a subpass you can either (but not both):
-Execute rendering commands directly in the primary 

command buffer
- VK_SUBPASS_CONTENTS_INLINE

- Invoke secondary command buffers from the primary 

command buffer with vkCmdExecuteCommands
- VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS

You can’t mix and match

Primary command buffer

Render pass

vkCEC vkCEC

Secondary buffer

Draw Draw

Secondary buffer

Draw Draw



Vulkan subpasses — Page 143UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Within a subpass you can either (but not both):
-Execute rendering commands directly in the primary 

command buffer
- VK_SUBPASS_CONTENTS_INLINE

- Invoke secondary command buffers from the primary 

command buffer with vkCmdExecuteCommands
- VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS

-Chosen by vkCmdBeginRenderPass/vkCmdNextSubpass
- Remember: you can only do these in a primary command 

buffer!

You can’t mix and match



Vulkan subpasses — Page 144UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Primary command buffers work with a fixed 

render pass and framebuffer
-You can reuse a primary command buffer, but it will 

always access the same images – often good enough
- May have to wait for execution to end; can’t be “one-time”

•What if you want to access different targets?
-E.g. a cycle of framebuffers or streamed content?

-You can round-robin several command buffers

-Or you can use secondary command buffers!

Command buffer reuse: even faster



Vulkan subpasses — Page 145UK Khronos Chapter meet, May 2016

Click to edit Master title style

•The render pass a secondary command buffer 

uses needn’t be the one it was recorded with
- It can be “compatible”

- Same formats, number of sub-passes, etc.

•You can have primary command buffers with 

different outputs, and they can re-use 

secondary command buffers
-The primary has to be different to record new targets

-The primary may have to patch secondary addresses

Compatible render passes and frame buffers



Vulkan subpasses — Page 146UK Khronos Chapter meet, May 2016

Click to edit Master title style

•No cost for secondary command buffers

•Primary command buffer is simple and quick

Almost-free use with changing framebuffers

Primary command buffer

Secondary
command 

buffer

Secondary
command 

buffer

Target 
image 1

Target 
image 2

Render pass

CEC CEC

Primary command buffer

Render pass

CEC CEC



Vulkan subpasses — Page 147UK Khronos Chapter meet, May 2016

Click to edit Master title style

•No! Remember, you can only access the 

current pixel

•Tilers process one tile at a time
- If you could try to access a different pixel, the tile 

containing it may not be there

-You have to write out the whole image to do this
- Slow, painful, last resort!

-Yes, we can think of possible solutions too
- Give it time (lots of different hardware out there)

So I can do bloom/DoF/rain/motion blur…!

?



Vulkan subpasses — Page 148UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Render passes are integral to the Vulkan API
-Reflects modern, high-quality rendering approaches

•The driver has more information to work with
- It can do more for you

- Remember this if you complain it’s verbose!

•Hardware resource management is hard
-Expect drivers to get better over time

•Another tool for better mobile gaming

Coming out of the shadow(buffer)s



Vulkan subpasses — Page 149UK Khronos Chapter meet, May 2016

Click to edit Master title style

•Over to you…

Andrew Garrard

a.garrard at samsung.com

Thank you


