Vulkan Subpasses

or
The Frame Buffer is Lava

Andrew Garrard
Samsung R&D Institute UK

UK Khronos Chapter meet, May 2016

Vulkan: Making use of the GPU more efficient

Vulkan aims to reduce the overheads of
keeping the GPU busy

SAMSUNG

Vulkan: Making use of the GPU more efficient

Vulkan aims to reduce the overheads of
keeping the GPU busy

- Efficient generation of work on multiple CPU cores

UK Khronos Chapter meet, May 2016

CmdBuf CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

SAMSUNG

__ Command buffer
recording

—

Submit |

Vulkan: Making use of the GPU more efficient

Vulkan aims to reduce the overheads of
keeping the GPU busy

- Efficient generation of work on multiple CPU cores
- Reuse of command buffers to avoid CPU build time

l Record 2"Y command buffer ’ Record primary command buffer

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 98

Vulkan: Making use of the GPU more efficient

Vulkan aims to reduce the overheads of
keeping the GPU busy

- Efficient generation of work on multiple CPU cores
- Reuse of command buffers to avoid CPU build time

\
‘ vkQueueSubmit | ‘ vkQueueSubmit ‘ vkQueueSubmit |

Record command buffer

Record command buffer

Record command buffer CmdBuf

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 99

Vulkan: Making use of the GPU more efficient

Vulkan aims to reduce the overheads of
keeping the GPU busy

- Efficient generation of work on multiple CPU cores
-Reuse of command buffers to avoid CPU build time
- Potentially more efficient memory management

User-defined memory reuse

| ‘ i Explicit state transitions

% m m Cost invoked at defined points

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 100

Vulkan: Making use of the GPU more efficient

Vulkan aims to reduce the overheads of
keeping the GPU busy

- Efficient generation of work on multiple CPU cores
-Reuse of command buffers to avoid CPU build time
- Potentially more efficient memory management

- Avoiding unpredictable shader compilation

‘ Compile to SPIR-V (slow)

* | offine
|
* |
‘ Record command buffer (slow-ish) |

\Z

Submit command buffer (fast) Submitting thread

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 101

Vulkan: Making use of the GPU more efficient

Vulkan aims to reduce the overheads of
keeping the GPU busy

- Efficient generation of work on multiple CPU cores
-Reuse of command buffers to avoid CPU build time
- Potentially more efficient memory management

- Avoiding unpredictable shader compilation

*Mostly, the message has been that if you’re entirely
limited by shader performance or bandwidth, Vulkan

can’t help you (there is no magic wand)
UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 102

Vulkan: Making use-of the GPU more efficient
«Actually, that’s not entirely true...

*APIs like OpenGL were desighed when the GPU
looked very different (or was partly software)

The way to design an efficient mobile GPU is
not a perfect match for OpenGL
-Think a CPU’s command decode unit/microcode

«But the translation isn’t always perfectly
efficient
K Khronos Chapter meet, May 2016 S l\ M S U N G sssssssssssssss — Page 103

Tiled GPUs

*Most (not all) mobile GPUs use tiling
-1t’s all about the bandwidth (size and power limits)

Scene description —>{ Binning pass —>‘ Shading pass |

III1II}III—' \ | b |
A
*On-chip tile memory is much faster than the

main frame buffer
SANMSUNG = Vuiken subpasses _ Page 104

Not everything reaches memory

Rendering requires lots of per-pixel data
-Z, stencil
- Full multisample resolution

We usually only care about the final image

-We can throw away Z and stencil
-We only need a downsampled (A)RGB

-Don’t need to load an&:\fmg&from a previous frame

Vulkan subpasses — Page 105

Sometimes we want the results of rendering

«Output from one rendering job can be used by
the next

«Z buffer for shadow maps

*Rendering for environment maps

«HDR bloom A
4

These can have low resolution and may not

take much bandwidth
UK Khronos Chapter meet, May 2016 Sl\ M S U N G sssssssssssssss — Page 106

ke

Sometimes you do need framebuffer resolution
eDeferred shading

' j
|
Light

renc_ler ' full-screen ‘ |
storing X quad and }
supref;ce perform |
, fragment
at each | Specularity

fragment
' i‘
I

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 107

Sometimes you do need framebuffer resolution
eDeferred shading

-Deferred lighting

* Re-render
) Render 1 — | scene with
Light full-screen | full
welght l quad and , fragment b
render :
) | calculate | shading,
. fOI: I Iighting l | m using
lighting output lighting
input a i inputs
\
’ "

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 108

Sometimes you do need framebuffer resolution
eDeferred shading

-Deferred lighting
«Order-independent transparency

/]

g [N

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 109

Sometimes you do need framebuffer resolution
eDeferred shading

-Deferred lighting

«Order-independent transparency
«HDR tone mapping

N

SAMSUNG

Rendering outputs separately

Rendering to each surface separately is bad

& N R R

«Geometry has a per-bin cost
-Sometimes the cost is low, but it’s there
-Vertices in multiple bins get processed repeatedly
-Rendering the scene repeatedly is painful

«Even immediate-mode renderers hate this!

UK Khronos Chapter meet, May 2016 s " M s U N G Vulkan subpasses — Page 111

Multiple render targets don’t help much
-Using MRTs means multiple buffers in one pass

immediate-mode renderers (e.g.

& A & m desktop/console systems)

*Reduces the geometry load (only process once)

Smgle scene traversal
‘ {Thls is a typical approach for J

Still writing a lot of data off-chip
-Tilers are all about trying not to do this!
-Increases use of shader resources may slow some h/w

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 112

Pixel Local Storage (OpenGL ES extension)

e Tiler-friendly (at last)
-Store only the current tile values
-Read them later in the tile processing

«But not portable!
-Not practical on immediate renderers
- Debugging on desktop won’t work!
- Capabilities vary between devices
-Driver doesn’t have visibility

-Data access is restricted
UK Khronos Chapter meet, May 2016 s " M s U N G Vulkan subpasses — Page 113

Vulkan: Explicit dependencies

«Vulkan has direct support for this type of
rendering work load

By telling the driver how you intend to use the
rendered results, the driver can produce a

better mapping to the hardware
-The extra information is a little verbose, but simpler
than handling all possible cases yourself!

SAMSUNG

Vulkan render passes and subpasses

A render pass groups dependent operations
- All images written in a render pass are the same size

3 & —
Geometry | : & T

=

A -

UK Khronos Chapter meet, May 2016

Lighting

>

SAMSUNG

Fragment

44

Single render pass

Vulkan s

ubpasses — Page 115

Vulkan render passes and subpasses

A render pass groups dependent operations
- All images written in a render pass are the same size

A render pass contains a number of subpasses
-Subpasses describe access to attachments
- Dependencies can be defined between subpasses

-

. Sub Sub | & Sub

| pass | pass 2: pass 3: | “
Frag

1: Light |
UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 116

- Geo
3

Vulkan render passes and subpasses

A render pass groups dependent operations
- All images written in a render pass are the same size

A render pass contains a number of subpasses
-Subpasses describe access to attachments
- Dependencies can be defined between subpasses

«Each render pass instance has to be contained

within a single command buffer (unit of work)
-Some tilers schedule by render pass

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 117

Defining a render pass

«VkRenderPassCreatelnfo

-VkAttachmentDescription *pAttachments
- Just the descriptions, not the actual attachments!

-VkSubpassDescription *pSubpasses
-VkSubpassDependency *pDependencies

-vkCreateRenderPass(device, createlnfo,.. pass)
- Gives you a VkRenderPass object

-This is a template that you can use repeatedly
- When we use it, we get a render pass instance

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 118

Describing attachments for a render pass

«VkAttachmentDescription

-format/samples

-loadOp
- VK_ATTACHMENT_LOAD_OP_LOAD to preserve

- VK_ATTACHMENT_LOAD_OP_DONT_CARE for overwrites
- VK_ATTACHMENT_LOAD_OP_CLEAR uniform clears (e.g. Z)

-storeOp
- VK_ATTACHMENT_STORE_OP_STORE to output it
- VK_ATTACHMENT_STORE_OP_DONT_CARE may discard after
the render pass

UK Khronos Chapter meet, May 2016 s " M s U N G Vulkan subpasses — Page 119

Defining a subpass

«VkSubpassDescription
- plnputAttachments
- Which of the render pass’s attachments this subpass reads

-pColorAttachments

- Which ones this subpass writes (1:1 - optional)
- pResolveAttachments

- Which ones this subpass writes (resolving multisampling)
- pPreserveAttachments

- Which attachments need to persist across this subpass

-Subpasses are numbered and ordered
UK Khronos Chapter meet, May 2016 s " M s U N G Vulkan subpasses — Page 120

Defining subpass dependencies

«VkSubpassDependency
-srcSubpass
-dstSubpass

- Where the dependency applies (can be external)
-srcStageMask
-dstStageMask

- Execution dependencies between subpasses
-srcAccessMask

- dstAccessMask

- Memory dependencies between subpasses
UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 121

Vulkan framebuffers

A VkFramebuffer defines the set of
attachments used by a render pass instance

«VkFramebufferCreatelnfo
-renderPass

- pAttachments
- These are actual VkimageViews this time!

-width
-height
-layers

Starting to use a render pass

vkCmdBeginRenderPass/vkCmdEndRenderPass

-Starts a render pass instance in a command buffer
- You start in the first (maybe only) subpass implicitly

- pRenderPassBegin contains configuration

VkRenderPassBeginInfo

-VkRenderPass renderPass
- The render pass “template”

-VkFrameBuffer framebuffer
- Specifies targets for rendering

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 123

Putting it all together...

VkAttachmentDescription VkSubpassDescription VkSubpassDependency
VkAttachmentDescription VkSubpassDescription m VkSubpassDependency
VkAttachmentDescription VkSubpassDescription V
VkAttachmentDescription

G « Objects are dark grey
VkImageView ‘ vkCreateRenderPass * Functions are light grey
S ——— « Arrows between objects are
references of some sort
VkRenderPass « Arrows into functions are arguments
» Arrows out of functions are
constructed objects

VkImageView

VkImageView \/

VkImageView

VkFramebufferCreateInfo

VkCommandBuffer

vkCreateFramebuffer m
\ |

VkFramebuffer vkCmdBeginRenderPass

UK Khronos Chapter meet, May 2016 s " M s u N G Vulkan subpasses — Page 124

Simple rendering

vkAllocateCommandBuffers (VK_COMMAND_BUFFER_LEVEL_PRIMARY)
vkBeginCommandBuffer

Command buffer ‘

vkCmdBeginRenderPass Render pass l

-vkCmdDraw (etc.)

vkCmdEndRenderPass ‘
«vKkKEndCommandBuffer

°
evkQueueSubmit
UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 125

Multiple render passes

*You can have more than one render pass in a
command buffer Command buffer

. Render pass Render pass
- Yes, Leeloo multipass,
we know...

-So a command buffer can render to many outputs
- E.g. you could render to the same shadow and environment
maps every frame by reusing the same command buffer

-But it must be the same outputs each time you submit
- A specific render pass instance has fixed vkFrameBuffers!

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 126

Two limitations...

«Different render passes = independent outputs

-Rendering goes off-chip, there’s no PLS-style on-chip
reuse of pixel contents

You can’t reuse the same command buffer with

a different render target
-E.g. for double buffering or streamed content
-We’ll come back to this...

+Still sometimes all you need, though!
SAMSUNG = Vuiken subpasses _ Page 127

More than one subpass

vkCmdNextSubpass moves to the next subpass
-Implicitly start in the first subpass of the render pass
- Dependencies say what you’re accessing from

previous subpasses
-Same render pass so

accesses stay on

chip (if possible)

UK Khronos Chapter meet, May 2016

Command buffer

|
v

(7]
T |

o
o)l

(7]
;I
ol
Z |
|

SAMSUNG

Render Pass

Vulkan subpasses — Page 128

Using multiple subpasses

vkCmdBeginCommandBuffer
vkCmdBeginRenderPass

Command buffer

*vkCmdDraw (etc.) Render Pass
vkCmdNextSubpass oraw | orew. :j oraw | oraw [oraw
vkCmdDraw (etc.)] 2
-vkCmdEndRenderPass

+vkCmdEndCommandBuffer

SAMSUNG = Vuiken subpasses ~ Page 129

Accessing subpass output in fragment shaders

«In SPIR-V, previous subpass content is read

with OplmageRead
- Coordinates are sample-relative, and need to be 0
-OpTypelmage Dim = SubpassData

eIn GLSL (using GL_KHR_vulkan_glsl):
- Types for subpass access are [ui]subpassinput(MS)
- layout(input_attachment_index =1, ...) uniform

SpraSSInPUt t; tO SeleCt d SpraSS C.f. _pixel_lqcalEXT layouts in
-SpraSSLoad() to access the p.lxel EXT_shader_pixel_local_storage

when using OpenGL ES
UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 130

Avoiding unnecessary allocations

If we’re using subpasses, we likely don’t need

the images in memory

- A tiler may be able to process the subpasses entirely
on-chip, without needing an allocation

-Still need to “do the allocation” in case the tiler can’t

handle the request/on an immediate-mode renderer!
- Won’t commit resources unless it actually needs to

vkCreatelmage flags for “lazy committal”

-VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT
UK Khronos Chapter meet, May 2016 SAMSUNG Vulkan subpasses — Page 131

Vulkan subpasses: advantages
The driver knows what you’re doing

more explicit than Vulkan here (and may still

be offered as an extension)

- It can reorder SuU bpasses {EXT_shader_pixel_local_storage is actually J

-It can change the tile size

-It can balance resources between subpasses
-1t will fall back to memory for you if it has to
-Under the hood, mechanism likely matches PLS

«Works on immediate mode renderers
-Probably MRTs and normal external writes
- Desktop debugging tools will work!

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpa

sses — Page 132

There’s more: Secondary command buffers

Vulkan has two levels of command buffers
-Determined by vkAllocateCommandBuffers

VK_COMMAND_BUFFER_LEVEL_PRIMARY

-Main command buffer, as we’ve seen so far

VK_COMMAND_BUFFER_LEVEL_SECONDARY

-Command buffer that can be invoked from the
primary command buffer

SAMSUNG

Use of secondary command buffers

vkBeginCommandBuffer
-Takes a VkCommandBufferBegininfo

VkCommandBufferBegininfo

-flags include:
- VK_COMMANDBUFFER_USAGE_RENDER_PASS_CONTINUE_BIT

-plnheritancelnfo

«VkCommandBufferinheritancelnfo
-renderPass and subpass

-framebuffer (can be null, more efficient if known)
UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 134

Secondary command buffers and passes

*Why do we need the “continue bit”?
-Render passes (and subpasses) can’t start in a
secondary command buffer

-Non-render pass stuff can be in a secondary buffer
-You can run a compute shader outside a render pass

-Otherwise, the render pass is inherited from the
primary command buffer

UK Khronos Chapter meet, May 2016 s " M s U N G Vulkan subpasses — Page 135

Secondary command buffers and passes

Why specify render pass/framebuffer?
-Command buffers needs to know this when recording
- Some operations depends on render pass info (e.g. format)

- Framebuffer is optional (can just inherit)
- If you can specify the actual framebuffer, the command
buffer can be less generic and therefore may be faster

UK Khronos Chapter meet, May 2016 s " M s U N G Vulkan subpasses — Page 136

Invoking the secondary command buffer
You can’t submit a secondary command buffer

*You have to invoke it from a primary command
buffer with vkCmdExecuteCommands

Secondary buffer Secondary buffer | Secondary buffer
R R | A

Primary command buffer T

UK Khronos Chapter meet, May 2016 s " M s u N G Vulkan subpasses — Page 137

Render pass

wn
wv |
(o]
n.l
.Q|
-}
ml

Secondary command buffer code

-vkCmdBeginCommandBuffer

Primary command buffer ‘

vkCmdBeginRenderPass

+vkCmdExecuteCommands
vkCmdNextSubpass

Secondary buffer

+vkCmdEndRenderPass Secondary buffer
+vkCmdEndCommandBuffer

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 138

+vkCmdExecuteCommands

Performance and parallelism

«Creating a command buffer can be slow

-Lots of state to check, may require compilation
- This happens in GLES as well, you just don’t control when!

*S0 create secondary command buffers on

different threads
-Lots of 4- and 8-core CPUs in cell phones these days

eInvoking the secondary buffer is lightweight
-Primary command buffer generation is quick(er)

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 139

What does this have to do with passes?

«Remember:
-Render passes exist within (primary) command buffers
- The command buffer sets up the GPU for the render pass

-On-chip rendering happens within a render pass
- If you want content to persist between render passes, it’ll
reach memory (or at least cache), not stay in the tile buffer

-You can’t use multiple threads to build work for a

primary command buffer in parallel
- You can build many secondary command buffers at once

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 140

You can’t mix and match

«Within a subpass you can either (but not both):
- Execute rendering commands directly in the primary

command buffer
- VK_SUBPASS CONTENTS_INLINE

Command buffer

Render pass

UK Khronos Chapter meet, May 2016 s " M s u N G Vulkan subpasses — Page 141

You can’t mix and match

«Within a subpass you can either (but not both):
- Execute rendering commands directly in the primary

command buffer
- VK_SUBPASS CONTENTS_INLINE

-Invoke secondary command buffers from the primary

command buffer with vkCmdExecuteCommands
- VK_SUBPASS _CONTENTS_SECONDARY_COMMAND BUFFERS

Secondary buffer Render pass

Primary command buffer
BRI — =
|

UK Khronos Chapter meet, May 2016 s ’\ M s u N G

Secondary buffer

Vulkan subpasses — Page 142

You can’t mix and match

«Within a subpass you can either (but not both):
- Execute rendering commands directly in the primary

command buffer
- VK_SUBPASS_CONTENTS_INLINE
-Invoke secondary command buffers from the primary

command buffer with vkCmdExecuteCommands
- VK_SUBPASS _CONTENTS_SECONDARY_COMMAND BUFFERS

-Chosen by vkCmdBeginRenderPass/vkCmdNextSubpass

- Remember: you can only do these in a primary command

buffer!
UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 143

Command buffer reuse: even faster

Primary command buffers work with a fixed

render pass and framebuffer
-You can reuse a primary command buffer, but it will

always access the same images - often good enough
- May have to wait for execution to end; can’t be “one-time”

What if you want to access different targets?
-E.g. a cycle of framebuffers or streamed content?
-You can round-robin several command buffers

-Or you can use secondary command buffers!
UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 144

Compatible render passes and frame buffers

The render pass a secondary command buffer

uses needn’t be the one it was recorded with

-1t can be “compatible”
- Same formats, number of sub-passes, etc.

*You can have primary command buffers with
different outputs, and they can re-use

secondary command buffers
-The primary has to be different to record new targets

-The primary may have to patch secondary addresses
UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 145

Almost-free use with changing framebuffers
*No cost for secondary command buffers

Primary command buffer is simple and quick

Primary command buffer
Render pass

Target |<

v

Secondary
] > command

Target Pr|ma||y command buffer buffer

image 2 Render pass

e [cxe
—> command

buffer

UK Khronos Chapter meet, May 2016 s ’\ M s u N G

<

Vulkan subpasses — Page 146

So | can do bloom/DoF/rain/motion blur...!
No! Remember, you can only access the

current pixel *. A
*Tilers process one tile at a time B
-If you could try to access a different pixel, the tile

containing it may not be there

-You have to write out the whole image to do this
- Slow, painful, last resort!

-Yes, we can think of possible solutions too
- Give it time (lots of different hardware out there)

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 147

Coming out of the shadow(buffer)s

Render passes are integral to the Vulkan API
-Reflects modern, high-quality rendering approaches

«The driver has more information to work with

-It can do more for you
- Remember this if you complain it’s verbose!

Hardware resource management is hard
- Expect drivers to get better over time

«Another tool for better mobile gaming

UK Khronos Chapter meet, May 2016 s n M s U N G Vulkan subpasses — Page 148

Thank you

«Over to you...

Andrew Garrard
a.garrard at samsung.com

UK Khronos Chapter meet, May 2016 s ’\ M s u N G Vulkan subpasses — Page 149

