Sanders: Algorithm Engineering — Parallel Sorting ﬂ(l'l' 1

Algorithm Engineering
An Attempt at a Definition

Karlsruhe Institute of Technology

Using Parallel (External) Sorting
as an Example

Peter Sanders

AT

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting ﬂ(l'l' 2

O L] Karlsruhe Institute of Technology

| a general definition

[with Kurt Mehlhorn, Rolf M6hring, Petra Mutzel, Dorothea Wagner]
] main challenges

] Parallel (external) sorting as an example
[with Andreas Beckmann, Roman Dementiev, David Hutchinson,
Kanela Kaligosi, Nicolai Leischner, Ulrich Meyer, Vitaly Osipov,
Mirko Rahn, Johannes Singler, Jeff Vitter, Sebastian Winkel]

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 3

Algorithmics

— the systematic design of efficient software and hardware

computer science

algorithmics m efficient

theoretical
[p211onId

Sanders: Algorithm Engineering — Parallel Sorting &(IT 4

(Caricatured) Traditional View: Algorithm Theory

(models)

'
(design }

Theory | Practice

. y
(analyss) Gmplementation)

‘ deduction *

[perf. guarantees j (applications j

Sanders: Algorithm Engineering — Parallel Sorting ﬂ(l'l'

Gaps Between Theory & Practice

Theory — Practice
”
simple ﬁ appl. model complex
= .
simple machine model — real
complex algorithms FOR simple
advanced W data structures [TITT] arrays,. . .
worst case | MaX | | complexity measure R inputs
asympt. O() efficiency 42% | constant factors

Sanders: Algorithm Engineering — Parallel Sorting ﬂ(l'l' 6

Karlsruhe Institute of Technology

Algorithmics as Algorithm Engineering

algorithm (models J
engineering
design]
?
[analysis] ? [experiments]
dedyction ?
perf.—
guarantees

Sanders: Algorithm Engineering — Parallel Sorting ﬂ(l'l' 7

Karlsruhe Institute of Technology

Algorithmics as Algorithm Engineering

algo.nthm. (models J
engineering *

/(design

, falsifiable

[analysis experiments]

dedtiction

perf.—
guarantees

hypotheses
Induction

Implementation

Sanders: Algorithm Engineering — Parallel Sorting

Algorithmics as Algorithm Engineering

-

algorithm
engineering

/(real. design
falsifiable

[real. analysis

dedtiction

perf.—
guarantees

realistic
models

'

hypotheses
Induction

experiments]

Implementation

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting

Algorithmics as Algorithm Engineering

Karlsruhe Institute of Technology

i : realistic
algorithm (models J

engineerin real

J J * Llnputs }
/(design l
, falsifiable

[analysis hypotheses experiments]

_ Induction
dedtictlon
oerf.— Implementation
guarantees *

algorithm-—
libraries

Sanders: Algorithm Engineering — Parallel Sorting

Algorithmics as Algorithm Engineering

a4 _ realistic
ey P
g g 9 {Inputs

libraries

Karlsruhe Institute of Technology

| QD

/(design %

| falsifiable 4 =

[analysis hypotheses experiments 8

. Induction —

dedxictlon % \ =

: _ | =

perf.— W Implementation# appl. engin. VT
guarantees | ‘

algorithm- |

Sanders: Algorithm Engineering — Parallel Sorting

Goals

| bridge gaps between theory and practice

AT -~

Karlsruhe Institute of Technology

|| accelerate transfer of algorithmic results into applications

| keep the advantages of theoretical treatment:

generality of solutions and

reliability, predictability from performance guarantees

-

algorithm
engineering

realistic
models

N

real
Inputs

#_

suoneoldde

libraries

/(design
, falsifiable 4
[analysis hypotheses experiments }4—
deddetion induction
perf - implementationy# appl. engin.
guarantees *
algorithm—- |

Sanders: Algorithm Engineering — Parallel Sorting

Bits of History

1843— Algorithms in theory and practice
1950s,1960s Still infancy
1970s,1980s Paper and pencil algorithm theory.

Exceptions exist, e.g., [J. Bentley, D. Johnson|

1986 Term used by [T. Beth],

lecture “Algorithmentechnik” in Karlsruhe.

1988— Library of Efficient Data Types and Algorithms
(LEDA) [K. Mehlhorn, S. Naher]

1990- DIMACS Implementation Challenges [D. Johnson]

1997— Workshop on Algorithm Engineering
~~ ESA applied track [G. Italiano]

1997 Term used in US policy paper [Aho, Johnson, Karp, et. al]
1998 Alex workshop in Italy ~~ ALENEX

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 13

Commercial Break [Bader, Sanders, Wagner]

10th DIMACS Implementation Challenge

Two related challenges:
[] (Balanced) Graph Partitioning (cut minimization) and
| Clustering (modularity, others)

Variants welcome for the workshop

Atlanta February 13/14, 2012
June 1 2011: testbed creation
Oct 21 2011: paper deadline

http://ww. cc. gat ech. edu/ di nacs10/

Sanders: Algorithm Engineering — Parallel Sorting

Realistic Models — The Beauty and the Beast

Theory —

simple ﬁ appl. model

Practice

- complex

simple % machine model

=

real

[| Careful refinements

] Try to preserve (partial) analyzability / simple results

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting ﬂ(l'r 15

ttttttttttttttttttttttttttttt

Sorting — Model

Comparison arbitrary
based e.g. integer

Oy AN

true/false full information

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 16

Advanced Machine Models

Parallel Disks

o
o 0

von Neumann é B

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 17

Advanced Machine Models

?&J

SSDs

Sanders: Algorithm Engineering — Parallel Sortin &(IT 18

tttttttttttttttttttttttttttttt

Set Associative Caches

M
BB

B cache
__— cache sets

|:::::| |ZZZZZ| AN I |a:2

cache lines of the memory main memor

Sanders: Algorithm Engineering — Parallel Sorting

Branch Prediction

?&f

)

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting

Hierarchical Parallel External Memory

. . multicore MPI
®0O 0O dsks

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting

Our Cost Model for Parallel External Sorting

“sequential” aspects: Comparisons, cache faults, branch

mispredictions, ILP

shared memory: remote cache accesses (not here:

synchronizations,. . .)
disk: 1/0Os, overlapping, tune block size

distributed memory: communication volume (with alltoallv)

(not here latency, collectives)
overall: time, energy

partly plug-and-play of previous results.

Mix of formal and informal consideration

Karlsruhe Institute of Technology

21

Sanders: Algorithm Engineering — Parallel Sorting

Graphics Processing Units

TS BOTYTERTY

h Hh
Filr ¥ Fi 1 l"|

ﬁF
'.FI

I'II'!-I'jIl

[f ;E:I :
' W
FIRFTFRE

not here

:~'| N'it Y I'i
THF FigK
SR 3 2R3 ﬂ

il FIRF FRF

FIFFEFIFFIFD

Hll IH HH Hh
Hﬁ

HH H HH HH
ﬂﬂ 12 R [ERa [3

Iillll*lllb hllh}l'll

. HIH r-lhn r1 H h
1 Hll H H mvr m
By wle vl

I'I'I‘I'rll‘l

AT

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 23

stitute of Technology

Design

of algorithms that work well in practice
L] simplicity

L] reuse

|| constant factors

| exploit easy instances

Sanders: Algorithm Engineering — Parallel Sorting ﬂ(IT Y
Design — Sorting

L] simplicity -

L] reuse disk scheduling, prefetching,

load balancing, sequence partitioning

| constant factors detailed machine model-

(caches, TLBs, registers, branch prediction, ILP, communication)

[| instances randomization for difficult instances

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT

Design — Parallel External Multiway Mergesort

RO|R1| R2 [R3
PEO PE 0 PE 0 PE 0
| el |

PE 1 PE 1 :‘ 1 PE 1

PE 2 PE 2 PE 2

PE 2

| run formation: internal parallel sorting
(multi-core parallel subroutines).

shuffle blocks between runs randomly

| data redistribution by

external inplace all-to-all

| node-local multi-core-parallel merging

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 26

Analysis

] Constant factors matter
| Beyond worst case analysis

[] Practical algorithms might be difficult to analyze

(randomization, meta heuristics,...)

Sanders: Algorithm Engineering — Parallel Sorting

Analysis — Sorting

tttttttttttttttttttttttttttttt

VRN

SILIM

N—7

N

yolajald

LAA

overlap

Veﬁjew

[| Constant factors matter

k)

(1 4 o(1))sort(n)

|/Os for parallel (disk) external sorting

Open Problem: optimal I/O AND communication volume

| Beyond worst case analysis

| Practical algorithms might be difficult to analyze

Open Problem:

quicksort: avg. case analysis of branch mispredictions

Open Problem:

greedy algorithm for parallel disk prefetching [Knuth@48]

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 28

Analysis — Parallel External Sorting

Best case: 2 1/0 passes, 1 X communication (optimal)
Worst case: one additional I/O, communication pass

Expected case: much less extra I/O/comm. even for arbitrarily skewed

Inputs
PE 0 PE 0
PE 1 PE 1
PE 2 PE 2

Sanders: Algorithm Engineering — Parallel Sorting

Implementation

sanity check for algorithms !

Challenges

Semantic gaps:

Karlsruhe Institute of Technology

overlap

yebiaw

VR N
Abstract algorithm Q
o ~—

F % =)

C++, OpenMP, MPI,. .. \ e
“ =
hardware Q

_V__/

Small constant factors:

compare highly tuned competitors

JE)

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 30

Example: Inner Loops Sample Sort
tenpl ate <class T>

void findO acl esAndCount (const T* const a,
const int n, const int k, const T+ const s,
Oracl ex const oracle, intx const bucket) {

{ for (int 1 =0; 1 <n; 1+4)
int | = 1;
white (=10 /// splitter .
] =]1*2 + (a[i] > s[j]); §//*2541> array index

+1\ decisions

} S;/Z S6 3

bucket [b] ++; S| [54]]5| |5 6| |77
> </N\> </\> </\> decisions

oracle[l] = Db;

} THE00D gL ==

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 31

Example: Inner Loops Sample Sort
tenpl ate <class T>

void findO acl esAndCountUnrol led([...]){

for (int i =0; 1 <n; i++4)
't J - /// splitter :
I L §/ *2841> decisijrzr:ymdex

1
| o=ix2+ (alil > sl [B
j = j*2 + (a[i] >s[jl); /2 \Wu ¥ 2 \u decisions
int b =j-k; S1(a| |S3))5| |Ss 6| |S7)7
bucket [b] ++; /N> /N> €/ \> </\> decisions
' = b buckets

oracle[i] = b; o

bl

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 32

Example: Inner Loops Sample Sort
tenpl ate <class T>

void findO acl esAndCount Unrol l ed2([...]){
for (int 1 =n &1l 1 <n;, 1+=2) {\
int O = 1; Iint 1 = 1;
T ai0 = a[i]; Tal = a[i+l];
j0=] 0x2+(ai 0>s[j0]); Jl=1x2+(ail>s[j1l]);
]0=) 0x2+(ai 0>s[j0]); J1l=1+x2+(ail>s[]1]);
] 0= 0x2+(ai 0>s[j0]); J1l=1+x2+(ail>s[]1]);

int b0 = jO-k; int bl = j1-k;
bucket [bO] ++; bucket [bl] ++;
oracle[i] = bO; oracle[l+1] = Dbl,

bl

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 33

Implementation — Parallel External Sorting

shared memory: g++ STL parallel mode (parallel multiway mergesort)

(developed by Johannes Singler)
disk: STXXL by Roman Dementiev et al. overlapping, disk scheduling

distributed memory: MPI + fix 32 bit problems + inplace external

alltoallv

Sanders: Algorithm Engineering — Parallel Sorting

Experiments

[| sometimes a good surrogate for analysis
[] too much rather than too little output data
| reproducibility (10 years!)

[] software engineering

LI reliable parallel running time measurements

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting

Example, Parallel External Sorting

4000

sort 100GiB per node

Karlsruhe Institute of Technology

3000 ~

/F

//V
78

%

o 2000 =
(0p)

|—|

1000 -

worst case input ——

worst case input, randomized

random input

random input, randomized
I I I

2 4 38 16

nodes

Sanders: Algorithm Engineering — Parallel Sorting &(IT 36

Karlsruhe Institute of Technology

Algorithm Libraries — Challenges

| software engineering , e.9. CGAL
| standardization, e.g. java.util, C++ STL and BOOST
] performance > generality > simplicity
- applications are a prior unknovn
. _— o en T (e)
L] result checking, verification : STL-user layer [streaming layer
! Containers: yector sock. st Pipelined sorting.
: LAlgori’rhms: sort, for_each, merge zero-1/0O scanning\gj
i ; [Block management layer)
: >< typed block, block manager, buffered streams,
: | — g block prefetcher, buffered block writer
Extensions N ;
_________________ ! Asynchronous I/O primitives layer
l files, 1/O ts, dlisk ,
Parallel STL Algorithms ! . es C/onﬁ?elfﬁe;nshcﬁd%f o

Sanders: Algorithm Engineering — Parallel Sorting &(IT 37

Problem Instances

Benchmark instances for NP-hard problems

L] TSP

] Steiner-Tree

L] SAT

| set covering

] graph partitioning
...

have proved essential for development of practical algorithms

Strange: much less real world instances for polynomial problems

(MST, shortest path, max flow, matching...)

Sanders: Algorithm Engineering — Parallel Sorting

Example: Sorting Benchmark

100 byte records, 10 byte random keys, with file 1/0

Karlsruhe Institute of Technology

Category data volume performance | improvement
GraySort 100 000 GB 564 GB / min 17X
MinuteSort 955 GB 955 GB / min > 10X
JouleSort 100 000 GB | 3400 Recs/Joule 777X
JouleSort 1 000 GB | 17 500 Recs/Joule 5.1x
JouleSort 100 GB | 39 800 Recs/Joule 3.4 X
JouleSort 10 GB | 43 500 Recs/Joule 5. X

Also: PennySort

Sanders: Algorithm Engineering — Parallel Sorting QQ(IT 39

GraySort: inplace multiway mergesort, exact splitting

16 GB Infiniband switch
RAM 400 MB / s node all-all

Sanders: Algorithm Engineering — Parallel Sorting

JouleSort

] Intel Atom N330
[| 4 GB RAM

[] 4%x256 GB
SSD (SuperTalent)

Algorithm similar to

GraySort

_ — - e
| s ARTERTRT

—
- —

o

ZO0 HSEXS95Id 1+

Qo g E?EﬁSBﬁtﬁ(ﬁr

o
—————
e ‘
0
=

O HSZX5D25kild

i
0 2
——

aay

FO HSZXDI5d 1
NITVI s

AT~

Karlsruhe Institute of Technology

Sanders: Algorithm Engineering — Parallel Sorting &(IT 41

Applications that “Change the World”
Algorithmics has the potential to SHAPE applications
(not just the other way round) [G. Myers]

Bioinformatics: sequencing, proteomics, phylogenetic trees,. ..

Google

Information Retrieval: Searching, ranking,. ..

Traffic Planning: navigation, flow optimization,

adaptive toll, disruption management

Energy Grid: virtual powerplants (sun, wind, water, heat, negawatt),

disruption management,. ..

Communication Networks: mobile, cloud, selfish users,...

Sanders: Algorithm Engineering — Parallel Sorting &(IT 42

Karlsruhe Institute of Technology

Conclusion:

Algorithm Engineering < Algorithm Theory

|| algorithm engineering is a wider view on algorithmics

(but no revolution. None of the ingredients is really new)
L] rich methodology
[] better coupling to applications
| experimental algorithmics < algorithm engineering
| algorithm theory C algorithm engineering
] sometimes different theoretical questions

|| algorithm theory may still yield the strongest, deepest and most

persistent results within algorithm engineering

Sanders: Algorithm Engineering — Parallel Sorting

Interactions with other (Sub)disciplines

ttttttttttttttttt

-

ooooooooooooo

C. Architecture [realistic j‘
OR OS | models cal OR
* Inputs
: Q
design e
=2
4 —3
(analysis J experiments)k]
OR SE OS o)
SE Compilers a
oerf.—) Implementation
guarantees |
algorithm- W
libraries SE | —

43

