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Abstract

We present a new logical approach to reasoning from
inconsistent information. The idea is to restore mod-
elhood of inconsistent formulas by providing a third
truth-value tolerating inconsistency. The novelty of
our approach stems first from the restriction of en-
tailment to three-valued models as similar as possi-
ble to two-valued models and second from an implica-
tion connective providing a notion of restricted mono-
tonicity. After developing the semantics, we present
a corresponding proof system that relies on a circum-
scription schema furnishing the syntactic counterpart
of model minimization.

1 Introduction

The capability of reasoning in the presence of inconsistencies
constitutes a major challenge for any intelligent system. This
is because in practical settings it is common to have contradic-
tory information. In fact, despite its many appealing features
for knowledge representation and reasoning, classical logic
falls in the same trap: A single contradiction may wreck an
entire reasoning system, since it may allow for deriving any
proposition. This comportment is due to the fact that a contra-
diction denies any classical two-valued model, since a propo-
sition must be either true or false. We thus aim at providing
a formal reasoning system satisfying the principle of para-
consistency:{a,~a} V¥ § for some o, 3. In other words,
given a contradictory set of premises, this should not necessar-
ily lead to concluding all formulas. We address this problem
from a semantic point of view. We want to counterbalance the
effect of contradictions by providing a third truth-value that
accounts for contradictory propositions. As already put for-
ward by [Priest, 1979], this provides us with inconsistency-
tolerating three-valued models. However, this approach turns
out to be rather weak in that it invalidates certain classical in-
ferences, even if there is no contradiction. Intuitively, this is
because there are too many three-valued models, in particu-
lar those assigning the inconsistency-tolerating truth-value to
propositions that are unaffected by contradictions.
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Our idea is to focus on those three-valued models that are
as similar as possible to two-valued models of the knowledge
base. In this way, we somehow hand over the model selec-
tion process to the knowledge base by preferring those mod-
els that assign true to as many items of the knowledge base as
possible. As a result, our approach reduces nicely to classical
reasoning in the absence of inconsistency. (For the reader fa-
miliar with the work of [Priest, 1989] we note that ours is dif-
ferent from preferring three-valued models having the highest
number of classical truth-values, which amounts to approx-
imating two-valued interpretations while somehow discard-
ing the underlying knowledge base.) The syntactic counter-
part of our preferential reasoning process is furnished by an
axiom schema, similar to the ones found in circumscription
[McCarthy, 1980]. Another salient feature of our approach is
driven by the desire to preserve existing proofs even though
they may lead to contradictory conclusions. This is because
proofs provide evidence for derived conclusions. We accom-
plish this by introducing an implication connective that re-
duces (inside the knowledge base) to classical implication in
the absence of inconsistency, while its resulting inferences are
conserved under inconsistency.

The paper is organized as follows. Section 2 lays the se-
mantic foundations of our approach; it presents a novel three-
valued logic comprising two special connectives: The afore-
mentioned implication and a truth-value-indicating connec-
tive (used for later axiomatization of the model selection pro-
cess). To a turn, we define our paraconsistent inference rela-
tion by means of a preference relation over the set of models
obtained in this logic. Section 3 presents the syntactic coun-
terpart by proposing a corresponding formal proof system. We
present an axiomatization of the underlying three-valued logic
and we furnish a circumscription axiom providing syntactic
means for reasoning from preferred inconsistency-tolerating
models.

2 Model theory

This section presents our semantic approach to reasoning from
possibly inconsistent knowledge bases expressed in a propo-
sitional language. We use h for classical entailment wrt two-
valued interpretations and Cn\- for classical deductive clo-
sure. For dealing with inconsistencies we rely on an extended



propositional language:

Definition 2.1 Given a set P of propositional symbols let L
be the set of all formulas generated from P using connectives
Tl J'l -1| V! A! -+| H, h! S'

The last two connectives serve as truth-value indicators. That
is, o means that o is true and a < J signifies that the truth
value of o is less than that of 4. This order is proper to this
connective and is no intrinsic feature of the rest of the logic.
We define T asfja -+ aand L by =T, Also, wedefinea « 8
as (@ - B)A (B = a). Infact, < is also a defined connective
(using h), whose discussion is deferred to Section 3.

Definition 2.2 An interpretation is a function

v:P = {t,f,0} extendingto T:L = {¢,f 0}
according to the truth tables below.
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A model of a formula o is an interpretation that assigns either
torotoc

Modelhood extends to sets of formulas in the standard way.
Observe that A and Vv are de Morgan duals. Also, note that the
truth-value of & — A differs from that of - v 3 only in the
case of v = {a : 0,8 : f} resulting in v(a = 5) = f and
v{-a V ) = o. This difference is prompted by the fact that
t and o indicate modelhood, which motivates the assignment
of the same truth-values to @ —+ 8 no matter whether we have
o : ¢t or & : 0. This has actually to do with the difference
between modus ponens (MP) and disjunctive syllogism (DS):
(a 4;) @ (MP) (aV{L} —~a (DS)
The laster yields B from A A~AA-B because AV B follows
from A. The overall inference seems wrong because in the
presence of A A ~A, AV B is satisfied (by A : 0) with no
need for B to be t. This is why we center our approach upon
medus ponens.
We then obtain the following consequence relation:

Definition 2.3 Let I" be a set of formulas and vy a formula, We
define T |\ «y iff each model of T' is a model of .
The reader is warned that replacement of equivalents fails: Let

¥|¢1, .. ., ¢%) be the formula obtained from ¥[¥1,..., ¥} by
replacing all occurrences of ¥y, ..., ¥ by &1,...,¢x. Then,

I a & 52 I ¥a] & (8]
Letting a be A = =~A, fbe B —+ — B, and y be ~1) shows
the failure of replacement of equivalents: I+ (A = ——A4) &
(B = ~=B) butlf ~(4 = =—~4} & ~(B = -B}.
We now turn: to the key definition of our approach:

Definition 2.4 Let v and v be two interpresations and T a set
of formulas. We define -

v=<rv' iff {yel|v(y) =0} G {y € |v'(7) =0}

Observe that <r is a strict partial order on interpretations.
Hence, we can speak of minimal models for a set of formu-
las T'. This leads us to the following paraconsistent inference
relation:

Definition 2.5 Let T' be a set of formulas and v a formula. We
define I lIF ~ iff each <r-minimal model of I" is a model of .

Definition 2.4 and 2.5 show that we focus on models of T
that assign ¢ (instead of ¢} to a maximal subset of I, Since o
accounts for inconsistency al} this amounts to minimizing in-
consistency. In fact, both aforementioned inference relations
are paraconsistent: {4, A} i B and {A,-A} i B.

Since we aim at modeling reasoning from knowledge bases
expressed in a propositional language, we impose the follow-
ing restriction: As modus ponens is a fairly uncontroversial
reasoning mode, we take it as a basis for our approach. In par-
ticular, premises are required to be in conditional form prone
to applicaticn of modus ponens:

Definition 2.6 Let P be a set of propositional symbols and
L, the set of all expressions of the form

Lin. . ALn2 LgaV...V6D,

where L; € {a,~ala € Plfori=1.nand0 < m<n.

We refer to expressions in £., as clauses. For m = 0, such
clauses reduce to Ly V...V L,. Asawhole, £, is generated
from P using connectives =, V, A, —.

Consider the set of formulas

T'={A— B,A~ -B). (1)

We obtain " #F - A. In fact, ~A is concluded for the reason
that, if A were true then there would be a contradiction about
B. So, when it really is the case that there is a contradiction
about B, the reason for 1A to be concluded no longer applies.
That is, we have TU{A} r ~Aand TU{A} i+ AANBA-B.
Observe that this example violates unrestricted monotonicity
(the relative theories must be both consistent or both inconsis-
tent; cf. Theorem 2.2), This comportment can be verified in
Table 1. An entry like o/2 in column I" means that interpreta-

ATB T [TOAT [T [I'O[AT [ I™ [ T"O{4]
A T B 2 s
t [ o |[o/2 oﬂ"*% o/2 f 7
F1t1e0] 7 t i /0 I
IAYi gﬁ FAN 70 A 7
JTaol2 7 /0 i t/0 i
R 1 A 78 s A
0 0
z o oJ;'i o/3 [o/Z] o/3 ofi| o/b

Table 1: Truth tables for I', I, and T'*.
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tion v, given in the first two rows, assigns o to (the conjunction
of) T, while [{y € T' | v(7) = o}| = 2. Such a number is
however just an indication and should not be confused with
the actual ordering relation on models which is based on set
inclusion! A preferred model is indicated by boldface type-
setting.

For a complement, take a look at clause set

I"={-AvB,-Av-B}.

We have IV U {A} IF =B A B. We only have I' U {A)} I}
Bv=B. This illustrates the difference between an implication,
like A — B and a disjunction, like =4 v B. Unlike the latter,
connective — aliows us to construct a proof for B A -8 from
I’ U {A}. Compare this with the case of all contrapositives:

I'"={A—- B,~B-—-4,A—-B,B - -A}.

This yields ' U {A} i+ AA-AA-BAB.

The previous examples have illustrated that whenever there
are two-valued models, they are the only relevant minimal
models. That is, in case of a 3-valued model v assigning t,
we find also all 2-valued models obtained by substituting o in
v by ¢ and f, respectively. Hence, such 3-valued models are
irrelevant. See columns I, IV, I in Table 1. In fact, we have
the following result showing that our mechanism amounts to
classical (two-valued) logic, whenever we deal with a classi-
cally consistent theory.

Theorem 2.1 Let I be a classically consistent set of clauses
and v a formula whose connectives are among =, A\, V. Then,

I'koy iF T iy,

This result does not extend to the underlying inference rela-
tion . A counterexample is simply I" as in (i) and v be-
ing ~A. Also, this theorem does not extend to conclusions
containing —, eg. f (-A Vv B) =& (A — B) although
{=AV B) =+ (A = B) is aclassical tautology. Theorem 2.1
is neither expected to carry over to the case where 1’ is incon-
sistent.

A salient property of our approach is that it is monotonic on
inconsistent premises:

Theorem 2.2 For sets of clauses T’ and A, we have
Tiky = ATy
whenever T lIFa A ~aand VT Q T.T' F a A -a.
We now need a few definitions on restricted alphabets:
Pir={P€P|THLPVH-P}

For an alphabet P., let £, denote the language generated
from P using =, V, A, ~+, +». Then, we have the following
result showing that truthful parts of the knowledge base are
closed under classical logic:

Theorem 2.3 For gl sets of clauses T and A such that A =
{a| T I+ hor}, we have

ANLyr =Cn(AYNLyr .
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Moreover, we can show that truthful parts are never polluted
by contradictions:

Theorem 2.4 Let T = I'y UT'p be a clause set such that Py N
Py = @ where P, is the set of propositional symbols occurring
inT';. We have for eacha € L,,

Tikea i
whenever I' I ry for each v € I'y.

I‘ll-a

As illustrated below, the last theorem extends in some cases
to non-disjoint parts, as witnessed by I'y, I'T*, T~ below.
For further illustration, consider first the set of clauses

o= {-'Ai B, (-'B v C)}
Indeed I'y has a single two-valued model {A: f,B :¢,C : t}

{apart from 9 three-valued ones assigning o to p). The former
is clearly the only minimal model of I'y. We thus have

ToF=AABAC and [plk-AABAC.

Adding A to Ty yields inconsistent theory I, =
{A,—A, B,(-B Vv C)} having only three-valued models left.
In fact, all former models of T with A : f do now falsify I',.
All remaining models of I assign thus o to I'y, and A, the ac-
tual heart of the contradiction. Among the resulting models,
we have a single minimal model, {A : 0, B : t, C : t}, giving
Tt AA—-AA B A C by “applying” disjunctive syllogism
to the consistent part of I'f,.
Next, consider the set of clauses

Iy = {4,~A,(-4V B)}

This theory induces the truth-values given in Table 2. Among

AJB| T, [Tr [T O[T e ]
t ]t Fi Ji i Fi I I Ji !
AFANANANENFANANRERN
tlofl f 1 £ 17 0 F 1 F 7 Ff1F17
FAKE AN AFANANAN AN AN
AN AN ANEWANANANEW
A AEAEAEASEr SEAE
0 0 0 0 o 0 0

o| f 053 J o3 o8 J 1o/3] [ [0/3]
o|lofofdlofdlofd]ofd]ofd] ofd {o0/d] 0fd

Table 2: Truth tables for I'y and I'y.

the three models of I'y, there is only one minimal one: {A :
0, B : t}. As a consequence, we obtain

Ty AA-AAB.

For those familiar with [Priest, 1989], we note that this ap-
proach has {A : o, B : [} as a second preferred model, which
denies conclusion B. See Section 4 for details. The example
illustrates further the aforementioned extendibility of Theo-
rem 2.4: Despite the inconsistency of A, we derive B from
the consistent premises A and ->A V B.

Actually, things do not necessarily change by orienting the
above disjunctions as implications:

I'T ={4,-4,(A - B)} andI'{” = {4, -4, (~B -+ ~4)}



I'?* and I'f™ have the same minimal model as Ty ; thus offer-

ing the same conclusions, However, while I'f~ has the same

models as [y, interpretation {4 : o, B : f} falsifies I';*.
Adding clause A v -~ B to Theory I'; yields

Iy = {4,-A,(~AV B),(Av -B)}

I’} has two minimal models, both of which were models of
I'y, yet only one of them was I'; -preferred. We thus get

Iy AA-A4 and T;WB
illustrating that inferences by disjunctive syllogism are not al-
ways preserved.

For a complement, consider rule sets

I“l'_" = (A,-A,A—= B,~A- -B}
' = {A,-A4,~B 5 -A,B - 4)
1";‘: = {A,~4,A- B,B 3 A}

"~ = {4,-4,-B— -4,-A- -B}
From these, we obtain after consulting Table 2:

™ W% AA-AABA-B
[ - An-A

™ - AA-AAB
[" % AA-AA-B

The derivability of B and —B illustrates the role of connec-
tive — as proof-provider: All proofs obtained from clauses
by modus ponens are set in stone. This general property is
reflected by the validity of I (o A {a — 8)) — 8.

3 Proof theory

This section presents a formal proof system for our approach
to circumscribing inconsistency. In analogy to the semantics,
we first axiomatize II- and then we account for minimization
by providing a syntactic axiom schema, so that the resulting
system axiomatizes IlI-

The axiomatization of Ih consists of modus ponens as infer-
ence rule and the following axiom schemas:

aV-a (1)

ahfli=a arf2f (2)

a-saVi a-sfVa (3)

o (8 {aAd) (4)

(a2 8)—=a)a 5

(a2 {Bo7) > (avi-=r) (6)
e i Tat (7N

~(aVv )4 ~aA-8 &

-(aAf) & avaj 9

a—{(f2a) ()]

(@a=(B@=M=(a=2+p)—(a=7) 0D

(@-+8) = -~avh (12)

aA-f -+ ~(a—+ 8) (13

o - a (14)

ke = bha (15)

—a = ~fa (16)

Shee  h-ha a7

HlaArB) e tants (18)

baVB) & lavis (19)

k(e = B) = (ha = 48) 20

=~a ~+ b{a - 5) n

i(~{a = 8)) = a A8 (22)
a—+8)=4a)=a (23)

fa 88 for a+ Be{(7),(8),9} (24)
ha =48 for a—= 8¢ {{10),...,(13)} (25)
foe for a € {{14),...,(20)} (26)

As can be shown, this proof system is sound and complete for
. We write v € Cny-(T') to indicate that v can be derived
from I' by the above proof system.,

Semantically, the move from I- to II- amounts to minimiz-
ing the set of premises with truth-value o. That is, we prefer
models that assign truth-value o to a minimal set of premises.
We can turn this idea into the syntax by using a connective
indicating that a formula has a truth value which is less than
the one of another formula. As anticipated in Section 2, such
a connective can be defined as follows:

a< B =gt (ha ABB) V (fma Al-B) V (=18 A ~4-8)

This induces the following truth table corresponding to the
poset of truth-values on the right hand side.

(ETtffTo] 0
SR EAVAED /\
FILrltlt

RIFAFEE 1 ¥

With this connective, we are now ready to express the follow-
ing circumscription schema providing a syntactic account for
preferring <r-minimal models. For readability, we identify
in the next definition clause set {v1,..., 7} with AL_; %
Definition 3.1 Let I' = {v1,...,7s} be a finite set of formu-
las over alphabet _.Pl, oo+, Py (abbreviated P} so that Y =
YilP) and T = T'|P]. We define the three-valued paraconsis-
tent circumscription schema Circg P(T') as

CI8 A (At 6ld) < %lPY) (At 1P < 7ld)

Importantly, combining Circs P(I) with the proof system for
I captures the desired paraconsistent inference relation li-:

Theorem 3.1 Let T’ be g set of clauses. Then, we have
Tty  if €O (TU{Circs P(I")})
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For illustration, let us return to our initial example
I'={A— B,A— ~B)}

We consider the folfowing instance of Circs P(I') where
¢as = Llandgp = B:

((L =+ B)A(L - ~B))
A ((L=2B<A3B)A(L-+-B<A-—-B))
-+ ((A=2B<i1B)A{A~-~B<1l--B)

From ", we obtain the right hand side (RHS) of Circs P(T'),
thatis, (A 9 B <1l 3 B)and (A =+ -B < 1L =4 -B)
after establishing the LHS by means of theorem {a A (8 <
T)) ~+ (8 < a). By applying transitivity of < to RHS and
(L~ B)< Tand(L - -B) < T, wethen get (A —
B) < Tand(A > -B) < T, So,weget(mA<T)V
((=B A B) < T) yielding -4 < T, hence ~A. Notably,
it is the circumscription schema that reduces the three-valued
consequence relation |l to its classical two-valued counterpart
- (cf. Theorem 2.1).

For further illustration, consider ' U {A} along with the
instance of Circg P(T'U{A}) obtained by taking ¢4 = T and
¢p = B A~B, Weobtain A < T and so A using theorem
(aA(y <8) = (v < (a— 8)). Of course, not every i
conclusion necessitates the circumscription schema in order
to be derived. For instance, B and =B are directly derived by
modus ponens from I' U { 4}.

4 Related work

There are a number of proposals addressing inconsistent in-
formation. At first, there is the wide range of paraconsistent
logics [Priest etal., 1989]. As opposed to our approach, such
logics usually fail to identify with classical logic when the set
of premises is consistent. There are also many -approaches
dealing with classical reasoning from consistent subsets. In
a broader sense, this includes also belief revision and truth
maintenance systems. A comparative study of the aforemen-
tioned approaches in general is given in [Besnard, 1991].

A system, at first sight closely related to ours, is LFPy,
[Priest, 1989); it was conceived to overcome the failure of
disjunctive syllogism in LP [Priest, 1979]. LP amounts to
the 3-valued logic obtained by restricting I to connectives
—,V and A and defining o — S as ~a V 3. In LP,; model-
hood is then limited to models containing a minimal number
of prepositional variables being assigned o. As our approach,
this allows for drawing "all classical inferences except where
inconsistency makes them doubtful anyway" [Priest, 1989].
There are two major differences though: First, the aforemen-
tioned restriction of modelhood focuses on models as close
as possible to 2-valued interpretations, while the one in our
approach aims at models next to 2-valued models of the con-
sidered formula. The effects of making the formula select its
preferred models can be seen by looking at I'y: While LP,
yields two preferred models {4 : 0,B : t} and {A : 0, B : f}
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from which one abtains 4A-A, 'y makes our approach prefer
the former over the latter, thus yiclding B as additional con-
clusion. Second, we have introduced implication as a primi-
tive connective rather than a defined one. As a consequence, a
modus ponens inference, like deriving B from Aand A —+ B,
is preserved no matter what other premises are given; this fails
in LPy,. Note that we get distinct truth-tables (and so different
conclusions) for I'} and its variants ', . . ., while LP,, does
not differentiate these variations. A resolution-based system
close to LP yet with a stronger disjunction is described in
[Lin, 1987].

A whole variety of approaches uses lattices for dealing with
inconsistency, eg. {Arieli and Avron, 1994; Belnap, 1977;
Sandewall, 1985]. For instance, {Arieli and Avron, 1994;
1996] describes a system based on 4-valued logic that allows
for constraining “the most consistent” models in the meta-
level by a user-given set of propositions taking classical truth-
values only. [Carnielli er al., 1991] proposes a translation-
based approach to reasoning in the presence of contradictions
that translates a logic into a family of other logics, eg. classical
logic into 3-valued logics.

The difference between our approach and "reasoning from
maximal consistent subsets of the premises” is that we still
pay attention to one objection motivating relevant logics [An-
derson and Belnap, 1975] and that is applying disjunctive syl-
logism to contradictory premises. However, we do not go as
far as sanctioning any classical inference not using inconsis-
tent subformulas. That is, we still follow the principle of rel-
evant logics that an inference rule is a priori applicable to any
premise. This is in contrast with the idea of restricted access
logic [Gabbay and Hunter, 1993], where all classical inference
rules are admitted with some special application conditions.

Among others, logic programming with inconsistencies
was addressed in [Blair and Subrahmanian, 1988; 1989].
[Wagner, 1991] describes a procedural framework for han-
dling contradictions that relies on the notions of "support” and
"acceptance”. The former avenue of research is further devel-
oped in [Grant and Subrahmanian, 1995], where it is shown
how the approach of [Blair and Subrahmanian, 1988] can be
extended by classical inferences, like reasoning by cases. In-
tuitively, the corresponding entailment relations amount to
logic programming in a 3-valued (and 4-valued, respectively)
logic. The major difference to our approach is that compared
to classical entailment, these approaches are sound but not
complete (even when the set of premises is consistent). As
with other approaches, this is because they aim at paraconsis-
tent reasoning in a logic programming setting that does not
necessarily coincide with classical logic.

Our approach is clearly semantical in contrast to many
other proposals to paraconsistency: (i) the idea of "forget-
ting" literals [Kifer and Lozinskii, 1989; Besnard and Schaub,
1996]; (ii) the idea of stratified theories [Benferhat et al. ,
1993]; (iii) the idea of reliability relation [Roos, 1992], (iv)
and more generally the idea of reasoning from consistent sub-



sets of the premises. In contrast to [Tlirner, 1990], where the
baseline is to analyze propositions (so as to resolve paradoxes
about truth, for instance), we simply apply a system of truth-
values so that we can have non-trivial inconsistent premises.
Moreover, our approach is purely deductive, as opposed to
argumentation-based frameworks, like [Wagner, 1991; Elvang
and Hunter, 1995]. An unusual approach to reasoning from in-
consistency is due to [Lin, 1996], who introduces the notion of
consistent belief by means of modal operators. This approach
fails to satisfy reflexivity (not every premise is concluded).

5 Conclusion

We presented a semantical approach to dealing with incon-
sistent knowledge bases that is founded on the minimization
of three-valued models. This was complemented by a formal
proof system accomplishing model minimization by appeal to
a circumscription axiom. The distinguishing features of our
approach are (i) its desire to provide models making true (in-
stead of true and false) as many as possible items of the knowl-
edge base, (ii) its centering on inferences drawn by modus po-
nens by means of a primitive implication connective, and (iii)
its property of restricted monotonicity. A major further devel-
opment will be lifting the approach to the first-order case. In
this context, we draw the reader's attention to the fact that our
approach (unlike [Priest, 1989]) does not rely on the notion
of an atomic proposition, which is always problematic when
passing from the propositional case to the first-order case.
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