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Abstract 

This paper is concerned with modeling 
p lann ing problems invo lv ing uncerta inty as 
d iscre te- t ime, f in i te -s ta le stochastic au toma ta 
So lv ing p l ann ing problems is reduced to com­
p u t i n g policies for Markov decision processes 
Classical methods for solv ing Markov decision 
processes cannot cope w i t h the size of the 
state spaces for typ ica l problems encountered 
in pract ice As an a l le rna t ive , we investigate 
methods tha t decompose global p lann ing prob­
lems in to a number of local problems solve the 
local problems separately and then combine 
the local solut ions to generate a global solu 
t ion We present a lgo r i thms that decompose 
p l a n n i n g prob lems in to smaller problems given 
an a rb i t r a r y p a r t i t i o n of the state space The 
local problems are in terpreted as Markov deci­
sion processes and solut ions to the local prob­
lems are in terpreted as policies restr icted to the 
subsets of the state space defined by the pa r t i ­
t ion One a l g o r i t h m relies on const ruct ing and 
so lv ing an abstract version of the or ig inal de 
cision p rob lem A second a l g o r i t h m i tcrat ively 
approx imates parameters of the local problems 
to converge to an o p t i m a l so lut ion We show 
how propert ies of a specified pa r t i t i on affect the 
t ime and storage required for Ihese a lgor i thms 

1 In t roduct ion 

We are concerned w i t h so lv ing p lann ing problems posed 
as Markov decision processes Spec lf ical ly, given a dy­
namical mode l described as a stochastic process (t g 
Markov chain) w i t h a large, discrete state space and a 
performance cr i te r ion (e g , m in im i ze the expected t ime 
or cost to reach a goal ) , construct a pol icy (plan) map­
ping states to act ions tha t realizes the specified perfor­
mance c r i te r ion or approx imates i t to w i t h i n some spec­
ified tolerance 

This work was supported by the A i r Force and the Ad 
vanced Research Projects Agency of the Department of De 
Tense under Contract No F30602-91 C-0041 and by the Na­
tional Science Foundation in conjunction wi th the Advanced 
Research Projects Agency under C ontract No IRI-89054J6 

Figure I Three views of a three dimensional state space with 
the corresponding local strut-turre of spnce shown to the right 
The top view representh the unstructured stale space the 
middle view represent an abstraction obtained b\ projection 
and the bottom view represents a decomposition obtained by 
partit ioning the stales into aggregate states 

1 1 Factoring Large State Spaces 

l a r g e state spaces present a number of cnallenges lo 
begin w i t h , the prob lem has to be eff iciently encoded A 
factored state-space representat ion uses state variables 
to represent different aspects of the overal l state of the 
system ' Co npact encodings for stochastic professes 
can be achieved for many appl icat ions using fat I ore d 
state space representations where the size of the model 
is usual ly logar i thmic in The size of the state space [Dean 
and Kanazawa, 1989] S imi lar ly , policies for large fae-
tored state spaces can often be eff iciently encoded using 
decision trees that branch on state variables [Bou t iher it 
at 1995] Assuming t ha t bo th the prob lem (a stochastic 
process) and the solut ion (a po l icy) can be encoded in 
a compact f o r m , we would l ike to generate solut ions in 
Lime bounded by some smal l factor of the prob lem and 
solut ion size 

'Propositions representing fluents in STRIPS opualors 
[Fikes and Nilsson 197l] correspond lo state variables in a 
factored state-apace representation 
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Figure 2 Region by-region dimensionality reduction A 
three-dimensional space is represented as the union of 
two-dirnensional abstract subspaces shaded dark grav 

A factored state-space representation with it boolean 
state variables represents an n-dimcnsional state space 
with states We assume that all of the state vari­
ables are relevant in at least some portion of the stale 
space and so the dimensionality of the problem cannot 
be reduced without suffering some IOSS in performance 
However, it is very likely that not all statt variables are 
relevant in all portions of the state space I when 
you are planning to take a walk in southern Florida you 
ran neglect the possibility of snow) Figure 1 l l lustratis 
t h ru VIWS, of a multi-dirnensional state space The bot­
tom view in winch the state space is partitioned into 
aggregate states is the view we are most interested in 

1 2 D imens iona l i t y R e d u c t i o n 
In this paper, we assume that a domain expert has par-
titioned the state space into m regions such that in each 
region only a small subset (of size no more than 
of the set of all state variables, is relevant for decision 
making In other words, for each region, we are con­
cerned with an abstract subspace of size no more than 

The size of the union of these abstract subspaces 
is no more than The problem of automatically 
constructing such a partit ion is not addressed in this 
paper, but see [Lin and Dean, 1994] for some relevant 
techniques Figure 2 illustrate* how a three-dimensional 
state space might be represented as the union of two-
dimensiona] abstract subspaces 

There exist methods for computing policies that are 
polynomial in the size of the state and action spaces 
[Papadimitriou an d Tsitsiklis 19H7] [Puterman, 1994], 
but these methods are impractical for large state spaces 

given 20 state variables) Instead 
of considering the large state space as a whole, we are 
interested in decomposition methods that deal with the 
smaller subspaces of individual regions 

1 3 C o m b i n i n g Local Solut ions 
Our framework is a special case of divide and conquer 
given a Markov decision process and a partit ion of the 
state space into regions, (i) reformulate the problem m 
terms of smaller Markov decision processes over the sub-
spaces of the individual regions., (n) solve each of these 
^ubproblenib and then (m) combine the solutions to ob-
tain a solution to the original problem 

In the best case, all of the subproblems are indepen­
dent and combination is tr iv ial (e g , a manufacturing 
task that involves assembling and testing several com­
ponents each of which is assembled independently) In 

such cases, it does not matter how you enter a region 
of the partit ion or how you leave, the only thing that 
matters is the cost accrued while in that portion of tht 
state space In the more likely case, the subproblems 
are weakly coupled to one another so that, for example, 
what you do in one region only affects what you do in 
a few neighboring regions Examples of weakly-coupled 
systems include staged manufacturing and mil i tary plan­
ning problems and robot navigation tasks 

We associate a set of topologically motivated param 
eters with each region R These parameters summarize 
the interactions between R and the other regions in the 
partit ion A specific estimate of the parameter values as­
sociated wi th region R allows us to construct a Markov 
decision process over the subspace associated with R 
B} solving such a Markov decision process, we deter­
mine a local policy on the region R, which is a solution 
to the subproblem associated with R In this paper 
we describe two basic methods for combining solutions 
to subproblems in order to generate a solution to the 
global problem 

The first combination method is illustrated in an algo­
r i thm called hierarchical policy construction which con­
siders particular sets of parameter values that have an 
intuitive topological interpretation These sets of pa 
rameter values give us a set of candidate local policies 
associated with each region We then construct an ab-
stract Markov decision process by considering individual 
regions as abstract states and their candidate local poli­
cies as abstract actions The solution to this abstract 
Markov decision process assigns a particular candidate 
policy to each region thus yielding a policy on the en­
tire state space Hierarchical policy construction pro­
duces an optimal policy only in special cases however 
it does so relatively efficiently and has an intuitive in­
terpretation that makes it particularly suitable for robot 
navigation domains 

The second method of combining solutions involves it 
erative approximation of the optimal parameter values 
i i , those values associated with optimal solutions to 
the global problem On each iteration of the iterative 
approximation method we consider for each region R 
a specific estimate of the parameter values for region R 
and solve the resulting Markov decision process to ob-
tain a local policy By examining the resulting local poh 
eies, we obtain information to generate a new estimate 
of the parameter values that is guaranteed to improve 
the global solution This information about local poli­
cies also tells us when the current solution is optimal or 
wi thin some specified tolerance, and therefore when it is 
appropriate to terminate the iterative procedure 

1 4 Ove rv iew of the Paper 
In Section 2, we provide a brief introduction to Markov 
decision processes Section 3 describee the parameters 
modeling the inter-regional interactions, and the con­
struction of a Markov decision process on a region R 
given a specific estimate of the parameter values for R 
Section 4 presents the hierarchical policy construction 
algorithm We describe the construction of abstract de­
cision processes from a base-level process, and the use of 
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such abstract decision processes to construct policies for 
the base-level process Section 5 illustrates the method 
of the iterative approximation and briefly addresses is 
sues concerning convergence, opt imal ly , and complex­
ity Details are available in a longer version of the paper 
[Dean and Lin, 1995] 
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ciated with the current policy repository 

P r o p o s i t i o n 1 The iterative method described above im­
proves the solution quality on each iteration, and con 
verges. to an optimal solution in a finite number of steps 

For a proof of this proport ion and a more detailed 
description of the algorithm see the longer version of 
this paper [Dean and Lin, 1995] Our approach to anal­
yse involves (1) reformulating this iterative method in 
terms of solving large linear programs and (n) applying 
a reduction to the methods of Kushner and Chen [1974] 
that solve these large linear programs for Markov de­
cision processes using Dantzig-Wolfe decomposition In 
the following, we briefly discuss the convergence rate and 
the time and space complexity of this iterative method 

• Empirical experience suggests that the Dantzig-
Wolfe method of decomposition upon which our 
analysis of the iterative method is based converges 
to within 1-5% of the optimum fairly quickly, al­
though the tail convergence rate can be very slow 
(see page 325 m [M S Bazaraa 1990]) In other 
words it is likely that after only a small number 
of iterations in the iterative method we are able to 
produce a solution of good quality, hut it may not 
be worthwhile to continue after reaching 1-5% of 
the opt imum 

• The computational task in an iteration is decom­
posed into two subtasks (i) deriving and solving 
local processes over local regions as subproblems 
and maintaining a policy repository of up to 

previously generated policies where V is 
the union of Periphery (R) for the regions R in the 
original partit ion P 
The computational cost in an iteration is critically 
affected by the structure of the partit ion Q ( I ) the 
maximum number of base-level states in a region 
in the part i t ion Q, and (n) the total number 
of base-level states in the coupling region for the 
partit ion Q 

m ( ompared with solving the original base-level pro­
cess as a whole, the first subtask can be achieved 
more efficiently by applying the standard techniques 
for Markov decision processes over individual re­
gions This is a natural advantage of decomposi­
tion trchniques, which divide large problems into 
suliprohlems of traclable size 
The second subtask is achieved by maintaining a 

matrix whose computational 
efficiency critically depends on the topology of the 
given part i l ion P The second subtask can be per­
formed efficiently if the size of V is relatively small 
This is the additional cost to pay for decomposition 
techniques since we need to combine the solutions 
to subproblems 

• In other words this iterative method is promising if 
the given partit ion P evenly divides the whole state 
space into many regions, and the number of states 
in the peripheries of the regions in P is small 

In the longer version of this paper, we also describe 
other iterative methods that do not necessarily converge 

to an optimal solution but allow intuitive interpretation 
and more computational efficiency We are currently 
testing these algorithms on a set of benchmark problems 
Since the discussion is somewhat lengthy and requires 
some understanding of both Howard's policy iteration 
[Howard I960] and Bellman 8 value iteration [Bellman 
1961] for solving Markov decision processes we refer the 
interested reader to the longer version of the paper [Dean 
and Lin, 1995] 

6 Related W o r k 
The related work on abstraction and decomposition is 
extensive In the area planning and search assuming, de­
terministic action models, there is the work on macro 
operators [horf, 1985] and hierarchies of state-space op­
erators [Sacerdoti, 1974] [knoblock, 1991] C losely re­
lated is the work on decomposing discrete event systems 
modeled as (deterministic) finite state machines [Zhong 
and Wonham 1990] [Caines and Wang, 1990] 

In the area of reinforcement learning, then, is work on 
deterministic action models and continuous state spaces 
[Moore and Atkeson, 1995] and stochastic models and 
discrete state spaces [Kaelbling, 1993] The hierarcl ncal 
policy construction method described in Section 4 pro­
vides an alternative formulation of Kaelbling s hierar­
chical learning algorithm [Kaelbling, 1991] and suggests 
how Moore and Atkeson's parti-game algorithm might 
be extended to handle discrete state spaces 

The analysis hinted at in thih paper and found in the 
longer version of the paper borrows heavily from lh< 
work in operations research and combinatorial optimiza­
tion for representing Markov decision processes as 1m 
ear programs [D Epenoux 1963] [D erman, 1970] [Rush 
ner and Kleinman, 1971] and decomposing large sys 
teint generally [Dantzig and Wolfe, 19G0] [Lasdon, 1970] 
and Markov decision processes specifically [Kushner and 
Chen, 1974] The approach described in [Dean el al 
1993] [Dean et at , 1995] represents a special case of the 
framework presented here, in which the partit ion con­
sists of singleton sets for all of the states in the envelope 
and a set for all the states in the complement of the 
envelope 

7 Conclusion 
The benefit of decomposition, techniques is that we are 
able to deal with subproblems of smaller size, the trade­
off is that extra effort is required to combine the solu­
tions to these subproblems into a solution to the original 
problem The leverage of decomposition techniques is or 
thogonal to that of standard techniques used to solve the 
original problem In the case of problem instances of very 
large size, decomposition techniques are often valuable 
even if standard polynomial-time algorithms are avail 
able 

We provide decomposition techniques for Markov de­
cision processes, given an arbitrary part i t ion of the state 
space into regions Subproblems correspond to local 
Markov decision processes over regions associated with 
a A parameter that provides an abstract summary of the 
interactions among regions We present two methods for 
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combining the solutions to subproblems a hierarchical 
construction approach and an iterative improvement ap­
proach The hierarchical construction method provides 
a quick solution with an intuitive interpretation The it­
erative method is guaranteed to converge to an optimal 
solution in a finite number of iterations For practical 
purpose*, a small number of iterations should be suffi-
( nn t for a solution of near optimal quality 
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