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Abstract

This paper is oconcemed with modeling
planning problems involving uncertainty as
discrete-time, finite-stale stochastic automata
Solving planning problems is reduced to com-
puting policies for Markov decision processes
Classical methods for solving Markov decision
processes cannot cope with the size of the
state spaces for typical problems encountered
in practice As an allernative, we investigate
methods that decompose global planning prob-
lems into a number of local problems solve the
local problems separately and then combine
the local solutions to generate a global solu
tion We present algorithms that decompose
planning problems into smaller problems given
an arbitrary partition of the state space The
local problems are interpreted as Markov deci-
sion processes and solutions to the local prob-
lems are interpreted as policies restricted to the
subsets of the state space defined by the parti-
tion One algorithm relies on constructing and
solving an abstract version of the original de
cision problem A second algorithm itcratively
approximates parameters of the local problems
to converge to an optimal solution We show
how properties of a specified partition affect the
time and storage required for Ihese algorithms

1 Introduction

We are concerned with solving planning problems posed
as Markov decision processes Spec Ifically, given a dy-
namical model described as a stochastic process (t g
Markov chain) with a large, discrete state space and a
performance criterion (e g, minimize the expected time
or cost to reach a goal), construct a policy (plan) map-
ping states to actions that realizes the specified perfor-
mance criterion or approximates it to within some spec-
ified tolerance

This work was supported by the Air Force and the Ad
vanced Research Projects Agency of the Department of De
Tense under Contract No F30602-91 C-0041 and by the Na-
tional Science Foundation in conjunction with the Advanced
Research Projects Agency under C ontract No IRI-89054J6

Figure | Three views of a three dimensional state space with
the corresponding local strut-turre of spnce shown to the right
The top view representh the unstructured stale space the
middle view represent an abstraction obtained b\ projection
and the bottom view represents a decomposition obtained by
partitioning the stales into aggregate states

1 1 Factoring Large State Spaces

large state spaces present a number of cnallenges lo
begin with, the problem has to be efficiently encoded A
factored state-space representation uses state variables
to represent different aspects of the overall state of the
system ' Co npact encodings for stochastic professes
can be achieved for many applications using fatlore d
state space representations where the size of the model
is usually logarithmic in The size of the state space [Dean
and Kanazawa, 1989] Similarly, policies for large fae-
tored state spaces can often be efficiently encoded using
decision trees that branch on state variables [Boutiher it
at 1995] Assuming that both the problem (a stochastic
process) and the solution (a policy) can be encoded in
a compact form, we would like to generate solutions in
Lime bounded by some small factor of the problem and
solution size

'Propositions representing fluents in STRIPS opualors
[Fikes and Nilsson 197I] correspond lo state variables in a
factored state-apace representation

DEAN AND LIN 1121



Figure 2 Region by-region dimensionality reduction A
three-dimensional space is represented as the union of
two-dirnensional abstract subspaces shaded dark grav

A factored state-space representation with it boolean
state variables represents an n-dimcnsional state space
with O{2"} states We assume that all of the state vari-
ables are relevant in at least some portion of the stale
space and so the dimensionality of the problem cannot
be reduced without suffering some IOSS in performance
However, it is very likely that not all statt variables are
relevant in all portions of the state space I[¢ g, when
you are planning to take a walk in southern Florida you
ran neglect the possibility of snow) Figure 1 lllustratis
thru VIWS, of a multi-dirnensional state space The bot-
tom view in winch the state space is partitioned into
aggregate states is the view we are most interested in

1 2 Dimensionality Reduction

In this paper, we assume that a domain expert has par-
titioned the state space into m regions such that in each
region only a small subset (of size no more than r, r & n}
of the set of all state variables, is relevant for decision
making In other words, for each region, we are con-
cerned with an abstract subspace of size no more than
2" The size of the union of these abstract subspaces
is no more than m2" The problem of automatically

constructing such a partition is not addressed in this
paper, but see [Lin and Dean, 1994] for some relevant
techniques Figure 2 illustrate* how a three-dimensional
state space might be represented as the union of two-
dimensiona] abstract subspaces

There exist methods for computing policies that are
polynomial in the size of the state and action spaces
[Papadimitriou an d Tsitsiklis 19H7] [Puterman, 1994],
but these methods are impractical for large state spaces
{e g > 10° statee given 20 state variables) Instead
of considering the large state space as a whole, we are
interested in decomposition methods that deal with the
smaller subspaces of individual regions

13 Combining Local Solutions

Our framework is a special case of divide and conquer
given a Markov decision process and a partition of the
state space into regions, (i) reformulate the problem m
terms of smaller Markov decision processes over the sub-
spaces of the individual regions., (n) solve each of these
Aubproblenib and then (m) combine the solutions to ob-
tain a solution to the original problem

In the best case, all of the subproblems are indepen-
dent and combination is trivial (e g, a manufacturing
task that involves assembling and testing several com-
ponents each of which is assembled independently) In
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such cases, it does not matter how you enter a region
of the partition or how you leave, the only thing that
matters is the cost accrued while in that portion of tht
state space In the more likely case, the subproblems
are weakly coupled to one another so that, for example,
what you do in one region only affects what you do in
a few neighboring regions Examples of weakly-coupled
systems include staged manufacturing and military plan-
ning problems and robot navigation tasks

We associate a set of topologically motivated param
eters with each region R These parameters summarize
the interactions between R and the other regions in the
partition A specific estimate of the parameter values as-
sociated with region R allows us to construct a Markov
decision process over the subspace associated with R
B} solving such a Markov decision process, we deter-
mine a local policy on the region R, which is a solution
to the subproblem associated with R In this paper
we describe two basic methods for combining solutions
to subproblems in order to generate a solution to the
global problem

The first combination method is illustrated in an algo-
rithm called hierarchical policy construction which con-
siders particular sets of parameter values that have an
intuitive topological interpretation These sets of pa
rameter values give us a set of candidate local policies
associated with each region We then construct an ab-
stract Markov decision process by considering individual
regions as abstract states and their candidate local poli-
cies as abstract actions The solution to this abstract
Markov decision process assigns a particular candidate
policy to each region thus yielding a policy on the en-
tire state space Hierarchical policy construction pro-
duces an optimal policy only in special cases however
it does so relatively efficiently and has an intuitive in-
terpretation that makes it particularly suitable for robot
navigation domains

The second method of combining solutions involves it
erative approximation of the optimal parameter values
i i , those values associated with optimal solutions to
the global problem On each iteration of the iterative
approximation method we consider for each region R
a specific estimate of the parameter values for region R
and solve the resulting Markov decision process to ob-
tain a local policy By examining the resulting local poh
eies, we obtain information to generate a new estimate
of the parameter values that is guaranteed to improve
the global solution This information about local poli-
cies also tells us when the current solution is optimal or
within some specified tolerance, and therefore when it is
appropriate to terminate the iterative procedure

14 Overview of the Paper

In Section 2, we provide a brief introduction to Markov
decision processes Section 3 describee the parameters
modeling the inter-regional interactions, and the con-
struction of a Markov decision process on a region R
given a specific estimate of the parameter values for R
Section 4 presents the hierarchical policy construction
algorithm We describe the construction of abstract de-
cision processes from a base-level process, and the use of



such abstract decision processes to construct policies for
the base-level process Section 5 illustrates the method
of the iterative approximation and briefly addresses is
sues concerning convergence, optimally, and complex-
ity Details are available in a longer version of the paper
[Dean and Lin, 1995]

2 Markov Decision Processes

Lel M = (2x Qa,p ¢) be a Markov decision process
with finite state space S, Actions 24 state transition
matrix p and cost matrixc Let 2y = {1,2, ,N} X,
(4¢) 1~ & varniable indicating the state (action) at time ¢
Torall: j € 2, and a € {14 we have

plj{ﬂ] - Fr( L= J"r-l = 4_ = “]

(lj(a) =Y, =Jikl—l =14,_| =«
where Pr( | } 15 a condilional probability distribution and
((]) 1> a real-valued rost funclion A policy 7 1~ a
funclion mapmng states (o aclions 7 2y — §},

To completely define o Markov decision process we
also weed o performantce eriterion Two eritoria thal we
consider are erperted discountcd eumulative rost and cz-
pected cost o rvach a speetfied goal In the former, (he
tash 1s to find a policy mininuzing the expected cumula-
f1ve cosl function,

Cr(Salth = D pualm(n) e, (m(3)) + 2F (T, )5))
rEilx

for all r € €25 where 0 < < 115 the dscount rate, ¥,
represents the discounted cumulative cost, and Ex{ | )
denotes an expectation with respect to the policv 1 For
Ihe eriterion of uxpected cosl lo reach a specilied goal
A subsct of 25 15 designated as a target and perfor
mance 1» measurcd as the expected cost unbil arriving
in some target state [nformally, we can medel vach tar-
ge! stale a5 a sk (all transitions out have probability
7610 py, 4, (a) = 0) and proceed as i the case ol cxpected
discounted cumulative cost, but with v = 1

We mentlion two standard methods for solving Markov
decision processes  Bellman’s valuc iteration method
(Bellman, 1961] iterates by computing the optimal ex-
pected eumulative cost function accounting for n steps
of lookahead using Lhe optimal expected curnulative cost
lunction accounting for n~1 steps of lookahead Valuc it-
rration s guaranteed to converge 1n the hmit Lo the opl
inal expecied cumulative rost function accounting for an
mhnite lookahead Howard's policy iteration [Howard
1960) 1terates by Rrst computing the expecled cumula-
tive cost function for the current policy and then 1m
proving the policy by usmg this cosl function Policy
iteration 1s guaranteed to converge to the optimal pol-
icy tn time polynormial in N Putertman [1994] provides
an up-1o-date overview of slgorithms for solving Markov
decislon processes

In iterative methods 1t i often useful to be able to
compute a bound on the difference between the value of
the current solution and the optimum Let n° denote an
oplimal policy for M Suppose & 18 Lhe probability of
starting out i state t and T 1 the current pahcy then
2 eny, S Bx(Z4]1) 15 the value of the current solution
and 3 .o &Ex (Eq)t) 15 the optimum The algorithm
described in Section 5 relies on computing such a bound

Figure 1 Boundary «tates {Light grav} and prriphery
states (darker gray) of region R

3 Decomposing Markov Processes

In this section, we describe a general method al de
comporing a Markov decision process defined on a large
state space mto smaller Markoy decwion processes de-
fined on local rgions  Bascd on this regional decom
position frameworh we develop (wo approaches 1n the
following two sections thal combine the ~olutions to the
sinaller Marhov decision processes 1wte & solution to the
original Markov decimion process

Lat P be any partition of Q5 , P = { R, Fip} such
vat Q@ = UL, R and RN A, = @forall t # 5 We
refer to a region A € P as an aggregate stale We roler
to a <tate 1n {15 as a base-leve! wlate

[he periphery of an aggregate state R (dinoted
Periphery(R)) 15 the sct of all base-level slates not 1o
f but reachablc in & single transition from a hase-lcvel
stale in & {307 € RA T € Hoa € Qa,pyy(a) > 0}
We say thal apgrepate state £ m P 15 adjrent to
aggregate sialc 9 wm P {denoted A~ %) just 1 came
Periphery( )N S #

The boundary of an aggregale stale R [(denoled
Boundary({F)} s the get of all base level states i K from
which vou can reach a base-lovel state not in Hna i
gle transition {:: € AAT} ¢ R a € 824,p,(e) >0} In
Mgure 3, the houndary slates are shaded Light grav and
the pcniphery stales are shaded darker gray

Next we introduce a sel ol pararneters that we will
use L0 mode] inleractions among regions Lel [T =
Uep Penphay(R) and A, for each 1 € U/ dinotc

real-valued parameter Let A € R denote a vector
ol all such A, paraineters and Alp denole a subvcctor
of A cothposed of A, where ¢ 15 10 Periphery(R) U 1w
the medium for mter-regional nleraclions, a region it
can only communicate with Lhic other regrons Lhrough
the sieten 1n {7 Parameter A, serves as a incasure of the
expecled curulative cost of starting from a periphery
state and Ay provides an abstract summary of how th
other regrons affect K

(uiven a particular A, the oniginal Markov deaision
process can be decomposed mlo sinaller Markov dect
sion processes, each of which defermines a local pol
iy on a local region  For a region R and Lhe sub-
vector A|g of A, we define a Markav decision process
M, = (RUPeniphery(R), 4, ¢, k) and the correspond
ing loeal palicy Tln 85 follows

1 RUPeripherv(R) 1s the (local) state space for My
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2 g 15 the (local) state transition matrix for My,
where
.q13=p,Jf0r1€R
¢ q,, = 1 for 1 € Periphery{ R}
1 k., w the (local) cost matrix for My, , where
o k,=c¢,for1,3€ R
e k, = A, +c, for 1 € Rand; € Periphery(R)
» k,, = 0 for : € Periphery{ R)

14 75, corresponds to the local policy that 18 optimal
for Mz, with performance criterion expected cost
to goal end target set Periphery(R)

M5, 18 the subproblem we associate with region R

given A|g as an abstract summary of f's interaction with
the other regions 7y, 13 the solution to the subproblem
M3, A particular A determines a set of local policies
(abstract actions) which 1n turn determrunes a policy on
the entire state space Let x* denote an optimal policy
for M 1{ ), = E,+(E,[t}, then the resulting local policies
as defined above define an optimal policy on the entire
state space The algorithms considered n the following
two sections ofler various methods for either guessing or
successively approximating E, (Z,]¢) forell : € U

4 Hierarchical Pohicy Construction

In ihis eection, we first describe a general method
for constructing &n abstract decision process from a
base-level process given a fixed partition of the state
space We then present a hierarchical policy construc-
tion method for using an abstract decision process to
construct policies for the base-level process

41 Abstract Decision Processes

Let P = {R,, ,Rm} be any partition of x Each
region R € P 1s considered as an abstract state A par-
ticular local policy 3, on region R 1s considered as
an ebstract actron on R, which reflects our hias toward
different peripherv states described by A|g Abslract ac-
tions for stochastic domains are the rough equivalent of
macro operators for delerrmniatic domains The absiract
action ), indicales how to act optimally in region Rf

the interaciions with the other regions are captured 1n A
For example, a large value for A, naturally discourages
us from entering the periphery state j since 1t induces
a large cost n k,; The famly of all abstract actions 18
denoted F = {m, . |He P A e ®Il}

The probability of ending up 1n § starting in R and
following an abstraction | 1s defined by

’ ] 1 E :
Prs (75a) |Boundary( R} ”
1eBoundary ()
" = E : Py + Z Py

gsnPenphery(r) 2€R

where p; = p,, (7, (1}) Note that we assume here that
there 1s an equal probability of starting in any state in
the boundary of R
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Figure 4 Abstract Markov decimion pracess

The cost of ending up 1n S starting in R and following
7. 16 defined by

! 1 E
cre (ﬂ','\l o) |Boundary{ R)| ”
|Boundary( R)| & Boundary(R)
‘5’ _ Z PiyCay + ZP‘J[("U + 1’;’

€ snPenphery(a) J€R

where ry = ¢y (75, (1))

The resulting abstract decision process 1s then defined
by Mz = (P, F,¢.¢') It 1s umportant to note that M,
need not be Markov 1n somic cases, we may simply ac-
cept this as one of the inevitable consequences of ab-
straction and proceed as if the process 15 Markor, w1
other cases, we may allempt to ameliorate this cond
tion (al some increase in computational cost) by using
one of several standard techniques

42 Hierarchical Policy Construction

In the following algorithm, called hterarchical policy con
slruclion, we restrict our attention to a fimte subset of F
For each At and each § ad)acent to R, we construct a local
policy TR 5 by selting A, = 0 for ¢+ € 9 (i Periphery(R)
and setting A, = x for : € Peniphery(H) — S, where
« 15 some fixed constant If the performance criterion
for the base-leve] process 15 expected cost to goal, then
for each R containing one or more targel states, we add
an additional aclion 1 which all the peripheral states
gel A, = & and all of the targel states are made 1nto
sinks with &,, = (0 The abstract decimon process i+
(P, F.,p\ ¢} where 7., = {rr,s|R,§ € P A R~S}
and the performance criterion 18 expected discounted cu-
mulative reward for a discount rate «

The loca]l policies have the interpretation that mg_, s
15 the policy to take starting in R \f you want to get to
5 The larger x 18, the more incentive there 13 Lo gel
to 5 and avoid the rest of the periphery of & Figure 4
llustrates an example in which pho(ry,) = 07 and
Par(m5,) = 03 The abstract policy has the interpre-
tation of providing a global perspective and indicating
for each region the best local policy to use Generally,
1t 18 best to set v very close to one or use an alternative



performance criterion such as average expected cosl per
step [Derman, 1970]

The following 18 an algorithm ta construct a global
policy using the absiract decision process (P, F..,p',¢')

1 Set « and compute 7g_,5 for A~+S € P

2 Calculate the abstract transition probabihities p'
and abstract coats ¢’

} Set + and rolve the abstract dicision process Lo ob-
Lawn an sbstract policy 1 P — F..

4 To determine the action to take 1 base-level state
1, determine B € P such that 1 € R and take aclion
N{F)z)

L he ahove algonthr for consiructing and solving ab-
siract processes can be applied recurmively and Lience
apphes to ierarchical partitions

Hierarchical policy construction produces an optimal

policy only 1n special cases, however, it does so rela-
tively efliciently and has an intuitive interpretation that
mahes 1t particularly suwilable for robot navigation do-
mans For a simple partition of the state spare wilth no
aggregation wiihin regions, standard algonthms [Puter-
tan, 1994] on the base-level state space would be domi-
nated by a facior quadratic 1n the s1z¢ of the statc space
(1§25 |} while hierarchical policy construction would b
doimnated by the number of regions 1 the parlition
(|P[) vimes the maximum number of neighbors for any
region (maxpep |[{S|5 € P A H~5}|) times the square
of the size of Lhe largest region {maxpep |A|)

5 Iterative Improvement Approach

Given a particular A, the base-level process ts decom-
pased Lo local processes {MMH} By wolving these lo-
cal processes, we derive the corresponding local policies
(abulract actions) {m,, } The sclution policy , to the
base-level process 1s then derived by combining these lo
tal policies together The quality of 7 cratically depends
on the choice of X Inatead of rlying on a particular
A we can successively modify A and proceed (hrough
inuitiple iterations of decomposition and localized comm
putation to determine a policy for the base-levi] process
There are three 1ssues in realizing this iterative improve-
ment framework

e how to modify X iteratively so that the solution
quality can be improved on each 1tcration sud 1-
guaranteed to converge to an optimal <olution m a
fimte number of 1terations,

® how to determine 11 1s {ime Lo terminate the compu
tation when the solution 1z optimal or withim som«
specified tolerance, and

e how Lo combine the previously generaied local pol-
cies mnto a policy of the base-lcvel process when we
terminale the computalion

In this seclion, we focus on a particular alerative
method that resolves these three 1seues 1lus itera-
tive method 18 based on a reduction to the methuds
of kushner and C hen [1974] that demonstrate how to
solve Markov decision processes as linear programs using
Dantzig-Wolfe decomposition [Dantzig and Wolle, 1960)

Kernel{R)

Figure 5 Relationship beiween the partitions P and )

The details of thic material presented in this wection
depend on some understanding of linear programming
[C hvatal 1980] and methods for decomposimg and ~ulv-
g large systems [Lasdon, 1970] Rather than assume
tlus understanding we refer the reader to the longer ver-
sion of the paper [Dean and Lin, 1995] for the delails and
qust skelch the meihod in the following

1 CGaven an arbitrary partition P = {H,, R} of
s12¢ rn we firsl transform /7 imlo a new partilion
@={h N s T} of s1ze m + 1 a~ follows  For
each region H define hernel(R)} to be & —1 (re
call that U' = | g p Periphery (R)) & 1s defined by
Jo=Uand 7, = kernel(R,} for 1 €1 <m Th
resulting structure mduces a star topology that i
crtical w applywg the techniques in [Kushner and
Chen 1971 15 = { 15 called the coupling remion,
rumaving the slales in Ty separates the state space
1nte 1sulated regions, each of which corresponds to
a7y, 2 > 0 Figure 5 illusirates the relationship
helween the paertitions P and Q

(2=

In the 2th iteration, we consider the particular A de-
termined al the end of last iteration We decompose
the original base-level process nto Jocal processes
{M,).|R € @], and denve the corresponding local
policies {7, |H € @} Lel I, denote Lhe global
policy formed by gluing together these local poli
CHes

3 Wi need to maintam & policy repository of at most
[{7|4+1 previously generaled global policies al a lime
4s soon as policy [1, 1 generaled, 1t replaces somy
polhicy T, ; < 1, 1n the repository The inflormation
assoclaled witly the current pelicy repository tells
us an wr per bound on the gap between Lhe value of
th. current solution and the oplimum This beund
allows ns to determine whether we have reached the
optimum or are within a specified range of the opti-
mun, and whether we should continue for upother
iteration or lerminate and reporl a final solulion

4 If we decide to terminale the computlation we gon-
erate a policy a» a final solution by properly com-
bining the policies 1n the current pabcy repository
using 1ls asvociated mformation, otherwise, we de
termmine a new A according to the information asso-
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ciated with the current policy repository

Proposition 1 The iterative method described above im-
proves the solution quality on each iteration, and con
verges. to an optimal solution in a finite number of steps

For a proof of this proportion and a more detailed
description of the algorithm see the longer version of
this paper [Dean and Lin, 1995] Our approach to anal-
yse involves (1) reformulating this iterative method in
terms of solving large linear programs and (n) applying
a reduction to the methods of Kushner and Chen [1974]
that solve these large linear programs for Markov de-
cision processes using Dantzig-Wolfe decomposition In
the following, we briefly discuss the convergence rate and
the time and space complexity of this iterative method

+ Empirical experience suggests that the Dantzig-
Wolfe method of decomposition upon which our
analysis of the iterative method is based converges
to within 1-5% of the optimum fairly quickly, al-
though the tail convergence rate can be very slow
(see page 325 m [M S Bazaraa 1990]) In other
words it is likely that after only a small number
of iterations in the iterative method we are able to
produce a solution of good quality, hut it may not
be worthwhile to continue after reaching 1-5% of
the optimum

« The computational task in an iteration is decom-
posed into two subtasks (i) deriving and solving
local processes over local regions as subproblems
and [ll} maintaining a policy repository of up to
[t'] + 1 previously generated policies where V is
the union of Periphery (R) for the regions R in the
original partition P
The computational cost in an iteration is critically
affected by the structure of the partition Q (1) the
maximum number of base-level states in a region
in the partition Q, and (n) |f |, the total number
of base-level states in the coupling region for the
partition Q

m ( ompared with solving the original base-level pro-
cess as a whole, the first subtask can be achieved
more efficiently by applying the standard techniques
for Markov decision processes over individual re-
gions This is a natural advantage of decomposi-
tion trchniques, which divide large problems into
suliprohlems of traclable size

The second subtask is achieved by maintaining a
(/] + 1) x {jtz] + 1} matrix whose computational
efficiency critically depends on the topology of the
given partilion P The second subtask can be per-
formed efficiently if the size of V is relatively small
This is the additional cost to pay for decomposition
techniques since we need to combine the solutions
to subproblems

* In other words this iterative method is promising if
the given partition P evenly divides the whole state
space into many regions, and the number of states
in the peripheries of the regions in P is small

In the longer version of this paper, we also describe
other iterative methods that do not necessarily converge
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to an optimal solution but allow intuitive interpretation
and more computational efficiency @ We are currently
testing these algorithms on a set of benchmark problems
Since the discussion is somewhat lengthy and requires
some understanding of both Howard's policy iteration
[Howard 1960] and Bellman 8 value iteration [Bellman
1961] for solving Markov decision processes we refer the
interested reader to the longer version of the paper [Dean
and Lin, 1995]

6 Related Work

The related work on abstraction and decomposition is
extensive In the area planning and search assuming, de-
terministic action models, there is the work on macro
operators [horf, 1985] and hierarchies of state-space op-
erators [Sacerdoti, 1974] [knoblock, 1991] C losely re-
lated is the work on decomposing discrete event systems
modeled as (deterministic) finite state machines [Zhong
and Wonham 1990] [Caines and Wang, 1990]

In the area of reinforcement learning, then, is work on
deterministic action models and continuous state spaces
[Moore and Atkeson, 1995] and stochastic models and
discrete state spaces [Kaelbling, 1993] The hierarcl ncal
policy construction method described in Section 4 pro-
vides an alternative formulation of Kaelbling s hierar-
chical learning algorithm [Kaelbling, 1991] and suggests
how Moore and Atkeson's parti-game algorithm might
be extended to handle discrete state spaces

The analysis hinted at in thih paper and found in the
longer version of the paper borrows heavily from Ih<
work in operations research and combinatorial optimiza-
tion for representing Markov decision processes as 1m
ear programs [D Epenoux 1963] [D erman, 1970] [Rush
ner and Kleinman, 1971] and decomposing large sys
teint generally [Dantzig and Wolfe, 19G0] [Lasdon, 1970]
and Markov decision processes specifically [Kushner and
Chen, 1974] The approach described in [Dean el al
1993] [Dean et at , 1995] represents a special case of the
framework presented here, in which the partition con-
sists of singleton sets for all of the states in the envelope
and a set for all the states in the complement of the
envelope

7 Conclusion

The benefit of decomposition, techniques is that we are
able to deal with subproblems of smaller size, the trade-
off is that extra effort is required to combine the solu-
tions to these subproblems into a solution to the original
problem The leverage of decomposition techniques is or
thogonal to that of standard techniques used to solve the
original problem In the case of problem instances of very
large size, decomposition techniques are often valuable
even if standard polynomial-time algorithms are avail
able

We provide decomposition techniques for Markov de-
cision processes, given an arbitrary partition of the state
space into regions  Subproblems correspond to local
Markov decision processes over regions associated with
a A parameter that provides an abstract summary of the
interactions among regions We present two methods for



combining the solutions to subproblems a hierarchical
construction approach and an iterative improvement ap-
proach The hierarchical construction method provides
a quick solution with an intuitive interpretation The it-
erative method is guaranteed to converge to an optimal
solution in a finite number of iterations For practical
purpose®, a small number of iterations should be suffi-
(nnt for a solution of near optimal quality
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