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Abstract

Terminological knowledge representation for-
malisms can be used to represent objective,
time-independent facts about an application
domain. Notions like belief, intentions, and
time which are essential for the representation
of multi-agent environments can only be ex-
pressed in a very limited way. For such noti-
ons, modal logics with possible worlds seman-
tics provides a formally well-founded and well-
investigated basis. This paper presents a fra-
mework for integrating modal operators into
terminological knowledge representation langu-
ages. These operators can be used both inside
of concept expressions and in front of termino-
logical and assertional axioms. We introduce
syntax and semantics of the extended langu-
age, and show that satisfiability of finite sets of
formulas is decidable, provided that all modal
operators are interpreted in the basic logic K,
and that the increasing domain assumption is
used.

1 Introduction

Terminological knowledge representation languages in
the style of KL-ONE [Brachman and Schmolze, 1985] have
been developed as a structured formalism to describe the
relevant concepts of a problem domain and the inter-
actions between these concepts. Various terminological
systems have been designed and implemented that are
based on the ideas underlying KL-ONE (see [Woods and
Schmolze, 1992] for an overview). Representing know-
ledge of an application domain with such a kind of sy-
stem amounts to introducing the terminology of this do-
main via concept definitions, and then describing (an
abstraction of) the relevant part of the "world" by li-
sting the facts that hold in this part of the world. In a
traditional terminological system, such a description is
rigid in the sense that it does not allow for the represen-
tation of notions like time, or beliefs of different agents.
In systems modeling aspects of intelligent agents, howe-
ver, intentions, beliefs, and time-dependent facts play an
important role.

Modal logics with possible worlds semantics is a for-
mally well-founded and well-investigated framework for
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the representation of such notions. The present paper
is concerned with integrating modal operators (for time,
belief, etc.) into a terminological formalism. The first
task is to find an appropriate semantics for the combi-
ned language. In addition, if such a language should be
used in a system, one must design algorithms for the im-
portant inference problems (such as consistency of kno-
wledge bases) for the language.

Several approaches have been proposed for the com-
bination of terminological formalisms with notions like
time or beliefs. A very simple possibility to represent
beliefs of agents is realized in the partition hierarchy SB-
PART [Kobsa, 1989], which is an extension of the SB-
ONE system. In this approach, each agent may have
its own set of terminological axioms (TBox), and these
TBoxes can be ordered hierarchically. However, this ex-
tension lacks a formal semantics and it does not allow
for representing properties of belief, such as introspec-
tion, or interactions between beliefs of different agents.
A more formal approach is used in M-KRYPTON [Saf-
fiotti and Sebastiani, 1988], where a sub-language of
the KRYPTON representation language is extended by
modal operators B; which can be used to represent
the beliefs of agent i. Properties of beliefs are taken
into consideration by using the well-known modal logic
KD45. Due to the undecidable base language, however,
[Saffiotti and Sebastiani, 1988] just introduces a formal
semantics, without giving any inference algorithms for
the extended language. In [Schild, 1991], it has been
shown that terminological systems already have a strong
connection to modal logic. In fact, the concept langu-
age ACC is nothing but a syntactic variant of the pro-
positional multi-modal logic K(m). Building upon this
observation, [Schild, 1993] augments ACC by tense ope-
rators. The two approaches that come next to the one
we shall introduce below are described in [Laux, 1994a;
1994b] and in [Ohlbach and Baader, 1993]. Both extend
ACC by modal operators, but with different emphasis.
The differences between these approaches and ours are
clarified in the next section.

2 Classification

When extending a terminological knowledge representa-
tion language by modalities for belief, time, etc. one has
various degrees of freedom. Before describing the specific



choices made in this article, we shall informally explain
the different alternatives.

For simplicity, assume that we are interested in time
and belief operators only. Thus, in addition to the ob-
jects we have time points and belief worlds. This means
that the domain of an interpretation is the Cartesian
product D = Dopect X Diime X Dherer Of the set of ob-
jects, the set of time points, and the set of belief worlds.
Concepts are no longer just sets of objects; their inter-
pretation also depends on the actual belief world and
time point. Thus, they can be seen as subsets of D, and
not just as subsets of Dy Roles operate on objects,
whereas modalities for time (like future or tomorrow)
operate on time points, and modalities for belief (like
hel-John) operate on belief worlds. As for concepts, ho-
wever, the interpretation of roles and modalities depends
on all dimensions. Thus, a role loves is interpreted as a
function from D into 2 ngjec, relates any indivi-
dual in Dobject (say John) with a set of individuals (the
individuals John loves), but this set depends on the ac-
tual time point and belief world. Modalities like future
are treated analogously. Modal operators can now be
used both inside of concept expressions and in front of
concept definitions and assertions. For example, we can
describe the set of individuals that love a woman that—
according to John's belief—is pretty by the concept ex-
pression 3 loves.(Woman H [bel-John]Pretty), and we can
express that—according to John's belief—a happy hus-
band is one married to a woman whom he (John) believes
to be pretty by the terminological axiom

[bel-Joh n] (Happy-h usband -
3 m arried- to.( Worn anT1 [ bel- Joh n] Pre tty)).

The assertion [bel-John](future) (Peter married-to Mary)
says that John believes that, at some point in the future,
Peter will be married to Mary.

With the usual interpretation of the Boolean opera-
tors, of value and exists restrictions on roles, and of box
and diamond operators for the modalities, this yields a
rnulti-dimensional version of the multi-modal logic K.
As described until now, this logic is a strict sub-language
of the one introduced in [Ohlbach and Baader, 1993].
The restriction lies in the fact that, unlike in [Ohlbach
and Baader, 1993], we do not consider roles and modali-
ties that have a complex structure (such as [wantsjown,
where the modality wants is used to modify the role
own). There are several reasons why this approach is not,
yet satisfactory. First, the object and the other dimen-
sions are treated analogously. This means, for example,
that the interpretation of the modality future depends
not only on the actual time point, but also on the current
object and the belief world. Whereas the dependence
from the belief world may seem to be quite reasonable,
it is rather counterintuitive that the future time points
reached from time t, are different, depending on whether
we are interested in the individual Sue or Mary. Thus, it
seems to be more appropriate to treat the object dimen-
sion in a special way: whereas the interpretation of roles
should depend on the actual time point etc., the inter-
pretation of modalities should not depend on the object
under consideration.

The need for a special treatment of the object dimen-
sion can also be motivated by considering the semantics
of concept definitions (and assertions). In [Ohlbach and
Baader, 1993], concept definitions are required to hold
for all objects, time points, and belief worlds. This is
a straightforward generalization of the treatment of de-
finitions in terminological languages, where a definition
C = D must hold for all objects, i.e.,, in a model of
C — D all objects o must satisfy that o belongs to the
interpretation of C iff it belongs to the interpretation of
D. For the other dimensions, however, this differs from
the usual definition of models in modal logics, where a
formula is only required to hold in one world.

Another problem is that not only the roles, but also
all the other modalities are just interpreted in the ba-
sic logic K, i.e., they are not required to satisfy speci-
fic axioms for belief or time. In the present paper, we
shall not take into account this last aspect, but we shall
treat the object dimension in a special way, thus elimi-
nating the problems mentioned above. In [Laux, 1994a;
1994b] both aspects are considered. However, modal
operators are not allowed to occur inside of concept ex-
pressions, which considerably simplifies the algorithmic
treatment of the formalism. The difference to [Ohlbach
and Baader, 1993] is, on the one hand, the special tre-
atment of the object dimension. In addition, [Ohlbach
and Baader, 1993] does not consider assertions, and even
though concept definitions are introduced, they are not
handled by the satisfiability algorithm. On the other
hand, [Ohlbach and Baader, 1993] allows for very com-
plex roles and modalities, which are not considered here.

3 Syntax and Semantics of ACCM

First, we present the syntax of our multi-dimensional
modal extension of the concept language ACC. As for
ACC, we assume a set of concept names, a set of role
names, and a set of object names to be given. Beside the
object dimension (which will be treated differently from
the other dimensions), we assume that there are v >
1 additional dimensions (such as time points, epistemic
alternatives, or intensional states). In each dimension,
there can be several modalities, which can be used in box
and diamond operators. For example, in the dimension
time points we could have future and tomorrow, and in
the dimension belief worlds we could have belief-John
and belief-Mary. If o is a modality of dimension t we
write dim(o) — i. In this case, [o] and (o) are modal
operators of dimension i.

Definition 3.1 (Syntax) Concepts of ACCM ARE "~
ductively defined as follows. Each concept name is a
concept, and T and _L are concepts. If C and D are
concepts, R is a role name, and o is a modality then
C H D (concept conjunction), CUD (concept disjunc-
tion), -C (concept negation), ¥ R.C (value restriction),
AR.C (exists restriction), [o]C (box operator), and (0)C
(diamond operator) are concepts.

Terminological axioms of ACCM ARE of the form
m (C = D) where C and D are concepts of ACCM And
m is a (possibly empty) sequence of modal operators. As-
sertional axioms of ACCM ore of the form m (xRy) or
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m (x : C) where x and y are object names, R is a role
name, C is a concept, and m is a (possibly empty) se-
quence of modal operators. An ACCM-formula is either
a terminological or an assertional axiom.

Traditional terminological systems impose severe re-
strictions on the admissible sets of terminological
axioms: (1) The concepts on the left-hand sides of
axioms must be concept names, (2) concept names oc-
cur at most once as left-hand side of an axiom (unique
definitions), and (3) there are no cyclic definitions. The
effect of these restrictions is that terminological axioms
are just macro definitions (introducing names for large
descriptions), which can simply be expanded before star-
ting the reasoning process. Unrestricted terminological
axioms are a lot harder to handle algorithmically (see,
e.d., [Buchheit et al., 1993]), but they are very useful for
expressing constraints on concepts that are required to
hold in the application domain. In the presence of modal
operators, the requirement of having unique definitions is
not appropriate anyway. For example, Peter may have a
definition of Happy-husband that is quite different from
John's definition. Thus, it is desirable to have different
definitions m(A = C) and my(A= D) of the same
concept name A for different modal sequences mi and
m,- Even though m; and m; are different, there can be
interactions between these definitions. For example, m,
could be of the form (o) and m; of the form [o] . Thus,
it is not a priori clear how the requirement of "unique
definitions” can be adapted to the case of terminological
axioms with modal prefix. To avoid these problems, we
consider the more general case where arbitrary axioms
are allowed.

Let us now turn to the semantics of ACCMm The mo-
dal operators will be interpreted by a Kripke-style pos-
sible worlds semantics. Thus, for each dimension i we
need a set of possible worlds D;),. Modalities of dimen-
sion i correspond to accessibility relations on D;, which
may, however, depend on the other dimensions as well.
Concepts and roles are interpreted in an object domain,
but this interpretation also depends on the modal di-
mensions.

Definition 3.2 (Semantics) A Kripke structure K =
(W, T, Ky) conststs of a set W of possible worlds, a set of
accessibility relations I', ond a K -interpretation K} over
W, which are given as follows. First, the set of possible
worlds W is the Cartesian product of non-empty domains
Dy, ..., D,, one for each dimension. Second, I' conlains
Jor each modality o of dimension i an accessihility rela-
tion 7y,, which 15 a function 7, : W — 29+, We also
write ((dy,...,d;, ..., d.){dy, ..., d},....d,)) € 7, for
di € v,(dy,...,di,....d,). Finally, the K-interpretation
K; consiats of a domain AX! and an interpretation fun-
ction -¥i. The domain is the union of non-empty do-
mains A% (w) for all worlds w € W. The interpre-
tation function associates (i) with each object name z
an element ¥+ ¢ AXr  (it) with each concept name
A and world w € W o set (A, w)%r C AXr{w), (i)
with the top concept and the boftom concept the sets
(T, w)r = AXi{w) and (1, w)¥" = @ (for each worid
w}, and (iv) with each role name R and worldw € W a
binary relation (R, w)*' C AK1(w) x AKr(w).
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(CNDwRr = (C,w)¥ n (D, w)r

(CLID,w};:f = (C;(w}"'f U(D,w 2”"’
(~Crw)™t = a1 (w)\ (C,w)*!
(YR.C.uwp*t = {6 € a¥r({w) |6 € (C,w)"r
for each & with (6,4") € (R, w)"1}
(IR.C,u)™ = {6 € AX 1 (w)| & € (C, )"’
for some 4" with (8, §') € (R, w)K"}
([} Cow)*t = {6 € 8%1{w}] 8 € (C '}
for each w’ with (w, w’J(E Yo}
({o} C.u)¥7 = {5 € AN (w) |6E (C.,u"r

for some w' with (w, w') € vo}

Observe that, for each concept C and world w, we have
(€, w) C AK (w}. Two ALCA concepts C and D
are called eqmuafent ifl for all Kripke structures K =
(w, r K;) and all worlds 1w € W we have {C, w)®t =
(D, w)¥

Now we can define under which conditions an ALCum-
formula F is satisfied in o Kripke structure K =
(W,T,K;) and a world w € W, written as K,w k= F,
by induction on the length of the modal preﬁx:

KwEC=D [C_,w)K’ = (D, wm)*r,
Kwpz:C iff zh{E((_:',w)K-', .
K, wE rRy iff {rh’,yh-’)e(ﬂ,w)’",

KuwkijlG #fl Kv'kG
for eacll world w' with {w, v’} € Yo,
Huk{@ f KwlE6

l'nr some world w' with (w, w') € ¥

Here & 15 an ALCa-formula, C, D are concepts, z, y
are object names, R is a role name, and o is a modality.
A set {Fy,..., F.} of ALCrq-formulas is satisfiable iff
there exists a Kripke structure £ = (W.I',K;) and a
world ws € W such that K, wo = Fifori=1,...,n In
this case we write K = Fy, ..., Fa.

Even though we have introduced a domain AXi{w)
for each world w, we have not yet said anything ab-
out the relationship between the domains of diﬂ'erent
worlds In the simplest approach, the domains AX7{w;)
and AX!{10,) of each pair w,, w; of worlds are indepen-
dent of each other. This approach is known as varying
domain assumption. In most cases, however, it is more
reasonable to assume certain relationships between the
domains of different worlds. The mast commonly used
apptoach is the so-called increasing dorrmm assumption,
where AfT(w) C AK'(w') if the world w' is accessible
from the world w, i.e., there exists a modality ¢ such
that {w,w’) € 5,. The advantage of thisa approach is
that domain elements that have been introduced in w
can also be referred to in all worlds that are accessible
from w, i.e., domain elements do not “vanish” when we
move from one world to another. As a special case, the
constant domntn assumption is sometimes used, where



the domaini® Am_(wl) and AK'{w-;) are identical for
all worlds W; and w, Finally, the decreasing domain
assumption can be used to express that new domain
elements cannot arise when moving from one world to
another one. In Section 5 we shall see that changing
the requirements on the relationship between domains
of worlds considerably changes the set of satisflable for-
mulas.

With the exception of Section 5, however, we shall
restrict our attention to increasing domains in the fol-
lowing. Furthermore, we assume that all terminological
axioms are of the form m (C = T), where C is a concept
and m is a (possibly empty) sequence of modal opera-
tors. As in the case of ACC without modalities, it is easy
to verify that this can be done without loss of generality.

4 Testing Satisfiability of
ACCM -formulas

We present an algorithm for testing satisfiability of a fi-
nite set {F¢,..., Fn} of ACCM -formulas.” To keep not-
ation simple we assume (without loss of generality) that
concepts are in negation normal form, i.e., negation signs
occur immediately in front of concept names only. Our
calculus for testing satisfiability of ACCy-formulas is
based on the notions of labeled ACCM-formulas and of
world constraint systems. A labeled ACCM -formula con-
sists of an ACCM-formula F together with a label /,
written as F ||[{. The label / is a syntactic representa-
tion of a world in which F is required to hold. A world
constraint is either a labeled ACCM-formula or a term
1M, I', where |I' are labels and ¥, is a syntactic re-
presentation of the accessibility relation of modality o.
A world constraint system is a finite, non-empty set of
world constraints.

A Kripke structure K = (W,r,A'/) satisfies a world
constraint system W iff there is a mapping a that maps
labels in W to worlds in W such that (i) K,«{{} | F for
each world constraint F' || in W, and (i) (ex{f}, e{{')} €
70 for each world constraint { ¥, /' in W. A world con-
straint system W is satisfiablt iff there exists a Kripke
structure satisfying W. In order to test satisfiability

of a set {Fi,.. .,F,} of ACCM-formulas we translate
this set into the world constraint system WO — {xo :
Tl te, Fi || to,..-, Fa || I}, where Xu is a new object

name not occurring in {F4,...,F,}, and /o is an ar-
bitrary label (which is intended to represent the real
world). We say the world constraint system Wo is indu-
ced by {Fy,...,Fp}. Itis easy to verify that {Fj,..., F,}
is satisfiable iff Wo is satisfiable. The world constraint
Tp: Tng can obviously be satisfied by any Kripke struc-
ture. This constraint is necessary to guarantee that the
domains A¥(w) of the canonical Kripke structure con-
structed in the proof of completeness are non-empty (see
the full paper [Baader and Laux, 1994]).

The ACCM -satisfiability algorithm takes as input a
world constraint system Wy that is induced by a finite
set of AICCM-formulas. It successively adds new world

Mt is easy to see that all the other interesting inference
problems (like the subsumption or the instance problem) can
be reduced to this problem.

constraints to Wy by applying several propagation rules,
which will be defined later. A world constraint system
that is induced by a finite set of ALC-formutas, or
that is cbtained by a finite sequence of applications of
propagation rules to an induced aystem, will be called
derived system.

In the following, we use the letters z,y, 2 to denote
object names, ! to denote labels, A, B to denote con-
cept names, C, D to denote concepts, and R to denaote
role names. If necessary, these letiers will have an ap-
prapriate subscript. Before introducing the propagation
rutes in a formal way (in Figure 1), let us first describe
the underlying ideas on an intuitive level. The rules
that handle the usual ALC concept forming cperators are
well-known and rather straightforward (see, e.g., [Baa-
der and Hollunder, 1991]). In order to illustrate the rules
that handle modalities and world constraints of the form
C = T||!, suppose that the ALy -formula (o} {B = T)
15 given, where ¢ is a modality of some dimension. In or-
der to test satisfiability of this ALC sc-formula, we start
with the induced world constraint system Wy = {zo :
T {5, {0} (B = T) || d}. By definition, Wy is satis-
fiable iff there is a Kripke structure X' = {W,T Ky),
a mapping a, and a world we = e(l,) € W such that
£f" € ANi(uy) and K,w0 | {0) (B = T). Since
Kuw (o) (B=T)if K,w; | B = T for some world
w with (wp, w1) € 7., the —+o tule adds the world con-
straints {p M, I; and B = T ||{; o Wy, where /; is a
new label. This yields the new world constraint system
W) = WoU{lg ™, {,,B = T|il;}. Because of the se-
mantics of AL py-formulas, we furthermore know that
Kou | B=Tifl §¢ (B w) for all § € A¥r{uy).
By the increasing domain assumption, 3! € AXT(wy)
implies :nK’ € AK"{u.q]. Sumrming up, we must guaran-
tee that ¢’ € {B,w;)¥' and therefore must add the
world constraint xq: B || { to W.

More generally, we say that an object name z is re-
levant for label I (in a world constraint system W) iff
there is a lahel I' occurring in W such that (i} W con-
tains a world constraint of the form z : C ||V, zRy||¥', or
yRz ||V, and (i) ! is accessible from I'| i.e. either { is I/
or there are world constraints ¥ ®4,, &y, ... o1 ™M, 1 in
W for some modalities oy,...,0n. Now, if 2 is relevant
for ! and there is a world consiraint C = T ||{ in W for
some concept C, then the —=_ rule adds z . C||{to W
{unless this world constraint is already contained in W).
In our example, this rule applies to Wy, and it yields
the world constraint systetn Wy = Wi U {20: B || 11}
To W2 no more propagation rules are applicable, and—
as shown in [Baader and Laux, 1994]—we can use this
system 1o construct a Kripke structure that satisfies the
ALCw-Tormula {0 (B = T). A world constraint system
10 which no more propagation rules are applicable will
be called romplete.

Termination of the propagation rule applications can
only be guaranteed if applicability of the usual rule for
handling exists restrictions is restricted in an appropriate
way. This is due to the presence of axioms of the form
C = T. To illustrate this problem, consider the world
constraint system W = {x: A||{{,3R.C = T ||1}. Since z
is relevant. for I, the — - rule adds z:3R.C'{{{. Now, the
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usual propagation rule —3 that treats exists resirictions
would add xRy || and y:C' |[{ to W, where ¥ is a new
object. However, y is again relevant for I, and thus we
must add y: IR.C||{. The =3 rule would thus be ap-
plicable to y: 3 R.C|ji, generating new world constraints
yRz ||l and z:C ||, ete.

In order to avoid such infinite chains of rule applica-
tion, we introduce the notion of blocked objects.? In-
tuitively, an ohject z is blocked w.r.t. label ! if we need
not introduce a new object in order to be sure that the
exists restrictions on z can be satisfied. Consider, for in-
stance, the world constraint system W = {z:3R.C||{, r:
D, zRBylll,y:3R.C||!}. Tn this case, it is sufficient to
apply the =3 rule just to z. In fact, since all constraints
for y are also constraints for z, any contradiction that
could be obtained by applying this propagation rule to
y can afready be obtained by applying it to x, The idea
is thus to say that y is btocked by r with respect to a
label{  {C | y:Cit e W} C {D | 2:D||l € W}. In the
above exampie, y would thus be blocked by z, and the
—3 tule would only be applied to r. In general, this no-
tion of blocking is too strong, though. In fact, consider
the system W' that is obtained from W by deleting the
constraint z: D{{l. In this system, = would be blocked by
v and vice versa. Such cyclic blocking is clearly not ap-
propriate since contradictions that are possibly hidden
in ¢ would never be detected.

In order to avoid cyclic blocking, we assume that the
{countably infinite) et of all ohject names 1s given by
an enpumeration ), ¥, 43, . .. We write y < z if y comes
before z in this enumeration. This ordering is used as
follows. Whenever a new object y is introdured by ap-
plying the —3 rule to a world constraint system W, g
is chosen such that all objects in W are smaller than
y w.r.l. this ordering. In addition, only smaller objects
can block a given object.

Definition 4.1 An object y 15 blocked by an object =
w.r.t. label | in a woerld constraint system W if {C | y:
ClileWiyc{D|z:D||[leW}and z <y

Now, the —3 rule is applicable to a world constraint
z:3R.C||! in a world constraint system W only if =
is not blocked by some cbject z wrt. ! in W. A for-
mal description of the propagation rules is given in Fi-
gure 1. Given a set {F;, ..., F,} of ALCyy-formulas the
ALC pq-satisficbilily algorithm proceeds as follows. Star-
ting with the world constraint system W, that is induced
by {Fy, ..., Fn}, propagation rules are applied as long as
possible.

'The transformation rules are sound in the sense that,
if W is a satisfiable world constraint systern, each ap-
plicable propagation nule can be applied in such a way
that the obtained derived system is satisfiable {see [Baa-
der and Laux, 1994] for a proof). For the “don't-know”
non-deterministic =, rule there are two alternative sue-
cessor systems, and soundness means that one of them
is satisfiable if the original system is satisfiable.® For

*This idea was already used in [Buchheit e of, 1993
Baader et of., 1994], with slightly differing definitions of
blacked objects.

$Note that the choice of an applicable rule is “don’t-care”
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the other rules (which are deterministic), soundness just
means that application of the rule transforms a satisfia-
ble system into a new satisfiable system. Furthermore,
given an arbitrary induced world constraint system Wy,
only a finite number of propagation rules can successi-
vely be applied, starting with Wo (see also [Baader and
Laux, 1994] for a proof). This termination property me-
ans that, after a finite number of propagation rule ap-
plications to Wy, we obtain a complete world constraint
system (i.e., a system to which no more rules apply), say
W. If W is satisfiable we can conclude that Wo is sa-
tisfiable (since WO is a subset of W'). Otherwise, if W’
is unsatisfiable, we can possibly derive another complete
world constraint system from Wo by another choice for
the non-deterministic —>, rule. If all the (finitely many)
choices lead to an unsatisfiable complete system then so-
undness of the rules implies that the original system Wo
was unsatisfiable.

Thus, it remains to be explained how satisfiability of
a complete world constraint system can be decided. For
this purpose, we say that a world constraint system W
contains an obvious contradiction (or clash for short) if
it contains either a pair of labeled ACCM-formulas of the
form x : AW and x: -A \\/ or a labeled ACCM-formula
x: J_ ||/ (for some object x, concept name A; and label
/). Obviously, a world constraint system containing a
clash is unsatisfiable. On the other hand, if a system is
clash-free and complete then it is satisfiable (see [Baader
and Laux, 1994] for a proof of this property, which shows
completeness of the propagation rules). Summing up, we
obtain the following theorem.

Theorem 4.2 Satisfiability of a finite set of ACCM-
formulas is decidable if we assume increasing domains.

5 The Constant Domain Assumption

Up to now we have investigated increasing domains only.
In this section we will consider ihe algorithmic conse-
quences of assuming that the domains of all worlds are
identical. Since this constant domain assumption is a
special case of assuming increasing domains, an appro-
priate extension of the presented ALC sq-satisfiability al-
gorithm might seem to be rather easy. The goal of this
section is to poinl out why developing such an extended
algorithm requires mote than a straightforward modifi-
cation of the existing approach. In fact, until now we
did not succeed in finding an appropriate modification.
Nevertheless we think that pointing out the problems we
have observed can be useful for anyone trying to solve
this probiem.

In a first attempt one could iry to use the presented
AL uq-satisfiability algorithm for the case of constant
domains as well. However, not surprisingly, this does
not always yield the cotrect answers. For example, con-
sider the ALCAi-formulas ([o] ~A) = T and {0} (£: A)
where ¢ is a modality, z an object, and A a concept
name. [t is easy to see that an application of the
ALC p-satisfiability algorithm to the induced system
{zo : Tilo, ([} ~A4) = T iito,(0) (z: A) || In} yields

nonh-deterministic, i.e., we need not try different ordera of nile
aphlicatioms




Woao {IM ¢ || VJuw

W-vo (¢ [[F}UW
W =n {z:C ||Lz:Ce [ UW
W =y {z: D[ juw

W =3 {zRyf|L,m:Clliluw

occurring in W.
W oy {g:C||{JUW

W {z:C||Huw

if @lllisin W, where g is (o) F (resp. x: (o) C), ¢' is F (resp. z:C), thete is no label  in W such

that the world constraints { ¥, [ and @' || are in W, and V' is a new label.

if wlltand !, ¥ arein W, where ¢ is [0] F (resp. r:[0]C), ¢ is F (resp. #:C), and ¢' || is not in W
if 2:ChMNC;||Lisin W and W does not contain Loth world constraints z:Cy ||f and =:Ca i
if 2:CUC|[1isin W, neither z:Cy || nor 2:Cy |{{ is in W, and D is either €, or Cs.

if z:3R.C||lisin W, 2 is not blocked in W, and y is a new object such that y > z for all objects z

if 2:¥RC||{and zRy||! are in W and W does not contain the world constraint y:C L.

if ris relevam. for !, €' = T |l isin W, and #:C'||! is not in W.

Figure 1: Propagation rules of the

a complete and clash-free derived system. The reason is
that the ohject name r is not relevant for &). This shows
that the above ALC y-formulas are satisfiable if we as-
sume increasing domains. Ou the other hand, assmning
constant domains causes unsatisfiability. Suppose, to the
contrary, that & = (W, [", A1) 15 a Kripke structure sueh
that A, w | {[¢]~A) = T and K, w | {¢}(r: A) for some
world w in W. Because of i, w [ {0} (x: A) there pxists
a workl w' with (w, w’) € 7, and K w' | 7: A4, ie
K g (A, w')t, On the other hand, Lowever, we have
#51 g (=A, w ) because of (1) £ € A¥!{w) (con-
stant domain assumption) and (#) &, w |5 {[o]m4) = T.

In the ALC pp-satishiability algorithm we took the in-
creasing domain assumption inte consideration by an ap-
propriate definition of the notiou of “relevant objecis,”
which was then used in the == rule: given a labeled
AL p-formula C = T |i in a derived system W, the
—_ rule adds the laheled ALCpq-formula s :C |1 to W
whenever r is relevant for {. Recall that an object r is
said to be relevant for label ! if there is a label I' orcur-
ring in W such that (i) W coulains a world constraint
of the form z : C||¥, s Ry || . or yRa | ¥, and (i) ! is
accessible from . Now, if we want o deal with constant
domains, a promising approach seems lo be a medifi-
vation of ithe == rule according to the following idea.
Suppose W 10 be a derived system and [} 1o be labels
in W. Purthermate, let & = (W, T, Ky) be a Kripke
structure that satisfies W. Because of the ronstanl. do-
main assumption we know that =%+ € A% (w) for each
world w in W, whenever there is a world constraint of
the form z: D ||, zRy |}, or yRa |[{ in W. In_ f-]lli.h' case
we say that z 15 a top-level object i W (to rhstmgulsh
it from ohjects oveurring ouly inside assertional axioms
with leading modal operators). If ¢ is a top-level ob-
Ject in W, and if the world constraint ' = T |[I* ocours
in W, then the == rule must add z: C ||{' to W—

ACCyrsatisfiability algorithm.

independently from the fact whether or not z is relevant
for I’ {where “relevant” is defined as in the increasing
demain approach). This consideration leads us to a mo-
dified rule —-. to handle world constraints of the form
C =TI, which is given by

W {z.CllITuw

if risatoplevel object in W, C'=T||{izin W,
and r:C'|[{ is not in W.

This apparenily *slight” medification of the =~ rule
tnay, however, cause infinite chains of propagation rule
applications. As an example, consider the world con-
straint system W that consists of the two labeled ALC po-
formulas 7y T ||{g and ({¢}3 R.C) = T||ly, where o is an
arbitrary modality. An application of the == rule yields
the derived systern W, = WU{z:{o)3 R.C||ls}, and, by
one application of the —¢ and of the —+3 rule each, we
obtain Wa = Wy U{ly M, &, zo: AR.C||;, 2uRzy ||, 21
C ||} where z; is a new object and {; is a new la-
bel. Berause of the newly introduced object x; and the
world constraint ({o} IR.C) = T ||y in Ws, the o=
rle is again applicable, and yields Wa = Wi U {z; :
{0} IR.C'|[In}. However, to 2, : {0} IR.C || iy the same
propagation rules are applicable as to x4 : {o} AR.C || &
before. This means, another new label and a new object
are introduced, and so on. Note that none of the ne-
wly generated objects is ever blocked since they all have
different. world [abels. In order to avoid such infinite
chains of propagation rule applications, the definition of
Blocked objects must. be modified such that assertions
with other labels are taken into account as well.

To sum up, we have seen that the problem of how to
avoid infinite chains of propagation rule applications is
more complicated if we are dealing with constant do-
mains. In particular, the above example shows that, for
testing whether of not an object is blocked w.r.t. somela-
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bel /, it is not sufficient to consider only ACCM-formulas
that are labeled with /. A straightforward generaliza-
tion of the notion of blocked objects (called cd-blocked)
is obtained by allowing for different labels / and /' when
considering the sets of concept assertions for the objects
x and y.

Although this modification can handle the above ex-
ample correctly, it is not sufficient in general. On the
one hand, it can become necessary to consider ACCM~
formulas with more than two different labels as well as
information about role-successors in the current world
constraint when testing whether or not an object should
be blocked. On the other hand, the test whether or not
the —»B rule must be applied in a world constraint sy-
stem W may depend on the information W (implicitly)
contains about the accessibility relations of Kripke struc-
tures satisfying W. The full paper [Baader and Laux,
1994] contains examples that illustrate these problems.
Due to these rather complex interactions, we did not
yet succeed in finding an appropriate definition of cd-
blocked objects in world constraints. We thus leave this
definition as an open problem for the moment.*

6 Conclusion

The framework for integrating modal operators into ter-
minological knowledge representation languages presen-
ted in this paper should be seen as the starting point for
developing more elaborate hybrid languages of this type.
Extensions in at least two directions will be necessary.

First, for the adequate representation of notions like
belief and time, the basic modal logic K is not sufficient.
Instead, one must consider modalities that satisfy appro-
priate modal axioms. Second, the multi-dimensionality
of our language has not really been made use of. In
fact, it is easy to see that with respect to satisfiabi-
lity there is no difference between the v-dimensional and
the corresponding 1-dimensional case (see [Baader and
Laux, 1994] for details). We have introduced a multi-
dimensional framework since it is more flexible. In an
extended language, different dimensions could satisfy dif-
ferent modal axioms (e.g., KD45 in the belief dimension,
and at least S4 in the time dimension).5 In addition, one
might want to specify certain interactions between diffe-
rent dimensions such as independence of one dimension
from certain other dimensions.

The reason for considering a simplified framework
without any of these extensions in the present paper
is that in this context it is possible to design a rather
intuitive calculus for satisfiability. Also, the proof of
soundness, termination and completeness of this calcu-
lus is still relatively short and comprehensible. For this
reason, we claim that this calculus can serve as a basis
for satisfiability algorithms for more complex languages.

4[Donini et al.; 1992] use constant domain assumption in
their epistemic extension of ACC. However, since they consi-
der a nonmonotonic version of S5, the algorithmic problems
are quite different.

5In the prepositional case, the combination of different
modal logics obtained this way corresponds to what Gabbay
calls "dove-tailing of propositional modal logics" [Gabbay,
1994].

814 KNOWLEDGE REPRESENTATION

Another topic of future research will be investigating the
constant domain assumption and its algorithmic ramifi-
cations. The answer to the question whether constant
domain assumption or increasing domain assumption is
more appropriate from the semantic point of view stron-
gly depends on the intended interpretation of the moda-
lities (belief, knowledge, time, etc.).
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