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Abstract 
Terminological knowledge representation for­
malisms can be used to represent objective, 
time-independent facts about an application 
domain. Notions like belief, intentions, and 
t ime which are essential for the representation 
of mult i-agent environments can only be ex­
pressed in a very l imi ted way. For such not i ­
ons, modal logics w i th possible worlds seman­
tics provides a formal ly well-founded and well-
investigated basis. This paper presents a fra­
mework for integrating modal operators into 
terminological knowledge representation langu­
ages. These operators can be used both inside 
of concept expressions and in front of termino­
logical and assertional axioms. We introduce 
syntax and semantics of the extended langu­
age, and show that satisfiabil i ty of f inite sets of 
formulas is decidable, provided that all modal 
operators are interpreted in the basic logic K, 
and that the increasing domain assumption is 
used. 

1 Introduction 
Terminological knowledge representation languages in 
the style of KL-ONE [Brachman and Schmolze, 1985] have 
been developed as a structured formalism to describe the 
relevant concepts of a problem domain and the inter­
actions between these concepts. Various terminological 
systems have been designed and implemented that are 
based on the ideas underlying KL-ONE (see [Woods and 
Schmolze, 1992] for an overview). Representing know­
ledge of an application domain w i th such a k ind of sy­
stem amounts to introducing the terminology of this do­
main via concept definitions, and then describing (an 
abstraction of) the relevant part of the "wor ld" by l i ­
sting the facts that hold in this part of the world. In a 
t radi t ional terminological system, such a description is 
r igid in the sense that it does not allow for the represen­
tat ion of notions like t ime, or beliefs of different agents. 
In systems modeling aspects of intell igent agents, howe­
ver, intentions, beliefs, and time-dependent facts play an 
important role. 

Modal logics w i th possible worlds semantics is a for­
mal ly well-founded and well-investigated framework for 

the representation of such notions. The present paper 
is concerned w i th integrating modal operators (for t ime, 
belief, etc.) into a terminological formal ism. The first 
task is to f ind an appropriate semantics for the combi­
ned language. In addi t ion, if such a language should be 
used in a system, one must design algorithms for the im­
portant inference problems (such as consistency of kno­
wledge bases) for the language. 

Several approaches have been proposed for the com­
binat ion of terminological formalisms w i th notions like 
t ime or beliefs. A very simple possibil ity to represent 
beliefs of agents is realized in the par t i t ion hierarchy SB-
PART [Kobsa, 1989], which is an extension of the SB-
ONE system. In this approach, each agent may have 
its own set of terminological axioms (TBox), and these 
TBoxes can be ordered hierarchically. However, this ex­
tension lacks a formal semantics and it does not allow 
for representing properties of belief, such as introspec­
t ion, or interactions between beliefs of different agents. 
A more formal approach is used in M - K R Y P T O N [Saf-
fiotti and Sebastiani, 1988], where a sub-language of 
the KRYPTON representation language is extended by 
modal operators B i , which can be used to represent 
the beliefs of agent i. Properties of beliefs are taken 
into consideration by using the well-known modal logic 
KD45. Due to the undecidable base language, however, 
[Saffiotti and Sebastiani, 1988] just introduces a formal 
semantics, wi thout giving any inference algorithms for 
the extended language. In [Schild, 1991], it has been 
shown that terminological systems already have a strong 
connection to modal logic. In fact, the concept langu­
age ACC is nothing but a syntactic variant of the pro-
positional mul t i -modal logic K ( m ) . Bui ld ing upon this 
observation, [Schild, 1993] augments ACC by tense ope­
rators. The two approaches that come next to the one 
we shall introduce below are described in [Laux, 1994a; 
1994b] and in [Ohlbach and Baader, 1993]. Both extend 
ACC by modal operators, but w i th different emphasis. 
The differences between these approaches and ours are 
clarified in the next section. 

2 Classification 
When extending a terminological knowledge representa­
t ion language by modalit ies for belief, t ime, etc. one has 
various degrees of freedom. Before describing the specific 
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choices made in this article, we shall informally explain 
the different alternatives. 

For simpl ici ty, assume that we are interested in t ime 
and belief operators only. Thus, in addition to the ob­
jects we have t ime points and belief worlds. This means 
that the domain of an interpretation is the Cartesian 
product D = Dobject x Dtime x Dbeltef of the set of ob­
jects, the set of t ime points, and the set of belief worlds. 
Concepts are no longer just sets of objects; their inter­
pretation also depends on the actual belief world and 
t ime point. Thus, they can be seen as subsets of D, and 
not just as subsets of Dobjtct. Roles operate on objects, 
whereas modalit ies for t ime (like future or tomorrow) 
operate on t ime points, and modalities for belief (like 
hel-John) operate on belief worlds. As for concepts, ho-
wever, the interpretation of roles and modalities depends 
on all dimensions. Thus, a role loves is interpreted as a 
function f rom D into 2 D

object relates any indivi­
dual in Dobject (say John) wi th a set of individuals (the 
individuals John loves), but this set depends on the ac­
tual t ime point and belief world. Modalities like future 
are treated analogously. Modal operators can now be 
used both inside of concept expressions and in front of 
concept definitions and assertions. For example, we can 
describe the set of individuals that love a woman that— 
according to John's belief—is pretty by the concept ex­
pression 3 loves.(Woman l~l [bel-John]Pretty), and we can 
express that—according to John's belief—a happy hus­
band is one married to a woman whom he (John) believes 
to be pretty by the terminological axiom 

[bel-Joh n] (Happy-h usband -
3 m arried- to.( Worn an [ bel- Joh n] Pre tty)). 

The assertion [bel-John](future) (Peter married-to Mary) 
says that John believes that , at some point in the future, 
Peter wi l l be married to Mary. 

W i t h the usual interpretation of the Boolean opera­
tors, of value and exists restrictions on roles, and of box 
and diamond operators for the modalities, this yields a 
rnulti-dimensional version of the mult i -modal logic Km. 
As described unt i l now, this logic is a strict sub-language 
of the one introduced in [Ohlbach and Baader, 1993]. 
The restriction lies in the fact that, unlike in [Ohlbach 
and Baader, 1993], we do not consider roles and modali­
ties that have a complex structure (such as [wants]own, 
where the modal i ty wants is used to modify the role 
own). There are several reasons why this approach is not, 
yet satisfactory. First, the object and the other dimen­
sions are treated analogously. This means, for example, 
that the interpretat ion of the modali ty future depends 
not only on the actual t ime point, but also on the current 
object and the belief world. Whereas the dependence 
from the belief world may seem to be quite reasonable, 
it is rather counterintuit ive that the future t ime points 
reached f rom t ime t0 are different, depending on whether 
we are interested in the individual Sue or Mary. Thus, it 
seems to be more appropriate to treat the object dimen­
sion in a special way: whereas the interpretation of roles 
should depend on the actual t ime point etc., the inter­
pretation of modalit ies should not depend on the object 
under consideration. 

The need for a special treatment of the object dimen­
sion can also be motivated by considering the semantics 
of concept definitions (and assertions). In [Ohlbach and 
Baader, 1993], concept definitions are required to hold 
for all objects, t ime points, and belief worlds. This is 
a straightforward generalization of the treatment of de­
finitions in terminological languages, where a definition 
C = D must hold for all objects, i.e., in a model of 
C — D all objects o must satisfy that o belongs to the 
interpretation of C iff it belongs to the interpretation of 
D. For the other dimensions, however, this differs from 
the usual definition of models in modal logics, where a 
formula is only required to hold in one world. 

Another problem is that not only the roles, but also 
all the other modalities are just interpreted in the ba­
sic logic K, i.e., they are not required to satisfy speci­
fic axioms for belief or t ime. In the present paper, we 
shall not take into account this last aspect, but we shall 
treat the object dimension in a special way, thus el imi­
nating the problems mentioned above. In [Laux, 1994a; 
1994b] both aspects are considered. However, modal 
operators are not allowed to occur inside of concept ex­
pressions, which considerably simplifies the algorithmic 
treatment of the formalism. The difference to [Ohlbach 
and Baader, 1993] is, on the one hand, the special tre­
atment of the object dimension. In addit ion, [Ohlbach 
and Baader, 1993] does not consider assertions, and even 
though concept definitions are introduced, they are not 
handled by the satisfiability algor i thm. On the other 
hand, [Ohlbach and Baader, 1993] allows for very com­
plex roles and modalities, which are not considered here. 

3 Syntax and Semantics of ACCM 
First, we present the syntax of our multi-dimensional 
modal extension of the concept language ACC. As for 
ACC, we assume a set of concept names, a set of role 
names, and a set of object names to be given. Beside the 
object dimension (which wi l l be treated differently f rom 
the other dimensions), we assume that there are v > 
1 additional dimensions (such as t ime points, epistemic 
alternatives, or intensional states). In each dimension, 
there can be several modalities, which can be used in box 
and diamond operators. For example, in the dimension 
time points we could have future and tomorrow, and in 
the dimension belief worlds we could have belief-John 
and belief-Mary. If o is a modal i ty of dimension t we 
write dim(o) — i. In this case, [o] and (o) are modal 
operators of dimension i. 

Def in i t ion 3.1 (Syntax) Concepts of ACCM ARE tn~ 
ductively defined as follows. Each concept name is a 
concept, and T and _L are concepts. If C and D are 
concepts, R is a role name, and o is a modality then 
C H D (concept conjunction), CUD (concept disjunc­
t ion), -C (concept negation), R.C (value restriction), 

R.C (exists restriction), [o]C (box operator), and (o)C 
(diamond operator) are concepts. 

Terminological axioms of ACCM ARE of the form 
m (C = D) where C and D are concepts of ACCM And 
m is a (possibly empty) sequence of modal operators. As-
sertional axioms of ACCM ore of the form m (xRy) or 
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m (x : C) where x and y are object names, R is a role 
name, C is a concept, and m is a (possibly empty) se-
quence of modal operators. An ACCM-formula is either 
a terminological or an assertional axiom. 

Traditional terminological systems impose severe re­
strictions on the admissible sets of terminological 
axioms: (1) The concepts on the left-hand sides of 
axioms must be concept names, (2) concept names oc­
cur at most once as left-hand side of an axiom (unique 
definitions), and (3) there are no cyclic definitions. The 
effect of these restrictions is that terminological axioms 
are just macro definitions (introducing names for large 
descriptions), which can simply be expanded before star­
ting the reasoning process. Unrestricted terminological 
axioms are a lot harder to handle algorithmically (see, 
e.g., [Buchheit et a/., 1993]), but they are very useful for 
expressing constraints on concepts that are required to 
hold in the application domain. In the presence of modal 
operators, the requirement of having unique definitions is 
not appropriate anyway. For example, Peter may have a 
definition of Happy-husband that is quite different from 
John's definition. Thus, it is desirable to have different 
definitions m1(A = C) and m2(A= D) of the same 
concept name A for different modal sequences mi and 
m2- Even though m1 and m2 are different, there can be 
interactions between these definitions. For example, m1 

could be of the form (o) and m2 of the form [o] . Thus, 
it is not a priori clear how the requirement of "unique 
definitions" can be adapted to the case of terminological 
axioms with modal prefix. To avoid these problems, we 
consider the more general case where arbitrary axioms 
are allowed. 

Let us now turn to the semantics of ACCM ■ The mo­
dal operators will be interpreted by a Kripke-style pos­
sible worlds semantics. Thus, for each dimension i we 
need a set of possible worlds Di),. Modalities of dimen­
sion i correspond to accessibility relations on Di, which 
may, however, depend on the other dimensions as well. 
Concepts and roles are interpreted in an object domain, 
but this interpretation also depends on the modal di­
mensions. 
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the domaini a r e identical for 
all worlds W1 and w2. Finally, the decreasing domain 
assumption can be used to express that new domain 
elements cannot arise when moving from one world to 
another one. In Section 5 we shall see that changing 
the requirements on the relationship between domains 
of worlds considerably changes the set of satisflable for­
mulas. 

W i t h the exception of Section 5, however, we shall 
restrict our attent ion to increasing domains in the fol­
lowing. Furthermore, we assume that all terminological 
axioms are of the form m (C = T ) , where C is a concept 
and m is a (possibly empty) sequence of modal opera­
tors. As in the case of ACC wi thout modalities, it is easy 
to verify that this can be done without loss of generality. 

4 Testing Satisfiability of 
ACCM -formulas 

We present an algor i thm for testing satisfiability of a f i­
nite set { F 1 , . . . , F n } of ACCM -formulas.1 To keep not­
ation simple we assume (without loss of generality) that 
concepts are in negation normal form, i.e., negation signs 
occur immediately in front of concept names only. Our 
calculus for testing satisfiability of ACCM-formulas is 
based on the notions of labeled ACCM -formulas and of 
world constraint systems. A labeled ACCM -formula con­
sists of an ACCM - formula F together wi th a label /, 
wr i t ten as The label / is a syntactic representa­
t ion of a world in which F is required to hold. A world 
constraint is either a labeled ACCM -formula or a term 

where l}l' are labels and is a syntactic re­
presentation of the accessibility relation of modality o. 
A world constraint system is a finite, non-empty set of 
world constraints. 

A Kr ipke structure K = ( W , r , A ' / ) satisfies a world 
constraint system W iff there is a mapping a that maps 
labels in W to worlds in W such that (i) for 
each world constraint in W, and (ii) € 
7o for each world constraint /' in W. A world con­
straint system W is satisfiablt iff there exists a Kripke 
structure satisfying W. In order to test satisfiability 
of a set { F i , . . . , F n } of ACCM -formulas we translate 
this set into the world constraint system WO — {xo : 

where Xu is a new object 
name not occurring in { F 1 , . . . , F n } , and /0 is an ar­
bitrary label (which is intended to represent the real 
world). We say the world constraint system Wo is indu­
ced by It is easy to verify that { F j , . . . , F„ } 
is satisfiable iff Wo is satisfiable. The world constraint 

can obviously be satisfied by any Kripke struc­
ture. This constraint is necessary to guarantee that the 
domains AKl(w) of the canonical Kripke structure con­
structed in the proof of completeness are non-empty (see 
the ful l paper [Baader and Laux, 1994]). 

The ACCM -satisfiabil ity algorithm takes as input a 
world constraint system WO that is induced by a finite 
set of AlCCM-formulas. It successively adds new world 

Mt is easy to see that all the other interesting inference 
problems (like the subsumption or the instance problem) can 
be reduced to this problem. 

f \ 
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the other rules (which are determinist ic), soundness just 
means that application of the rule transforms a satisfia-
ble system into a new satisfiable system. Furthermore, 
given an arbi trary induced world constraint system W0, 
only a finite number of propagation rules can successi­
vely be applied, start ing w i th Wo (see also [Baader and 
Laux, 1994] for a proof) . This termination property me­
ans that , after a f inite number of propagation rule ap­
plications to WO we obtain a complete world constraint 
system (i.e., a system to which no more rules apply), say 
W. If W is satisfiable we can conclude that Wo is sa­
tisfiable (since WO is a subset of W'). Otherwise, if W' 
is unsatisfiable, we can possibly derive another complete 
world constraint system from Wo by another choice for 
the non-deterministic —>u rule. If all the (f initely many) 
choices lead to an unsatisfiable complete system then so­
undness of the rules implies that the original system Wo 
was unsatisfiable. 

Thus, it remains to be explained how satisfiabil ity of 
a complete world constraint system can be decided. For 
this purpose, we say that a world constraint system W 
contains an obvious contradiction (or clash for short) if 
it contains either a pair of labeled ACCM-formulas of the 
form x : A \\l and x : -A \\ I or a labeled ACCM - formula 
x: J_ || / (for some object x, concept name A} and label 
/ ) . Obviously, a world constraint system containing a 
clash is unsatisfiable. On the other hand, if a system is 
clash-free and complete then it is satisfiable (see [Baader 
and Laux, 1994] for a proof of this property, which shows 
completeness of the propagation rules). Summing up, we 
obtain the fol lowing theorem. 

T h e o r e m 4.2 Satisfiability of a finite set of A C C M -
formulas is decidable if we assume increasing domains. 

" i i 
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Figure 1: Propagation rules of the ACCM-satisfiability algori thm. 

BAADER AND LAUX 813 



bel /, it is not sufficient to consider only ACCM-formulas 
that are labeled w i th /. A straightforward generaliza­
t ion of the not ion of blocked objects (called cd-blocked) 
is obtained by al lowing for different labels / and /' when 
considering the sets of concept assertions for the objects 
x and y. 

Although this modif icat ion can handle the above ex­
ample correctly, it is not sufficient in general. On the 
one hand, it can become necessary to consider ACCM~ 
formulas w i th more than two different labels as well as 
information about role-successors in the current world 
constraint when testing whether or not an object should 
be blocked. On the other hand, the test whether or not 
the —»B rule must be applied in a world constraint sy­
stem W may depend on the informat ion W ( impl ic i t ly) 
contains about the accessibility relations of Kripke struc­
tures satisfying W. The ful l paper [Baader and Laux, 
1994] contains examples that i l lustrate these problems. 
Due to these rather complex interactions, we did not 
yet succeed in finding an appropriate definit ion of cd-
blocked objects in world constraints. We thus leave this 
definit ion as an open problem for the moment.4 

6 Conclusion 
The framework for integrating modal operators into ter­
minological knowledge representation languages presen­
ted in this paper should be seen as the start ing point for 
developing more elaborate hybr id languages of this type. 
Extensions in at least two directions wi l l be necessary. 

First , for the adequate representation of notions like 
belief and t ime, the basic modal logic K is not sufficient. 
Instead, one must consider modalit ies that satisfy appro-
priate modal axioms. Second, the mult i-dimensional i ty 
of our language has not really been made use of. In 
fact, it is easy to see that w i th respect to satisfiabi­
l i ty there is no difference between the v-dimensional and 
the corresponding 1-dimensional case (see [Baader and 
Laux, 1994] for details). We have introduced a mu l t i ­
dimensional framework since it is more flexible. In an 
extended language, different dimensions could satisfy dif­
ferent modal axioms (e.g., KD45 in the belief dimension, 
and at least S4 in the t ime dimension).5 In addi t ion, one 
might want to specify certain interactions between diffe­
rent dimensions such as independence of one dimension 
f rom certain other dimensions. 

The reason for considering a simplif ied framework 
wi thout any of these extensions in the present paper 
is that in this context it is possible to design a rather 
intu i t ive calculus for satisfiabil ity. Also, the proof of 
soundness, terminat ion and completeness of this calcu­
lus is st i l l relatively short and comprehensible. For this 
reason, we claim that this calculus can serve as a basis 
for satisfiabil i ty algorithms for more complex languages. 

4 [Donini et al.} 1992] use constant domain assumption in 
their epistemic extension of ACC. However, since they consi­
der a nonmonotonic version of S5, the algorithmic problems 
are quite different. 

5 In the prepositional case, the combination of different 
modal logics obtained this way corresponds to what Gabbay 
calls "dove-tailing of propositional modal logics" [Gabbay, 
1994]. 

Another topic of future research w i l l be investigating the 
constant domain assumption and its algori thmic ramif i­
cations. The answer to the question whether constant 
domain assumption or increasing domain assumption is 
more appropriate f rom the semantic point of view stron­
gly depends on the intended interpretat ion of the moda­
lities (belief, knowledge, t ime, etc.). 
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