
F o r m a l i z i n g B e h a v i o r - b a s e d P l a n n i n g f o r N o n h o l o n o m i c R o b o t s * 

V i k r a m Man ikonda James Hendler P.S. Kr ishnaprasad 
vikram@isr.umd.edu hendler@cs.umd.edu krishna@isr.umd.edu 

Dept. of Electrical Engineering Dept. of Computer Science Dept. of Electrical Engineering 

& 
Institute for Systems Research 

The University of Maryland 
College Park, MD 20742 

Abs t rac t 

In this paper we present a formalization 
of behavior-based planning for nonholonomic 
robotic systems. This work provides a frame-
work that integrates features of reactive plan­
ning models with modern control-theory-based 
robotic approaches in the area of path-planning 
for nonholonomic robots. In particular, we in­
troduce a motion description language, MDLe, 
that provides a formal basis for robot program­
ming using behaviors, and at the same time 
permits incorporation of kinematic models of 
robots given in the form of differential equa­
tions. The structure of the language MDLe is 
such as to allow descriptions of triggers (gener­
ated by sensors) in the language. Feedback and 
feedforward control laws are selected and exe­
cuted by the triggering events. We demonstrate 
the use of MDLe in the area of motion planning 
for nonholonomic robots. Such models impose 
limitations on stabilizability via smooth feed-
back, i.e. piecing together open loop and closed 
loop trajectories becomes essential in these cir­
cumstances, and MDLe enables one to describe 
such piecing together in a systematic manner. 
A reactive planner using the formalism of the 
paper is described. We demonstrate obstacle 
avoidance with limited range sensors as a test 
of this planner. 

1 I n t roduc t i on 
The problems of obstacle avoidance and path planning 
with autonomous mobile robots have been studied in 
various settings. [Lumelsky, 1987; Lozano-Perez, 1980; 
Khatib, 1986; Koditschek, 1987; Shahidi et al., 1991]. 

*This research was supported in parts by grants from the 
National Science Foundation's Engineering Research Cen­
ters Program: NSFD CDR 8803012, the AFOSR Uni­
versity Research Initiative Program, under grant AFOSR-
90-0105, and AFOSR-F49620-92-J-0500, from NSF(IRI-
9306580), ONR (N00014-J-91-1451), AFOSR (F49620-93-
1-0065), the ARPA/Rome Laboratory Planning Initiative 
(F30602-93-C-0039 and by AR1 (MDA-903-92-R-0035, sub­
contract through Microelectronics and Design, Inc.) 

These approaches either assumed that the planner had 
to have substantive a priori information about the lo­
cation, shapes and sizes of obstacles, or assumed that 
the constraints on the robot (geometric and kinematic) 
were holonomic or integrable. In practice however most 
real world robotic systems have little a priori informa­
tion about the shapes and size of the obstacles and in 
addition include kinematic constraints that are nonholo­
nomic (see section 1.1 for more details on nonholonomic 
constraints). A few examples of nonholonomic systems 
are, models of a front wheel drive car, dextrous manip­
ulation or assembly with robotic hands, attitude control 
of a satellite etc. As traditional path planners assume ar­
bitrary motion they cannot be applied to nonholonomic 
robots as they result in nonfeasible trajectories i.e. tra­
jectories that do not satisfy the constraints on the con­
figuration variables. 

More recently, researchers have been examining non­
holonomic path planning in the presence of obsta­
cles [Laumond, 1990; Barraquand and Latombe, 1989; 
Mirtich and Canny, 1992; Hu and Brady, 1995]. How­
ever, while most of these planners provide some excel­
lent results they are quite rigid in the choice of control 
laws used to steer the robots and often do not exploit the 
control laws available in control literature, for example 
[Murray and Sastry, 1990; Sussmann, 1991; Coron, 1992; 
de Wit and Sordalen, 1992]. They also assume near com­
plete a priori information about the world and only ac­
count for small changes in the environment. 

On the other hand behavior-based robots [Brooks, 
1986; Arkin, 1992], that use real-time "sensor-based" ap­
proaches, have been able to handle more realistic mod­
els of sensing. Perhaps best known among this work is 
Brooks' use of task achieving behaviors as the primary 
level of task decomposition. He introduces the concept of 
a subsumption architecture which is essentially a struc­
tured and layered set of behaviors with increasing lev­
els of competence. These "reactive" systems typically 
exploit domain constraints, using clever algorithms to 
allow fast processing of complex sensor information (cf. 
[Horswill, 1993]). Although this approach has significant 
advantages from the point of view of architectural design 
and programming flexibility, it has resisted mathemati­
cal formalization and is not amenable to tests for opti­
mally. Comparing two sets of behaviors, even within the 
same task, is complex and the domain-dependent nature 

142 ACTION AND PERCEPTION 



of the solutions can cause these systems to be basically 
incommensurate - one may fail some times, one may fail 
at other times and comparison is difficult. In addition 
nature of these systems makes the improvement of be­
haviors over time difficult. 1 

The inability to integrate the underlying geometry 
with real time sensor information stems from the lack 
of a powerful enough framework to integrate the two 
approaches. This paper is a step in the direction of pro­
viding such a framework, integrating features of reactive 
planning with modern control-theory-based approaches 
to steer nonholonomic robots. As the first step, we in­
troduce a motion description language, MDLe, that pro­
vides a formal basis for robot programming using behav­
iors, and at the same time permits incorporation of kine­
matic models of robots given in the form of differential 
equations. The structure of the language MDLe (based 
on Brockett's MDL[Brockett, 1990]) allows descriptions 
of triggers (generated by sensors) in the language. Feed-
back and feedforward control laws are selected and exe­
cuted by the triggering events. 

MDLe is particularly well suited to the demands of 
nonholonomic motion-planning with limited range sen­
sors. As nonholonomic robot models impose limitations 
on stabilizability via smooth feedback [Brockett, 1983], 
the ability to piece together open-loop and closed-loop 
trajectories becomes essential. MDLe enables one to de­
scribe such piecing together in a systematic manner. As 
an example of the strength of this language, we show 
that it can be used to support a reactive planner for 
nonholonomic motion planning in the presence of obsta­
cles, using limited range sensors for obstacles detection. 
In addition, the system assumes no a priori information 
on the location and shapes of the obstacles. 

In section 1.1 we give a brief description of non­
holonomic constraints that motivates the mathematical 
model of the motion description language. In section 2 
we present details of MDLe, a language that provides a 
formal basis for specifying behaviors. An example of a 
path planner using the formalism of the language is pre­
sented in section 3. We then describe how we can update 
world models in section 3.4 and provide examples of the 
system's performance. Section 4 includes final remarks 
and future directions for research. 

Figure 1: Nonfeasible trajectories due to nonholonomic 
constraints 

an algebraic constraint on the configuration space. A 
kinematic constraint is said to be integrate if there ex­
ists a vector valued function such that 

(2) 

An integrable kinematic constraint is hence equivalent 
to a holonomic constraint. Kinematic constraints that 
are not integrable are said to be nonholonomic. The 
constraint (1) defines a (2n - k) dimensional smooth 
manifold M = {{q,q)\A(q)q = 0}. These kinematic con­
straints generate a set of constraint forces so as to ensure 
that the system does not move in the direction of the 
rows of the constraint matrix (see fig 1). In mechanical 
systems such constraints are often those of rolling with­
out slipping, conservation of angular momentum etc. If 
the controls then the 
kinematics are sufficient to model the system and (1) can 
be written in the form of a drift free control system 

(3) 

with state x(t) and control u(t), and each b; is a vector 
field. Often such drift free (completely) nonholonomic 
systems are controllable (cf. [Murray et a/., 1994]). In 
the rest of the paper we assume that a nonholonomic 
robot is modeled by differential equations of the form 
(2), and the system is controllable. 

2 Language for M o t i o n Planning 
To formalize behaviors that control a nonholonomic 
robot, we must provide a formal basis for the motions 
(in terms of control laws) and a basis for such items as 
receipt of sensing information and behavioral changes 
(interrupts) upon receiving certain such items. MDLe 
provides a formal language for specifying these items in 
a kinetic state machine2 which can be thought of as the 
continuous analog of a finite automaton. In the frame-
work of MDLe these kinetic state machines are governed 
by differential equations of the form 

(4) 

2The concept of kinetic state machines was first intro­
duced by Brockett [Brockett, 1990]. 

MANIKONDA, HENDLER, AND KRISHNAPRASAD 143 



144 ACTION AND PERCEPTION 



the system from a given initial state x0 to a final state 
Xf is to use these partial plan to reach the final state, 
and then to store the result as a plan consisting of: T = 

is the partial plan consisting 
of only those behaviors and atoms in each behavior that 
have been executed for t > 0. 
The length of a plan is given by and 
the time of execution of the plan is given by = 

(INOte tnat as a partial plan is generated with limited 
information of the world, not all the behaviors and not 
every atom in a behavior generated by the partial plan 
may be executed at run time because there may be sev­
eral fr's with the same f 's. For example, Let us consider 
a behavior . Let us assume that the 
atom is interrupted by Now as explained 
earlier will begin to execute. But if the atom 

will not be executed and (depending ot course on E3) 
will begin to execute. 

Given an algorithm that generates a plan T we define 
a candidate measure of performance of the plan as 

(7) 
where r is a normalizing factor having the units of time. 
(One need not limit oneself to such additive combina­
tions although this is the only case used here.) 

Defining a performance measure for a path planner 
is a rather difficult task as it is largely dependent on 
the goal the robot seeks to achieve. Some path plan­
ners use the total time to achieve the goal as a measure 
of performance. In many situations one might be inter­
ested in not only the time but also on the smoothness 
of the path traversed or the number of times switching 
between different controls was necessary. For example 
consider the task of parallel parking of a car. One might 
be able to achieve the goal by using only open-loop con­
trols but switching between them at regular intervals, 
hence possibly reducing the time to achieve the goal but 
compromising on the smoothness of the path. On the 
other hand if one uses a time dependent feedback law, 
the same task could be achieved, possibly by moving 
along a smooth trajectory but this time taking a longer 
time to achieve the goal. This indicates a trade-off be­
tween two competing requirements which is captured by 
the performance measure (4). 
We now define the optimal performance of a plan as 

(8) 
Here the minimization is performed over the subset of 
plans generated by the subset B of admissible behaviors. 

Due to space limitations, the above has been necessar­
ily terse and short on examples. For more detail and for 
examples of kinetic state machines, behaviors and per­
formance measures the interested reader is referred to 
[Manikonda et a/., 1995]. 

3 Pa th P lann ing and Obstacle 
Avoidance 

Using the language defined above, we now present a plan­
ner which allows us to do task-planning and obstacle 

avoidance for a nonholonomic robot with limited range 
sensors. As should be clear from the above, under our 
framework this involves the generation of partial plans 
given local sensor information, such that in a global sense 
the robot is steered towards the goal. Although in gen­
eral the partial plans generated will largely depend on 
the choice of the state machine (the differential equa­
tions governing the robot and the sensor information), 
in this section we describe a fairly general purpose plan­
ner and its implementation details in MDLe. The task 
of the planner is out lined as follows: 

1. Interpret local sensor information to generate a 
"control point" and an obstacle free neighborhood 
containing this "control point" to which the robot 
is to be steered. 

2. From the given alphabet select atoms that 
could be used to steer the robot (in general, depend­
ing on the richness of the alphabet , there could 
be more than one behavior to steer the robot to the 
control point). 

3. Calculate the scaling factor a (crucial, as it deter­
mines the speed of the robot). Having calculated a, 
calculate or approximate the duration for which 
each atom is to be executed. 

4. Generate an optimal partial plan, by minimizing the 
performance measure (8). The minimization is per­
formed over the admissible behaviors. 

5. Execute the partial plan and update runtime infor­
mation regarding actual time of execution of behav­
iors in the partial plan, sensor information etc. 

6. Given an updated world and partial plans generate 
an optimal plan. 

Planning is being done at two levels - global and lo­
cal. For local planning, obstacle free (non)feasible paths 
are generated using potential functions assuming that 
the robot is holonomic. A partial plan (feasible path) is 
then generated that obeys the constraints in the config­
uration variables. As feasible trajectories are only ap­
proximations to the trajectories generated using poten­
tial functions, collision with obstacles could occur while 
tracing them. While the robot is in motion, collisions 
are avoided by using the sensor information to trigger 
interrupts as described previously. 

At a global level heuristics, along with the world map 
generated while the robot is en route to the goal, are 
used to solve the problem of cycles. In the remainder of 
this section we describe this planner in more detail. 

Critical to the planner is sensor information (location 
and calibration of sensors), the generation of "control 
points" and obstacle free neighborhoods, and selecting 
of atoms. Each of these is explained in some detail in 
the following subsections. One should note here that the 
planner could be used with most nonholonomic robot, 
by selecting the corresponding alphabet and associating 
rules with the selection of atoms. In our simulations we 
have assumed that the robot is modeled along the lines 
of a unicycle. 

MANIKONDA, HENDLER, AND KRISHNAPRASAD 145 



largest obstacle free disk centered around the robot such 
that the trajectories that lie in this disk are guaranteed 
not to intersect with the boundaries of the obstacle. In 
the implementation of the control strategy, the sensors 
are read continuously and distance information and pofd 
(the radius of the obstacle free disk) are updated into a 
global variable which is used to update the world and is 
also used by execute plan as an input to the interrupt 
function E. (Observe that under our approach we model 
the world as a network of obstacle free regions rather 
than mapping the obstacles.) 

Update world involves periodic addition of nodes 
to the network. In the actual implementation of the 
planner we differentiate between the local world and the 
global world. The local world is represented as a linked 
list of intersecting obstacle-free disks, each of which is 
added to the list in the order they were visited over some 
finite interval of time. Each node contains information 
regarding the sensor distance information and pofd-

Partial plans use this information to generate behav­
iors that steer the robot to the boundary of the disk. Af­
ter the complete or partial execution of the partial plan, 
the robot generates the next partial plan based on the 
sensor information available at that instant. Note that 
even though the sensors are continuously being moni­
tored, a new node is added to the list only when a new 
partial plan needs to be generated. Hence as shown in 
Fig. 4 the world is updated at time instances correspond­
ing to the points A, B, C and so on. The global world is 
obtained after patching together local world information 
and using the clean up operation to remove redundant 
information. 

Generate Plan/Partial Plan - This involves the 
interpretation of the sensor information, and language 
to generate a sequence of behaviors that will steer the 
robot from its current location to a desired location. If 
a partial plan is being generated the desired location lies 
on the boundary of the obstacle free disk. The genera­
tion of plans/partial plans is discussed in further detail 
in subsections 3.3 and 3.4 

146 ACTION AND PERCEPTION 



In the implementation of the planner, the data struc­
ture of a plan is a linked list of atoms, each atom being 
represented by a structure that has information regard­
ing the scaling factors , the interrupt function E, 
the maximum time of execution of the kinetic state ma­
chine, the inputs (controls) and a pointer to the kinetic 
state machine. As mentioned earlier it is possible that 
while executing a partial plan only some of the behaviors 
may be executed as planned, some may be executed only 
for a fraction of the the intended execution time and oth­
ers may not be executed at all. Update Plan updates 
the fields of each atom of the partial plan after it has 
completed its execution. Once the plans/partial plans 
have been generated, these plans have to be executed. 
Execute Plan involves decomposition of the plan into 
behaviors and further into atoms. The kinetic state ma­
chine is allowed to evolve as explained in section 2, equa­
tion 2. Fig. 5 shows some paths generated by the plan­
ner for a robot modeled along the lines of a unicycle.4 
It is important to note that while the plan is being ex­
ecuted the sensors are being continuously scanned and 
are present in a low level feedback loop hence preventing 
any collisions with obstacles. 

Figure 5: Paths Generated by the Planner 

As the local world is a list of nodes, each of which is 
added to the list as the robot generates partial plans it is 
possible that while generating a plan the robot may have 
to revisit a node, and hence introducing redundant in­
formation into the world. Cleanup keeps track of these 
redundancies in the map and deletes/adds nodes in the 
list. 

3.3 Planning in the Obstacle Free Disk 
To find the best direction of travel in the obstacle free 
disk we use the approach of potential functions. As in 

4 It should be pointed out here that the obstacle-free disks 
generated by the planner violate the exact definition given 
above, but this is because in the simulator we have used 
only sensors of the eye to generate obstacle-free disks. For 
now, those obstacles that are not detected by the sensors are 
treated as being in the blind spots of the robot. 

the earlier work on path planning with potential tunc-
tions, the idea behind our construction is based on elec­
trostatic field theory - charges of the same sign repel and 
charges of the opposite sign attract in accordance with 
Coulomb's law. Hence we assign a positive charge dis­
tribution to the obstacles and the mobile robot and a 
negative charge distribution to the goal. The idea is to 
construct a vector field which will give the best direction 
of travel based on the location of the obstacles and the 
goal. 

The robot is approximated to a point robot and as 
sensors can detect only points on the boundaries of the 
obstacles that lie in their line of vision, we treat obsta­
cles as a collection of point charges and assign charges 
to them depending on which sensor detects them. The 
intersection of the resultant gradient field with the cir­
cumference of the obstacle free disks gives the desired 
location to which robot is to be steered. (One should 
observe here that unlike earlier approaches the gradient 
field is not directly used to steer the robot. As integral 
curves of the resultant gradient field may not result in 
feasible trajectories we use the resultant gradient field 
only to determine the scaling factors and xF on the cir­
cumference of the obstacle free disk.) 

Once the initial and desired final state of the robot 
is known control inputs are chosen from those available 
in the language to generate feasible trajectories to steer 
the robot from the initial location to the final desired 
location. If more than one such control achieves the task 
then the performance measure can be used to select the 
optimum one. 

As we are using a kinematic model of the robot an 
underlying assumption is that the robot is moving at low 
velocities and we can bring the robot to a halt simply 
by turning off the controls. To determine scaling factors, 
which are directly related to the velocities if the inputs 
to the equations governing the motion of the robot, we 
use the sum total of both the attractive and repulsive 
forces is used to determine the bounds on the velocities 
and hence the bounds on the scaling factors. A simple 
example of such a function is given by 

where fa and fr are the net attractive and repulsive 
forces acting on the robot. Observe that when the robot 
is close to either the obstacle, the goal or both, it moves 
with a lower velocity hence making the kinematic model 
more realistic. 

By intelligently choosing weights on the charges (see 
[Manikonda, 1994] for more details) we can ensure that 
the robot either avoids the obstacle or gets close enough 
to an obstacle such that in which case it 
traces the boundaries of obstacles to a point where it 
finds an edge or is heading in the direction of the goal. 
Remark :It is important to mention here that as we are 
making no assumptions on the location sizes or shapes 
of the obstacles guaranteeing the existence of a path is 
very difficult, though empirical results have shown that 
if a path exists the robot has more often than not found 
it. More importance here is stressed on the ability of the 

MANIKONDA, HENDLER, AND KRISHNAPRASAD 147 



planner to integrate real time sensor information with 
control-theory-based approaches to steer nonholonomic 
systems in a systematic way. As mentioned earlier non­
holonomic robots impose limitations on stabilizability 
via smooth feedback and the planner developed under 
the framework of the language provides an elegant way 
of piecing together of various control strategies. 

Tracing Boundaries The real behavior-based aspects 
of our planner can be seen when tracing the boundaries 
of obstacles. Planning in is a closed loop 
planning strategy which essentially results in a trace be­
havior that traces the boundaries of the obstacles. Given 
the limited sensor and world information it is probable 
that the direction of trace may have been wrong. Hence 
we use a heuristic function 
euclidean distance between 
at which the trace behavior was started) as an estimate 
of how far the robot has strayed from the goal. The 
robot traces the boundary as long as where fs is 
some permitted distance from where the trace behavior 
was started. If then we retrace path and trace 
the boundary of the obstacle in the opposite direction. 
If terminal conditions for the trace are not met, we set 

Remark: Retracing a path under this framework is a 
rather simple task. Observing that the system is a drift 
free system, retracing involves executing the past n par­
tial plans in a reverse order with scaling factor. 

erates a feasible trajectory that can track this nonfea-
sible trajectory and lie entirely in such that 

we can replace 
After the execution of (i) and (ii) we now have par­

tial plans that steer the robot from 
{2, • • n} such that the trajectory lies entirely in 
The planner now explores the possibility of find­
ing (non)feasible trajectories from 
2, • • • n, k = 1, • • •, n such that these trajectories lie en­
tirely in and the performance of the plan that 
generates this trajectory is better than the earlier one. 

Fig. 6 shows paths generated by the planner after it 
has gained partial knowledge of the world it has explored 
in its first attempt to reach the goal. The bold solid lines 
denote the new trajectories (partial plans) generated af­
ter partial knowledge of the world has been gained. It 
clearly shows an improvement in the performance of the 
planner as the length of the plan is nearly a third of the 
plan generated in the first attempt. 
Remarks: (i). One should note that generating plans 
of better performance does not necessarily imply that 

where is the new plan but could simply 
imply cnoosing the right scaling factors such that 

. 
(ii). One need not restrict the generation on nonfeasible 
trajectories to straight line segments, but could instead 
use arc or even curves that best fit the centers of these 
obstacle free disks. 

Figure 6: Paths Generated by the Planner 

4 F ina l Remarks 
This paper is an attempt to bring together aspects of 
nonholonomic motion planning with robots as discussed 
by researchers in the communities of behavior-based 
planning and control theory. We provide a language, 
a framework and a hybrid architecture to integrate fea­
tures of reactive planning methods with control-theoretic 
approaches to steer nonholonomic robots. The hybrid 
language permits planning using a set of behaviors but at 
the same time the incorporation of differential equations 

148 ACTION AND PERCEPTION 



in the language makes it possible to formalize, compare 
and generate behaviors that improve over time, generate 
maps, etc. It is clear that in a task such as motion-
planning using limited range sensors, it is helpful to be 
able to switch between behaviors that rely on the direct 
coupling of sensory information and actuators and steer­
ing using modern control-theory-based approaches. Our 
system shows that these two can be smoothly integrated, 
at least for this form of nonholonomic robot path plan­
ning. Future work includes extending the language to 
continue formalization of behaviors, including multiple 
kinetic state machines in the language and implementa­
tion of the planner to control a physical, as opposed to 
a simulated, robot. 

References 
[Arkin, 1992] C.R. Arkin. Behaviour based robot nav­

igation for extended domains. Adaptive Behaviour, 
l(2):201-225, 1992. 

[Barraquand and Latombe, 1989] J. Barraquand and 
J.C. Latombe. Robot motion planning: A distributed 
representation approach. Technical Report STAN-CS-
89-1257, Stanford University, May 1989. 

[Brockett, 1983] R. W. Brockett. Asymptotic stability 
and feedback stabilization. In Differential Geometric 
Control Theory, pages 181-191. Birkhauser, 1983. 

[Brockett, 1990] R.W. Brockett. Formal languages for 
motion description and map making. In Robotics, 
pages 181-193. American Mathematical Society, 1990. 

[Brooks, 1986] R.A. Brooks. A robust layered control 
system for a mobile robot. IEEE Journal of Robotics 
and Automation, 2(l):14-23, 1986. 

[Coron, 1992] J.-M. Coron. Global asymptotic stabiliza­
tion for controllable systems. Mathematics of Control, 
Signals and Systems, 5(3), 1992. 

[de Wit and Sordalen, 1992] C. Canudas de Wit and 
O.J. Sordalen. Exponential stabilization of mo­
bile robots with nonholonomic constraints. IEEE 
Transactions on Automatic Control, 37(11):1791-
1797, November 1992. 

[Horswill, 1993] I. Horswill. Polly: A vision-based artifi­
cial agent. Proceedings of the Eleventh Conference on 
Artificial Intelligence, July 1993. 

[Hu and Brady, 1995] H. Hu and M. Brady. A bayesian 
approach to real-time obstacle avoidance for a mobile 
robot. Autonomous Robots, l(l):69-92, 1995. 

[Khatib, 1986] 0. Khatib. Real-time obstacle avoidance 
for manipulators and mobile robots. The International 
Journal of Robotics Research, 5(l):90-99, Spring 1986. 

[Koditschek, 1987] D.E. Koditschek. Exact robot navi­
gation by means of potential functions: Some topolog­
ical considerations. In IEEE International Conference 
on Robotics and Automation, pages 1-6, Raleigh, NC, 
Mar 1987. 

[Laumond, 1990] J.P. Laumond. Nonholonomic motion 
planning versus controllability via the multibody car 
system example. Technical Report STAN-CS-90-1345, 
Stanford University, Dec 1990. 

[Lozano-Perez, 1980] T. Lozano-Perez. Spatial plan­
ning: A configuration space approach. AI memo 605, 
MIT Artificial Intelligence Laboratory, Cambridge, 
Mass., 1980. 

[Lumelsky, 1987] V.J. Lumelsky. Algorithmic and com­
plexity issues of robot motion in an uncertain environ­
ment. Journal of Complexity, 3:146-182, 1987. 

[Manikonda et al, 1995] V. Manikonda, P.S. Krish-
naprasad, and J. Hendler. A motion description lan­
guage and hybrid architecure for motion planning with 
nonholonomic robots. In IEEE International Confer­
ence on Robotics and Automation, May 1995. 

[Manikonda, 1994] Vikram Manikonda. A hybrid con­
trol strategy for path planning and obstacle avoidance 
with nonholonomic robots. Master's thesis, University 
of Maryland, College Park, 1994. 

[Mirtich and Canny, 1992] B. Mirtich and J.F. Canny. 
Using skeletons for nonholonomic path planniing 
among obstacles. In Proceedings of the International 
Conference on Robotics and Automation, pages 2533-
2540. IEEE, 1992. 

[Murray and Sastry, 1990] R. M. Murray and S. S. Sas-
try. Steering nonholonomic systems using sinusoids. In 
Proceedings of the 29th IEEE Conference on Decision 
and Control, pages 2097-2101, Honolulu,HI, Decem­
ber 1990. 

[Murray et ai, 1994] R.M. Murray, Z. Li, and S.S. Sas­
try. A Mathematical Introduction to Robotic Manipu­
lation. CRC Press, 1994. 

[Shahidi et ai, 1991] R. Shahidi, M.A. Shayman, and 
P.S. Krishnaprasad. Mobile robot navigation using 
potential functions. In Proceedings of the IEEE In­
ternational Conference on Robotics and Automation, 
pages 2047-2053, Sacremento,California, April 1991. 

[Stein, 1994] L.A. Stein. Imagination and situated cog­
nition. J. Experimental and theoretical AI, 6(4), Dec 
1994. 

[Sussmann, 1991] H.J. Sussmann. Local controllability 
and motion planning for some classes of systems with­
out drift. In Proceedings of the 30th Conference on De­
cision and Control, pages 1110-1114, Brighton, Eng­
land, December 1991. IEEE. 

MANIKONDA, HENDLER, AND KRISHNAPRASAD 149 


