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Abs t rac t 

This paper describes an efficient control mech
anism for incorporating picture-specific context 
in the task of image interpretation. Although 
other knowledge-based vision systems use gen
eral domain context in reducing the computa
tional burden of image interpretation, to our 
knowledge, this is the first effort in exploring 
picture-specific collateral information. We as
sume that constraints on the picture are gen
erated from a natural language understanding 
module which processes descriptive text accom
panying the pictures. We have developed a uni
fied framework for exploiting these constraints 
both in the object location and identification 
(labeling) stage. In particular, we describe a 
technique for incorporating constrained search 
in context-based vision. Finally, we demon
strate the effectiveness of this approach in PIC-
TION, a system that uses captions to label hu
man faces in newspaper photographs. 

1 I n t r o d u c t i o n 
To solve the inherently under-constrained task of im
age interpretation, additional sources of knowledge have 
successively been added to provide the necessary con
straints for the recognition of objects and understanding 
of scenes. 

Vision systems have attempted to exploit general 
knowledge assumed applicable to all scenes and spe
cific knowledge of scene objects and their appear
ance/configuration (model based vision). As a result, 
complex control strategies to utilize knowledge in the 
image interpretation task have been suggested. Devising 
control structures for knowledge based vision has been 
an active area of research since the mid 1960's with sev
eral refinements of the cycle of perception and the de
velopment of hierarchical, heterarchical and blackboard 
models. See [Firschein and Fischler, 1987; Chellapa and 
Kashyap, 1992] for the historical development of control 
structures in image understanding. 

*This work was supported in part by ARPA Contract 93-
F148900-000. 

There has also been recent work in domain-
independent control structures where interpretation can 
be formally stated based on the semantics of a standard
ized representation[Niemann et a/., 1990]. 

1.1 Collateral Based Vision 
Our research has focused on developing a computational 
model for "understanding" pictures based on accompa
nying, descriptive text. Understanding a picture can be 
informally defined as the goal-driven process of locat
ing and identifying objects whose presence in the image 
is suggested by the accompanying text. The ideas pre
sented in this paper carry the notion of top-down control 
one step further, incorporating not only general context 
but a high-level description of the actual picture. 

We have divided this problem into two major sub-
tasks. The first task is the processing of language input. 
We are developing a theory called visual semantics which 
describes a systematic method for extracting and repre
senting useful information from text pertaining to an ac
companying picture. This information is represented as 
a set of constraints. The processing of captions for gen
erating constraints is discussed in [Srihari and Burhans, 
1994]. The second major task involves the design of an 
architecture wherein collateral information from text can 
be efficiently exploited in the process of image interpre
tation. This second subtask is the focus of this paper. 

There are several applications which are enabled by 
collateral-based vision. These include diagram un
derstanding, indexing and retrieval from text/image 
databases and aerial image analysis. 

We first present an overview of PICTION, a caption 
based face identification system. Section 3 discusses con
trol in Piction, constraint satisfaction as a model for con
trol, spatial reasoning and a general algorithm which ex
ploits constrained search. The next section highlights 
some limitations and discusses future work to overcome 
them. 

2 P I C T I O N 
The computational model for collateral-based vision we 
have developed can be applied to any situation where 
photos are accompanied by descriptive text. In describ
ing the model however, it is useful to present working 
examples based on this model. For this reason, we refer 
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presses the result as a set of constraints. Spatial Con
straints are geometric or topological constraints, such 
as left-of, above, between, inside, etc. They can be bi
nary or n-ary, and describe inter-object relationships. 
They are typically used to identify/disambiguate among 
objects but can also be used to locate them. Charac
teristic Constraints are those which describe proper
ties of objects. Examples include gender and hair color. 
Finally, Contextual Constraints are those which de
scribe the setting of the picture, and the predicted ob
jects in it. For example, the people present (explicitly 
mentioned in the caption), whether it is an outdoor 
scene, and general scene context (apartment, airport, 
etc). 

The IU module performs two basic functions, the lo
cation and segmentation of objects, and the extraction 
of visual properties. The face-location module[Govin-
daraju et a/., 1992] is an object locator which uses edge 
contours as basic features, and a "springs and templates" 
model in a multi-resolution framework. We are currently 
improving a simple neural network based gender discrim
inator. A line detector [Bums et ai, 1984] is being used 
to construct simple detectors for 2D rectilinear objects. 

Figure 1 is an example of a digitized newspaper pho
tograph and the accompanying caption. The task is to 
correctly identify each of the seven people mentioned 
in the caption. Information from the caption (in the 
form of a constraint graph) is used to locate and label 
faces. Figure 2 illustrates some of the constraints which 
were derived from the caption. The number of faces and 
the fact that they are aligned in rows is used by a pro-
gram which locates faces in the image. Identification 
of the faces revolved around the correct interpretation 
of the word 'surround'. We have interpreted it as an n-
ary constraint involving minimum distances from a given 
candidate to the rest. The simultaneous satisfaction of 
this and the remaining constraints resulted in the final, 

to the system PICTION [Srihari et a/., 1994], that iden
tifies human faces in newspaper photographs based on 
information contained in the associated caption. PIC-
TION is noteworthy since it provides a computationally 
less expensive alternative to traditional methods of face 
recognition in situations where pictures are accompanied 
by descriptive text. Traditional methods employ model-
matching techniques and thus require that face models 
be present for all people, for them to be identified by the 
system. 

The four main components of the model are as follows: 
(i) a natural-language processing (NLP) module, (ii) 
an image understanding (IU) module, (iii) a high level 
control module, and (iv) an integrated language/vision 
knowledge base. 

The NLP module processes the caption text and ex-

CHOPRA AND SRIHARI 51 



correct labeling. 
PICTION has been implemented in LOOM[lSX, 

1991]. The visual routines have been implemented in 
C; the system runs on a Sun Sparestation. 

3 Con t ro l in P I C T I O N 
Recent work by Strat and Fischler[l99l] discusses the 
use of context in visual processing, but focuses on the ex
ploitation of low-level collateral information (e.g., light
ing conditions). Furthermore, they do not address the 
generation of these constraints. We present a control 
strategy which exploits (i) a confident hypothesis of the 
image contents and (ii) all levels of contextual informa
tion to aid the visual processing. 

Our approach is to select a set of object classes of 
interest which we would like to locate and identify in 
images. For PICTION this set has been restricted to 
one object class, the human face. However, recognizing 
additional classes of objects (like hats and boxes) may 
greatly assist us in identifying faces. 

Constraint satisfaction provides a single framework 
for incorporating spatial, characteristic, contextual and 
other general domain constraints without having to over-
specify control information. However the location of ob
jects is still performed at the IU level thereby allowing 
existing object detectors to be integrated into the overall 
model. 

3.1 The Single Object Class Problem: 
Labeling Faces 

For the single object class version of PICTION, the over
all control can be summarized in a few steps : 

• Constraint Graph Generation (hypothesis genera
tion: NLP module) 

• Face Candidate Generation (candidate generation : 
IU module) 

• Consistent Labeling (verification and recognition) 
Knowledge of the domain allows us to make simplify

ing assumptions for spatial reasoning. The assumptions 
concern spatial representations of objects, frames of ref
erence, scale and rotation invariance. Spatial reasoning 
in this domain involves verification of predicates corre
sponding to spatial relations. [Burhans et a/., 1995] 

reduction strategies, and involves achieving local, i.e. 
node and arc, consistency[Mohr and Henderson, 1986; 
Mohr and Masini, 1988]. This reduces the amount of 
backtracking required for global consistency. 

In PICTION, each variable VI corresponds to an ob
ject or person hypothesis, i.e., object or person predicted 
to be in the picture by the constraint generator. The do
main DI for each variable is initialized to the set of all 
candidates {CII, ,.. . , Cim } generated by a call to the face 
locator. 

There are 3 types of constraints used in the label
ing process. Unary Constraints typically correspond 
to characteristic constraints (e.g., gender, color of hair, 
etc.). Binary Constraints typically correspond to spa
tial constraints (e.g. left-of, above, etc.). N-ary Con
straints correspond to rules obtained from the domain 
a priori but applied in a discretionary manner by the 
constraint satisfier, or n-ary spatial constraints like the 
3-ary constraint between. An example of a domain de
pendent n-ary constraint is one which examines height 
relationships between people in the same row. It fa
vors those solutions where the vertical positions of faces 
do not differ significantly and where there is a minimal 
amount of horizontal overlap. 

Constraint satisfaction in a schema-based methodol
ogy has been used in computational vision, eg. the 
MAPSEE system[Mulder et a/., 1988]. Their approach is 
that of data driven scene labeling where image features 
are nodes and possible interpretations form the sets of 
labels. Our application of constraint satisfaction is in a 
goal-driven image interpretation system where a strong 
scene hypothesis forms the set of nodes, and located ob
jects (features) form the sets of labels. The constraints 
in our system are picture specific as well as domain de
pendent. 

3.3 HyperArc Consistency and Expensive 
Constraints 

There are two key differences between the statement of 
PICTION's constraint satisfaction problem and a tradi
tional CSP. Traditionally unary constraints are satisfied 
before higher order constraints. Knowing that certain 
binary constraints are cheaper to evaluate than unary 
constraints motivated a new algorithm where constraints 
are applied based on cost and reliability measures. Ad
ditionally, the algorithm can handle n-ary constraints 
without explicitly computing the complete correspond
ing n-ary relation [Chopra et a/., 1995]. 

3.4 Mul t ip le Object Classes: Generalizing 
P I C T I O N 

So far we have seen a control strategy that exploits col
lateral information to identify objects of a single class 
in an image. This needs to be extended to more general 
cases involving multiple object classes. Apart from mak
ing it applicable to domains with more than one object 
class of interest, this capability may be required even if 
there is a single object class of interest. We borrow here 
the terminology of defining a target vocabulary and a 
recognition vocabulary [Strat, 1992], Even if the target 
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vocabulary consists of a single object class, its recogni
tion is greatly enhanced by the development of a large 
recognition vocabulary. For the example in figure 3, 
the recognition vocabulary would need to contain pic
ture frames apart from faces. Though picture frames 
may be specific to the newspaper photograph domain, 
the idea is applicable to other domains with a specific 
set of interesting objects and a larger set of recognizable 
objects. 

We currently assume an unstructured collection of ob
ject locators associated with object classes is available. 
We are designing a hierarchy of object locators that is 
linked to our semantic lexicon. This lexicon is orga
nized as a comprehensive ontology of object classes. This 
will enable us to recognize more object classes using the 
same primitive object locators. We also assume a cor
responding set of image processing tools to verify and 
compare predetermined attributes of instances of these 
object classes. Domain specific knowledge allows us to 
make assumptions regarding object representations and 
frame of reference for spatial reasoning. Given these as
sumptions, a naive approach would be: 

• Constraint Graph Generation (same as before, 
constraints are between objects of same/different 
classes) 

• All Object Classes Candidate Generation (apply ob
ject locators for all object classes mentioned in the 
caption) 

• Consistent Labeling (verification and recognition) 
The above scheme is wasteful, since all object classes 
needn't be identified for the identification of the target 
vocabulary. It does not exploit locative constraints to 
reduce the search space and improve the performance of 
the object locators/candidate generators. 

The caption of the image in figure 3 is "Sharon Bot
toms and April Wade hold a picture of Tyler Doustou"1. 
Assuming picture frames/portraits in our recognition vo-
cabulary, the relevant constraints generated are 
included-in(Tyler Doustou, PicFramel); 
left-of(Sharon Bottoms, Apri l Wade) 
Using the naive approach, labeling is impeded by the 
failure of the face locator to find Tyler's face. The pic
ture frame also cannot be labeled as no candidate frame 
object satisfies the included-in relation with a face can
didate. 

Constrained Search 
To overcome the above limitations, we choose a more 
complex approach with some semblance to planning. 
The idea of using partial interpretation results to local
ize the search for related objects has been used in sev
eral vision systems. For example, constrained search is 
used by Selfridge [1982] to guide the search for building 
shadows, but with minimal spatial reasoning. In Sec
tion 2 we classified constraints as contextual, spatial and 
characteristic. When the control algorithm employs any 
of these constraints to disambiguate candidates, we call 
them verification constraints and when it employs them 

Obtained with permission from the Buffalo News 

to locate candidates for an object, we term them locative 
constraints. We assume cost and reliability measures for 
our object locators and attribute verifiers are available. 

The control algorithm loops over three stages: 
• Decision Stage A complex cost/utility function is 

employed to decide which object class to detect next, 
given the current state of the constraint graph and 
labelings. The factors taken into account for this 
function are the tool cost, reliability, number of ob
jects to be found, size of search region, number of 
constraints between this class and the objects of in
terest and the level of interest in this particular class 
of objects. Some measures are class specific (tool 
cost), others are instance specific (number of ob
jects) and some are dynamic (size of search region). 

• Labeling Stage: Candidates for objects of chosen 
group are located using the collateral information 
available. These objects, candidates and the con
straint relations between the objects are inserted 
in a constraint graph representing the partial in
terpretation. Constraint satisfaction techniques are 
applied to uniquely label the objects. Constraints 
between objects in the new group and between ob
jects in prior groups and the new ones are satisfied 
to increment the partial interpretation of the image. 

• Propagation Stage: Any object which has been 
labeled uniquely in the previous module potentially 
constrains the search region for those objects in
volved in a spatial relation with it. The propaga
tion module computes the search region using the 
labeled object and the type of spatial relation. So 
far, this spattal prediction has been implemented for 
binary spatial constraints. 

The effect of locating objects of a particular class can 
then be summarized as (i) potential identification of ob
jects already located, (ii) labeling and partial identifica
tion of current class objects and (iii) constraining and 
prioritizing the search for some other objects. 

As we have mentioned, an object locator is parame-
terized by the number of objects of that particular class. 
Since the actual routines for object-location are not com
pletely accurate, we might obtain too few or too many 
object candidates. Information from the spatial predic
tion stage is used at this point to attempt a solution. 
The object locator routines are called again on the con
strained search region with relaxed parameters if there 
were initially too few candidates. If there were extra can
didates, the information is used to order the candidates 
and the top choices are picked. 

Traditionally, planning in vision has been deliberative, 
i.e. a plan for the entire task is constructed prior to 
object location based on probabilistic measures[Garvey, 
1976; Ballard et a/., 1978]. We employ planning reac-
tively to choose amongst locators using a-priori knowl
edge as well as the observable situation to minimize com
putation and maximize accuracy. 

In addition to verifying spatial relations between ob
ject candidates, the spatial reasoning module performs 
the task of spatial prediction. In the process of interpre-
tation, any object that becomes uniquely labeled can 
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serve as a potential reference object. Spatial relations 
between this reference object and other objects not yet 
located are used to generate search areas for those ob
jects. The simplifying assumption of a known fixed ref
erence frame makes this task relatively simple. 

As an example of how picture-specific constraints can 
enable a constrained search for objects, consider Figure 
3. The object schema for "picture frames" yields the 
information that it contains a frame/border and an in
terior and that the border is typically a rectangle or an 
oval. The other object schema is for faces. Based on this, 
the control module invokes the following operations: 

• Since rectangles and ovals are easier to find than 
faces, the decision stage chooses to look for picture-
frame objects first. It finds one candidate, a working 
constraint graph containing a single node is created 
and labeling is successful. Next, the search region 
for Tyler's face is constrained because of the relation 
included-in. Control loops back to the decision stage 
where the next best class (the only one left in this 
example) is chosen. 

• The object locator for faces is now called to find 3 
faces. The schema contains information that one 
face must be in a specified constrained area. Fig. 
3 (2nd image) shows the output of the face locator. 
Since the number of candidates (two) is less than the 
known number of faces, the locator must be called 
again. Since neither of the candidates found is in 
the constrained region, the missing face must be in 
it, and the locator is called on this sub-image. The 
last image on the top of the page shows the output. 
The rectangle in black is the candidate returned by 
the face-locator and the grey rectangle is a weaker 
choice not returned in the first pass. The third face 
candidate is thus located. 

• The constraint graph is now augmented with 3 more 
nodes (representing the 3 persons) and initialized 
with the new labels and 2 constraints (ref. sec-
tions^) resulting in a successful labeling. 

4 Future W o r k 
The cost function evaluated for different classes in the 
decision stage is currently based on weights computed by 

trial and error. The encoding of relative tool costs and 
measures should be made more declarative or learned 
from a training set. We also need to relax our assump
tion of a known fixed frame of reference and incorporate 
progress made in the field of spatial representations. The 
constrained search paradigm is currently being applied 
only for spatial relations between objects. We need to 
explore its application to other visual relations, for ex
ample, if darker-than(A,B) and A is uniquely labeled, 
then that constrains the value of the characteristic con
straint (brightness) of B, and could be used for a locative 
purpose. 
There are several sources of collateral information which 
can accompany an image. The task of co-referencing 
words/phrases in the text with their corresponding im
age areas is greatly facilitated if deictic input is a|so avail
able. Our system does not currently make use of deictic 
input. 

We are experimenting with several techniques to find 
faces given poor edge data. These techniques include the 
use of color, a more sensitive edge detector, and finding 
facial features (e.g., eyes) directly without locating the 
face contour. We have recently started experimenting 
with color images. Color is useful in several ways; it can 
help the face locator detect boundaries of objects, and 
allows us to assert and process additional characteristic 
constraints of objects. An example of such a character
istic constraint for the face object class is hair color. 

5 Summary 

We have presented a computational model for incorpo
rating picture-specific constraints in the task of image 
interpretation. We have applied the constraint satisfac
tion paradigm to this problem. In particular, we have 
illustrated the use of constrained search in improving the 
efficiency and accuracy of object locators. A face identifi
cation system, PICTION has been described, which uses 
collateral information derived from captions to identify 
human faces in newspaper photographs. We have identi
fied several limitations of the system and have suggested 
approaches to overcome them. 
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