
Situation Recognition:
Representation and Algorithms

Christophe DOUSSON, Paul GABORIT and Malik GHALLAB
dousson@laas.fr, gaborir@laas.fr, malik@laas.fr

LAAS-CNRS, 7 ave du Colonel Roche
31077 TOULOUSE Cedex, FRANCE

Abstract

The situation recognit ion system, to which this paper is
devoted, receives as input a stream of time-stamped events; it
performs recognition of instances of occurring situations, as
they are developing, and it generates as output deduced events
and actions to trigger. It is mainly a temporal reasoning
system. I t is p red ic t i ve in the sense that i t predicts
forthcoming events relevant to its task, it focuses its attention
on them and i t ma in ta ins the i r tempora l w indows of
relevance. Its main functionality is to recognize efficiently
complex temporal patterns on the fly, while they are taking
place. This system has been tested for the surveillance of an
environment by a multisensory perception machine; it is
being applied to monitoring a complex dynamic system.

1 Introduction

We are interested in situations that arc not static states, but do
correspond to evolutions of a changing environment. We
understand a situation assessment system as one which has to
maintain, through perception, a coherent interpretation of
what is going on in a dynamic world. Such a task arises in
appl icat ions l ike env i ronment survei l lance or process
monitoring.

Our work was initially motivated by the former class of
applications. More specifically, we developed it along with the
design of an active multi-sensory perception machine, called
SKIDS, that has mobile and fixed cameras, laser range finders,
optical barriers, and sonic detectors distr ibuted over and
survey ing an i ndoo r env i ronmen t [GRANDJEAN91,
GHALLAB92]. A sensory stimulus, such as an optical barrier
crossing, or a track detection, once interpreted, becomes an
event. A set of events, occurring in some temporal pattern,
may develop into a situation (complete or partial), which in
t u rn can generate new events, can permi t the focus of
attention enabling the detection of forthcoming events, or can
trigger alarms, messages, data logging or also other actions.

The proposed situation recognition system has been tested
recently for monitoring dynamic systems. Observed events are
generated from raw data through simple signal processing.
Sucessfull results obtained on a reduced example (a regulated

tank) lead us to start a more ambitious application for the
surveillance of a gas turbine.

Initially, the programmer provides the system wi th a set of
s i tuat ion models, or scenari i , of normal and abnormal
evolutions to be surveyed. Each situation model is a set of
event patterns and temporal constraints between them and
with respect to the context. If some observed events match the
event patterns, and if their times of occurrence meet the
specified constraints, then an instance of this situation occurs.
A situation model may also specify events to be generated and
actions to be triggered as a result of the situation occurrence.
Deduced events can in turn be taken as input by other
situations, hence enabling a recursive chaining.

The situation recognition system receives as input a stream
of time-stamped events, not necessarily sorted according to
their occurrence dates (there may be variable delays for the
interpretation of sensory stimulus). It performs recognition of
instances of occurring situations, as they arc developing and it
generates as output deduced events and triggered actions. It is
mainly a temporal reasoning system. It is predictive in the
sense that it predicts forthcoming events that are relevant to
partial instances of situations currently taking place; it focuses
on them and i t mainta ins the i r tempora l w indows of
relevance. However, as it is today, it does not perform neither
tempora l p ro jec t ion [MCDERMOTT82, DEAN87] , nor
persistence maintenance [DEAN83, MATERNE91], through
domain axioms and models of change. Its main functionality
is to be able to recognize efficiently complex temporal patterns
on the fly, while they are taking place.

The AI literature reports on several works wi th concerns
similar to ours. There is the plan recogni t ion problem
[W I L E N S K Y 8. K A U T Z 8 6] , where one is in terested in

recognizing that a sequence of actions makes some complex
plan. However in such a problem temporal reasoning docs not
arise as the main issue. There is also the event calculus
[K O W A L S K I 8 6 , BORILLO90], o r some var ian t o f i t
[BORCHARDT85], which is relevant to our work. But this
calculus is mainly interested in describing relations between
events to enable a question-answering system to relate them; it
does not address the recognition issue.

More akin to our approach is the work of [KUMAR87].
There, a state-based model of time is taken. An extension of

166 Automated Reasoning

the interval calculus is proposed to relate intervals for which
only initial points are known. Events are intervals; they are
linked in this extended calculus to form situations which are
recognized by some evaluation process; no algorithm is given.
The main differences wi th the approach proposed here are:

- at the knowledge representation level: ours is richer and
more real is t ic , i t takes i n t o account the context and
distinguishes between occurrence and reception dates of
events, it also permits numerical temporal constraints;

- and ma in l y at the recogn i t i on level and at the
algorithms involved in it, since we are proposing efficient on­
line processes suitable for demanding applications.

Section II describes the proposed knowledge and temporal
representation and defines situations as models of temporally
constrained events and accompanying actions. Then we wil l
develop in section I I I the recognit ion method and main
algorithms. We w i l l conclude w i th a presentation of the
experiments ran on the actual imp lementa t ion and an
experimental model of the average complexity that exhibits
good performances.

2 Representation

2.1 Time

For algorithmic complexity reasons our time-map manager,
cal led I X T E T [GHALLAB89], relies on t ime -po in t s as
elementary primitives. We consider time as a linearly ordered
discrete set of instants, whose resolution is sufficient for the
dynamics of the env i ronment (i .e., any change can be
adequately represented as taking place at some instant of the
set). Intervals and relations of the restricted interval algebra
[V I L A I N 8 6 , ALLEN83] can also be representated at the user
level in I X T E T , but they are translated internally into time-
point constraints (we'll not develop that issue here). We can
handle the usual symbolic constraints of the t ime-point
algebra (i .e. before, s imu l taneous , after and the i r
disjunctions), as well as numerical constraints. The later are
expressed as pairs of real numbers
corresponding to lower and upper bounds on the temporal
distance between two points el and e2.
We use the following notations:

(propagation)
(conjunction)
(translation)

For complexity reasons, we do not allow disjunctions of
numerical constraints, since the constraint satisfaction
problem becomes NP-Complete [DECHTER91 J.

2.2 Assertions and events

We rely on a p ropos i t i ona l re i f ied logic fo rma l i sm
[SHOHAM87], where a set D of propositions is temporally
qualified by predicates such as true, false, on and off At each
time point t and for each proposition P of D, we have either
TRUE or We consider assertions on the truth
of a proposition P over some period of time:

We define an event pattern e as a change in the truth value of
a proposi t ion. An event e is a t ime stamped instance of
pattern e, it has no duration, it is expressed by the predicates
ON or OFF

We suppose that the event stream is consistent, i.e., for each
proposit ion, there is necessarily an OFF event between two
successive ON events (and respect ively for ON). Th i s
assumption is solely with respect to the occurrence dates of
events, it does not concern the stream as received by the
system.

2.3 Processing delays of events

An event e of pattern comes wi th a variable delay, due to
sensor processing and data transmission. We suppose that this
delay is bounded by an interval given by the user. If d(e)
is the occurrence date of event e and r(e) its reception date, we
always have:

To simplify the notation in fol lowing sections, we may
refer to e both, as the name of the event, and as its occurrence
date d(e).

2.4 Situations

A situation model is a set of event patterns and a set of
constraints. It may involve also the description of some
context that is required to hold independently of when it
became true. For example, we want to survey the work of a
robot which must enter a room, load a machine and then exit.
As soon as the machine is loaded, it can start its work. The
machine must be stopped before loading it and a safety
condition is necessary for all actions of the robot in the room.
This situation model is described as follows:

A network representing this situation is the following:

Dousson, Gaborit, and Ghallab 167

The system receives and processes only events. Since we
assume a consistent stream of events, assertions are managed
quite naturally through occurrences and non-occurrences of
events. To process the assertion the system
checks that there has been an event ON(P,t) wi th and
such that no event occurs wi th t ' i n t o T o
initialize the system, a set of events corresponding to the state
of the world must be given wi th an occurrence date equal of -

So, the previous network becomes the following.

in their respecting windows (left figure). Reception of event e2

is propagated to the windows constraining the remaining
events (right figure). Recognition of this instance proceeds
accordingly.
If, on some alternate scenario, after receiving does not
occur at time 17', or if SafetyCondition becomes false before
occurrence time of the corresponding instance wi l l not
meet the specified constraints and wil l be killed.

3.2 Preprocessing

A compilation stage is useful for testing the consistency of
constraints in a situation model and for coding it into efficient
data structures for the recognit ion process. This mainly
consists in propagating constraints in the event network. At
this time, propagations are local to each situation model.

For each situation model, we propagate constraints with a
"path consistency" algorithm derived from [MACKWORTH,
85]. The result of this algorithm is (for each situation model)
the least constrained complete graph equivalent to the user
constraints. To provide a useful feedback for s i tuat ion
debugging, we use an incremental algorithm which can detect
inconsistent constraints.

3.3 Recognition delay and ending events.

Ending events are the latest possible events of a situation
according to their occurrence dates (i.e. leaf nodes in the
corresponding network). Terminating events of a situation
model are events which can be received the latest by an
instance S of before its recognit ion is completed. To
determine these events, the compiler takes into account
reception dates and possible delays.

3.4 On line situation management

Our recognition method is based on a complete forecast of
forthcoming events predicted by situation models. In order
for an event ei to be consistent wi th constraints and known
dates of other events that already took place in a partial

168 Automated Reasoning

The user can also specify some actions to be performed
whi le a s i tuat ion instance is being recognized. We may
generate a new event w i t h an occurrence date defined
relatively to those of the instance events. We may display
messages, or run a specified user procedure (external action
like in our example). This is a very useful for a focus of
attention funct ionnal i ty of the surveillance system. The
generation of a new event allows to relate different situations,
enabling modular programming.

3 Processing

instance S, we define an interval called window of relevance
W(e i) which contains all the possible occurrence dates of the
possibly forthcoming event ei.

• Time lines: for each situation instance, we process two
time lines.

- The shifiline of an instance
S is the latest date for the
nearest non-occurred event
(according to delay
- The non-occurrence line of
an instance is the latest date
for ensuring that the nearest
assertion holds.

• Recognition forecast we can compute the recognit ion
interval for each situation instance. The user can know when
a recognition is expected and which events are required to
achieve it.

• Tree of instances: for each situation model, our system
manages a tree of current instances. When a situation is
recognized or killed (after a constraint violation), the instance
is removed from this tree (wc say that the instance dies).

3.5 Evolution of a situation instance

There is basically two ways of modifying a situation instance:
a new event can arrive (and can be integrated into an instance
or violate a constraint for a protected assertion) or time goes
without anything happening and, perhaps, makes some event
deadlines to be violated or some assertion constraints obsolete.
The system manages the external real time by receiving clock
updates. Let now be the value of this clock. So when an event
is received, we always have the reception date r(e) = now.

3.5.1 Matching an event occurrence

When event e matching pattern ek occurs, either :
does not meet temporal constraints on

the expected event ck of S, or
e meets the constraints, is reduced

to [c, e].
M o r e general ly , i f the w i n d o w o f relevance o f some
forthcoming event ek in S has been further constrained (that is
W(e k) reduced), we are sure that this constraint remains
consistent wi th what is already known. We need however to
propagate it to other expected events, that in turn are further
constrained.

This produces a new set of non-empty and consistent
W(e i). It is important to notice that we never need to verify
the consistency of events that fall in to their windows of
relevance.

In fact, before this propagation, the original situation
instance must be duplicated and only the copy is updated by
matching e and ek and by processing propagate(ek,S).

Dupl icat ion is needed to guaranty the recognition of a

Dousson, Gaborit, and Ghallab 169

3.6 Restricting duplication of instances

We saw that a situation instance can be duplicated several
times dur ing its recogni t ion. This is the main source of
complexity and we must l im i t i t . Durat ion bounds on a
s i tuat ion is the first way to reduce dup l i ca t ion . W h i l e
compiling, we can verify that every situation has a maximal
duration l imit. However, even with this l imitation, situation
instances could be duplicated in large number.s.

Furthermore, there may be situations that cannot have two
successful instances overlapping in time or sharing a common
event instance; the user can also be interested in recognizing
just one instance at a t ime. Both cases, when a situation
instance is recognized, all its pending instances must be
removed.

A third way for restricting duplication is to postpone the
propagation of some events. There would be two event classes:
the completely forecast ones (for which all constraints are
propagated) and the partially forecast events. If an event is
completely forecast and if d(e) is in W(e), we are sure of the
time consistency of e. But a partially forecast event needs
more than this simple verification: one has to check through
constraint propagation that this event meets the pending
constraints. Therefore event matching wi l l be more expensive.

Furthermore, postponing constraint propagation can be
expensive: if one does not duplicate a situation when a new
event is instantiated, one must keep a history of each possible
matching event in order to be able to backtrack when this
situation is ended (ki l led or recognized). We know that
backtracking can be very expensive and unacceptable for an
on-line system. This is why all events are completely forecast
in our current system and there is no constraint postponing.

3.7 Variables in event patterns and situation models

The representation allowed by our system is actually more
general than what has been described up to now. It is possible
to specify event patterns wi th variables. Event instances are
ground terms. The matching procedure is very simple since
the duplication of situation instances enables a direct checking
of the consistency of variable bindings.

However our representat ion is no t a f u l l f irst order
formalism, since we do not allow free variables in protected
assertions. Indeed constraints on such assertions cannot be
processed by simple propagation and forecasting; they require
a costly search, not compatible with the complexity we aimed
at.

3.8 Complexity

Each elementary event propagation or clock propagation runs
in 0 (m), where m is the number of pending events in a
situation instance; m < n the total number of distinct events
in the situation model.

For K instances of situation models with n events each, the
proposed algorithms process a new event (or a clock updating)
with a complexity in 0 (K n 2) . K is larger than M, the number
of situation models. If K is kept of the same order than M, the
overall complexity is quite manageable.

4 Results and Conclusion

The first scenario on which this recognition process was tested
describes the surveillance of a mobile robot, bringing and
taking objects that are loaded and unloaded by a human
operator. The scene takes place into a laboratory environment
with 4 rooms separated by 7 optical barriers and surveyed by
four cameras. Generated events are optical barriers signals (14
event types) and motion detected by the cameras (8 event
types for the robot and 4 for the operator). This scenario was
described by 15 situation models, hierarchically organised.
The normal cycle is surveyed: if an incidence occurs, the
system detects when and where i t happens. L ive
demonstrations of this scenario and others similar were run.
Compared to the others reasoning system needed in the
SKIDS perception machine, the situation recognition system
is fast enough and is not a l imit ing factor for reactivity: the
average response time for an event is of the order of 15ms.

Since these demonstrat ions, a large number of other
experiments were run on different sets of situations (up to one
hundred situation models). Our goal was to characterize the
pract ical " b a n d w i d t h " of the proposed a lgor i thms and
implementation: up to which frequency of events the system
is able to follow-up without accumulating delays.

The following figure summarizes the system performances
for a set of 80 situation models, each involving about 10 event
patterns and as many constraints, 2 or 3 of which referring to
the context. Those were abstract but fairly complex situation
models, programmed for the purpose of testing different
schemes of tempora l const ra in t lat t ices, and hav ing a
significant overlapping in terms of common event patterns (a

170 Automated Reasoning

total of 400 event patterns were used). We generated 100
scenarios, each corresponding to a sequence of 3000 events
meaningfull with respect to temporal constraints of situation
models. For each scenario, we ran the recognition system and
recorded the processing time for each event. From that, we
computed the corresponding response time to an event, as a
function of a variable frequency of events, taking into account
cumulated delays from one event to the next and the time lost
in waiting for an event.

dynamic environment. We arc working toward a confirmation
of these results on more complex industrial applications for
alarm filtering in an oil plant and for process monitoring of a
gas turbine.

In conclusion, this paper describes an innovative situation
recogn i t ion system, based on tempora l const ra in t
propagation. The proposed representation has been chosen
such as to keep the complex i ty reasonable for on- l ine
processing, while maintaining a sufficient expressiveness for
practical applications. The algorithms rely on extended pre-
processing and carefully designed data structures, they exhibit
good performances, compatible wi th demanding applications.
Overa l l , the proposed system prov ides in te res t ing
functionalities such as deduction of events on the basis of
temporal evolutions recognized on the fly, forecast of expected
events and focus of attention.

Our system has been tested in live experiments of the
SKIDS perception machine. To our knowledge it is the first
time that a perception system integrates explicitly temporal
reasonning.

Ou r next goal is to extend the proposed s i tua t ion
recognition system into a situation assessment system. For
that several additional functionalities are required:

• Persistence maintenance of database through domain
axioms and models of change to allow a complete deduction
of non-observable events; notice that this is partially handled
by our system through the possible generation of an event
when a situation is recognized;

• Sensory data interpretation is necessarily hypothetical,
events and situations should be as well. A situation assessment
system must be able to backtrack and manage uncertainty, as
well as hypothetical reasoning.

Dousson, Gaborit, and Ghallab 171

Furthermore we plan to fully investigate the terms of the
t rade-o f f beteen event forecast ing and propagat ion
postponing, and solve it dynamically and opportunistically.

Acknowledgments

This work benefited f rom the support of the EEC under
ESPRIT projects SKIDS and TIGER.

Christophe DOUSSON is being supported by a scholarship
from Shell Research.

The authors are gratefull to their co-workers who helped
this work, specially A. Mouni r -A laou i who implemented
I X T E T kernel [MOUNIR90] and the f i rs t version o f the
situation recognition system.

References

[ALLEN83] ALLEN, J. F. Ma in ta i n i ng Knowledge about
T e m p o r a l In terva ls , C o m m u n i c a t i o n s o f ACM,
26(11):832—843, November 1983.

[BORCHARDT85] BORCHARDT, G. Event Calculus, Proc. in the
9th IJCAI 85.

IBORILLO90] BORILLO, M. and GAUME B. An extension of
Kowalski and Sergot's event calculus, Proceedings ECAl,
pp. 99-104, 1990.

[DEAN83] DEAN, T. Time Map Maintenance, Yale University,
Computer Science Department, 1983.

[DEAN87] D E A N T . and B O D D Y M. Incremental causal
reasoning, ProcAAAI,p. 196-201, 1987.

[DECHTER91] DECHTER, R., M E I R I , I. and PEARL, J. Temporal
Constraint networks. Artificial Intelligence 49, p. 61-95,
1991.

[G H A L L A B 8 9] G H A L L A B M. , M O U N I R - A L A O U I A. Managing

Ef f i c ien t l y T e m p o r a l Relat ions t h rough Indexed
Spanning Trees. Proc. 11th IJCAI, 1297-1303, Detroit,
1989

[GHALLAB92] GHALLAB M. , GRANDJEAN P., LACROIX S.,
THIBAULT J.P. Representations et raisonnement pour une
machine de perception multi-sensorielle. p. 121-167,
PRC-GDR / IA, Marseille (France), Teknea editions, 1992.

[GRANDJEAN91] GRANDJEAN P., GHALLAB M., DEKNEUVEL E.
Multiscnsory scene interpretation: model-based object
r ecogn i t i on , p. 1588 -1595 , IEEE Robot ics and
Automation, 1991

[KAUTZ86] KAUTZ, H. Generalized plan recognition. Proc
AAAI, 1986.

[KOWALSKI86] KOWALSKI R. and SERGOT M. A logic-based
calculus of events, New Generation Computing, vol.4,
67-95,1986.

[KUMAR87] KUMAR, K. and MUKERJEE, A. Temporal event
conceptualization, Proc. 19th IJCAI, 472-475, 1987.

[M A C K W O R T H 8 5] M A C K W O R T H , A.K. and FREUDER, E.C.

The complexity of some polynomial network consistency
algorithms for constraint satisfaction problems. Artificial
Intelligence 25, p. 65-74, 1985.

[MATERNE91] MATERNE, S.; HERTZBERG, J. and VOb , H. On
cl ipping persistence (or whatever must be clipped) in
T ime Maps. Arbeitspapiere der GMD, Sankt Augustin,
June 1991.

[MCDERMOTT82] McDERMOTT, D.V. A Temporal Logic for
Reasoning about Processes and Plans, Cognitive Science,
volume 6, 101-155, 1982.

[MOUNIR90] MOUNIR-ALAOUI, A. Raisonnement temporel
pour la planification et la reconnaissance de situations,
These de l'UPS, Toulouse, 1990.

[SHOHAM87] SHOHAM, Y. Reasoning About Change: Time
and Causat ion f r o m the S tandpo in t o f A r t i f i c i a l
Intelligence. MIT Press, 1987.

[V I L A I N 8 6] V I L A I N , M . and K A U T Z , H . Cons t ra in t

Propagation Algorithms for Temporal Reasoning, Proc.
AAAI-86, Philadelphia, Pa., August 1986.

[WILENSKY83] WlLENSKY, R. Planning and Understanding,
Addison-Weslet Publications, Advanced Book Program,
Reading, Mass. 1983

172 Automated Reasoning

