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Abstract 

The situation recognit ion system, to which this paper is 
devoted, receives as input a stream of time-stamped events; it 
performs recognition of instances of occurring situations, as 
they are developing, and it generates as output deduced events 
and actions to trigger. It is mainly a temporal reasoning 
system. I t is p red ic t i ve in the sense that i t predicts 
forthcoming events relevant to its task, it focuses its attention 
on them and i t ma in ta ins the i r tempora l w indows of 
relevance. Its main functionality is to recognize efficiently 
complex temporal patterns on the fly, while they are taking 
place. This system has been tested for the surveillance of an 
environment by a multisensory perception machine; it is 
being applied to monitoring a complex dynamic system. 

1 Introduction 

We are interested in situations that arc not static states, but do 
correspond to evolutions of a changing environment. We 
understand a situation assessment system as one which has to 
maintain, through perception, a coherent interpretation of 
what is going on in a dynamic world. Such a task arises in 
appl icat ions l ike env i ronment survei l lance or process 
monitoring. 

Our work was initially motivated by the former class of 
applications. More specifically, we developed it along with the 
design of an active multi-sensory perception machine, called 
SKIDS, that has mobile and fixed cameras, laser range finders, 
optical barriers, and sonic detectors distr ibuted over and 
survey ing an i ndoo r env i ronmen t [GRANDJEAN91, 
GHALLAB92]. A sensory stimulus, such as an optical barrier 
crossing, or a track detection, once interpreted, becomes an 
event. A set of events, occurring in some temporal pattern, 
may develop into a situation (complete or partial), which in 
t u rn can generate new events, can permi t the focus of 
attention enabling the detection of forthcoming events, or can 
trigger alarms, messages, data logging or also other actions. 

The proposed situation recognition system has been tested 
recently for monitoring dynamic systems. Observed events are 
generated from raw data through simple signal processing. 
Sucessfull results obtained on a reduced example (a regulated 

tank) lead us to start a more ambitious application for the 
surveillance of a gas turbine. 

Initially, the programmer provides the system wi th a set of 
s i tuat ion models, or scenari i , of normal and abnormal 
evolutions to be surveyed. Each situation model is a set of 
event patterns and temporal constraints between them and 
with respect to the context. If some observed events match the 
event patterns, and if their times of occurrence meet the 
specified constraints, then an instance of this situation occurs. 
A situation model may also specify events to be generated and 
actions to be triggered as a result of the situation occurrence. 
Deduced events can in turn be taken as input by other 
situations, hence enabling a recursive chaining. 

The situation recognition system receives as input a stream 
of time-stamped events, not necessarily sorted according to 
their occurrence dates (there may be variable delays for the 
interpretation of sensory stimulus). It performs recognition of 
instances of occurring situations, as they arc developing and it 
generates as output deduced events and triggered actions. It is 
mainly a temporal reasoning system. It is predictive in the 
sense that it predicts forthcoming events that are relevant to 
partial instances of situations currently taking place; it focuses 
on them and i t mainta ins the i r tempora l w indows of 
relevance. However, as it is today, it does not perform neither 
tempora l p ro jec t ion [MCDERMOTT82, DEAN87] , nor 
persistence maintenance [DEAN83, MATERNE91 ], through 
domain axioms and models of change. Its main functionality 
is to be able to recognize efficiently complex temporal patterns 
on the fly, while they are taking place. 

The AI literature reports on several works wi th concerns 
similar to ours. There is the plan recogni t ion problem 
[ W I L E N S K Y 8. K A U T Z 8 6 ] , where one is in terested in 

recognizing that a sequence of actions makes some complex 
plan. However in such a problem temporal reasoning docs not 
arise as the main issue. There is also the event calculus 
[ K O W A L S K I 8 6 , BORILLO90], o r some var ian t o f i t 
[BORCHARDT85], which is relevant to our work. But this 
calculus is mainly interested in describing relations between 
events to enable a question-answering system to relate them; it 
does not address the recognition issue. 

More akin to our approach is the work of [KUMAR87]. 
There, a state-based model of time is taken. An extension of 
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the interval calculus is proposed to relate intervals for which 
only initial points are known. Events are intervals; they are 
linked in this extended calculus to form situations which are 
recognized by some evaluation process; no algorithm is given. 
The main differences wi th the approach proposed here are: 

- at the knowledge representation level: ours is richer and 
more real is t ic , i t takes i n t o account the context and 
distinguishes between occurrence and reception dates of 
events, it also permits numerical temporal constraints; 

- and ma in l y at the recogn i t i on level and at the 
algorithms involved in it, since we are proposing efficient on­
line processes suitable for demanding applications. 

Section II describes the proposed knowledge and temporal 
representation and defines situations as models of temporally 
constrained events and accompanying actions. Then we wil l 
develop in section I I I the recognit ion method and main 
algorithms. We w i l l conclude w i th a presentation of the 
experiments ran on the actual imp lementa t ion and an 
experimental model of the average complexity that exhibits 
good performances. 

2 Representation 

2.1 Time 

For algorithmic complexity reasons our time-map manager, 
cal led I X T E T [GHALLAB89], relies on t ime -po in t s as 
elementary primitives. We consider time as a linearly ordered 
discrete set of instants, whose resolution is sufficient for the 
dynamics of the env i ronment ( i .e., any change can be 
adequately represented as taking place at some instant of the 
set). Intervals and relations of the restricted interval algebra 
[ V I L A I N 8 6 , ALLEN83] can also be representated at the user 
level in I X T E T , but they are translated internally into time-
point constraints (we'll not develop that issue here). We can 
handle the usual symbolic constraints of the t ime-point 
algebra ( i .e. before, s imu l taneous , after and the i r 
disjunctions), as well as numerical constraints. The later are 
expressed as pairs of real numbers 
corresponding to lower and upper bounds on the temporal 
distance between two points el and e2. 
We use the following notations: 

(propagation) 
(conjunction) 
(translation) 

For complexity reasons, we do not allow disjunctions of 
numerical constraints, since the constraint satisfaction 
problem becomes NP-Complete [DECHTER91 J. 

2.2 Assertions and events 

We rely on a p ropos i t i ona l re i f ied logic fo rma l i sm 
[SHOHAM87], where a set D of propositions is temporally 
qualified by predicates such as true, false, on and off At each 
time point t and for each proposition P of D, we have either 
TRUE or We consider assertions on the truth 
of a proposition P over some period of time: 

We define an event pattern e as a change in the truth value of 
a proposi t ion. An event e is a t ime stamped instance of 
pattern e, it has no duration, it is expressed by the predicates 
ON or OFF 

We suppose that the event stream is consistent, i.e., for each 
proposit ion, there is necessarily an OFF event between two 
successive ON events (and respect ively for ON). Th i s 
assumption is solely with respect to the occurrence dates of 
events, it does not concern the stream as received by the 
system. 

2.3 Processing delays of events 

An event e of pattern comes wi th a variable delay, due to 
sensor processing and data transmission. We suppose that this 
delay is bounded by an interval given by the user. If d(e) 
is the occurrence date of event e and r(e) its reception date, we 
always have: 

To simplify the notation in fol lowing sections, we may 
refer to e both, as the name of the event, and as its occurrence 
date d(e). 

2.4 Situations 

A situation model is a set of event patterns and a set of 
constraints. It may involve also the description of some 
context that is required to hold independently of when it 
became true. For example, we want to survey the work of a 
robot which must enter a room, load a machine and then exit. 
As soon as the machine is loaded, it can start its work. The 
machine must be stopped before loading it and a safety 
condition is necessary for all actions of the robot in the room. 
This situation model is described as follows: 

A network representing this situation is the following: 
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The system receives and processes only events. Since we 
assume a consistent stream of events, assertions are managed 
quite naturally through occurrences and non-occurrences of 
events. To process the assertion the system 
checks that there has been an event ON(P,t) wi th and 
such that no event occurs wi th t ' i n t o T o 
initialize the system, a set of events corresponding to the state 
of the world must be given wi th an occurrence date equal of -

So, the previous network becomes the following. 

in their respecting windows (left figure). Reception of event e2 

is propagated to the windows constraining the remaining 
events (right figure). Recognition of this instance proceeds 
accordingly. 
If, on some alternate scenario, after receiving does not 
occur at time 17', or if SafetyCondition becomes false before 
occurrence time of the corresponding instance wi l l not 
meet the specified constraints and wil l be killed. 

3.2 Preprocessing 

A compilation stage is useful for testing the consistency of 
constraints in a situation model and for coding it into efficient 
data structures for the recognit ion process. This mainly 
consists in propagating constraints in the event network. At 
this time, propagations are local to each situation model. 

For each situation model, we propagate constraints with a 
"path consistency" algorithm derived from [MACKWORTH, 
85]. The result of this algorithm is (for each situation model) 
the least constrained complete graph equivalent to the user 
constraints. To provide a useful feedback for s i tuat ion 
debugging, we use an incremental algorithm which can detect 
inconsistent constraints. 

3.3 Recognition delay and ending events. 

Ending events are the latest possible events of a situation 
according to their occurrence dates (i.e. leaf nodes in the 
corresponding network). Terminating events of a situation 
model are events which can be received the latest by an 
instance S of before its recognit ion is completed. To 
determine these events, the compiler takes into account 
reception dates and possible delays. 

3.4 On line situation management 

Our recognition method is based on a complete forecast of 
forthcoming events predicted by situation models. In order 
for an event ei to be consistent wi th constraints and known 
dates of other events that already took place in a partial 
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The user can also specify some actions to be performed 
whi le a s i tuat ion instance is being recognized. We may 
generate a new event w i t h an occurrence date defined 
relatively to those of the instance events. We may display 
messages, or run a specified user procedure (external action 
like in our example). This is a very useful for a focus of 
attention funct ionnal i ty of the surveillance system. The 
generation of a new event allows to relate different situations, 
enabling modular programming. 
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instance S, we define an interval called window of relevance 
W(e i) which contains all the possible occurrence dates of the 
possibly forthcoming event ei. 

• Time lines: for each situation instance, we process two 
time lines. 

- The shifiline of an instance 
S is the latest date for the 
nearest non-occurred event 
(according to delay 
- The non-occurrence line of 
an instance is the latest date 
for ensuring that the nearest 
assertion holds. 

• Recognition forecast we can compute the recognit ion 
interval for each situation instance. The user can know when 
a recognition is expected and which events are required to 
achieve it. 

• Tree of instances: for each situation model, our system 
manages a tree of current instances. When a situation is 
recognized or killed (after a constraint violation), the instance 
is removed from this tree (wc say that the instance dies). 

3.5 Evolution of a situation instance 

There is basically two ways of modifying a situation instance: 
a new event can arrive (and can be integrated into an instance 
or violate a constraint for a protected assertion) or time goes 
without anything happening and, perhaps, makes some event 
deadlines to be violated or some assertion constraints obsolete. 
The system manages the external real time by receiving clock 
updates. Let now be the value of this clock. So when an event 
is received, we always have the reception date r(e) = now. 

3.5.1 Matching an event occurrence 

When event e matching pattern ek occurs, either : 
does not meet temporal constraints on 

the expected event ck of S, or 
e meets the constraints, is reduced 

to [c, e]. 
M o r e general ly , i f the w i n d o w o f relevance o f some 
forthcoming event ek in S has been further constrained (that is 
W(e k ) reduced), we are sure that this constraint remains 
consistent wi th what is already known. We need however to 
propagate it to other expected events, that in turn are further 
constrained. 

This produces a new set of non-empty and consistent 
W(e i). It is important to notice that we never need to verify 
the consistency of events that fall in to their windows of 
relevance. 

In fact, before this propagation, the original situation 
instance must be duplicated and only the copy is updated by 
matching e and ek and by processing propagate(ek,S). 

Dupl icat ion is needed to guaranty the recognition of a 
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3.6 Restricting duplication of instances 

We saw that a situation instance can be duplicated several 
times dur ing its recogni t ion. This is the main source of 
complexity and we must l im i t i t . Durat ion bounds on a 
s i tuat ion is the first way to reduce dup l i ca t ion . W h i l e 
compiling, we can verify that every situation has a maximal 
duration l imit. However, even with this l imitation, situation 
instances could be duplicated in large number.s. 

Furthermore, there may be situations that cannot have two 
successful instances overlapping in time or sharing a common 
event instance; the user can also be interested in recognizing 
just one instance at a t ime. Both cases, when a situation 
instance is recognized, all its pending instances must be 
removed. 

A third way for restricting duplication is to postpone the 
propagation of some events. There would be two event classes: 
the completely forecast ones (for which all constraints are 
propagated) and the partially forecast events. If an event is 
completely forecast and if d(e) is in W(e), we are sure of the 
time consistency of e. But a partially forecast event needs 
more than this simple verification: one has to check through 
constraint propagation that this event meets the pending 
constraints. Therefore event matching wi l l be more expensive. 

Furthermore, postponing constraint propagation can be 
expensive: if one does not duplicate a situation when a new 
event is instantiated, one must keep a history of each possible 
matching event in order to be able to backtrack when this 
situation is ended (ki l led or recognized). We know that 
backtracking can be very expensive and unacceptable for an 
on-line system. This is why all events are completely forecast 
in our current system and there is no constraint postponing. 

3.7 Variables in event patterns and situation models 

The representation allowed by our system is actually more 
general than what has been described up to now. It is possible 
to specify event patterns wi th variables. Event instances are 
ground terms. The matching procedure is very simple since 
the duplication of situation instances enables a direct checking 
of the consistency of variable bindings. 

However our representat ion is no t a f u l l f irst order 
formalism, since we do not allow free variables in protected 
assertions. Indeed constraints on such assertions cannot be 
processed by simple propagation and forecasting; they require 
a costly search, not compatible with the complexity we aimed 
at. 

3.8 Complexity 

Each elementary event propagation or clock propagation runs 
in 0 ( m ), where m is the number of pending events in a 
situation instance; m < n the total number of distinct events 
in the situation model. 

For K instances of situation models with n events each, the 
proposed algorithms process a new event (or a clock updating) 
with a complexity in 0 ( K n 2 ) . K is larger than M, the number 
of situation models. If K is kept of the same order than M, the 
overall complexity is quite manageable. 

4 Results and Conclusion 

The first scenario on which this recognition process was tested 
describes the surveillance of a mobile robot, bringing and 
taking objects that are loaded and unloaded by a human 
operator. The scene takes place into a laboratory environment 
with 4 rooms separated by 7 optical barriers and surveyed by 
four cameras. Generated events are optical barriers signals (14 
event types) and motion detected by the cameras (8 event 
types for the robot and 4 for the operator). This scenario was 
described by 15 situation models, hierarchically organised. 
The normal cycle is surveyed: if an incidence occurs, the 
system detects when and where i t happens. L ive 
demonstrations of this scenario and others similar were run. 
Compared to the others reasoning system needed in the 
SKIDS perception machine, the situation recognition system 
is fast enough and is not a l imit ing factor for reactivity: the 
average response time for an event is of the order of 15ms. 

Since these demonstrat ions, a large number of other 
experiments were run on different sets of situations (up to one 
hundred situation models). Our goal was to characterize the 
pract ical " b a n d w i d t h " of the proposed a lgor i thms and 
implementation: up to which frequency of events the system 
is able to follow-up without accumulating delays. 

The following figure summarizes the system performances 
for a set of 80 situation models, each involving about 10 event 
patterns and as many constraints, 2 or 3 of which referring to 
the context. Those were abstract but fairly complex situation 
models, programmed for the purpose of testing different 
schemes of tempora l const ra in t lat t ices, and hav ing a 
significant overlapping in terms of common event patterns (a 
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total of 400 event patterns were used). We generated 100 
scenarios, each corresponding to a sequence of 3000 events 
meaningfull with respect to temporal constraints of situation 
models. For each scenario, we ran the recognition system and 
recorded the processing time for each event. From that, we 
computed the corresponding response time to an event, as a 
function of a variable frequency of events, taking into account 
cumulated delays from one event to the next and the time lost 
in waiting for an event. 

dynamic environment. We arc working toward a confirmation 
of these results on more complex industrial applications for 
alarm filtering in an oil plant and for process monitoring of a 
gas turbine. 

In conclusion, this paper describes an innovative situation 
recogn i t ion system, based on tempora l const ra in t 
propagation. The proposed representation has been chosen 
such as to keep the complex i ty reasonable for on- l ine 
processing, while maintaining a sufficient expressiveness for 
practical applications. The algorithms rely on extended pre-
processing and carefully designed data structures, they exhibit 
good performances, compatible wi th demanding applications. 
Overa l l , the proposed system prov ides in te res t ing 
functionalities such as deduction of events on the basis of 
temporal evolutions recognized on the fly, forecast of expected 
events and focus of attention. 

Our system has been tested in live experiments of the 
SKIDS perception machine. To our knowledge it is the first 
time that a perception system integrates explicitly temporal 
reasonning. 

Ou r next goal is to extend the proposed s i tua t ion 
recognition system into a situation assessment system. For 
that several additional functionalities are required: 

• Persistence maintenance of database through domain 
axioms and models of change to allow a complete deduction 
of non-observable events; notice that this is partially handled 
by our system through the possible generation of an event 
when a situation is recognized; 

• Sensory data interpretation is necessarily hypothetical, 
events and situations should be as well. A situation assessment 
system must be able to backtrack and manage uncertainty, as 
well as hypothetical reasoning. 
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Furthermore we plan to fully investigate the terms of the 
t rade-o f f beteen event forecast ing and propagat ion 
postponing, and solve it dynamically and opportunistically. 
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