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Abs t rac t 
I describe several computational complexity 
results for planning, some of which identify 
tractable planning problems. The model of 
planning, called "propositional planning," is 
simple—conditions within operators are literals 
with no variables allowed. The different plan­
ning problems are defined by different restric-
tions on the preconditions and postconditions 
of operators. The main results are: Proposi­
t ional planning is PSPACE-complete, even if 
operators are restricted to two positive (non-
negated) preconditions and two postconditions, 
or if operators are restricted to one postcondi­
t ion (wi th any number of preconditions). It 
is NP-complete if operators are restricted to 
positive postconditions, even if operators are 
restricted to one precondition and one posi­
tive postcondition. It is tractable in a few re­
stricted cases, one of which is if each opera­
tor is restricted to positive preconditions and 
one postcondition. The blocks-world problem, 
slightly modified, is a subproblem of this re­
stricted planning problem. 

1 I n t r o d u c t i o n 
If the relationship between intelligence and computation 
is taken seriously, then intelligence cannot be explained 
by intractable theories because no intelligent creature 
has the time to perform intractable computations. Nor 
can intractable theories provide any guarantees about 
the performance of engineered systems. Presumably, 
robots don' t have the time to perform intractable com­
putations either. 

Of course, heuristic theories are a valid approach if 
partial or approximate solutions are acceptable. How­
ever, my purpose is not to consider the relative merits of 
heuristic theories and tractable theories. Instead, I shall 
focus on formulat ing tractable planning problems. 

Planning is the reasoning task of finding a sequence of 
operators that achieve a goal from a given ini t ial state. 

This research has been supported in part by DARPA/ 
AFOSR contract F4962O-89-C-0110 and AFOSR grant 89-
0250. 

It is well-known that planning is intractable in general, 
and that several obstacles stand in the way [Chapman. 
1987]. However, there are few results that provide clear 
dividing lines between tractable and in tractable plan-
ning. Below, I clarify a few of these dividing lines by 
analyzing the computational complexity of a planning 
problem and a variety of restricted versions, some of 
which are tractable. 

The model of planning, called "propositional plan-
ning," is impoverished compared to working planners. 
It is intended to be a tool for theoretical analysis rather 
than programming convenience. Preconditions and post-
conditions of operators are l imited to being literals, i.e., 
letters or their negations. An init ial state then can be 
represented as a finite set of letters, indicating that the 
corresponding conditions are init ial ly true, and that all 
other relevant conditions are ini t ial ly false. A goal is 
represented by two sets of conditions, i.e., the goal is to 
make the first set of conditions true and the other set 
false. For convenience, these are called positive and neg­
ative goals, respectively. Operators in this model do not 
have any variables or indirect side effects. 

Different planning problems can be defined by dif­
ferent constraints on the number and kind of pre- and 
postconditions. Figure 1 illustrates the results, showing 
which planning problems are PSPACE-complete, NP-
hard (but in PSPACE), NP-complete, and polynomial.1 

These results can be summarized as follows: 

Propositional planning is PSPACE-complete even if 
each operator is l imited to one postcondition (wi th 
any number of preconditions). 

Propositional planning is PSPACE-complete even 
if each operator is l imited to two positive (non-
negated) preconditions and two postconditions. 

It is NP-hard if each operator is restricted to one 
positive precondition and two postconditions. 

It is NP-complete if operators are restricted to pos-
i t ive postconditions, even if operators are restricted 
to one precondition and one positive postcondition. 

1A problem is in PSPACE if it can be solved in polynomial 
space. As is customary, it is assumed that PSPACE-complete 
problems are harder than NP-complete problems, which in 
turn are harder than polynomial problems. However, even 
P = PSPACE is not yet proven. 
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It is polynomial if each operator is restricted to 
positive preconditions and one postcondition. The 
blocks-world problem, slightly modified, is a sub­
class of this restricted planning problem. 

It is polynomial if each operator has one precon­
dit ion and if the number of goals is bounded by a 
constant, 

It is polynomial if each operator is restricted to no 
preconditions. 

One addit ional box in the figure identifies a commonality 
between four of the problems.2 

The remainder of this paper is organized as follows. 
First, I describe previous results on the complexity of 
planning. Then, propositional planning is defined. Next, 
I demonstrate the complexity results and show how the 
blocks world is covered by one of the results. Finally, 
I discuss the impact of these results on the search for 
tractable planning. 

2 Previous Results 
The literature on planning is voluminous, and no at-
tempt to properly survey the planning literature is at-
tempted here. Instead, the reader is referred to Allen et 
al. [1990] and Hendler et al. [1990]. Despite the large lit­
erature, results on computational complexity are sparse. 
In tu rn , I discuss previous results from Dean and Boddy 
[19871, Korf [1987], and Chapman [1987]. 

Dean and Boddy [1987] analyze the complexity of tem­
poral projection—given a part ial ordering of events and 
causal rules triggered by events, determine what condi­
tions must be true after each event. Their formalization 
of temporal projection shares many features with plan­
ning, e.g., their causal rules contain antecedent condi­
tions (preconditions) and added and deleted conditions 
(postconditions). In fact, the notation for propositional 
planning is mostly borrowed from Dean and Boddy. 
However, they only consider problems of prediction in 
which a part ial ordering of events is given, whereas the 
equivalent planning problem would be to find some or 
dering of any set of events that achieves some set of 
conditions. 

Korf (1987) considers how various global properties 
of planning problems (e.g., serializable subgoals, opera­
tor decomposability, abstraction) affect the complexity 
of using problem space search to find plans. In con 
trast, J focus exclusively on local properties of operators. 
However, except for K o r f s own analysis of operator de­
composability [Korf, 1985], neither he nor I describe the 
relationship from these properties of planning problems 
to the properties of operators. Clearly, this is a "gap" 
that future work should address. 

2The following are other results not judged to be as in­
teresting, but arc included here for completeness. Proposi­
tional planning is NP-complete if each operator is restricted 
to positive preconditions and negative postconditions, even 
if restricted to one positive precondition and two negative 
postconditions. It is polynomial in the previous cases if the 
number of goals is bounded by a constant. It is polynomial 
if each operator is restricted to positive preconditions and 
positive postconditions. 

Figure 1; Complexity Results for Hierarchy of Proposi­
tional Planning Problems 

Perhaps the most important complexity results for 
planning are due to Chapman's analysis of his planner 
TWEAK 'Chapman, 1987!. Because virtually all other 
planners are as expressive as TWEAK, his results have 
wide applicability, T W E A K ' S representation includes the 
following features. The preconditions and postconditions 
of an operator schema are finite sets of "propositions," A 
proposition is represented by a tuple of elements, which 
may be constants or variables, and can be negated. A 
postcondition of an operator can contain variables not 
specified by any precondition of the operator, which in 
effect allows creation of new constants. 

Chapman proved that planning is undecidable and so 
clearly demonstrated the difficulty of planning in gen­
eral, but it is not obvious what features of T W E A K ' S 

representation are to blame for the complexity. What 
happens to the complexity, for example, if postcoiidi* 
tions cannot introduce new variables? What happens if 
the size of states are bounded for any given instance of a 
planning problem? Are there any interesting restricted 
planning problems that are tractable? By considering a 
model of planning with considerably fewer features, the 
following analysis begins to address these questions. 

Bylander 275 



In essence, any operator can be applied to a state, 
but only has an effect if its preconditions are satisfied. If 
its preconditions are satisfied, its positive postconditions 
are added and its negative postconditions are deleted, 
cf. [Fikes and Nilsson, 1971]. An operator can appear 
multiple times in a sequence of operators. 

A finite sequence of operators (0 1 , 0 2 , . . . , on) is a 
solution to an instance of prepositional planning if 
Result(I, (o1, 0 2 , . . . , on)) is a goal state. 

An instance of a propositional planning problem is sat-
tsfiable if it has a solution. PLANSAT is defined as the 
decision problem of determining whether an instance of 
propositional planning is satisfiable. Below, the compu­
tational complexity of PLANSAT and restricted versions 
of P L A N S A T are demonstrated. 

To show how a planning instance can be modeled by 
propositional planning, consider the Sussman anomaly. 
In this blocks-world instance, there are three blocks 4, 
B, and C. Ini t ial ly C is on A, A is on the table, and B 
is on the table. The goal is to have A on B, B on C, 
and C on the table. Only one block at a time can be 
moved. The conditions, in i t ia l state, and goals can be 
represented as follows: 

Tha t is, A can be stacked on B if nothing is on top of A 
or B. The result is that A wil l be on B and not on top 
of any other block. 

Obviously, any blocks-world instance can be easily 
modeled as propositional planning. More generally, any 
T W E A K planning instance can be polynomially reduced 
to a propositional planning instance if the ini t ia l state is 
finite, if each variable in an operator schema is l imited 
to a polynomial number of values, and if each opera-
tor schema is l imited to a constant number of variables. 
An exponential number of values for a variable would 
lead to an exponential number of propositional planning 
conditions. A polynomial number of variables in an op-
erator schema would lead to an exponential number of 
propositional planning operators. 

4 C o m p l e x i t y Resul ts 

This section describes and demonstrates our complexity 
results for propositional planning. Due to space l imi­
tations, some of the proofs are overly abbreviated. As 
mentioned above, PLANSAT is the decision problem of 
determining whether an instance of propositional plan­
ning is satisfiable. 

4.1 P S P A C E - c o m p l e t e P r o p o s i t i o n a l P l a n n i n g 

T h e o r e m 1 PLANSAT is PSPACE-complete. 

Proof: PLANSAT is in N PS PACE because a sequence 
of operators can be nondeterministically chosen, and the 
size of a state is bounded by the number of conditions. 
That is, if there are n conditions and there is a solution, 
then the length of the smallest solution path must be 
less than 2 n . Any solution of length 2n or larger must 
have "loops," i.e., there must be some state that it visits 
twice. Such loops can be removed, resulting in a solution 
of length less than 2n. Hence, no more than 2n nonde-
terministic choices are required. Because NPSPACE = 
PSPACE, P L A N S A T is also in PSPACE. 

Tur ing machines whose space is polynomially bounded 
can be polynomially reduced to PLANSAT. The 
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The first operator "packs" all the information about the 
current position into a single condition. The second op­
erator changes the symbol. The third operator moves to 
the next position and the new state. To handle boundary 
conditions, encode no operators for at 1q and atn,q. 

A Tur ing machine accepts an input if it is in an ac­
cepting state and no transition can be made from the 
current symbol. For each such case, an operator to add 
accept can be encoded, 

Because there are a polynomial number of ( i , g , x) 
combinations, there wil l be a polynomial number of con-
ditions and operators. Thus, any PSPACE Turing ma­
chine wi th its input can be polynomially reduced to a 
propositional planning instance. □ 

Note that none of the above operators requires more 
than two positive preconditions and two postconditions. 
This leads to the following corollary. 

C o r o l l a r y 2 PLANS AT with operators restricted to 
two positive preconditions and two postconditions is 
PSPACE-complete. 

Using the same conditions as encoded above, the fol-
lowing theorem can be demonstrated: 

T h e o r e m 3 PLANS AT with operators restricted to one 
postcondition (allowing any number of preconditions) is 
PSPACE-complete. 

Proof: Let Doi = { do u , v , w | u = i } . That is, Doi is the 
set of al l do conditions whose first subscript is i. Then 
the Tur ing machine transition described above can be 
encoded using the following six operators: 

In essence, two operators replace each operator in the 
previous reduction. The structure of the operators en­
sures that they must be performed in sequence. The key 
part is the first operator whose negative preconditions 
include all do conditions whose first subscript is i — 1 0r 
i+ 1. This ensures that the do condition associated with 
the previous transition has been removed (see the sixth 
operator) before the next Turing machine transition he-
gins. This is why any number of preconditions may be 
necessary. D 

4.2 N P - c o m p l e t e a n d N P - h a r d P r o p o s i t i o n a l 
P l a n n i n g 

Let PLANSAT+ be PLANSAT with operators restricted 
to positive postconditions. 

T h e o r e m 4 PLANS AT+ is NP-complete. 
Proof: PLANSAT-f- operators can never negate a condi­
t ion, so a previous state is always a subset of succeed­
ing states. Also, operators within an operator sequence 
that have no effect can always be removed. Hence, if a 
solution exists, the length of the smallest solution can 
be no longer than the number of conditions. Thus, 
P L A N S A T + is in NP because only a linear number of 
nondeterministic choices is required. 

3SAT can be polynomially reduced to P L A N S A T + . 
3SAT is the problem of satisfying a formula in preposi-
tional calculus in conjunctive normal form, in which each 
clause has at most three factors. 

AT 
iin 
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Because each operator has only positive preconditions 
and affects only one condit ion, and because the positive 
goals are true of S, the only thing remaining is to make 
all the negative goals false, i.e., to achieve S\N. There 
is no reason to make other conditions false. 

Let Turnon then be a subroutine that inputs a set of 
conditions X and returns the maximal state S V \ X 
that can be reached from Z. Let Tumoff be another 
subroutine that inputs a set of conditions 5 and returns 
the maximal state S' S such that S\N can be reached 
from S*, It can be shown that each subroutine is poly­
nomial, and that each maximal state is unique. 

The following algori thm determines if a solution exists 
by i terating between Turnon and Tumoff: 

It can be shown that every condition added to A' is a 
condition that, if true, prevents the goal state from being 
reached. Since X grows monotonically, the algori thm is 
polynomial. O 

T h e o r e m 8 PLANSAT with k goals and operators re­
stricted to one precondition is polynomial. 

Proof: This is the algori thm. Construct all possible com-
binations of k conditions. Mark those combinations true 
of the Init ial state. For each marked combination, mark 
any combinations that can be reached from that combi­
nation via an operator. After all possible combinations 
are marked, if the combination of conditions correspond­
ing to the goal is marked then accept, otherwise reject. 

This is why the algorithm works. Consider a solution 
plan and any one of the k goals. To reach this goal, 
there must be a "chain" of operators leading from one 
condition in the ini t ia l state through one condition at 
a time unti l the goal is reached. Consider now the k 
chains of operators for the k goals. Consider also any 
state reached during the execution of the solution plan. 
This state wil l correspond to k nodes on the k chains. 
Any state that satisfies the k conditions corresponding 
to those nodes can reach the goal state. Since this is true 
for all states reached by the solution plan, it must be the 
case that only k conditions at a time need to be consid­
ered to determine what combinations of k conditions can 
be reached.  

Note that if operators can have more than one precon­
di t ion, then a conjunctive goal problem can be converted 
into a single goal problem by adding operators that map 
the original set of goals onto a single "supergoal." 

T h e o r e m 9 PLANSAT with operators restricted to no 
preconditions is polynomial. 

Proof: It is possible to work backwards from the goals. 
First look for operators that do not clobber any of the 
goals. Goals that are achieved by these operators can be 
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That is, Ui = true can be selected only if ui - false is 
not, and vice versa. In this fashion, only one of u i = true 
and U{ — false can be selected. 

For each case where a clause Cj contains a variable ui, 
the first operator below is needed; for a negated variable 

the second operator below is needed: 

Clearly, every Cj can be made true if and only if a 
satisfying assignment can be found. Thus P L A N S A T + 
is NP-hard. Since P L A N S A T + is also in NP, it follows 
that P L A N S A T + is NP-complete. D 

Note that each operator above only requires one pre­
condition and one positive postcondition. This leads to 
the fol lowing corollary. 

C o r o l l a r y 5 PLANSAT+ with operators restricted to 
one precondition and one postcondition is NP-complete. 

There is one addit ional intractabi l i ty result. 

T h e o r e m 6 PLANSAT with operators restricted to one 
positive precondition and two postconditions is NP-hard, 

Proof: This can be shown by reduction from 3SAT, sim­
ilar to that for Theorem 4. One addit ional type of con­
di t ion is needed: 

Ui The value of Ui is unknown. 

The in i t ia l state is {U1,..., Um}. 
Now all that is needed are different operators for se­

lecting an assignment. 

Again, both ui = true and Ui — false cannot be selected. 
The same operators for clauses as in the proof for The­

orem 4 can be used.  

4.3 P o l y n o m i a l P r o p o s i t i o n a l P l a n n i n g 

T h e o r e m 7 PLANSAT with operators restricted to pos-
itive preconditions and one postcondition is polynomial. 

Proof Outline: The diff iculty is that some negative goals 
might need to be temporari ly true to make some posi­
tive goals true or some negative goals false. Fortunately, 
because of the restrictions on the operators, it can be 
shown that any plan can be transformed to another plan 
that first makes conditions true and then makes condi­
tions false. Thus, if there is a solution, there is a state 
5 that meets the following conditions: 

S can be reached from the ini t ia l state X via oper­
ators wi th positive postconditions; 

the positive goals M are a subset of S; and 

S \ N, i.e., a state that satisfies the negative goals, 
can be reached from 5 via operators wi th negative 
postconditions. 



removed from consideration. These operators can also 
be removed from consideration. Then look for operators 
that do not clobber the remaining goals, and remove 
from consideration these operators and the goals they 
achieve. This can be repeated unt i l the remaining goals 
are true of the ini t ia l state (accept) or unti l no more 
appropriate operators can be found (reject).  

4.4 T h e B l o c k s W o r l d 

Theorem 7 can be used to show that the blocks-world 
problem is tractable. 

T h e o r e m 10 The blocks-world problem can be solved 
using operators restricted to positive preconditions and 
one postcondition. 

Proof: Note that stacking one block on another can be 
accomplished by first moving the former block on the 
table and then moving it on top of the latter block. Thus, 
solving any blocks-world instance only requires operators 
to move a block to the table and to move a block from 
the table. 

Let {B1, B2,......,Bn} be the blocks in an instance of 
the blocks-world problem. The conditions can be en-
coded as follows: 

offi,j Bi is not on top of Bj. 

If Bi is on the table, then all off i k will be true. If Bi 

has a clear top, then all offki wil l be true. If Bi is on 
top of Bj, then all off i ,k except for offi,j wil l be true. 

For each B i and Bj, i j, the operator to move B i 

from on top of Bj to the table can be encoded as: 

That is, if nothing is on Bi and Bj, and if B i is not 
on top of any other block, then when this operator is 
applied, the result is that Bi wil l be on top of Bj. 

Since there are only 0(n2) (i,j) combinations, oniy 
0(n2) conditions and operators are needed to encode a 
blocks-world instance. 

As required, all preconditions are positive and each 
operator has only one postcondition. Thus, Theorem 7, 
in a sense, explains why the blocks world is tractable.3 

3The algorithm for Theorem 7 corresponds to the unimag-
inative, but robust, strategy of moving all the blocks to the 
table, which makes all the conditions positive, and then form-
ing the stacks from the table on up. 

5 Remarks 
Planning is intractable even if the size of states are 
bounded and operators have no variables. Merely allow­
ing two preconditions and two postconditions for opera­
tors gives rise to an extremely hard problem, However, 
operators must have preconditions, postconditions, and 
apparently many more "features'1 to implement any in­
teresting domain [Chapman, 1987; Hendler et al., 1990], 
While additional features might be good for making a 
planner more useful as a programming tool, generality 
has its downside—tractability cannot be guaranteed un­
less there are sufficient restrictions on the operators. 

Some restricted propositional planning problems are 
tractable. Restricting operators to positive precondi­
tions and one postcondition explains the tractabil ity of 
the blocks-world. Restricting operators to one precondi­
t ion and l imit ing the number of goals is the only inter­
esting case where restricting the number of goals leads 
to tractabil i ty. Restricting operators to no preconditions 
shows that planning is tractable if preconditions can be 
ignored, e.g., if preconditions of operators can be easily 
satisfied without clobbering already achieved goals. 

However, many, if not most, planning domains vio­
late these categories. Thus, these domains cannot be 
shown to be tractable based on restrictions on the local 
properties of operators. As mentioned in the section on 
previous research, Korf [ 1987] lists several global prop­
erties of planning problems that lead to efficient search 
for plans. Understanding how these properties are real­
ized as restrictions on the set of operators as a whole is 
a promising research approach. 

Unfortunately, the prospects for a single domain-
independent planning algorithm are pessimistic. The 
three tractable problems above appear to require quite 
different algorithms, and many other tractable planning 
problems are yet to be discovered. This indicates that 
it will be more frui t fu l to adopt different algorithms for 
different types of planning problems. 
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