
Concept Formation by Incremental Conceptual Clustering 

Mirsad Hadzikadic David Y. Y. Yun 
The University of North Carolina Southern Methodist University 
Department of Computer Science Dept. of Computer Science and Engineering 

Charlotte, NC 28223 Dallas, TX 75275 

Abstract 

Incremental conceptual clustering is an impor­
tant area of machine learning. It is concerned 
with summarizing data in a form of concept 
hierarchies, which will eventually ease the 
problem of knowledge acquisition for 
knowledge-based systems. In this paper we 
have described INC, a program that generates a 
hierarchy of concept descriptions incremen-
tally. INC searches a space of classification 
hierarchies in both top-down and bottom-up 
fashion. The system was evaluated along four 
dimensions and tested in two domains: univer­
sities and countries. 

1. Introduction 
A system described in this paper, INC (INcremental 

Conceptual clustering system), learns from observation by 
recognizing regularities among events (objects, instances, 
examples, etc.) and organizing them into a hierarchy of 
concepts. Lebowitz [1987] described learning from obser­
vation as a task that is important in domains where events 
arc not pre-classified, but where one still wishes to detect 
general rules and intelligently organize events. Michalski 
and Stepp [1983] defined conceptual clustering as an 
important form of learning from observation, in which a 
configuration of events forms a class only if it is describable 
by a concept from a predefined concept class. A perfor­
mance element then uses such concept descriptions to make 
inferences about new events based on partial information. 

INC classifies events in the order of their appearance, 
thus building its knowledge base incrementally. It handles 
events in large numbers. In fact, the larger the number of 
events the better the hierarchy of concepts. In addition, 
INC's generalizations are pragmatic - they do not perfectly 
describe all the instances they cover. The concept represen­
tation mechanism implemented in INC is based on research 
done by Rosch and Mervis [1975], who have hypothesized 
that the members of categories (classes) which are con­
sidered most prototypical are those with the most attributes 
in common with other members of the category and the 

least attributes in common with other categories. 

This work was mainly influenced by work of Michal-
ski and Stepp [1983, 1986] and Fisher and Langley [1985] 
in conceptual clustering, similar incremental conceptual 
clustering systems COBWEB [Fisher, 1987], UNIMEM 
[Lebowitz, 1987], and CYRUS [Kolodner, 1984], and the 
system developed by Hadzikadic and Yun [1987,1988]. 

2. System Description 
Input to INC is a series of events, given to the system 

one at a time. The system's task is to recognize patterns of 
similarity among events (if they exist) and represent their 
generalizations in a hierarchy of non-disjoint concept 
descriptions (although each event is stored under one sub­
class only). 

2.1. Knowledge Representation 
The evidence that prototypes play a critical role in 

human categorization is compelling. Rosch and Mervis 
[1975] have demonstrated the existence of prototypes for 
both natural categories (like colors and animals) and 
artificial categories (like dot patterns and schematic draw­
ings). INC uses a schema formalism to implement prototyp­
ical representation of events and concepts. A schema is a 
declarative structure that organizes pieces of knowledge, 
related to the same entity, into a unitary whole. A template 
of the schema structure is given in table 1. 

The rel (relevance) parameter represents the fre­
quency of attribute-value pairs found in members' descrip­
tions. At this point, the system supports both nominal and 
structured attributes. The strength parameter reflects how 
closely an event/class resembles its superordinate class, i.e., 
to what degree the event/class matches a prototypical 
representation of the concept. 

2.1.1. Computing the Relevance Parameter 
All attribute-value pairs from an event description 

participate in the concept description, once the class 
membership is determined. The more attribute-value pairs 
in the class description, the more general the description, 
for an event has more attribute-value combinations to 

Hadzikadic and Yun 831 



"choose" from (match) to score above the predefined thres­
hold and claim membership. However, the relevance of 
attribute-value pairs in class descriptions is generally lower 
than the corresponding relevance in event descriptions. 
Thus, fewer attribute-value pairs will score above the thres­
hold and be included in calculating the strength parameter. 
The relevance (rel) of an attribute-value pair (att.val) in a 
description of a class (c) is computed as the sum of 
relevances of the corresponding attribute-value pairs in 
member descriptions (ei,), divided by the total number of 
members (n), i.e. (equation 1): 

where m < n stands for the number of events ei e c with the 
property (att.val). 

To improve the efficiency of the process, attribute-
value pairs with a relevance below the threshold are tem­
porarily dropped from a concept description (as long as 
their relevances remain low), since they do not contribute 
significantly to the prototypicality effect. Attribute-value 
pairs with a relevance of 1.0 are true of all members of the 
class, thus effectively implementing the inheritance pro­
perty. 

2.1.2. Computing the Strength Parameter 

Once a class description has been generated and 
corresponding relevances calculated, the system can 
proceed to receive another event In order to decide 
whether to create a new class or place the event under one 
of the existing generalizations, INC computes the degree of 
class membership (similarity) with all top-level classes. 
The system first sums up the minimum of relevances for the 
attributes having the same value in descriptions of both the 
class (c) and the event (e). The resulting sum is then 
divided by the number of attribute-value pairs in the class 
description (n). This process is summarized in the follow­
ing equation (2): 

the class c and the event e, and rel(x, atti val) represents 
the relevance of the (attival) pair in x. 

To determine which (if any) of the existing top-level 
prototypical class descriptions D fa) the new event e resem­
bles the most, the system will compute link ci, e) for 
i =1, • • •, n, where n stands for the number of classes under 
consideration. The event then belongs to the class which 
both maximizes the value of link and is greater than the 
prespecified threshold (0.5 in our case). The corresponding 
class description is subsequently updated according to 
equation 1. This process is then repeated for the children of 
a chosen class etc., until the process reaches the leaves of 
the tree. 

2.2. Operators 

Similarly to COBWEB [Fisher, 1987], there are four 
operators used by INC to generate a hierarchy of concepts: 

• Place - place the event into an existing class. First 
determine the best host and then calculate the new 
relevances of the attribute-value pairs in the class 
description according to equation 1. 

• Create - create a new class. A description of the new 
class is exactly the same as a description of the event 

• Merge - merge two or more classes into one. This 
operator is applied when there is more than one 'best' 
host for the event A new class is introduced which 
replaces all of the best hosts. The participating classes 
(best hosts) are stored as subclasses of the newly 
created class. 

• Split - split the class into two or more classes. Where 
there is no good host for a given event, INC does not 
create a new class automatically. It first takes the 
best out of no-good hosts and evaluates its subclasses. 
If it finds a good host(s) among them, it replaces the 
best of no-good hosts with its subclasses, and the pro­
cess continues. 

2.3. Algorithm 

A control strategy implemented in INC is summar­
ized in the following procedure. 

Procedure INC(Event, Root) 
1. Update a description of Root with a description of Event 
2. Compute the similarity between Event and Root's chil­
dren. 
3. IF a single best host is found, 

THEN update its description and call INC(Event, 
BestHost). 
ELSE 

IF more than one best host is found, THEN 
(a) merge the best hosts and Event, 
(b) update the description of the root of the newly 
generated subtree, and 
(c) compute the strength of the hierarchical links. 

832 Machine Learning 



ELSE 
IF a good host is not found, THEN 

(a) evaluate (compute the similarity with) children 
of the best of no-good nodes, and 
(b) find the best host(s). 
IF found, THEN 

(a) split the best of no-good nodes into 2 classes: 
(1) one that contains Event and the best of no-
good nodes' children similar to Event, and (2) a 
class that contains all other children of the best 
of no-good nodes; 
(b) update the class descriptions, and 
(c) compute the strength of hierarchical links. 

ELSE 
(a) create a new singleton class for Event, and 
(b) compute the strength of the hierarchical link. 

Given an event and a (root of) hierarchy that summar­
izes previously seen events, INC first updates a description 
of the root with a description of the event, and then com­
putes the similarity (according to equation 2) between the 
event and all the children (subclasses) of the root. If there is 
only one class (best host) similar to the event (scoring 
above the s threshold - set to 0.5), then INC updates the best 
host's description and invokes the same procedure recur­
sively, with the root being replaced by the best host. In gen­
eral, the system wil l try to "push" an event down the tree as 
far as possible in order to place it in the most specific sub­
class. 

If there is more than one best host for the event, INC 
replaces them (along with the event) with a new generalized 
class, generates its description, creates the links (pointers) 
from the best hosts as well as the event to the newly gen­
erated class and computes their strengths, thus effectively 
merging them into the same class. When discovering best 
hosts, the system requires that only the most similar class 
"scores" above the s threshold. A l l other best hosts need to 
be within e % (e is another threshold in the system) of the 
most similar class, with respect to its degree of similarity to 
the event. We have been experimenting with several values 
for the e threshold in 0-40 range. The optimal value depends 
on the values assigned to other thresholds in the system. 
The value we used most often for the e threshold was 10 
(actually implemented as 0.1). 

However, if a good host is not found, then the system 
computes the similarity between the event and the children 
of the best of "no-good" nodes and tries again to establish 
the best host(s). If the effort is successful, then the best of 
no-good nodes is split into two classes. First class wi l l con­
tain the event and the best of no-good nodes' children simi­
lar (enough) to the event Second class wi l l be comprised of 
the rest of the children of the best of no-good nodes. The 
class descriptions are then updated and the strength of the 
hierarchical links computed. 

Finally, if a best host was still not found, then INC 
creates a new singleton class (for the event) and computes 
the strength of the link to the superordinate class. 

In general, INC carries out a hill-climbing search 
through a space of hierarchical classification schemes. The 
system uses operators that let it search in both directions 
(place and create vs. merge and split). The merge and split 
operators provide the system with a form of backtracking to 
help it "correct" some of the earlier mistakes. The events are 
stored under generalizations that describe them best 
Although an event can be stored under only one generaliza­
tion, it may match descriptions of two or more concepts, 
thus introducing a possibility for multiple membership. The 
resulting concept hierarchy is used by the performance sys­
tem to make inferences about new, previously unseen 
events. 

3. Experiments 
INC was implemented in Common Lisp and 

evaluated on SUN workstations. It has been tested in two 
domains: countries and universities. The domain of univer­
sities wi l l be described in this paper in greater detail. The 
following attributes were used in descriptions of 45 univer­
sities1: state, location, control, no-of-students-thous, 
male/female, student/faculty, sat-verbal, sat-math, 
expenses-thous, percent-financial-aid, no-applicant-thous, 
percent-admittance, percent-enrolled, academics-env, 
social-env, quality-of-life, and academic-emphasis. Not all 
attributes had to be defined in an event description. The 
relevance of an attribute-value pair in the event description 
was presumed to be 1.0, which was consistent with our 
assumption that an event represents a singleton class. 

4. Evaluating the System 
We have used four dimensions to evaluate a perfor­

mance of the system. The first dimension covers the effect 
of varying the values of the three thresholds defined in the 
system: $, e and d thresholds. Different distributions of 
threshold values yields (somewhat) different concept hierar­
chies. 

The second dimension is defined as the time needed 
to insert a new event into an existing hierarchy. It is 
evaluated with respect to the number of instances presented 
to the system prior to the current event. 

The third dimension used to evaluate the system's 
performance is defined as the time needed to retrieve a 
"correct" concept for a given event, as well as the percen­
tage of correct retrievals with respect to the number of total 
attempts. 

Finally, the forth dimension is defined as the percen­
tage of correct classifications of "unseen" events given an 
existing hierarchy of concepts, thus effectively implement-

1 Provided by M. Lebowilz. 

Hadzikadic and Yun 833 



ing a performance component of the system. 

4.1. Varying the Threshold Values 

Initially, we adopted the following values for the 
three thresholds defined in the system: 
s =0.5, e =0.1, d =0.2. It meant that: 

(a) In order to be similar to a concept, an event had to 
match at least half of the attribute-value pairs used in 
the concept description (or any combination of them 
resulting in a cumulative score of at least 0.5, 1.0 
being a maximum) => s threshold. 

(b) An event was declared similar to more than one con­
cept if the degrees of similarity between those con­
cepts and the event did not differ from the highest 
degree of similarity (max), achieved between the 
event and one of the concepts under consideration, 
for more than 10% of max => e threshold. 

(c) Attribute-value pairs with a relevance below 0.2 in a 
concept description were not taken into consideration 
when computing the degree of similarity between an 
event and the concept => d threshold. However, these 
attribute-value pairs were considered during the pro­
cess of updating the concept description. 

In order to evaluate the effect of varying threshold 
values on the resulting classification, we fixed the value for 
s threshold and vary the s and d thresholds in 0-0.4 range. 
Two interesting conclusions were drawn from this experi­
ment* 

(1) Distributions {s =0.5, e =0.25, d =0.1} and 
{s =0.5, e =0.4, d =0.07 have produced identical 
hierarchies, although they have differed in the amount 
of time needed to complete the classification process. 
It seems that changes in the value of e threshold can 
compensate for some changes in d threshold values. 
At the same time, those hierarchies were the simplest 
ones of all - they contained fewest number of 
classes. 

(2) For some values of e threshold (e.g., 0.1), varying d 
threshold values did not make any difference. An 
explanation may be that if the value of e threshold is 
conservative, then infrequent attribute-value pairs do 
not contribute significantly to a resulting hierarchy. 
The situation, however, changed after we relaxed the 
value of e threshold to 0.25 or 0.4. 

4.2. Efficiency Considerations 
A representative of the hierarchies containing the 

fewest number of classes (9) was then evaluated in terms of 
its computational efficiency. The results are summarized in 
column 1 of table 2. Column E defines a position of an 
event in a sequence of events. The headings of other 
columns in the table include information about the values 
for the s, e, and d thresholds, respectively. The values pro­

The values given in column 1 are obtained as a result 
of considering all attribute-value pairs of all concepts on the 
path to the most specific subclass similar to an event Pairs 
with a relevance lower than d threshold are evaluated but 
not taken into consideration when computing the degree of 
similarity. To determine the rate of speed-up achieved by 
completely removing attribute-value pairs with a relevance 
below d threshold from a concept description, we have 
modified the system accordingly and tested it for the same 
threshold values. The results of the testing are provided in 
column 2 of table 2. It is obvious that the gain in efficiency 
is significant However, the modified system will not per­
form well in situations where the external world is charac­
terized by constant changes and transitions. A more adap­
tive system may be warranted in such circumstances. 

Column 3 represents an example of a hierarchy with 
12 classes. That example proved to be the most efficient 
classification tree. In general, a larger number of classes 
means both fewer merge operations and shorter paths, 
which improves the efficiency of the classification hierar­
chy. Consequently, there is a trade-off between two con­
tradictory requirements: a smaller number of classes vs. 
reduced processing time. 

4.3. Concept retrieval 
The third and fourth dimensions are introduced to 

evaluate both the quality and the efficiency of generated 
concept descriptions. This section is concerned with 
evaluating the quality of concept descriptions through the 
number of correct retrievals, and evaluating the efficiency 
of a concept hierarchy through the time needed to retrieve 
given events/concepts. 

The two best hierarchies from the previous section 
were taken as a basis for this phase of the evaluation pro­
cess, and consequently compared according to the obtained 
results. We used all the events that participated in generat­
ing the two hierarchies to retrieve the most similar 

834 Machine Learning 



concept/event stored in the hierarchy. Ideally, we would 
like to see an event retrieve "itself. However, since the 
basis of our approach is a prototypical representation of 
concepts, other members of the class may change the con-
cept description significantly, thus causing the event under 
consideration to appear not so "prototypical" of the concept 
under which it is stored. That will prevent the system to 
retrieve the correct event/concept in certain situations. 
Also, it is possible that the system retrieves the correct con­
cept, but decides not to consider its instances if the degree 
of similarity between the event and the concept is below the 
threshold (0.5). The results of this phase of the evaluation 
process arc summarized in table 3. 

It is obvious that the {s=0.5, e=0.1, d=0.2} hierar­
chy consists of higher quality concept descriptions that 
summarize given events better than the other classification 
being evaluated. The 100% retrieval accuracy (vs. 65% for 
the other case, or 87% -- both correct instance and correct 
concept retrievals included) more than compensates for the 
16% increase in retrieval time (1038 vs. 1201 milliseconds). 

At this point, it is safe to conclude that our original 
evaluation criterion, which favors hierarchies with fewer 
classes, contradicts the criterion that favors concepts of 
higher quality. This introduces another trade-off which 
needs to be taken into consideration when implementing the 
system in a particular domain. 

4.4. Classifying Unseen Events 

Classifying unseen events is an inherently subjective 
procedure since the proper classification depends on the 
perception, goals, and relevant knowledge of the observer. 
To reduce this subjectiveness as much as possible, we have 
decided to introduce the following scenario: (a) take the 
best hierarchy generated so far as a referent hierarchy; (b) 
take at least half of the events that have participated in gen­
erating the referent classification and run the system again 
with those events as the input; (c) use the rest of the events 
(nonclassified ones) to retrieve the most similar 
instances/concepts; and (d) compare retrieved 
instances/concepts with the events' intended concepts, as 
defined by the referent hierarchy. 

The scenario outlined above was implemented in the 
following way: the {s =0.5, e=0.1, d=02} hierarchy was 
accepted as a referent classification, 26 events were used to 
generate a new hierarchy, and the other 20 events were used 
as unseen instances. We have again distinguished between 
two cases: retrieving a concept and retrieving an instance of 

a concept. Ideally, the system will retrieve a concept, given 
an event that is an instance of the concept. However, some­
times a concept has not been created, and the system will 
retrieve another event (a singleton class) most similar to the 
input event These cases arc potentially correct 
classifications since the retrieved event either belongs to the 
same concept as the input event (in the referent hierarchy) 
or it would have belonged to the same concept had there not 
been other events to alter the prototypical description of the 
concept before the retrieved event was presented to the sys­
tem. 

As a result, the system correctly classified 95% of the 
input events (50% correct and 45% potentially correct 
classifications), while misclassifying only 5% of them. 

5. Related Work 
Three incremental concept formation systems -

COBWEB [Fisher, 1987], UNIMEM [Lebowitz, 1987], and 
CYRUS [Kolodner, 1984] - have influenced our approach 
to conceptual clustering. COBWEB [Fisher, 1987] con­
structs a concept hierarchy from the top down to summarize 
instances described as sets of features. The system modifies 
its concept descriptions and hierarchy as it classifies each 
instance. COBWEB employs probabilistic representations 
and an explicit evaluation function (category utility) to 
determine optimal clusterings. UNIMEM [Lebowitz, 1987] 
is also an incremental conceptual clustering system. Its 
search through a space of hierarchies can be described as 
hill climbing. The system does not build its hierarchies in an 
entirely top-down or bottom-up fashion - it has operators 
for merging and deleting nodes and associated subtrees. 
The CYRUS system [Kolodner, 1984] makes use of domain 
knowledge to determine which elements of instances can 
best serve as discriminants among concepts, thus avoiding 
combinatorial explosions in retrieval and concept forma­
tion. 

INC differs from the three systems mentioned above 
in several aspects: knowledge representation formalism, 
type of attributes supported, definition of operators used by 
the search procedure, clustering evaluation mechanism, and 
similarity function. The naturalness, flexibility, and simpli­
city of both the knowledge representation formalism and 
similarity function provide INC with a powerful mechanism 
for dealing with incomplete and inconsistent event descrip­
tions: attributes and their values are not predefined, multiple 
values are allowed, some attributes may be missing, some 
incorrect values may be specified, etc. The relevance 
mechanism, similarity function, and control knowledge will 
eventually cause noisy attribute-value pairs to disappear 
from a concept description, as well as the "correct" pattern 
to emerge in the form of a cluster and its description. At the 
same time, the simplicity of computing the similarity func­
tion greatly improves the efficiency of the system. The 
efficiency can be increased even more by raising the value 
of d threshold. On the other hand, the greater the value of d 

Hadzikadic and Yun 835 



threshold, the lower the quality of the concept description. 
Consequently, there is a limit to the degree of improvement 
that can be achieved by manipulating the value of the thres­
hold. 

However, INC pays the price for this simplicity of the 
similarity function: descriptions of a class and its subc­
lasses significantly overlap, thus wasting a potentially 
significant amount of memory. This is especially true in the 
case of inherited properties (the ones with the relevance of 
1.0). 

6. Research Issues 
There are several important directions in which this 

work can be extended. Currently, we are working on incor­
porating a GDN-like structure (Goal Dependency Network 
[Stepp and Michalski, 1986]) into the system. Also, we are 
adding information about the context of the problem-
solving task as well. The information about a goal and a 
context of classification will help the system determine 
relevant attributes for discriminating among candidate con­
cepts, both in retrieval and clustering processes. The final 
result will be of higher quality and more useful to the per­
formance element. In addition, the goal and context infor­
mation may help the system determine the value of e thres­
hold. When crisp and well-specified classes are sought, the 
threshold value should be low and, vice versa, a high value 
of e threshold will encourage largely overlapping classes. 

A well-defined similarity function is a key to a suc­
cessful classification. The similarity function defined in this 
paper is a simple one, and certainly can be improved. Future 
research will pay considerable attention to that problem. 

People often generate non-disjoint concepts. 
Although somewhat imprecise, those concepts offer flexibil­
ity in dealing with a complex external world. INC creates 
non-disjoint concept descriptions (an event description can 
match several concept descriptions), but it stores an event 
under only one concept. However, INC can easily be 
updated to store multiple copies of an event when appropri­
ate by modifying the merge procedure. We are planning to 
explore and carefully evaluate this possibility as well. 

7. Conclusion 
Incremental, concept formation is an important area of 

machine learning. It is concerned with summarizing real-
world information in a form of concept hierarchies, which 
will eventually ease the problem of knowledge acquisition 
for knowledge-based systems. In this paper we have 
described INC, a program that generates a hierarchy of con­
cept descriptions incrementally. The system searches a 
space of classification hierarchies in both top-down and 
bottom-up fashion. We have evaluated INC along four 
dimensions: the effect of varying threshold values, the cost 
of inserting a new event into an existing hierarchy, the 
accuracy and cost of concept retrieval, and the success rate 

in classifying unseen events. The system was tested in two 
domains: countries and universities. We feel that INC 
represents a promising step toward systems that will be 
capable of constructing, maintaining, and refining a 
knowledge base automatically. 

Acknowledgments 
We thank M. Lebowitz for kindly supplying the 

experimental data used to evaluate the INC system. 

References 
[Fisher and Langley, 1985] Fisher, D. and Langley, P. 
Approaches to Conceptual Clustering. Proceedings of the 
9th IJCAI, 691-697, Los Angeles, CA, 1985. 

[Fisher, 1987] Fisher, D. Knowledge Acquisition Via Incre­
mental Conceptual Clustering. In Machine Learning, 2, 2, 
139-172,1987. 

[Hadzikadic, 1987] Hadzikadic, M. Concept Formation by 
Heuristic Classification. Doctoral Dissertation. Southern 
Methodist University, Dallas, 1987. 

[Hadzikadic and Yun, 1988] Hadzikadic, M. and Yun, D. Y. 
Y. Concept Formation by Goal-Driven, Context-Dependent 
Classification. Proceedings of the 3rd International Sympo­
sium on Methodologies for Intelligent Systems, 322-332, 
Torino, Italy, 1988. 

[Kolodner, 1984] Kolodner, J. L. Retrieval and Organiza­
tional Strategies in Conceptual Memory: A Computer 
Model. Lawrence Erlbaum Associates, Publishers, London, 
1984. 

[Lebowitz, 1987] Lebowitz, M. Experiments with Incre­
mental Concept Formation: UNIMEM. In Machine Learn­
ing, 2,2,103-138,1987. 

[Michalski and Stepp, 1983] Michalski, R. S., and Stepp, R. 
E. III. Learning From Observation: Conceptual Clustering. 
In Machine Learning: An Artificial Intelligence Approach, 
R. S. Michalski, J. G. Carbonell, and T M. Mitchell (Eds.), 
Morgan Kaufmann Publishes, Inc., Los Altos, CA, 1983. 

[Rosch and Mervis, 1975] Rosch, E. and Mervis, C. B. 
Family Resemblances: Studies in the Internal Structure of 
Categories. Cognitive Psychology 7 573-605,1975. 

[Stepp and Michalski, 1986] Stepp, R. E. I l l , and Michalski, 
R. S. Conceptual Clustering: Inventing Goal-Oriented 
Classifications of Structured Objects. In Machine Learning 
II: An Artificial Intelligence Approach, R. S. Michalski, J. 
G. Carbonell, and T. M. Mitchell (Eds.), Morgan Kaufmann 
Publishes, Inc., Los Altos, CA, 1986. 

836 Machine Learning 


