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A B S T R A C T 

T h e p rob lem of f inding a best exp lana t ion of a set of 
da ta has been a top ic of m u c h interest in A r t i f i c i a l I n t e l l i ­
gence. In th is paper we present an approach to th is p r o b l e m 
by hypothesis assembly. We present th is approach f o rma l l y 
so tha t we can examine the t ime comp lex i t y and correctness 
of the a lgo r i t hms . We then examine a system i m p l e m e n t e d 
using th is approach , w h i c h per fo rms red b lood a n t i b o d y 
iden t i f i ca t ion . We use th is d o m a i n to examine the r a m i ­
f icat ions of the assumpt ions of the f o r m a l model in a real 
wo r l d s i t ua t i on . We also br ie f ly compare th is approach to 
other assembly approaches in te rms o f t i m e comp lex i t y and 
rel iance on assumpt ions. 

I . I n t r o d u c t i o n 

T h e p rob lem of abduc t i ve reasoning (as proposed by 
the phi losopher C.S. Peirce) has been a topic of m u c h recent 
interest in A r t i f i c i a l Inte l l igence ( M i l l e r 1982, Reggia 1983, 
Cha rn iak 1985). T h e general task faced by an abduc t i ve 
reasoning system is to find the best exp lana t ion of a set 
of da ta or observat ions, i.e., the best way to account for a 
set of da ta . Mos t of the work in A r t i f i c i a l Inte l l igence in 
th is area has focused on a specific k i nd of a b d u c t i o n , wh ich 
we cal l hypothes is assembly. T h e hypothesis assembly task 
assumes as g iven a set of hypotheses w i t h some knowledge 
about what sorts of da ta each can account for , and f inds 
the subset of these hypotheses tha t best accounts for the 
p rob lem da ta . A t the O h i o State Labo ra to ry for A r t i f i c i a l 
In te l l igence, Josephson et . a l . (1985) have been deve lop ing 
an approach for a b d u c t i o n based upon hypothesis assembly. 

In th is paper we w i l l begin by present ing a m a t h e m a t i ­
cal idea l iza t ion of th is approach . F r o m th is we w i l l analyze 
the comp lex i t y and correctness o f the a l g o r i t h m . T h e n we 
w i l l examine how wel l th is idea l iza t ion matches w i t h real 

T h i s wo rk has been suppor ted by the N a t i o n a l L i ­
b ra r y o f Med ic ine under g ran t LM-04298 , the N a t i o n a l Sci­
ence F o u n d a t i o n t h r o u g h a Gradua te Fe l lowsh ip , and the 
Defense Advanced Research Pro jec ts Agency, R A D C con­
t rac t F30602-85-C-0010. C o m p u t e r faci l i t ies were enhanced 
t h r o u g h gi f ts f r o m Xe rox C o r p o r a t i o n . 

wor ld concepts o f abduc t i on . In pa r t i cu la r , we w i l l examine 
a system cal led R E D , based upon th is app roach , wh ich per­
forms an t i body iden t i f i ca t i on in the d o m a i n o f red b lood cell 
t y p i n g , as descr ibed in (Josephson 1984), (Josephson 1985) 
and ( S m i t h 1985), and show how the general ma thema t i ca l 
results respond to quest ions t ha t have been raised ( M o s t o w 
1985) about i ts comp lex i t y . 

I I . M a t h e m a t i c a l I d e a l i z a t i o n o f A b d u c t i o n 

D e f i n i t i o n s 

In order to mot i va te the fo l low ing de f in i t ions , we w i l l ex­
amine br ief ly the d o m a i n o f the cu r ren t i m p l e m e n t a t i o n o f 
R E D , the d o m a i n o f b l ood bank a n t i b o d y analysis. T h e p r i ­
mary da ta consists of results of several lab tests on b l ood 
samples. T h e b lood bank technologist knows how antibod­
ies can account for var ious react ions. T h e lab tests have the 
p roper ty t ha t i f a n t i b o d y A accounts for some react ion r, 
and an t i body B accounts for react ion q, then the presence 
of bo th ant ibod ies A and B accounts for b o t h react ions r 
and q. T h i s p rope r t y of a doma in w i l l be referred to as 
independence of hypotheses. 

More fo rma l l y , we define a d o m a i n for hypothes is as­
sembly as a the t r i p l e (H, M,e) , where H is a finite set 
of hypotheses, M is a finite set of manifestations, and c 
is a map f r o m subsets of H to subsets of M. e(S) is i n ­
te rpre ted as the explanatory power of a set of hypotheses, 
and is the set of mani fes ta t ions for wh i ch those hypo the ­
ses can account . An assembly p rob lem is specif ied by a 
subset Mo M. Mo is i n te rp re ted as the set of observed 
mani fes ta t ions 1 . In these te rms, we have 

The Independence Assumption: 

If S and T are subsets of H, then 

A l t h o u g h m a n y domains satisfy the independence as­
s u m p t i o n , we w ish to s t rengthen ou r result by rep lac ing 

1 In wha t fo l lows, we w i l l use the no ta t i on e(S) where we 
shou ld , s t r i c t l y speak ing , w r i t e for the res t r i c t i on 
of e(S) to the observed man i fes ta t ions . 
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the independence assumption with two assumptions, which 
when taken together are weaker than the independence as­
sumption. 

The Monotonicity Assumption: 

If 5 and T are subsets of H, 

Clearly any domain that satisfies the independence as­
sumption also satisfies the monotonicity assumption. 

The Accountability Assumption 

For a hypothesis it is possible to know what 
manifestations h can account for. Formally, the function 

can be computed as easily as e (polynomial calls to e). 

Notice that if the independence assumption holds, then 
so the accountability assumption holds. 

Central to the success of any hypothesis assembly al­
gorithm is the following assumption: 

The Computability Assumption: 

For any subset 5 of H, e(S) can be computed. 

Clearly the complexity of this computation is central 
to the complexity of the assembly task, since it is difficult 
to ask for a set of hypotheses that accounts for some set of 
manifestations if it is difficult to compute what is accounted 
for by a set of hypotheses. In cases in which independence 
holds, this computation can be done in linear time by sim­
ply having a table that tabulates e for each individual hy­
pothesis, so that e(5) can be computed by taking the union 
of e(s) for s This has allowed the current RED mech­
anism, the set covering algorithm of Reggia (Reggia 1983), 
and Internist (Miller 1982) to safely ignore the complexity 
of the computation of e. In fact, the incremental nature of 
all these algorithms allows them to compute e(S) in con­
stant time, since the usual case is that some set T is to 
be extended with another hypothesis s, with e(T) already 
known, so that the computation of e can be done 
by simply looking up e({s}). For the complexity analysis 
which follows, we wil l assume an oracle for the function e, 
that is, we make the calculations counting one step for each 
evaluation of e. 
B . Desc r i p t i on o f the hypothesis assembly 
a l g o r i t h m 

We now describe the algorithm for abduction by hy­
pothesis assembly. The algorithm has four phases; screen­

ing, hypothesis collection, parsimony and critique. 
The input to the algorithm is the set of observed man­

ifestations, Mo- The output is a set of hypotheses that 
constitute a 'best' explanation of the data. 

The screening phase determines plausibilities (i.e., 
prima facie likelihoods) for the veracity of the hypotheses. 
Hypotheses with very low plausibilities are ruled out for 
further consideration. In this discussion we wish to exam­
ine and analyze the assembly phases of the algorithm, so 
we will omit a description of the screening phase. When 
we discuss applications, we will see one way to accomplish 
screening. 

The collection phase works in the following way: 

Let be a domain for hypothesis assembly; let 
be a problem in that domain. 

M ' , H' and m are variables in the following algorithm. 

Let M' = Mo be the observed manifestations (the manifes­
tations to be explained). 
Let H' be the empty set (working set of hypotheses). 
Until A/' is empty, do the following: 

Let m be the most salient hypothesis in M'. 
Find the most plausible hypothesis h that offers 
to account for m, i.e., (H) f Adjoin h to H'. 
Compute the reactions accounted for by " ' . 

is the set of mani­
festations yet to be explained. 

The set H' is the assembled explanation of the observed 
manifestations. 

The parsimony phase works in the following way: 

For each hypothesis h in H' (the working hypothesis set), 
starting from the least plausible to the most plausible, do 
the following: 

then h is superfluous, so set 

H' is now a parsimonious set of hypotheses, that is, it 
has no redundant parts. Note that this does not guarantee 
that H' is a complete explanation of least cardinality. 

The critique phase determines whether a hypothesis is 
essential to the explanation, that is, there is no way to ac­
count for the observed data without using that hypothesis. 
This phase works as follows: 

For each hypothesis h in H' do the following: 

Set G := Repeat the collection algorithm 
(above) using G as working hypothesis, with hy­
pothesis h marked as unusable. 
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If collection completes (that is, there is a compos­
ite hypothesis that does not use h which explains 
A/o), then h is not essential. 

If collection fails to complete, then hypothesis h 
is essential. 

C , C o m p l e x i t y o f the Assembly mechan ism 

We begin by analyzing the time complexity of the assembly 
phase. 

The collection algorithm can be analyzed as follows: 

Let h be the number of hypotheses that were not ruled 
out; let m be the number of manifestations observed. 

For each manifestation, we select a hypothesis that of­
fers to explain that manifestation, and evaluate the result­
ing composite. There are m such manifestations, and selec­
tion of a hypothesis takes at most h calls to the oracle a (for 
a linear search). The computation of M'\e(H') can be done 
in O(m logm) steps (sort both sets, and merge the results). 
Thus, the complexity of this step is 

Each time a new hypothesis is added to the working 
composite hypothesis H', it is necessary to evaluate e(H ' ) , 
so there are 0(m) calls to the oracle e. 

Next we analyze the parsimony algorithm: 
At most h hypotheses are considered for redundancy, 

so there are 0(h) calls to the oracle e. At each such step, 
we must compare the explained set of manifestations to the 
observed set, that can be done in time 0(m log m) (first 
sort both sets, then compare elementwise), so the entire 
complexity is 0 ( / i m l o g m ) . 

Notice that this algorithm does not guarantee that we 
have found a compound hypothesis of smallest size that 
accounts for the observed data. This problem, which is 
the task of the Reggia et. al. set covering program (Reg-
gia 1983), can be shown to be NP-complete (reduction to 
vertex cover). This algorithm simply guarantees that the 
parsimonious solution has no proper subset that is also a 
solution. 

Now we analyze the critic for essential hypotheses: 

The critic takes each of the hypotheses in the work­
ing hypothesis and marks it as unusable, then repeats the 
assembly algorithm. There are at most h hypotheses in 
the composite hypothesis, so this is at most h times the 
complexity of assembly, that is, 

D . Correc tness o f the a l g o r i t h m 

That the collection mechanism produces a composite 
hypothesis that accounts for all of the observed findings 
(provided, of course, that such a collection exists) is obvi­
ous from the loop condition. It is also clear that the critique 

algorithm wil l find all indispensable hypotheses, and all hy­
potheses deemed to be essential are in fact indispensable. 
The parsimony algorithm needs some justification. 

We say that a composite hypothesis is a parsimonious 
explanation of some findings if no proper subset of it can 
account for those findings. The parsimony mechanism en­
sures that there is no single hypothesis that can be excluded 
from the composite without losing the capability of explain­
ing some finding. It is possible to construct a domain in 
which a composite hypothesis has a proper subset that can 
account for all findings (that is, the composite hypothesis is 
not parsimonious), yet no single hypothesis is by itself re­
dundant (that is, there is no hypothesis such that it alone 
can be removed without losing explanatory power). If the 
monotonicity assumption is true, this can not happen. 

Suppose that 5 is a non-parsimonious composite hy­
pothesis. Then for some subset R of S, 

So for all r r is itself redundant, that is, the RED 
mechanism will find a redundant hypothesis in 5. Hence 
we conclude that if 5 is not parsimonious, then RED will 
eliminate some hypothesis from i t . 

I I I . A d a p t i n g the f o r m a l mode l t o rea l -wo r ld 
a b d u c t i o n 

A . T h e A b d u c t i v e Answer 

An abductive problem solver applied to actual problems 
tries to produce a best explanation for the observed data. 
Unfortunately, there is no hard and fast rule for demon­
strating that a particular explanation is best. Human prob­
lem solvers argue about whether one explanation is better 
than another. Hence the best we can do to argue that the 
answer given by this algorithm is best is to list the features 
which recommend i t . 

The answer given by this approach is guaranteed to 
cover all the data. Every observation will be explained. 

The answer wil l be parsimonious in the sense that it 
wi l l have no superfluous parts. It is not necessarily the 
smallest answer, i.e., the answer with the least parts. 

The answer wil l be plausible, since more plausible hy­
potheses are preferred over less plausible ones. The algo-
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r i thm prefers a large number of plausible hypotheses over 
a smaller number of less plausible ones. The algorithm will 
identify essential hypotheses, so when part of the answer is 
provably correct, the algorithm determines this. 

Again, we cannot prove that such an answer is a 'best' 
explanation in any given situation, these are just the points 
by which one could argue for this answer. In the long run, 
the best answer is the one that is in fact the true situation. 
So now let us examine an application of this method to an 
actual domain. 
B. A Rea l -Wor l d app l ica t ion -

Red b l ood a n t i b o d y ident i f i ca t ion 

1. Description of the domain 

One of the jobs done by a blood-bank technologist is 
to identify antibodies in a patient's serum to antigens that 
might appear on red blood cells. This is typically done by 
combining samples of patient serum with red blood cells 
that contain certain antigens. Some of these combinations 
wil l show reactions, others will not. The presence of certain 
antibodies in the patient serum will account for certain re­
actions. The reactions are additive in the sense that if the 
presence of one antibody explains one reaction, and pres­
ence of another antibody explains another, then the pres­
ence of both antibodies explains both reactions. If both 
antibodies can account for a weak result in some reaction, 
then the presence of both can account for a strong result 
in that reaction. Also, some pairs of antibodies cannot oc­
cur together. The task of the pathologist is to decide what 
antibodies are present, given a certain reaction pattern. 

2. Satisfaction of Assumptions 

We now examine how well this task meets the assump­
tions of the formal model presented in the first part of this 
paper. 

Computabtlity of e- The pattern of antigens appearing 
on the test cells is available in table form. This informa­
tion determines which antibodies account for any of the 
reactions. More detailed knowledge of the chemistry of the 
reactions allows us to build a table to tell the strengths of 
the reactions. 

Independence - The additive nature of the reactions 
means that for separate reactions, the independence as­
sumption is met. Since the model does not allow for parts 
of manifestations to be explained, we cannot really say that 
the addit ivity of reaction strengths is included in the inde­
pendence assumption. 

Mono tonicity - If we view a weak result for some reac­
tion as a separate result from a strong result for the same 
reaction, then we can say that the phenomenon of additive 
reaction strengths satisfies the monotonicity assumption. 
That is, each antibody alone explains the manifestation of 
'weak reaction'. Together, they can explain either a 'weak 
reaction', or a 'strong reaction'. 

Accountability - Since the domain nearly satisfies the 

independence assumption, it is not surprising that we can 
calculate a nearly as easily as we can in the independent sit­
uation. That is, if an antibody can account for any strength 
result for some reaction, then it can potentially contribute 
to an explanation of any other strength result for that re­
action. 

Incompatibility of Hypotheses - Implicit in the formal 
model is the assumption that any collection of hypotheses 
is possible. This domain has a restriction that invalidates 
this assumption. It can be shown that hypothesis collection 
in general under such a constraint is an NP-complete prob­
lem (see appendix). There are two reasons why this is not a 
problem in this domain. One is that the collection problem 
is not exponential in the number of hypotheses, or even the 
number of hypotheses left after screening, but in the num­
ber of incompatible pairs remaining after screening. This 
tends to be quite a small number. Also, since the screen­
ing rates hypotheses by plausibility, the algorithm is likely 
to stumble upon the correct answer early in the collection 
process. 

3. Implementation 

The algorithm for this domain is presently imple­
mented as follows: 

Screening - this phase is done by a hierarchical classifi­
cation system similar to the MDX system (Chandra 1983). 

Collection - this phase is done as in the text, with the 
exception that when a hypothesis is to be entered that is 
incompatible with some hypothesis already in the collec­
tion, the conflict is resolved by throwing out the hypothesis 
which is already in the set. A check is made for loops each 
time a hypothesis conflict arises. This is, in the worst case, 
a most plausible-first, brute force search. The computa 
tions of e and a are done from a table of singleton values; 
since the independence assumption holds (almost), we can 
compute the value of e of a set from the value of c at each 
element. 

Parsimony and Critique These phases are done as 
described in the text. 

The collection and parsimony phases are repeated, us­
ing the essential hypotheses as a starting point. 

This algorithm matches the one in the text, except for 
the problem of incompatible hypotheses. So, with that ex­
ception (that was discussed above), the time complexity of 
the RED algorithm is polynomial in the number of anti­
bodies and reactions. 

4. Availability of Knowledge 

We have seen that in the blood typing domain that the 
assumptions required by this model are easily satisfied. We 
now examine these assumptions to estimate how likely it is 
that they wil l extend to yet other domains. 

Without the computabtlity of e, it would be impossi­
ble to evaluate whether an answer constituted a complete 
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explanation, much less to construct such an answer. Many 
existing abduction systems (e.g. Set-covering model (Reg 
gia 1983) and Internist (Miller 1982)) depend strongly upon 
this assumption. 

The independence assumption makes computations 
easy, since we only need to know values of e for singleton 
sets. Diagnostic domains are likely to satisfy this assump­
t ion, since devices are often decomposable into indepen­
dent parts, and hypotheses about these parts are often 
independent. The set covering model (Reggia 1983) relies 
strongly on this assumption. Internist (Miller 1982) re­
lies on this, but it would only take a simple change to In­
ternist to cope with more unruly domains, provided that 
they satisfy the monotonicity and accountability assump­
tions. 

The monotonicity assumption is weaker than the in­
dependence assumption, hence is more likely to hold. It 
allows for some interaction of hypotheses, so long as no 
manifestations are canceled. 

The accountability assumption is also weaker than in­
dependence, so is more likely to hold. This simply requires 
that we know to what manifestations a hypothesis can con­
tribute. 

In a more unruly domain, in which the monotonicity 
assumption fails to hold, that is, when several hypotheses 
together fail to account for data that some of them do sep­
arately (e.g., due to subtractive interactions between the 
hypotheses), all of these assembly techniques will have dif­
ficulty. It can be shown that certain types of subtractive in­
teraction problems are NP-complete In such cases, it may 
be fruitful to find different knowledge so that the problem 
is no longer one of assembly. One approach along this line 
is ABEL, a system described in (PATIL, 1982), which at­
tempts to make this problem tractable by making use of 
elaborate causal structures. 

Conc lus ion 
An important characteristic of problems that are dealt 

with in Artificial Intelligence is that domain knowledge is 
necessary to make the computations feasible. If an ap­
proach is to be widely applicable, it is necessary to know 
what knowledge is necessary to ensure that the approach 
wil l yield correct answers in a reasonable time. 

In this paper, we have constructed a formal model 
of the approach to abductive reasoning illustrated by the 
RED system. From this model, we have identified when 
the available knowledge will allow application of this ap­
proach. Under the assumption that the knowledge is of this 
form (that is, it satisfies the assumptions of monotonicity, 
accountability and computabil ity), we have demonstrated 
the tractability and correctness of the computation. 
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A p p e n d i x I 
Proofs of theorems 

NP-Comple teness o f the Reggia a l g o r i t h m 

After Reggia (1983) (using the notational conventions of 
this paper), we have the following definitions: 

a diagnostic problem is a 4-tuple (H/, A/, C, M0). 
H, hi are finite sets of hypotheses and manifestations 

respectively, 

the 'observed manifestations'. 
For a subset , we write e(S) for the set 

An Explanation for a diagnostic problem is a set , _ 
H such that for any s.t. 

We wish to show that given a diagnostic problem, find­
ing an explanation is NP-complete. We give a reduction 
from minimal node cover. 

Minimum node cover: Given a graph , find 
a set of smallest cardinality s.t. has an 
endpoint in V. 

We form a diagnostic problem from the graph G as 
follows: 

Set 

Clearly an explanation of this diagnostic problem is 
also a cover of the graph (7, of minimum cardinality. Also 
clearly this transformation is polynomial in the size of G. 

NP-completeness o f hypothes is assembly 
w i t h I ncompa t i b l e Hypotheses 

An hypothesis assembly problem under constraints 
of incompatible hypotheses can be specified as a 5-tuple 
(H ,A / ,C \ / ,A fu ) , where 

H and A/ are finite sets of hypotheses and manifesta­
tions respectively, 

C is a relation, a table for computing e, 
/ is a set of unordered pairs of elements of H, 
and 
For a subset for the set 

The interpretation of these sets is that H is a set of hy­
potheses that can account for certain manifestations in A/, 

_ , . -x . e(h) means that h can account for m. 

means than hypotheses h and h2 are incom­patible. Mo is the set of observed manifestations. A com­
plete explanation is a set such that __ 
and such that there is no pair 



We prove NP-completeness of th is p rob lem by reduc­
t i on f r o m 3SAT (Garey 1979). 

3 S A T : Given a statement in p ropos i t iona l calculus in 
d is junc t i ve no rma l f o r m , in wh ich each t e r m has at most 
three factors , f ind an assignment of the variables tha t makes 
the s ta tement have value 'T rue ' . 

We f o rm an hypothesis assembly p rob lem f rom a 3SAT 
p rob lem by m a p p i n g factors in a 3S AT prob lem to hypothe­
ses and m a p p i n g terms to mani festat ions as fol lows: 

Let P be a statement in propos i t iona l calculus in dis­
j u n c t i v e no rma l f o r m , where each t e rm has at most three 
factors. Let { } be the variables used in P, let 
t be the numbe r of terms in P. 

We now construct an instance of the hypothesis as­
sembly p rob lem under i ncompa t ib i l i t y constra ints w i t h 2n 
hypotheses and t mani festat ions. 

If we f i nd a complete exp lanat ion S for this p rob lem, 
then we c l a im tha t the assignment 

w i l l be a so lu t ion to P. 
For any J, 

with 

Case so° ui is T rue , and 
since ' e (h 1 ) , we have, f rom the const ruct ion of C (and 
hence, e), t ha t u1 is a factor in the jth t e rm of P, hence the 
jth t e r m of P has value True. 

and hence u1 is False, and since m ; we have tha t 
- i U , is a factor in the jth te rm of P, hence again the jtk 

t e r m of P has value T rue . 
Since every t e rm of P has value T rue , so does P. 
A s im i la r a rgument shows that there exists a va l id as­

sembly cor respond ing to each sat isfy ing assignment. 
C lear ly the cons t ruc t ion of this prob lem f rom P is a 

de te rm in i s t i c p o l y n o m i a l process. Also i t is clear tha t com­
plete exp lana t i on const ruc t ion under i ncompa t i b i l i t y con­
s t ra in ts is N P , so hypothesis assembly w i t h i ncompat ib le 
hypotheses is NP-comple te . 
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