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ABSTRACT

The problem of finding a best explanation of a set of
data has been a topic of much interest in Artificial Intelli-
gence. In this paper we present an approach to this problem
by hypothesis assembly. We present this approach formally
so that we can examine the time complexity and correctness
of the algorithms. We then examine a system implemented
using this approach, which performs red blood antibody
identification. We use this domain to examine the rami-
fications of the assumptions of the formal model in a real
world situation. We also briefly compare this approach to
other assembly approaches in terms of time complexity and
reliance on assumptions.

I. Introduction

The problem of abductive reasoning (as proposed by
the philosopher C.S. Peirce) has been a topic of much recent
interest in Artificial Intelligence (Miller 1982, Reggia 1983,
Charniak 1985). The general task faced by an abductive
reasoning system is to find the best explanation of a set
of data or observations, i.e., the best way to account for a
set of data. Most of the work in Artificial Intelligence in
this area has focused on a specific kind of abduction, which
we call hypothesis assembly. The hypothesis assembly task
assumes as given a set of hypotheses with some knowledge
about what sorts of data each can account for, and finds
the subset of these hypotheses that best accounts for the
problem data. At the Ohio State Laboratory for Artificial
Intelligence, Josephson et. al. (1985) have been developing
an approach for abduction based upon hypothesis assembly.

In this paper we will begin by presenting a mathemati-
cal idealization of this approach. From this we will analyze
the complexity and correctness of the algorithm. Then we
will examine how well this idealization matches with real
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world concepts of abduction. In particular, we will examine
a system called RED, based upon this approach, which per-
forms antibody identification in the domain of red blood cell
typing, as described in (Josephson 1984), (Josephson 1985)
and (Smith 1985), and show how the general mathematical
results respond to questions that have been raised (Mostow
1985) about its complexity.

Il. Mathematical Idealization of Abduction

Definitions

In order to motivate the following definitions, we will ex-
amine briefly the domain of the current implementation of
RED, the domain of blood bank antibody analysis. The pri-
mary data consists of results of several lab tests on blood
samples. The blood bank technologist knows how antibod-
ies can account for various reactions. The lab tests have the
property that if antibody A accounts for some reaction r,
and antibody B accounts for reaction q, then the presence
of both antibodies A and B accounts for both reactions r
and q. This property of a domain will be referred to as
independence of hypotheses.

More formally, we define a domain for hypothesis as-
sembly as a the triple (H, M,e), where H is a finite set
of hypotheses, M is a finite set of manifestations, and c
is a map from subsets of H to subsets of M. e(S) is in-
terpreted as the explanatory power of a set of hypotheses,
and is the set of manifestations for which those hypothe-
ses can account.
subset Mo € M. Mo is interpreted as the set of observed

An assembly problem is specified by a

manifestations’. In these terms, we have

The Independence Assumption:

If S and T are subsets of H, then

e(SUT) = e(S) U e(T)

Although many domains satisfy the independence as-
sumption, we wish to strengthen our result by replacing

" In what follows, we will use the notation e(S) where we

should, strictly speaking, write e(S)ﬁMu, for the restriction
of e(S) to the observed manifestations.



the independence assumption with two assumptions, which
when taken together are weaker than the independence as-
sumption.

The Monotonicity Assumption:
If 5 and T are subsets of H,

S¢T=e(S)C eT)

Clearly any domain that satisfies the independence as-
sumption also satisfies the monotonicity assumption.

The Accountability Assumption

For a hypothesis & € H, it is possible to know what

manifestations h can account for. Formally, the function
a:H -+ M

15 ¢ H with k ¢ 5 such that ]

a{h):{mEMlmee(S],er(S\h] |

can be computed as easily as e (polynomial calls to e).

Notice that if the independence assumption holds, then
a{h) = e(h}, so the accountability assumption holds.

Central to the success of any hypothesis assembly al-
gorithm is the following assumption:

The Computability Assumption:
For any subset 5 of H, e(S) can be computed.

Clearly the complexity of this computation is central
to the complexity of the assembly task, since it is difficult
to ask for a set of hypotheses that accounts for some set of
manifestations if it is difficult to compute what is accounted
for by a set of hypotheses. In cases in which independence
holds, this computation can be done in linear time by sim-
ply having a table that tabulates e for each individual hy-
pothesis, so that e(5) can be computed by taking the union
of e(s) for s € §. This has allowed the current RED mech-
anism, the set covering algorithm of Reggia (Reggia 1983),
and Internist (Miller 1982) to safely ignore the complexity
of the computation of e. In fact, the incremental nature of
all these algorithms allows them to compute ¢(S) in con-
stant time, since the usual case is that some set T is to
be extended with another hypothesis s. with e(T) already
known, so that the computation ofe(T U {‘}) can be done
by simply looking up e(fs}). For the complexity analysis
which follows, we will assume an oracle for the function e,
that is, we make the calculations counting one step for each
evaluation of e.

B. Description of the hypothesis assembly
algorithm

We now describe the algorithm for abduction by hy-
pothesis assembly. The algorithm has four phases; screen-

ing, hypothesis collection, parsimony and critique.

The input to the algorithm is the set of observed man-
ifestations, Mo- The output is a set of hypotheses that
constitute a 'best' explanation of the data.

The screening phase determines plausibilities (i.e.,
prima facie likelihoods) for the veracity of the hypotheses.
Hypotheses with very low plausibilities are ruled out for
further consideration. In this discussion we wish to exam-
ine and analyze the assembly phases of the algorithm, so
we will omit a description of the screening phase. When
we discuss applications, we will see one way to accomplish
screening.

The collection phase works in the following way:

Let {H, M,e} be a domain for hypothesis assembly; let
My C M be a problem in that domain.

M', H' and m are variables in the following algorithm.

Let M' = Mo be the observed manifestations (the manifes-
tations to be explained).
Let H' be the empty set (working set of hypotheses).
Until A/' is empty, do the following:
Let m be the most salient hypothesis in M'".
Find the most plausible hypothesis h that offers
to account for m, i.e., m ¢HlhY. Adjoin h to H'.
Compute the reactions accounted for by H'.

Let M’ be M\ e(H'), i.e., A" is the set of mani-
festations yet to be explained.

The set H' is the assembled explanation of the observed
manifestations.

The parsimony phase works in the following way:

For each hypothesis h in H' (the working hypothesis set),
starting from the least plausible to the most plausible, do
the following:
If e( H* \ {h}) 2 M,y then h is superfluous, so set
H':= H'\ {h}.

H' is now a parsimonious set of hypotheses, that is, it
has no redundant parts. Note that this does not guarantee
that H' is a complete explanation of least cardinality.

The critique phase determines whether a hypothesis is
essential to the explanation, that is, there is no way to ac-
count for the observed data without using that hypothesis.
This phase works as follows:

For each hypothesis h in H' do the following:
Set G := H'\{k}. Repeat the collection algorithm

(above) using G as working hypothesis, with hy-
pothesis h marked as unusable.
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If collection completes (that is, there is a compos-
ite hypothesis that does not use h which explains
A/o), then h is not essential.

If collection fails to complete, then hypothesis h
is essential.

C, Complexity of the Assembly mechanism

We begin by analyzing the time complexity of the assembly
phase.

The collection algorithm can be analyzed as follows:

Let h be the number of hypotheses that were not ruled
out; let m be the number of manifestations observed.

For each manifestation, we select a hypothesis that of-
fers to explain that manifestation, and evaluate the result-
ing composite. There are m such manifestations, and selec-
tion of a hypothesis takes at most h calls to the oracle a (for
a linear search). The computation of M'\e(H) can be done
in O(mlogm) steps (sort both sets, and merge the results).
Thus, the complexity of this step is O{m(h + mlogm}).

Each time a new hypothesis is added to the working
composite hypothesis H', it is necessary to evaluate e(H'),
so there are 0O(m) calls to the oracle e.

Next we analyze the parsimony algorithm:

At most h hypotheses are considered for redundancy,
so there are 0O(h) calls to the oracle e. At each such step,
we must compare the explained set of manifestations to the
observed set, that can be done in time 0(mlogm) (first
sort both sets, then compare elementwise), so the entire
complexity is 0(/imlogm).

Notice that this algorithm does not guarantee that we
have found a compound hypothesis of smallest size that
accounts for the observed data. This problem, which is
the task of the Reggia et. al. set covering program (Reg-
gia 1983), can be shown to be NP-complete (reduction to
vertex cover). This algorithm simply guarantees that the
parsimonious solution has no proper subset that is also a
solution.

Now we analyze the critic for essential hypotheses:

The critic takes each of the hypotheses in the work-
ing hypothesis and marks it as unusable, then repeats the
assembly algorithm. There are at most h hypotheses in
the composite hypothesis, so this is at most h times the
complexity of assembly, that is, O(hAm(h + mlogm)).

D. Correctness of the algorithm

That the collection mechanism produces a composite
hypothesis that accounts for all of the observed findings
(provided, of course, that such a collection exists) is obvi-
ous from the loop condition. It is also clear that the critique
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algorithm will find all indispensable hypotheses, and all hy-
potheses deemed to be essential are in fact indispensable.
The parsimony algorithm needs some justification.

We say that a composite hypothesis is a parsimonious
explanation of some findings if no proper subset of it can
account for those findings. The parsimony mechanism en-
sures that there is no single hypothesis that can be excluded
from the composite without losing the capability of explain-
ing some finding. It is possible to construct a domain in
which a composite hypothesis has a proper subset that can
account for all findings (that is, the composite hypothesis is
not parsimonious), yet no single hypothesis is by itself re-
dundant (that is, there is no hypothesis such that it alone
can be removed without losing explanatory power). If the
monotonicity assumption is true, this can not happen.

Suppose that 5 is a non-parsimonious composite hy-
pothesis. Then for some subset R of S,

e(S) = e[S\ R)
Now, for any » € R, we have

SVRCS\{r}C S

So by monotonicity, we have

e(S) = e(S\ R) Ce(S\{r}) C ¢(8)

o(8) = e(S\ {r})

So for all r € R, r is itself redundant, that is, the RED
mechanism will find a redundant hypothesis in 5. Hence
we conclude that if 5 is not parsimonious, then RED will
eliminate some hypothesis from it.

Ill. Adapting the formal model to real-world
abduction

A. The Abductive Answer

An abductive problem solver applied to actual problems
tries to produce a best explanation for the observed data.
Unfortunately, there is no hard and fast rule for demon-
strating that a particular explanation is best. Human prob-
lem solvers argue about whether one explanation is better
than another. Hence the best we can do to argue that the
answer given by this algorithm is best is to list the features
which recommend it.

The answer given by this approach is guaranteed to
cover all the data. Every observation will be explained.

The answer will be parsimonious in the sense that it
will have no superfluous parts. It is not necessarily the
smallest answer, i.e., the answer with the least parts.

The answer will be plausible, since more plausible hy-
potheses are preferred over less plausible ones. The algo-



rithm prefers a large number of plausible hypotheses over
a smaller number of less plausible ones. The algorithm will
identify essential hypotheses, so when part of the answer is
provably correct, the algorithm determines this.

Again, we cannot prove that such an answer is a 'best'
explanation in any given situation, these are just the points
by which one could argue for this answer. In the long run,
the best answer is the one that is in fact the true situation.
So now let us examine an application of this method to an
actual domain.

B. A Real-World application -
Red blood antibody identification

1. Description of the domain

One of the jobs done by a blood-bank technologist is
to identify antibodies in a patient's serum to antigens that
might appear on red blood cells. This is typically done by
combining samples of patient serum with red blood cells
that contain certain antigens. Some of these combinations
will show reactions, others will not. The presence of certain
antibodies in the patient serum will account for certain re-
actions. The reactions are additive in the sense that if the
presence of one antibody explains one reaction, and pres-
ence of another antibody explains another, then the pres-
ence of both antibodies explains both reactions. If both
antibodies can account for a weak result in some reaction,
then the presence of both can account for a strong result
in that reaction. Also, some pairs of antibodies cannot oc-
cur together. The task of the pathologist is to decide what
antibodies are present, given a certain reaction pattern.

2. Satisfaction of Assumptions

We now examine how well this task meets the assump-
tions of the formal model presented in the first part of this
paper.

Computabtlity of e- The pattern of antigens appearing
on the test cells is available in table form. This informa-
tion determines which antibodies account for any of the
reactions. More detailed knowledge of the chemistry of the
reactions allows us to build a table to tell the strengths of
the reactions.

Independence - The additive nature of the reactions
means that for separate reactions, the independence as-
sumption is met. Since the model does not allow for parts
of manifestations to be explained, we cannot really say that
the additivity of reaction strengths is included in the inde-
pendence assumption.

Mono tonicity - If we view a weak result for some reac-
tion as a separate result from a strong result for the same
reaction, then we can say that the phenomenon of additive
reaction strengths satisfies the monotonicity assumption.
That is, each antibody alone explains the manifestation of
'weak reaction'. Together, they can explain either a 'weak
reaction’, or a 'strong reaction'.

Accountability - Since the domain nearly satisfies the

independence assumption, it is not surprising that we can
calculate a nearly as easily as we can in the independent sit-
uation. That is, if an antibody can account for any strength
result for some reaction, then it can potentially contribute
to an explanation of any other strength result for that re-
action.

Incompatibility of Hypotheses - Implicit in the formal
model is the assumption that any collection of hypotheses
is possible. This domain has a restriction that invalidates
this assumption. It can be shown that hypothesis collection
in general under such a constraint is an NP-complete prob-
lem (see appendix). There are two reasons why this is not a
problem in this domain. One is that the collection problem
is not exponential in the number of hypotheses, or even the
number of hypotheses left after screening, but in the num-
ber of incompatible pairs remaining after screening. This
tends to be quite a small number. Also, since the screen-
ing rates hypotheses by plausibility, the algorithm is likely
to stumble upon the correct answer early in the collection
process.

3. Implementation

The algorithm for this domain is presently imple-
mented as follows:

Screening - this phase is done by a hierarchical classifi-
cation system similar to the MDX system (Chandra 1983).

Collection - this phase is done as in the text, with the
exception that when a hypothesis is to be entered that is
incompatible with some hypothesis already in the collec-
tion, the conflict is resolved by throwing out the hypothesis
which is already in the set. A check is made for loops each
time a hypothesis conflict arises. This is, in the worst case,
a most plausible-first, brute force search. The computa
tions of e and a are done from a table of singleton values;
since the independence assumption holds (almost), we can
compute the value of e of a set from the value of ¢ at each
element.

Parsimony and Critique
described in the text.

The collection and parsimony phases are repeated, us-
ing the essential hypotheses as a starting point.

These phases are done as

This algorithm matches the one in the text, except for
the problem of incompatible hypotheses. So, with that ex-
ception (that was discussed above), the time complexity of
the RED algorithm is polynomial in the number of anti-
bodies and reactions.

4. Availability of Knowledge

We have seen that in the blood typing domain that the
assumptions required by this model are easily satisfied. We
now examine these assumptions to estimate how likely it is
that they will extend to yet other domains.

Without the computabtlity of e, it would be impossi-
ble to evaluate whether an answer constituted a complete
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explanation, much less to construct such an answer. Many
existing abduction systems (e.g. Set-covering model (Reg
gia 1983) and Internist (Miller 1982)) depend strongly upon
this assumption.

The independence assumption makes computations
easy, since we only need to know values of e for singleton
sets. Diagnostic domains are likely to satisfy this assump-
tion, since devices are often decomposable into indepen-
dent parts, and hypotheses about these parts are often
independent. The set covering model (Reggia 1983) relies
strongly on this assumption. Internist (Miller 1982) re-
lies on this, but it would only take a simple change to In-
ternist to cope with more unruly domains, provided that
they satisfy the monotonicity and accountability assump-
tions.

The monotonicity assumption is weaker than the in-
dependence assumption, hence is more likely to hold. It
allows for some interaction of hypotheses, so long as no
manifestations are canceled.

The accountability assumption is also weaker than in-
dependence, so is more likely to hold. This simply requires
that we know to what manifestations a hypothesis can con-
tribute.

In a more unruly domain, in which the monotonicity
assumption fails to hold, that is, when several hypotheses
together fail to account for data that some of them do sep-
arately (e.g., due to subtractive interactions between the
hypotheses), all of these assembly techniques will have dif-
ficulty. It can be shown that certain types of subtractive in-
teraction problems are NP-complete In such cases, it may
be fruitful to find different knowledge so that the problem
is no longer one of assembly. One approach along this line
is ABEL, a system described in (PATIL, 1982), which at-
tempts to make this problem tractable by making use of
elaborate causal structures.

Conclusion

An important characteristic of problems that are dealt
with in Artificial Intelligence is that domain knowledge is
necessary to make the computations feasible. If an ap-
proach is to be widely applicable, it is necessary to know
what knowledge is necessary to ensure that the approach
will yield correct answers in a reasonable time.

In this paper, we have constructed a formal model
of the approach to abductive reasoning illustrated by the
RED system. From this model, we have identified when
the available knowledge will allow application of this ap-
proach. Under the assumption that the knowledge is of this
form (that is, it satisfies the assumptions of monotonicity,
accountability and computability), we have demonstrated
the tractability and correctness of the computation.
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Appendix |
Proofs of theorems

NP-Completeness of the Reggia algorithm

After Reggia (1983) (using the notational conventions of
this paper), we have the following definitions:

a diagnostic problem is a 4-tuple (H/, A/, C, My).

H, hi are finite sets of hypotheses and manifestations
respectively,

(' is a relation, O C # x M,

My € M, the 'observed manifestations'.

For a subset § C H, we write e(S) for the set {m €
M the Sst. (hym) ¢ ('}

An Explanation for a diagnostic problem is a set ,§ €
H such that My < e{S), |§| < [T}, for any T C H s.t
M, C (T).

We wish to show that given a diagnostic problem, find-
ing an explanation is NP-complete. We give a reduction
from minimal node cover.

Minimum node cover: Given a graph G = {¥, &}, find
aset V' C V of smallest cardinality s.t. Ye ¢ E, E has an
endpoint in V.

We form a diagnostic problem from the graph G as
follows:

Set
0. Vv
M. - E
My~ E

C = {{n,e} | v is an endpoint of edge ¢}

Clearly an explanation of this diagnostic problem is
also a cover of the graph (7, of minimum cardinality. Also
clearly this transformation is polynomial in the size of G.

NP-completeness of hypothesis assembly
with Incompatible Hypotheses

An hypothesis assembly problem under constraints
of incompatible hypotheses can be specified as a 5-tuple
(H,A/,C\/,Afu), where

H and A/ are finite sets of hypotheses and manifesta-
tions respectively,

C is a relation, 7 C H x M, a table for computing e,

/ is a set of unordered pairs of elements of H,

and My C M.

For a subset § C H, we write e(§) for the set {m ¢
M|3gc §Sst. (h,m)e C)

The interpretation of these sets is that H is a set of hy-
potheses that can account for certain manifestations in A/,

{hl,h,} € I meansthanhypotheseshand h,are incom-patible
plete explanation is a set §, § € H such that M C e ),
and such that there is no pair hy,hz € & with {h1,R2} € I.
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We prove NP-completeness of this problem by reduc-
tion from 3SAT (Garey 1979).

3SAT: Given a statement in propositional calculus in
disjunctive normal form, in which each term has at most
three factors, find an assignment of the variables that makes
the statement have value 'True'.

We form an hypothesis assembly problem from a 3SAT
problem by mapping factors in a 3SAT problem to hypothe-
ses and mapping terms to manifestations as follows:

Let P be a statement in propositional calculus in dis-
junctive normal form, where each term has at most three
factors. Let {%1,{6z,..}un} be the variables used in P, let
t be the number of terms in P.

We now construct an instance of the hypothesis as-
sembly problem under incompatibility constraints with 2n
hypotheses and t manifestations.

Set H := {hy, k) ha kY, . Ry B}

M= {m;,ma,...m¢}

C :={{h,ym,) | u, is a factor in the j'* term}

U {{h},m,} | ~u. is a factor in the j*'* term}

Ii={{h, A} |1 <1< n}
M[' !‘—‘M

If we find a complete explanation S for this problem,
then we claim that the assignment

u, s Trueiff h, ¢ §

will be a solution to P.
For any J, 1 <} <t,m, ¢ My, sothereis some h € §
with m, € e{h).

case I, If A = h., then k, € 5, Yi © True, and

since m, € e(hs), we have, from the construction of C (and

hence, e), that u; is a factor in the ;"

f” term of P has value True.

term of P, hence the

CaseI. fh = &', then h' ¢ §. {h, R} F,s0h €S,
and hence u; is False, and since m, { E{hJ), we have that
-iy, is a factor in the /™ term of P, hence again the j*
term of P has value True.

Since every term of P has value True, so does P.

A similar argument shows that there exists a valid as-
sembly corresponding to each satisfying assignment.

Clearly the construction of this problem from P is a
deterministic polynomial process. Also it is clear that com-
plete explanation construction under incompatibility con-
straints is NP, so hypothesis assembly with incompatible
hypotheses is NP-complete.
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