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Abstract: 
The cognitive modeling community is presently divided between two 
different approaches to the spread of activation through networks. 
One school holds that symbolic information must be progagated, the 
other that numeric weights are used and activation spreads in a 
more analog manner. In this paper we describe a mechanism which 
allows the two processes to be merged via the introduction into the 
symbolic network of a defining-characteristic link which is affects 
the spread of the symbolic information in a manner resembling local 
connectionist computations. We demonstrate that the combined 
system is more powerful than either of the separate models alone. 
Introduction 

Spreading activation, in the form of computer models and 
cognitive theories, has recently been undergoing a resurgence of 
interest in the cognitive science and AI communities. Two 
competing schools of thought have been forming. One technique, 
that of marker-pasting, is based on the works of Quillian [18] and 
concentrates on the passing of symbolic information through an 
associative knowledge representation. A second group, holding to the 
parallel distributed proeessing[20] or connectionist approach, has 
focused on the passage of numeric information through an 
associative network. 

The primary advantage of the former group is that such 
systems gracefully interact with traditional AI symbolic processing 
models for natural language processing [4](ll](15][l7] and planning 
[12) and accounting for the psychological results in various 
experiments (for example [6)[2l][23)(24)). The connectionist 
approach, however, has proven useful for modeling various types of 
cognitive performance that the symbolic approach has traditionally 
had problems with: similarity based reasoning, learning, and 
categorization tasks. Both local connectionist models, such as those 
of [10],[22], and distributed models [14) seem to best account for 
results from the psychological literature on categorisation (discussed 
in [1][16]). Both groups have proposed massively parallel models for 
these computations. This is a corner stone of the connectionist 
approach, but various models massively parallel algorithms for 
performing symbolic marker-passer have been proposed [2] [9] [12). 

It is our strong contention that neither a purely connectionist 
scheme nor a marker-passing approach which ignores connectionism 
is as powerful as a mechanism which combines some of the best 
features of each. This paper compares the connectionist and 
marker-passing approaches and shows why neither alone seems 
adequate, describes an implemented mechanism that solves provides 
integration between these approaches and handles some of those 
problems neither approach is sufficient to solve, and concludes by 
describing where this work is heading.1 

The need for hybridisation 
To justify the necessity of combining the competing 

formulations of activation spreading, we start by examining some 
specific strengths and weaknesses of each approach. 

1- Thii paper if a brief description of work described in more detail in fid). 
Implementation details and further justifications can be found therein. 
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The marker-passing approach works in an associative network 
in which links representing symbolic information (rather than simply 
link strengths or the like) are present. Information is passed through 
these links to to find connections between nodes in a "mechanistic" 
way, as opposed to the approach of using inferencing algorithms 
consisting of a set of deductive rules. Marker-passing algorithms 
have been formulated which can pass very simple information [9] or 
complex marks which include various amounts of control 
information for use in the marker-passing process [4] [12] [18] .2 

That the marker-pssing approach integrates well with standard 
AI systems can be seen, for example, in the word sense 
disambiguation system of Hirst [15] which model approaches 
ambiguity by setting up a set of frames that put word senses in one 
to one correspondence with semantic meanings. Each sense of a 
given word "competes" for recognition based on two criteria: the 
syntactic information available and the connectedness of the words 
to each other. This connectedness was found via a marker-passing 
system. 

Hirst's system would handle the word "ball" in a phrase like 
The rubber ball by using marker-passing to find connections between 
the various word senses of the words in the phrase. When this 
phrase was encountered the system would pass markers between 
rubber and ball and a path such as 

RUBBER—►(Isa rubber material) —► material 
—►(composed-of physobj material) —►♦ physobj 
—► (Isa sphere physobj) —► sphere —► 
(word-sense ball sphere) —► BALL 

would be found. This would cause the preference of the sphere 
meaning of ball over the dance meaning. 

By integrating his word sense disambiguator into a syntactic 
parser Hirst was able to use syntactic clues in performing 
disambiguation. For example, the word "TIRE" in the sentence 
The left front tire is flat, can only be a noun, not a verb, and 
Hirst's system could use this information to ignore the VERB senses. 

An alternate approach to word sense disambiguation is that of 
Cottrell [7] which uses a local connectionist system to perform the 
disambiguation. The correct interpretation of the sentence would be 
found at the end of a period of numeric computation by examining 
the nodes remaining activated in a stable configuration. 

For Cottrell to produce a parse to provide syntactic 
information to the disambtguator would require the design of a 
syntactic parsing scheme within the massively parallel framework. 
This may not be impossible, in fact Cottrell [8] discusses some steps 
in exactly such a direction, but at present connectionist schemes are 
not having tremendous success at producing such results. In fact, a 
general weakness of connectionist approaches is the generation of 
sequential behavior which seems to be an integral part of language 
processing, planning, etc. 

Marker-passing algorithms, too, have limitations, the primary 
of which is the need for explicit symbolic knowledge connecting the 
objects being examined. Consider how a system like Hirst's might 
handle the following two sentences: 

John attacked Bill with the knife 
John attacked Biii with the letter opener 
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The marker-passer would find the path: 
ATTACK 
—► Instrument of a physical attack is a weapon 
—► weapon —► a knife is a weapon 
—► KNIFE 

and thus be able to recognize the first sentence as a physical attack 
(as opposed to say a heart attack or an attack by satire). Such a 
path won't be found for the second sentence unless we had 
specifically encoded the information that a letter-opener can be used 
as a weapon. Assuming such knowledge was not available, a system 
such as Hirst's could not use the marker-passer and would need to 
default to other, more complex mechanisms. 

Finding similarities between objects has been a traditional 
problem for symbolic AI systems in much the way that sequential 
behavior has been a traditional problem for connectionist systems. 
While some knowledge representation schemes have a limited 
ability to do classification, this classification is generally viewed as a 
separate control process1. What we need in this case is a 
decomposition of an object into components and the categorization 
of a set of components during the marker-passing phase. 
Information must be provided to allow a marker to flow from letter-
opener to knife. We could use a predicate such as 

(IS-LIKE LETTER-OPENER KNIFE) to solve this problem, but 
such a solution is clearly lacking in elegance and, in fact, will not 
solve the more general case . 

What is needed here appears to be some sort of breakdown of 
the letter-opener into a set of features and a recognition that those 
features share many similar characteristics with a knife. 

Recognizing similar characteristics, a major problem for 
symbolic systems, is one of the strengths of a connectionist model. 
A microfeaturc based analysis, which decomposes a single object 
into a set of smaller, usually perceptual, features is a technique 
which has been shown viable in the connectionist framework 
[14][16]. Activation strengths flowing from an object to a set of 
microfeatures, or from a set of microfeatures to an object are 
modeled via numeric weights in a network. Placing activation on 
one object can cause other similar objects to gain activation. 
Further, the use of microfeatures appears to be consistent with the 
results of psychological experimentation (as cited in [16]). 
A hybrid mechanism 

In this section we describe a mechanism that combines a 
marker-passing algorithm with a local connectionist, microfeature-
based, network. The scheme we propose here consists of two parts: 
an extension to the knowledge representation, allowing the presence 
of the microfeaturc information, and an extension to the marker-
passer which allows this knowledge to be used. The particular 
formulation of marker-passing we describe come from a planning 
mechanism called SCRAPS wherein the marker-passer improves the 
planning behavior in the presence of external information. The 
details of the marker-passer used in SCRAPS and a discussion of the 
cognitive implications of the work can be found in [12]. 

To extend the knowledge representation we need to recognize 
that our letter-opener is comprised of a set of features such as 
"pointed, metallic, and thin" and that a knife would have these as 

1- For example Brachrnan's | l | KL-ONE system provides a "claasifier" which 
can be run to determine what class is the best fit for some particular configuration of 
objects. (An example of this use or Brachrnan's classifier is the language parser 
described in (Brachman and Schmolze. 1984)). 

2- Consider the case of recognizing that some random "long, thin, pointed me­
tal object," (call it OBJECT-27) could not be taken onto the plane. It would seem 
clearly wrong to assert (IS-LIKE OBJECT-27 KNIFE) without some sort of analysis 
of the object in terms of its features. 

defining characteristics. It will not be enough, however, to perform 
a simple match on all these characteristics. The letter-opener will 
also have features which are not shared by the knife. We must move 
towards the connectionist notion of using an ensemble of 
microfeatures and an activation level. 

Encoding the information about the sets of microfeatures 
which define a given object is fairly easy in our present framework. 
We define a set of microfeatures and a special network link called a 
defining characteristic. Thus, each of the objects in our network is 
linked to a set of microfeatures which "define" it (Figure 1). 

To handle the extension of the marker-passer we need to 
create a situation in which an object's being marked by the 
symbolic system corresponds to the same object being "activated" 
in the connectionist manner. This activation then spreads through 
the distributed memory causing corresponding activations on the 
other objects in the network. These activations must then be 
returned to symbolic marks. In such a system marking LETTER-
OPENER would cause a large amount of activation on KNIFE with 
smaller activations on GUN and ROPE. Adding some sort of 
threshold-like mechanism which would supress marker-passing on 
the less activated nodes would complete the system. 

The implementation of such a mechanism requires blending 
two significantly different types of information. The symbolic 
marker-passer is passing discrete symbolic information that needs to 
propogate through the network, the distributed memory needs an 
activation strength that spreads via numerical combination. To 
integrate the two a mechanism must be used which can provide such 
a numerical activation strength to the distributed memory. It turns 
out, however, that a mechanism already existing for other purposes 
in our system can be used for this purpose. 

One of the most important features in the design of a marker-
passer is a mechanism which can limit the number of nodes marked 
and paths returned. Several such attenuation mechanisms have 
been proposed, but our marker-passer uses a mechanism which is 
designed to limit both length and branchout of the paths found 
without violating the locality constraints needed for massively 
parallel computing. This is done by using a numerical constant, 
called zorch, to start marker-passing and dividing it by outbranching 
as we proceed. If we start at a highly branching node, it and all its 
first set of descendants can be marked, but the zorch runs out 
quickly. If, however, we hit such a promiscuous node late in 
processing, its descendants are not marked since we do not have 
enough zorch left . 

The hybrid system works by using the zorch reaching a node 
as activation energy over the network defined by defining-
characteristic links. These links are used as a local connectionist 
network so that activation spreads in an "analog" manner over this 
subnetwork. As other nodes of this network gain activation they 
start passing marks with a zorch based on their activation. Marking 
then proceeds as normal, paths are found, and the path evaluator is 
invoked as normal. 

In our example, letter-opener, appearing in the sentence, would 
originate marking with an initial zorch. This zorch is then divided 
among the branches leading out from the node. Some of this zorch 
goes through symbolic links to the properties of letter-opener 
causing the marking of the neighbors of this node (for example 
mail). The rest of the activation is used as the constant starting the 
flow of activation through the microfeature network. Those nodes 
sharing microfeatures gain activation proportional to the number of 
microfeatures shared. The node knife, sharing multiple 

It turns out that designing the attenuation mechanism in this way has many 
desirable features[12|. 
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microfeatures with letter-opener, receives most of the activation. 
This enables marking to continue from knife with a zorch 
proportional to the amount of energy it received from letter-opener. 
Marker passing continues and we find the path: 

ATTACK 
—► Instrument of a physical attack Is a weapon 
—► weapon —► a knife is a weapon 
—► knife —► shares activation with —► 
—► letter-OPENER 

which is what we were seeking. 
Although the informal description presented so far serves to 

describe the mechanism, there are still some details we've omitted. 
In particular, we have glossed over details of how symbolic 
information is carried through the distributed network. 

To this point we have been describing marks as very simple 
entities. In reality, each marker in our system carries information 
about the origin of marking and the path that led to the node being 
marked, as well as information about the zorch which must be 
carried along with the activation energy that traverses the network. 
In our implementation, as the "strength" of the activation is 
computed throughout the distributed network, the information that 
originated the particular marking is carried. This has two major 
advantages, it allows several sets of activation to proceed through 
the network at the same time, and it allows the marker-passer to 
continue as activation at some node is collected (i.e. activation 
strength is computed without disturbing the symbolic information 
on the mark). 

Allowing the distributed memory to be computing several 
activations simultaneously is an important feature of our 
mechanism. One of the goals of our formulation of marker-passing 
is to let each set of marking happen in parallel. In the example 
we've been discussing, marks are started from each word more or 
less As these marks flow through the network, they may encounter 
the microfeature network at any time. When we mark BILL and 
LETTER-OPENER some entities will gain activation from one, 
some from the other, and some from both. We must be able to sort 
out which is which, and our system uses the symbolics information 
as "tags" for this purpose. When a node is activated from several 
microfeatures its activation for each separate tag is computed. 
Comparison to Connectionist models 

The defining characteristic links described in this paper 
function as a form of distributed memory. There are still, however, 
many differences between this and a standard connectionist system, 
even a local connectionist system. Primary among these is that our 
network does not provide weighted links or inhibitory links. Both of 
these are generally found in connectionist models. 

It is possible to add such items to our network — as the zorch 
is turned into activation strength and passed through the network 
the computations can be as arbitrarily complex as desired. If 
weighted links were used the zorch could be divided based on the 
weights. Inhibition, if desired, can be implemented by adding 
inhibition links between separate network nodes, or it can be 
simulated by using asymmetric weights and a competition based 
activation scheme [20]. 

We are currently working on a model which partially combines 
the competition-based scheme and our own. If a network, made up 
of both semantic information and the sorts of distributed 
information found in our defining characteristic nodes activates all 
and only the nodes corresponding to paths found by the marker-
passer, then it becomes possible to integrate the path finding and 
evaluation functions more directly into the network. We believe 
that this may be closer to a neurobiologically plausible model of 
what is happening than the simple model described in this paper. 

In Conclusion 
In this paper we have demonstrated that a hybrid system 

allowing both symbolic and numeric spreading activation has 
advantages over either approach alone sine the strengths and 
weaknesses of the two approaches are complementary. 
Connectionist models are stronger at similarity based reasoning (as 
in finding the commonalities between the knife and the letter-
opener), but they are particularly weak when it comes to providing 
control and symbol processing (as, for example, in performing 
planning). Models have been proposed for performing symbolic 
manipulations on massively parallel, distributed memories [25], but 
even these models have still needed to use a traditional VonNeuman 
style architecture to control gating and control flow within the 
system. 

Since each style of machine has proven suitable for certain 
problems, our approach, demonstrated herein, has been to look for a 
blending. Essentially, the technique described in this paper took a 
massively parallel algorithm, the "most connectionist" of many of 
the modern symbolic approaches, and combined it with a local 
connectionist model, the most "symbolic" of the connectionist 
approaches. The "buying the letter-opener" example, presented in 
this paper, is an example of a problem in which merging these 
approaches enables us to deal with a task which neither approach, 
alone, has yet been able to solve. 

We also believe this approach, the hybridization of symbolic 
and subsymbolic systems, provides an exciting area of exploration. 
Experiments have shown cognitive evidence for both connectionist 
and non-connectionist systems. Integration of these approaches is an 
important step towards explaining these results. We believe that the 
work presented in this paper is a start in the correct direction and 
an indication that progress can be made. 
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F igure 1: Def in ing-Character is t ic l i nks in a network 
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