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Abstract:

The cognitive modeling community is presently divided between two
different to the of actlva%n through networks.
One schooal holds that symbolic information must be progagated, the
other that numeric weights are used and activation spreads in a
more analog manner. In this paper we describe a mechanism which
allows the two processes to be via the introduction into the
symboalic network of a defining-characteristic link which is affects
the spread of the symbolic information in a manner resembling local
connectionist computations. We demonstrate that the combined
system is more powerful than either of the separate models alone.

Introduction

Spreading activation, in the form of computer models and
cognitive theories, has recently been undergoing a resurgence of
interest in the nive scence and Al communies. Two
competing schoois of thought have been forming. Ore technique,
that of marker-pasting, is based on the works of Quillian [18] and
concentrates on the passing of symbolic information through an

representation. A second group, holding to the

associative knowledge
parallel distributed proeessing[20] or connectionist approach, hes

on the passage of numeric information through an

associative network.

The primary advantage of the former group is that such
systems gracefully interact with traditional Al symbolic processing
models for natural language processing [4](I1(15][17] and planning
[12) and accounting for the psychological results in various
experiments (for example [6)2[]23)24)). The connectionist
approach, however, has proven useful for modeling various types of
cognitive performance that the symbolic approach has traditionally
had problems with: similarity based reasoning, leaming, and
categorization tasks. Both local connectionist models, such as those
of [10],[22], and distributed models [14) seem to best account for
results from the psychological literature on categorisation (discussed
in [1][16]). Both groups have proposed massively parallel models for
these computations. This is a comer stone of the connectionist
approach, but various models massuvely parallel algorithms for
performing symbolic marker-passer have been proposed [2] [9] [12).

It is our strong contention that nelther a purely connectionist
scheme nor a marker-passing approach which ignores connectionism
is as powerful as a mechanism which oombm% some of the best
features of each. This paper compares the connectionist and
marker-passing and shons why neither alone seems
adequate, describes an implemented mechanism that solves provides
integration between these approaches and handies some of those

ms neither g ch is sul‘ﬁment to solve, and condudes by
describing where this work is heading.’

The need for hybridisation

To justify the necessty of combining the competing
formulations of activation spreading, we start by examining some
spedific strengths and weaknesses of each approach.
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and further justiications Gan

The marker-passing approach works in an associative network
in which links representing symbolic information (rather than simply
link strengths or the like) are present. Information is passed through
these links to to find connections between nodes in a "mechanistic”
way, as opposed to the of using inferencing algorithms
consisting of a set of deductive rules. Marker-passing algorithms
have been formulated which can pess very simple information [9] or
complex marks which include various amounts of oontrol
information for use in the marker-passing process [4] [12] [18] 2

That the marker-pssing approach integrates well with standard
Al systems can be seen, for example, in the word sense
disambiguation system of Hirst [15] which model approaches
ambiguity by setting up a set of frames that put word senses in one
tomeoorrespondemewnhsemarmcmeanlngs senee of a
given word "competes" for recognition based on two criteria: the
syntactic information available and the connectedness of the words
to each other. This connectedness was found via a marker-passing
system.

Hirst's system would handle the word "ball" in a phrase like
The rubber ball by using marker-passing to find connections between
the various word senses of the words in the phrase. When this
phrase was encountered the system would pass markers between
rubber and ball and a path such as

RUBBER—»(Isa rubber material) —» material
—p ((IJomposed-ofhphysobJ material) —» ¢ physobj
sa sphere physob) sRhere—b
(word-sense ballnge )J—> BALL
would be found. This would cause the preference of the sphere
meaning of ball over the dance meaning.

By integrating his word sense disambiguator into a syntactic
Hirst was able to use syntactic dues in performing

dlsambl uation. For example, the word "TIRE" in the sentence
The left front tire is flat, can only be a noun, not a verb, and
Hirst's system could use this information 1o i ignore the VERB senses.

An altemate approach to word sense disambiguation is that of
Cottrell [7] which uses a local connectionist to perform the
disambiguation. The correct interpretation of the sertence would be
found at the end of a period of numeric computation by examining
the nodes remaining activated in a stable configuration.

For Cottrell to produce a parse to provide syntactic
information to the disambtguator would require the design of a
Tyntactlc parsing scheme within the i arallel framework.

not be impossible, in fact Cottrell [8] discusses some steps
in exactly such a direction, but at present connectionist schemes are
not having fremendous suacess at producing such results. In fact, a
general weakness of connectionist is the generation of
sequential behavior which seerms to be an integral part of language
processing, planning, efc.

Markerpassing algorithms, too, have limitations, the primary
of which is the need for explicit symbolic connecting the
objects being examined. Consider how a system like Hirst's might
handle the following two sentences:

John attacked Bill with the knife

John atiacked Biii with the letter opener
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The marker-passer would find the path:

ATTACK

—p Instrument ofa p sical attack is a weapon
—> —» aknife is a weapon

—p» KNIFE

and thus be able to recognize the first sertence as a physical attack
(as opposed to a heart attack or an attack by satire). Such a
path won't be found for the second sentence unless we had
specifically encoded the information that a letter-opener can be used
as a weapon. Assuming such was not available, a system
such as Hirst's could not use the “passer and would néed to
default to other, more complex mechanisms.

Finding similarities between objects has been a traditional

lem for symbolic Al in much the way that sequential
havior has a traditional problem for connectionist
While some representation schemes have a limited

ability to do classification, this classification is generally viewed as a
control . What we reed in this case is a
decomposition of an object into components and the categorizaﬁon
of a set of oom during the marker
Information must be provided to allow a marker to
opener to knife. We could use a predicate such as
(IS-LIKE LETTER-OPENER KNIFE) to solve this problem, but
such a solution is clearly lacking in elegance and, in fact, will not
solve the more general case .

What is needed here to be some sort of breakdown of
the letter-opener into a set of features and a recognition that those
features share many similar characteristics with a knife.

Recognizing similar characteristics, a major problem for
symboalic systems, is one of the strengths of a connectionist model.
A microfeaturc based analysis, which decomposes a single object
into a set of smaller, usually perceptual, features is a technique
which has been shown viable in the connectionist framework
[14][16]. Activation strengths flowing from an object to a set of
microfeatures, or from a set of microfeatures to an object are
modeled via numeric weights in a network. Placing activation on
one object can cause other similar objects to gain activation.
Further, the use of microfeatures appears to be consistent with the
results of psychological experimentation (as cited in [16]).

A hybrid mechanism

In this secton we descibe a mechanism that combines a
markerpassing algorithm with a local connectionist, microfeature-
based, netwo scheme we here consists of two parts:
an extension to the knowledge representation, allowing the presence
of the microfeaturc information, and an extension to the marker-
?&er which allows this krnMedge to be used. The particular

Iatlon of mark ssing we descibe come from a planning

rein the marker-passer improves the
plannlng behaVIor in the presence of extemal information. The
details of the markerpasser used in SCRAPS and a discussion of the
cognitive implications of the work can be found in [12].

To extend the knowledge representation we need to recognize
that our letter-opener is comprised of a set of features such as
"pointed, metallic, and thin" and that a knife would have these as
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defining characteristics. It will not be enough, however, to perform
a simple match on all these characteristics. The Ietter—opener will
also have features which are not shared by the knife. We must move
towards the connectionist notion of using an ensembe of
microfeatures and an activation level.

Encoding the information about the sefs of microfeatures
which define a given object is fairly easy in our present framework.
We define a set of microfeatures and a special network link called a
defining characteristic. Thus, each of the objects in our network is
linked to a set of microfeatures which "define" it (Figure 1).

To hande the extension of the markerpasser we need to
ceate a situation in which an object's being marked by the
symbolic system oomesponds to the same object being "activated"”
in the connectionist manner. This activation then spreads through
the distributed memory causing ing activations on the
other objects in the network. These activations must then be
retumed to symbolic marks. In such a marking LETTER-
OPENER would cause a large amount of activation on KNIFE with
smaller activations on GUN and ROPE. Adding some sort of
threshold-like mechanism which would supress markerpassing on
the less activated nodes would complete the system.

The implementation of such a mechanism requires blending
two significantly different types of information. The symbolic
markerpasser is passing discrete symbolic information that needs to
propogate through the network, the distributed memory needs an
activation strength that spreads via numerical combination. To
integrate the two a mechanism must be used which can provide such
a numerical activation strength to the distributed memory. It tums
out, however, that a mechanism already existing for other purposes
in our system can be used for this purpose.

Ore of the most important features in the design of a marker-
passer is a mechanism which can limit the number of nodes marked
and paths retumed. Several such attenuation mechanisms have
been proposed, but our markerpasser uses a mechanism which is
designed to limit both length and branchout of the paths found
without violating the locality constraints needed for massively
parallel computing. This is done by using a numerical constant,

called zorch, to start marker—passm%and dividing it b outbranchlng
as we prooeed If we start at a hi branchin e, it and all its
first set of d&eoendan!scanbemaedbut zorch runs out

quickly. If, however, we hit such a iscuous node late in
processing, its desoendarts are not marked since we do not have
enough zorch left .

The hybrid system works by using the zorch reaching a node
as activation over the network defined by defining-
characteristic links. links are used as a local oonnectonlst
network so that activation spreads in an "analog" manner over this
subnetwork. As other nodes of this network gain activation they
start passing marks with a zorch based on their activation. Marking
then proceeds as normal, paths are found, and the path evaluator is
invoked as normal.

In our example, letter-opener, appearing in the sentence, would
originate marking with an initial zorch. This zorch is then divided
among the branches leading out from the node. Some of this zorch
goes through symboalic links to the properties of letter-opener
causing the marking of the neighbors of this node (for example
mail). The rest of the activation is used as the constant starting the
flow of activation through the microfeature network. Those nodes
sharing microfeatures gain activation proportional to the number of
microfeatures  shared. The node knife, sharing multiple

It tums out that designing the atenuaiion medrerem in this hes
Cesizbe fedureq12] Wy e ey



microfeatures with letter-opener, receives most of the activation.
This enables marking to contnue from knife with a zorch
proportional to the amount of energy it received from letter-opener.
Marker passing continues and we find the path:

ATTACK

—P> Instrument of a p sical attack Is a weapon

—» weapon —P> a knife is a weapon

—p> knife —P> shares activation Wlth —b

—bp> letter-OPENER

which is what we were seeking.

Although the informal description presented so far serves to
describe the mechanism, there are still some details weve omitted.
In particular, we have over details of how symboalic
information is camied through the distributed network.

To this point we have been describing marks as very simple
entities. In reality, each marker in our cames information
about the origin of marking and the path that led to the node being
marked, as well as information about the zorch which must be
carried along with the activation energy that traverses the network.
In our implementation, as the "strength" of the activation is
computed throughout the distributed network, the information that
originated the particular marking is camied. This has two major
advantages, it allows several sefs of activation to prooeed through
the network at the same time, and it allows the marker-passer to
continue as activation at some node is collected (i.e. activation
strength is computed without disturbing the symbolic information
on the mark).

Allowing the distributed to be computing several
activations simultaneously is an important feature of our
mechanism. One of the of our formulation of marker-passing
is to let each set of marking happen in parallel. In the example
welve been discussing, marks are started from each word more or
kess As these marks through the network, they
the microfeature network at time. \When we ma BILL and
LETTER-OPENER some entities will gain activation from one,
some from the other, and some from both. We must be able to sort
out which is which, and our mn usss the symbolics information
as "tags" for this purpose. a node is activated from several
microfeatures its activation for each separate tag is computed.

Comparison to Connectionist models

The defining characteristic links desciibed in this paper
function as a form of distributed memory. There are still, however,
many di between this and a standard connectionist system,
even a local connectionist system. Primary these is that our
network does not provide weighted links or inhibitory links. Both of
these are generally found in connectionist models

It is possible to add such items to our network — as the zorch
is tumed into activation strength and pessed through the network
the computations can be as arbitrarily complex as desired. If
weighted links were used the zorch could be divided based on the
weights. Inhibition, if desired, can be implemented by adding
inhibition links between separate network nodes, or it can be
simulated by using asymmetric weights and a competition based
activation scheme [20].

We are currently working on a model which partially combines
the competition-based scheme and our own. If a network, made up
of both semantic information and the sorts of distributed
information found in our defining characteristic nodes activates all
and only the nodes comesponding to paths found by the marker-
passer, then it becomes possble to integrate the path finding and
evaluation functions more directly into the network. We believe
that this may be doser to a neurobiologically plausible model of
what is happening than the simple model described in this paper.

In Conclusion

In this paper we have demonstrated that a hybrid system
allowing both symbolic and numeric spreading activation has
advantages over either approach alone sine the strengths and
weaknesses of the two are complementary.
Connectionist models are stronger at similarity based reasoning (as
in finding the commonalies between the knife and the letter-
opener), but they are particularly weak when it comes to providing
control and symbol processing (as, for example, in performing
planning). Models have been proposed for performing symbolic
manipulations on massively parallel, distributed memories [25], but
even these models have still needed to use a traditional VonNeuman
style architecture to control gating and control flow within the
system.

Since each style of machine has proven suitable for certain
groblems our approach, demonstrated herein, has been to look for a

lendin Essentlall?/ the techniq e described in this paper took a
masswgy parallel agonthm 1he 'most connectionist” of many of
the modem symbolic approaches, and combined it with a local
connectionist TrtPeOdgl the ﬂ|'1no?’[tt"symboll'c“:" of ﬂ']p? oonneotonlst
approaches. "buying the letter-opener" example,
this paper, is an @(gmgle of a Eroblpgm in which merging 1h&ee
TWE& enables us to deal with a task which neither approach,
alone, has yet been able to solve.

We also believe this approach, the hybridization of symbollc
and subsymbolic , provides an exciting area of exploration.
Experiments have shown’ cognitive evidence for both connectionist
and non-connectionist systems. Integration of these a%oach&s is an
important step towards explaining these results. We believe that the

work Fresented in this paper is a start in the comect direction and
an indication that progress can be made.
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