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ABSTRACT 

The problem of planning motions of robot manipulators 
and similar mechanical devices in the presence of obsta­
cles is one of keen interest to the artificial intelligence 
community. Most of the algorithms previously reported 
for solving such problems have been combinatorial algo­
rithms, which work by partitioning the problem domain 
continuum into a finite set of equivalence classes, and ap­
plying combinatorial search algorithms to plan transitions 
among them. However, the few continuum algorithms that 
have been reported, which do not rely on such a partition­
ing, have shown greater promise when applied to prob-
lems of complexity equivalent to that of planning a true 
manipulator motion. This is true even though the heuris­
tics employed in these continuum algorithms have been 
extremely simple in nature. A significant barrier to the 
development of more refined heuristics for use in contin­
uum algorithms is the uncertainty over how to character­
ise the proximal relationship between rigid bodies. In this 
paper, a new measurement function is reported which per­
mits such characterisation. An introduction is made to a 
new type of path planning algorithm which this function 
makes possible, which promises to significantly increase 
the capabilities of continuum path planning software. 

1 P r i o r W o r k 

Two early research efforts in this area may be seen as corner-
stones of the two basic methods employed. 

Whitney introduced the first combinatorial algorithm for ma­
nipulator path planning [Whitney 1969]. Although this algo­
rithm was only concerned with the planning of gripper motions 
in the plane, and only a few evenly spaced positions and orien­
tations were considered, the algorithm suffered from problems of 
combinatorial explosion. The algoritlim was formally verified to 
be correct. 

Peiper's algorithm was not combinatorial, and was applied to 
the planning of motions for a full six degree of freedom robot 
manipulator [Peiper 1968]. Although he reported qualitative suc­
cess, he was unable to verify correctness. 

This basic tradeoff between vcrifiability and the size of 
tractable problems remains a fundamental issue among those who 
study path-planning today. 

Perhaps the most successful combinatorial results have been 
built on the work of [Lozano Perez 1981], who defined a scheme 
for exactly partitioning admissible points from inadmissible ones 
for polyhedral bodies in fixed relative orientation. .Jarvis has 
reported a similar scheme which works for arbitrary classes of 
objects, and is based on constructing adjacency graphs among 

uniform sized quanta in 3 space1 [Jarvis 1984]. Brooks later ex-
tended Lozano Perez' work to apply to planar objects with vari­
able orientation through the use of a successive approximation 
technique (Brooks 1982], but was subsequently unable to extend 
it to three dimensions. [Schwartz 1982] reported a generaliza­
tion of this concept to apply to objects of arbitrary dimension 
bounded by algebraic surfaces (e. g. planes, cylinders, etc.). Al­
though these results confirmed earlier results showing the path 
planning problem to be P-space complete [Reif 1970], they were 
of little practical interest since time complexity for discretization 
of the problem domain exceeded that of simple subdivision into 
hyperparallelopipeds of the smallest mesh size reprcsentable by 
standard computing hardware2 [Buckley 1985]. 

Two non combinatorial algorithms stand out as significant. 
Loeff and Soni reported an algorithm for planning the motions 
of a planar, line segment manipulator among circular forbid­
den zones [Loeff 1975]. Khatib has implemented an algorithm 
in which simulated repulsive forces generated from a restricted 
set of object models were used to generate commanded positions 
for certain distinguished points on a manipulator [Khatib 1980]. 

Another simpler algorithms was reported by Myers [Myers 
1981]. Although this algorithm was essentially one of hypoth­
esis and test, its computation times for solving a general purpose 
path planning problem for a PUMA manipulator were on the 
same order of magnitude as those reported in [Brooks 1982] for 
the planar, free body case. 

These results suggest that practical algorithms for path 
planning will be heuristic in nature, and not formally verifiable. 
However, prior research has only begun to explore the question of 
what sort of heuristics may be used to best advantage. Notably, 
excepting the algorithms of Loeff and Soni and that of Khatib, 
heuristics employed for collision avoidance in prior research have 
really been based only on whether or not a collision was detected 
in following an hypothesized trajectory. In most cases the direc­
tion in which liypothetical impact occurred was not even taken 
into account. Often the occurrence of a collision at one point 
along an hypothesized trajectory was considered grounds for re­
jection of that entire trajectory. Local perturbation of offending 
portions of trajectories has hardly been explored. 

2 T h e P r o x i m a l R e l a t i o n s h i p o f O b j e c t s 
i n Space 

To a large extent, the simplicity of the heuristics employed in 
previous algorithms is due the fact that there doesn't really exist 
'This adjacency graph was searched using dynamic programming, which that 
computations be performed for each quantum in the spare. 

2c. g. a single precision floating point number on something like a VAX 
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Figure 1: A Point Set Defined by Boundary Constraints 

a good way of characterizing the proximal relationship between 
two rigid bodies or models. Conceptually, it is easy to determine 
whether or not an intersection between two such bodies occurs, 
given their relative position. However, if this information is in­
sufficient, then what? It is often proposed that the actual point 
set corresponding to the intersection of rigid bodies be computed, 
but there have been no serious proposals made as to what might 
be done with all of this information if were it available. 

Practically, the only alternatives to hypothesize and test 
methods which have enjoyed any success at all are the relaxation 
methods. These methods were originally conceived to solve con­
strained non linear optimization problems, and have been quite 
successfully applied. Loeff and Soni and Khatib took advantage 
of the fact that these algorithms work by continuously perturbing 
a state vector from some initial guess to a final optimum state to 
generate trajectories between known endpoints. 

The main inconvenience with relaxation methods as they are 
almost always formulated is that all constraints must apply si­
multaneously. This has to do partially with the formulation of 
the Kuhn-Tucker stationarity equations for an extremum, which 
are used as error equations to drive state perturbations, and par­
tially with long—standing conventions of the discipline. This 
requirement is fundamentally incompatible with standard solid 
modelling practice, in which solid objects are represented as point 
sets defined by arbitrary Boolean functions of boundary predi­
cates. 

For example, the set of points contained in the L-shaped pla­
nar region shown in Figure 1 may be described as those points 
which satisfy the following Boolean expression: 

t o 

where each Boolean expression Pi corresponds to a point lying on 
the proper side of the associated line8, as indicated by the direc­
tion of the normal arrows drawn in the figure. If gi,(*) = 0 were 
the equation of boundary line P,, then the Boolean expression Pi 
might be #,(x) < 0. Only the constraints in one or the other of 
the two disjuncts are necessary to qualify a point as being part 
of the shaded region. Further, for points lying in one of the arms 
of the ''cell'' it is not possible for all of the constraints to apply 
simultaneously. A similar argument may be made with respect 
to points outside of the shaded region. The developers of prior 
algorithms for path-planning in which relaxation methods were 
used were very aware of this problem, and in fact the limitations 
which they placed on their algorithms stemmed directly from it. 
8 an instance of a boundary manifold 
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Figure 2: Locus of Minimizing Points for Comba Distance Func­
tion 

d(x, Bi), the convex distance function5 [Rockafellar 1970], then 
the function g will be minimized anywhere on the line segment 
connecting the two closest points of bodies B1 and B2. This 
segment is shown in Figure 2. More important, its value there 
will correspond to half the distance between these closest points, 
or in other words, half the minimum distance between bodies B1 
and B2

6 

This specialized version of the Comba function has the advan­
tage that the generating segment corresponding to the locus of 
minimizing points is a function of only a single point on each 
of the bodies. This makes it easier to generate a derivative of 
this specialized Comba function than it is for the general case. 
On the other hand, this specialization effectively reimposes the 
restrictions that: 

1. Each of the convex bodies involved be represented by a 
single, differentiate manifold. 

2. The bodies in question should not intersect. 

These restrictions correspond almost exactly to those which Loeff 
and Soni, and subsequently Khatib found it necessary to impose 
in their algorithms. Loeff and Soni restricted their attentions to 
planar problems, in which the manipulator links were modelled 
as line segments, and the obstacles ''[did] not have sharp corners 
or sides" (Loeff 1975], and in which the influence function used 
to repel a moving from a fixed body was a decreasing function of 
the minimum distance between them. Khatib restricted his at­
tention to the interaction between obstacles whose surfaces could 
be modelled as single differentiate manifolds, and selected dis­
crete points on a moving manipulator7. The minimum distance 
between these points and obstacles was subsequently used in an 
inverse square potential function to simulate forces between the 
two bodies generating it. 

In both of these cases, a clear effort was made to avoid having 
the two bodies in question intersect. There is good reason for 
this — if the two bodies intersect, the minimum distance between 
them drops to 0 identically and abruptly, and remains that way 
for arbitrary intersections. This means that the gradient of the 
minimum distance function is identically zero, and can therefore 
provide no information which might be used to drive a relaxation 
algorithm. 

An even more important limitation than that placed on the 
type of objects which can be modelled is the one which prevents 

corresponding to the minimum distance from a point x to all points in body 

The 1/2 factor is included so an to make the a term correspond to the inverse 
of the transformation from g, to Vi,. It's presence is not essential. 

7which he called "points submitted to a potential" (Khatib 1980] 

Figure 3: Two Paradigms for Path Planning 

the modified Comba algorithm from working if the objects be­
tween which constraints are computed intersect. Both the Lo-
eff/Soni and Khatib algorithms were subject to this limitation, 
which is a severe one because it forces an evolutive algorithm for 
trajectory generation, in which one known state is sequentially 
perturbed towards another, as shown in Figure 3a, and no inad­
missible states are ever entered. This approach will only work if 
the problem in question is free from false local minima. The limi­
tations of this type of algorithm have been aptly demonstrated in 
mobile base path planning research, e. g. [Chatila 1981], [Cahn 
1975]. 

An alternate paradigm for path planning is shown in Figure 
3b, in which an entire trajectory is hypothesized between the two 
known endpoints, and perturbed into admissibility, if it is not al­
ready. Such an approach depends on being able to deal effectively 
with inadmissible states (in this case intersections between the 
moving body and its obstacles) should they arise. 

3 A , t h e M i n i m u m D i r e c t e d D i s t a n c e 

The function A, called the minimum directed distance between 
two arbitrary convex bodies, was developed in order to address 
these two issues. That is, it was developed to: 

• be valid for bodies bounded using more than one boundary 
predicate. 

• be valid even when the bodies in question intersect. 

A also stems from the distance form of the Comba intersection 
form described earlier, hence its restriction to convex bodies. 
This restriction does not constitute much of a problem, since con­
vex decomposition can be accomplished "off-line*'. Algorithms 
exist for performing this decomposition automatically in the case 
of certain classes of objects, such as polyhedra [Chazelle 1980]. 
It can also be done by hand if necessary. 

Although the merit of the A function stems in large part from 
the fact that it is valid between two arbitrary convex bodies, it 
is simplest to explain for the case in which one of the bodies 
is a point. Extension to the point body case follows from the 
same configuration space obstacle transformation described in 
[Lozano-Perez 1981]. 

3.1 Disjoint Case 

Consider first the case in which the givens of the problem, a 
point x0 and a set of points of a rigid, convex body C are fixed in 
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4 C o m p u t a t i o n a l Issues 

While A may be attractive theoretically, it is not straightfor­
ward to compute for arbitrary convex bodies. However, if the 
bodies between which it is to be computed are polyhedral sets, 
then its computation becomes a combinatorial problem. Efficient 
ways of computing this function have been explored extensively 
[Buckley 1985]. Briefly, the complexity bounds O(nlogn) in the 
planar case, where n i is the combined number of vert ices of the 
two polyhedral bodies for which A is computed. The correspond­
ing figure for spatial polyhedral bodies is 0(n2logn). 

lmplementational issues of the A function are currently be­
ing studied, and it is being incorporated into a free body path-
planning system. The performance of this system is being as­
sessed relative to a combinatorial system, that of [Brooks 1982]. 

5 C o n c l u s i o n 

A new function for characterizing the proximal relationship be­
tween two convex bodies has been developed, and its properties 
studied. This function makes it possible to implement path 
planning algorithms significantly different in capability from 
those heretofore reported. 
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