A Proximity Metric For Continuum Path Planning

Charles E. Buckley and Larry J. Leifer

Stanford University and Palo Alto VA Hospital

ABSTRACT

The problem of planning motions of robot manipulators
and similar mechanical devices in the presence of obsta-
des is one of keen interest to the artificial inteligence
community. Most of the algorithms previously reported
for solving such have been combinatorial algo-
rithms, which work by partitioning the problem domain
continuum into a finite set of equivalence dasses, and ap-
plying combinatorial search algorithms to plan transitions
among them. However, the ew continuum algorithms that
have been reported, which do not rely on such a partition-
ing, have shown greater promise when applied to prob-
lems of complexity equivalent to that of planning a true
manipulator motion. This is true even though the heuris-
tics employed in these continuum algorithms have been
extremely simple in nature. A significant barrier to the

of more refined heunistics for use in contin-
uum algorithms is the uncertainty over how to character-
ise the proximal relationship between rigid bodies. In this
paper, a new measurement function is reported which per-
mits such characterisation. An introduction is made to a
new type of path planning algorithm which this function
makes possible, which promises to significantly increase
the capabiliies of coninuum path planning re.

1 Prior Work

Two early research efforts in this area may be seen as comer-
stones of the two basic methods employed.

Whitney introduced the first combinatorial algorithm for ma-
nipulator path planning [Whitney 1969]. Although this algo-
rithm was only concemed with the planning of gripper motions
in the plane, and only a few evenly spaced positions and orien-
tations were considered, the algorithm suffered from problems of
combinatorial explosion. The algoritlim was formally verified to
be correct.

Peiper's algorithm was not combinatorial, and was applied to
the planning of motions for a full six degree of freedom robot
manipulator [Peiper 1968]. Although he reported qualitative suc-
cess, he was unable to verify correctness.

This basic tradeoff between vcrifiability and the size of
tractable problems remains a fundamental issue among those who
study path-planning today.

Perhaps the most successful combinatorial results have been
built on the work of [Lozano Perez 1981], who defined a scheme
for exactly partitioning admissible points from inadmissible ones
for polyhedral bodies in fixed relative orientation. .Jarvis has
reported a similar scheme which works for arbitrary dasses of
objects, and is based on constructing adjacency graphs among

uniform sized quanta in 3 space’ [Jarvis 1984]. Brooks later ex-
tended Lozano Perez' work to apply to planar objects with vari-
able orientation through the use of a successive approximation
technique (Brooks 1982], but was subsequently unable to extend
it to three dimensions. [Schwartz 1982] reported a generaliza-
tion of this concept to apply to objects of arbitrary dimension
bounded by algebraic surfaces (e. g. planes, cylinders, etc.). Al-
though these results confirmed earlier results showing the path
planning problem to be P-space complete [Reif 1970], they were
of little practical interest since time complexity for discretization
of the problem domain exceeded that of simple subdivision into
hyperparallelopipeds of the smallest mesh size reprcsentable by
standard computing hardware® [Buckley 1985].

Two non combinatorial algorithms stand out as significant.
Loeff and Soni reported an algorithm for planning the motions
of a planar, line segment manipulator among circular forbid-
den zones [Loeff 1975]. Khatib has implemented an algorithm
in which simulated repulsive forces generated from a restricted
set of object models were used to generate commanded positions
for certain distinguished points on a manipulator [Khatib 1980].

Another simpler algorithms was reported by Myers [Myers
1981]. Although this algorithm was essentially one of hypoth-
esis and test, its computation times for solving a general purpose
path planning problem for a PUMA manipulator were on the
same order of magnitude as those reported in [Brooks 1982] for
the planar, free body case.

These results suggest that practical algorithms for path
planning will be heuristic in nature, and not formally verifiable.
However, prior research has only begun to explore the question of
what sort of heuristics may be used to best advantage. Notably,
excepting the algorithms of Loeff and Soni and that of Khatib,
heuristics employed for collision avoidance in prior research have
really been based only on whether or not a collision was detected
in following an hypothesized trajectory. In most cases the direc-
tion in which liypothetical impact occurred was not even taken
into account. Often the occurrence of a collision at one point
along an hypothesized trajectory was considered grounds for re-
jection of that entire trajectory. Local perturbation of offending
portions of trajectories has hardly been explored.

2 The Proximal Relationship of Objects
in Space

To a large extent, the simplicity of the heuristics employed in
previous algorithms is due the fact that there doesn't really exist
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Figure 1: A Point Set Defined by Boundary Constraints

a good way of characterizing the proximal relationship between
two rigid bodies or models. Conceptually, it is easy to determine
whether or not an intersection between two such bodies occurs,
given their relative position. However, if this information is in-
sufficient, then what? It is often proposed that the actual point
set corresponding to the intersection of rigid bodies be computed,
but there have been no serious proposals made as to what might
be done with all of this information if were it available.

Practically, the only altematives to hypothesize and test
methods which have enjoyed any success at all are the relaxation
methods. These methods were originally conceived to solve con-
strained non linear optimization problems, and have been quite
successfully applied. Loeff and Soni and Khatib took advantage
of the fact that these algorithms work by continuously perturbing
a state vector from some initial guess to a final optimum state to
generate trajectories between known endpoints.

The main inconvenience with relaxation methods as they are
almost always formulated is that all constraints must apply si-
multaneously. This has to do partially with the formulation of
the Kuhn-Tucker stationarity equations for an extremum, which
are used as error equations to drive state perturbations, and par-
tially with long—standing conventions of the discipline. This
requirement is fundamentally incompatible with standard solid
modelling practice, in which solid objects are represented as point
sets defined by arbitrary Boolean functions of boundary predi-
cates.

For example, the set of points contained in the L-shaped pla-
nar region shown in Figure 1 may be described as those points
which satisfy the following Boolean expression:

(AP ATBARIVIFS AP AIRAR) to

where each Boolean expression P; corresponds to a point lying on
the proper side of the associated line®, as indicated by the direc-
tion of the normal arrows drawn in the figure. If g;,(*) = 0 were
the equation of boundary line P,, then the Boolean expression P,
might be #,(x) < 0. Only the constraints in one or the other of
the two disjuncts are necessary to qualify a point as being part
of the shaded region. Further, for points lying in one of the amms
of the "cell" it is not possible for all of the constraints to apply
simultaneously. A similar argument may be made with respect
to points outside of the shaded region. The developers of prior
algorithms for path-planning in which relaxation methods were
used were very aware of this problem, and in fact the limitations
which they placed on their algorithms stemmed directly from it.

8 an instance of a boundary manifold
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in this paper is described a new metric for characterizing the
proximal relationship between two convex rigid bodies which ad-
dresses this issue and others. This metric may be related to an
algurithm intended exclusively for defecting sntersections among
eonvex bodies published in [Comba 1568].

The use of the Comba method actually inveolves the numer-
ical solution of A unconstrained minimization problem itsell,
which can be time—consuming. The quantity 1o be minimized is
s “pseude-constraint function” defined as lollows:

Lot Lhe n, boundary predicates (those which deline alf of the
ob,ects under consideration) be defined by

gi(z) €0, i=1,n,

where the g; are convex functions of their arguments?. Then, the
Comba constraint function G{z) is defined by the three equations:

vilz) = (9:(2)® + £} + gl2) (2)
V= i:"‘ ()

2
G:%(v—i—,)ﬂ (4)

wlere ¢, c are small, pouitive constants,

For ¢ non-zero, each of the #; functions is always positive.
However, when the corresponding g; s negative, then that w;
tends toward zero. In particular, when n ¢ = 0, then «; = t.
When V = t, then the term a in equation 4 ix zero. Therefore,
when all of the g; are zero, then V' = O(t}). When a g; is vegative,
then its corresponding v; = {¢*). When ¢ is small, Z < 1, and
the contribution of a v; corresponding to a negative g; will be
less. Therclore, except in instances where the bodies in question
are just tonching, if

G = mjnG {5

then (7* < 0 corpesponds to a condition of intersection, ¢* > 0
correspondy (o non interseetion, and the z corresponding to a &°
near zero are in & gray area. The constant ¢ in the equation for
¢V helps minimize the problems associated with this gray area.
T'er example, it may be used Lo create a safety buffer around the
vbstacles being tested.

The Comba function is meaningful only at its minimum, and
then only when compared against the threshold of zero, “Trying
to assign other meaning to the value of the [unction token at its
minimum is hampered by the influence of the ¢ and ¢ parameters,
which were introduced to insure continuous dilferentiability of the
function as an aid to finding its migimum.

The Comba function s undefined at any point z satisfying
ali constraints if { = 0. However, for the non-intersecting case,
if both ¢ and ¢ are set equal to zerc, then the Comba function
hecomes:

R B )
= min 7 E max (0, gi(z)} {6)

If the number of convex bodies being tested is restricted to 2, and
there is only one g; funciion per body, corresponding to g,{r) =

“The g must he eontinuously differentiable in arder to employ numeriral
metheds for minimization, such aa Davidon-Fletcher- PowelljA vriel 1976,
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Figure 2: Locus of Minimizing Points for Comba Distance Func-
tion

d(x, B)), the convex distance function® [Rockafellar 1970Q], then
the function g will be minimized anywhere on the line segment
connecting the two dlosest points of bodies B; and B, This
segment is shown in Figure 2. More important, its value there
will correspond to half the distance between these closest points,
orin otper words, half the minimum distance between bodies B,
and B,

This specialized version of the Comba function has the advan-
tage that the generating segment corresponding to the locus of
minimizing points is a function of only a single point on each
of the bodies. This makes it easier to generate a derivative of
this specialized Comba function than it is for the general case.
On the other hand, this specialization effectively reimposes the
restrictions that:

1. Each of the convex bodies involved be represented by a
single, differentiate manifold.

2. The bodies in question should not intersect.

These restrictions correspond almost exactly to those which Loeff
and Soni, and subsequently Khatib found it necessary to impose
in their algorithms. Loeff and Soni restricted their attentions to
planar problems, in which the manipulator links were modelled
as line segments, and the obstacles "[did] not have sharp comers
or sides" (Loeff 1975], and in which the influence function used
to repel a moving from a fixed body was a decreasing function of
the minimum distance between them. Khatib restricted his at-
tention to the interaction between obstacles whose surfaces could
be modelled as single differentiate manifolds, and selected dis-
crete points on a moving manipulator7. The minimum distance
between these points and obstacles was subsequently used in an
inverse square potential function to simulate forces between the
two bodies generating it.

In both of these cases, a clear effort was made to avoid having
the two bodies in question intersect. There is good reason for
this — if the two bodies intersect, the minimum distance between
them drops to O identically and abruptly, and remains that way
for arbitrary intersections. This means that the gradient of the
minimum distance function is identically zero, and can therefore
provide no information which might be used to drive a relaxation
algorithm.

An even more important limitation than that placed on the
type of objects which can be modelled is the one which prevents

comesponding to the minimum distance from a point x to all points in body

ﬂe1/2fador5|ndwedsoar1bnﬁeﬁ1eatenncxxr$puﬁbme
of the fransformation from g, to V. It's presence is not essential

which he called "points submitted to a potential” (Khatib 1980]

Figure 3: Two Paradigms for Path Planning

the modified Comba algorithm from working if the objects be-
tween which constraints are computed intersect. Both the Lo-
eff/Soni and Khatib algorithms were subject to this limitation,
which is a severe one because it forces an evolutive algorithm for
trajectory generation, in which one known state is sequentially
perturbed towards another, as shown in Figure 3a, and no inad-
missible states are ever entered. This approach will only work if
the problem in question is free from false local minima. The limi-
tations of this type of algorithm have been aptly demonstrated in
mobile base path planning research, e. g. [Chatila 1981], [Cahn
1975].

An alternate paradigm for path planning is shown in Figure
3b, in which an entire trajectory is hypothesized between the two
known endpoints, and perturbed into admissibility, if it is not al-
ready. Such an approach depends on being able to deal effectively
with inadmissible states (in this case intersections between the
moving body and its obstacles) should they arise.

3 A, the Minimum Directed Distance

The function A, called the minimum directed distance between
two arbitrary convex bodies, was developed in order to address
these two issues. That is, it was developed to:

* be valid for bodies bounded using more than one boundary
predicate.

* be valid even when the bodies in question intersect.

A also stems from the distance form of the Comba intersection
form described earlier, hence its restriction to convex bodies.
This restriction does not constitute much of a problem, since con-
vex decomposition can be accomplished "off-line*'. Algorithms
exist for performing this decomposition automatically in the case
of certain dasses of objects, such as polyhedra [Chazelle 1980].
It can also be done by hand if necessary.

Although the merit of the A function stems in large part from
the fact that it is valid between two arbitrary convex bodies, it
is simplest to explain for the case in which one of the bodies
is a point. Extension to the point body case follows from the
same configuration space obstacle transformation described in
[Lozano-Perez 1981].

3.1

Consider first the case in which the givens of the problem, a
point xo and a set of points of a rigid, convex body C are fixed in

Disjoint Case



relative position so that CNap = @. Let ¢ be defined rymbolically
by
C={vre R
wliere n, is the pumber of constrainta. The ¢; are copcave func-
tions, which means that gi{x) > 0 is a convex set.
The minimum distance problem (DI%) can be defined as the
problem of finding:

d{xo; ') = min /(2 ~ 26)7 (2 —_::j {7

gilz) 20, 71=1,n,.

1 gilx) > 0,6 = 1,0},

subject Lo

The stalionary conditions {or this problem are:

(z = 2p)

= 3" AVailz) (8)

(z~=za)T(z— 2} =

in which
Az 0, Mgir)=0
This problem is a well-behaved, convex one.
Now, the following two-stage problem [SF) is introduced as
an alternative 1o problem [DP) above,

s(#6iC) = - minmax €7 (z - 7o) {9)

subject to
gz} >0, =1,n,

and
1-£Te 20

Considering the two extremizations as separate problems, the
objective functions of cach are linear, and may be considered as
simmult aneously convex and econcave. The constraints are coneave,
80 ench extremization represents a convex problem.

Tlere are two sets of stationary conditions, one corresponding
to each of the atages:

-;—’; : {= ‘z;lﬁ.'vy-'(f), gi=z0 {10)
B—BE= (2 = 20) = ~Aok, fo 2 0. (1)

It is easy to eliminate £, which yiclds
(2 - 20} = Bo 3 AV gi(a). (12)

=1
Comparing these stationary conditions with those of problem
(I2P}, it is seen that they are equivalent il
Bofi

e —————— = 1,n,.
Viz = 20)T(z — %)

From the definition of the Kuhn-Tucker stationary conditions,
when s multiplier §; is equal to 0, ithen that constraint is inactive,
If fo = 0, then the stationary conditions 1t dictate that z* =
T, where z* is an r which satisfies the stationary conditions,
However, by definition, there is no z € € which crn equal {be
coincident with) zg, since zg and C are diajoint. Therefore, the
unit maguitude constraint on £ must be active in this case.
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The activity of the unit magnitude constraiut on £ in turn

implies that
Po= LY (2 - 2o} {z — 20},

Al‘ - ﬁl‘i 1= ’t”e‘

Further if £*,2* are extrems which satisfy the stationary condi-
tions, then

and therefore

v _ _ (I- - 30)
Viz* = 20)T(z* = x0)
and
s(20;C) = ~(£)7(z" - )

(2* = xo}T(z* — 70)
V(z* — 20)T(z* ~ 7o)

(z* ~ 20)7(z* — x5)
d(z;C).

f

(13)

fl

The equivalence of the two problems under conditions of non-
intersection has been fully established.

The solution of problem (SP) has a simple interpretation in
terms of support functions, which is useful in developing intuition
for the development which follows.

The indicator function of a convex set C is defined by

. 0 (8K
He.0) = { o0 :;C,

[ts convex conjugate function is given by [Ave -l 1976]

°{£.C)

m‘nx{frz— i(x; C)}

(14)

lup{frz}‘
zEC

The z-extremum portion of the problem (SP) is given by
m}"{fr{f - xp)}

subject to
g{z) 20, i=1n,

er in other words
sup{£T(z — zo)}
EC

= oup{¢Tz} ~ {7z
EC

= MEC) - T2
= & e{n}) (18)
where the operator © denotes set subtraction. Set subtraction
will be formally defined later on, but in thix case the operation
simply involves subtracting xp from each peint in the convex set
(7. liseasy tosce that 20 ¢ C & 0 ¢ C o ;.

Expressed in this form, the z-extremization may be given a
simple graphical interprelation, as shown by the (necessarily pla-
nar) example in Figure 4. A support function with an argument
of £ {considered s & free vector) may he computed graphically
by taking & hyperplane® with normal £ and moving it so that it

%4 kine in the plunar cane
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Figure 5: A Solution and & Non-Solution to Problem {5P’)

osculates against the set in question, with the normal pointing
away as shown. Then the value of the support function is egual
to the dot product hetween a vector from the origin of the co-
ordinate system to any point of the osculation. Of course, this
value depends un the choice of the origin, but the transformation

C— COZ@

turns the point zy into the origin, and makes this method ap-
propriate for describing proximal relationships between z; and

C.
The problem {SP’} can be restated in light of the above as

slrp;C) = = m{in{i’(f; C S 1)}

subject to

<.
For 24, (© disjoint, solving & stmply involves finding the upit mag-
pitude direction vector which minimizes the support function of
the transformed set. This corresponds to the identification of
& point such as z} in figure 5, and its corresponding £. It in
expreasly pointed out that this is not equivalent to solving

max{((6:C © {20))-
Such & solution would correspond to the point 2} in the same
figure. The unit vector £ points along the generating segment
from z} to zg.
3.2 Non-Disjoint Case

When 1o € 7, the sohition to the problem {DF) is uniformly
zero, and therefore uninteresting.

*corresponding to int ticn of two bodies in the original preblem

Figure 6: Multiple Stationary Conditions for A

For problem (5P}, the origin of the transformed prohlem will
lie inside of C & {£p}. Therefore, *{§,C O {zp}) > 0 forall £ €
R™. The £-minimization of problem {51°') is therefore sclved by
£ = 0, which means #{xy; ') = 0 and z* = zy, just &s with {DP).
Therefore, problem (51"} is again equivalent to (DP), and equally
uninteresting.

However, the formulation of {SP) suggesta a small modification
which ts not apparent in the problem (I3P). If a problem {SP=)
is written, whichk consista of finding

Alxg; C) = —mein max £T(z - x4) {16)
subject to
9({7} 20, 1=1L,n
and
1~Te =0

it defined, in which the only difference between it and problem
(SP) is that the unit magnitude constraint on £ is an equolity
constraint, its solutions assume interesting propertics. Ta begin
with, when z; € C, the behavior of problems (SP) and {SP=)
are the same.

However, the guaranteed activity of this constraiut at the op-
timum means that £ will always be of unil length, and paralle!
to the vector from =* to 25, Therefore Alzo; C) will always have
units of length. Decause £ # 0, any z* will always lie on the
boundary of C or

z* € 8¢,

Therclore, the magnitude of A will corresponds to the shortest
normal distance to the boundary of C. As was the case with the
Combs function, the sign of & may be used as an intersection
predicate:
>0 z4 ¢ C,
Alxp: O} { =0 29€8C,
<0 el 230

When A < 0O the problem (SP=) is no longer & convex pro-
gtam, and i therefore much harder to solve. It is not hard to
think of situations in which there are several x* € 3C which
satisly the stationary conditions of (SP=); Figure 6 shows a cou-
ple of such cases. In Lthe case where the point A is taken as
xp, although there are multiple stationary conditions, there ia a
clear minimum distance to the boundary. In the case where B is
taken as 7o, both stationary conditions may be uscd, since their
corresponding distances are equal. B is called s conjugate point.



Figure 7: A Retween a Point and a Body

ro.

I'igure 8: A Between Two Non- Point Bodies

3.3 Properties of A(xy; C)
These properties of Afzy; ') are established in {Ruekley 1985):

® A(rg: (7)), considered as a function of xg is convex.
® Afxg;(’) i3 B continuous function.

e £, the unit vector paralfe]l to the generating segment, is
always contained in the subdifferential of A{rg;C), and
may be used as a gradicat,

An intuitive feeling for the behavior of A ns & point x; passes
ucar a body E may be acen in Figure 7. Dashed pencrating
vexmenty correspond to negative values of A, and the magnitude
el A is proportional to the lenglh of the generating segment.
lole that the aubgradient of A will be discontinuous.

3.4 Extension to the Body-Body Case

The derivation for the body body case proceeda almost ex-
actly as with the point body case, except that both ends of the
generating segment are now free to move about in the minimiza-
tions. Details are given in [Buckley 1985]. Equivalence to the
configuration space obstacle method described in [Lozano- Pérez
1981] is also ¢stablished there. A between two convex bedies is
also a contimous function, but because the relative position and
orientation of two bodes must he expressed in terms of at least
one rotation group, it eannct be a convex funmetion of its arzu-
ments. An analytic expression which may always be used as the
gradient of A has also been derived.

An intuitive fecling for the behavior of A as a rectangle moves
near a hexagon may be seen in Figure 8. The encoding on the
generating segment is the same as with Figure 7.
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4 Computational Issues

While A may be attractive theoretically, it is not straightfor-
ward to compute for arbitrary convex bodies. However, if the
bodies between which it is to be computed are polyhedral sets,
then its computation becomes a combinatorial problem. Efficient
ways of computing this function have been explored extensively
[Buckley 1985]. Briefly, the complexity bounds O(nlogn) in the
planar case, where n i is the combined number of vert ices of the
two polyhedral bodies for which A is computed. The correspond-
ing figure for spatial polyhedral bodies is 0(n?logn).

Implementational issues of the A function are currently be-
ing studied, and it is being incorporated into a free body path-
planning system. The performance of this system is being as-
sessed relative to a combinatorial system, that of [Brooks 1982].

5 Conclusion

A new function for characterizing the proximal relationship be-
tween two convex bodies has been developed, and its properties
studied. This function makes it possible to implement path
planning algorithms significantly different in capability from
those heretofore reported.
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